JP2008020654A - Blood vessel motion simulator - Google Patents

Blood vessel motion simulator Download PDF

Info

Publication number
JP2008020654A
JP2008020654A JP2006192228A JP2006192228A JP2008020654A JP 2008020654 A JP2008020654 A JP 2008020654A JP 2006192228 A JP2006192228 A JP 2006192228A JP 2006192228 A JP2006192228 A JP 2006192228A JP 2008020654 A JP2008020654 A JP 2008020654A
Authority
JP
Japan
Prior art keywords
blood vessel
simulated blood
stent
simulated
motion simulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006192228A
Other languages
Japanese (ja)
Other versions
JP4822521B2 (en
Inventor
Kiyotaka Iwasaki
清隆 岩▲崎▼
Mitsuo Umetsu
光生 梅津
Atsushi Hasegawa
厚 長谷川
Akira Nishigori
晃 錦織
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2006192228A priority Critical patent/JP4822521B2/en
Publication of JP2008020654A publication Critical patent/JP2008020654A/en
Application granted granted Critical
Publication of JP4822521B2 publication Critical patent/JP4822521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instructional Devices (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blood vessel motion simulator capable of simulating, with comparatively simple configuration, behavior of a blood vessel resulting from biomechanical load, and useful for durability evaluation of a stent, objective evaluation of anastomotic technique and the like taking the behavior into account. <P>SOLUTION: The blood vessel motion simulator 10 is constituted of: an elastic simulated blood vessel 31 in which a liquid is filled; a first and a second supporting members 32 and 33 for supporting both end portions of the simulated blood vessel 31 in the extending direction and for operating both of the end portions so as to approach/move away from each other; and a linear motor 14 for operating the first and the second supporting members 32 and 33. The blood vessel motion simulator 10 extends and contracts the simulated blood vessel 31 in the extending direction by making both of the end portions approach/move away from each other by driving the linear motor 14. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、血管動作シミュレータに係り、更に詳しくは、生体力学的負荷に起因する血管の挙動を模擬することができ、当該挙動を考慮したステントの耐久性試験や血管の吻合訓練時の手技評価に利用可能な血管動作シミュレータに関する。   The present invention relates to a vascular motion simulator, and more specifically, can simulate the behavior of a blood vessel caused by biomechanical load, and evaluates a durability test of a stent in consideration of the behavior and a technique evaluation during blood vessel anastomosis training. The present invention relates to a vascular motion simulator that can be used in the field.

血管の狭窄時の治療に用いられる医療器具として、ステントと呼ばれる金属製の網状の筒体が知られている。このステントは、血管内の狭窄部位に長期間留置されて当該狭窄部位を継続的に拡張させるものであるため、ステントの耐久性試験を行う際には、当該ステントが血管内に留置された状態を考慮することが重要である。ところが、このような耐久性試験は、実際に人体で行うことは不可能であり、人体の特徴を模擬した機械的な装置にて行う必要がある。   As a medical instrument used for treatment of a blood vessel stenosis, a metal net-like cylinder called a stent is known. Since this stent is placed in the stenosis site in the blood vessel for a long time and continuously expands the stenosis site, the stent is placed in the blood vessel when performing the durability test of the stent. Is important to consider. However, such a durability test cannot be actually performed by the human body, and must be performed by a mechanical device that simulates the characteristics of the human body.

ところで、ステントの性能を評価するための装置として、特許文献1に開示されたステント性能評価シミュレータと、特許文献2に開示されたステント力学特性測定装置が知られている。   By the way, as an apparatus for evaluating the performance of a stent, a stent performance evaluation simulator disclosed in Patent Document 1 and a stent mechanical property measuring apparatus disclosed in Patent Document 2 are known.

特許文献1のステント性能評価シミュレータは、冠循環を模擬した回路構成になっており、閉ループ状の液体流路と、この液体流路内を循環する液体に拍動流を付与するポンプと、流体流路の途中で分岐する分岐管路と、当該分岐管路の途中に設けられた可撓性チューブとを備えている。この可撓性チューブ内には、評価対象となるステントが留置され、当該ステントは、拍動流が付与された液体にさらされた状態となる。従って、このシミュレータでは、実際の使用時における血液の拍動条件に近い条件でステントの耐久性を調べることが可能となる。   The stent performance evaluation simulator of Patent Document 1 has a circuit configuration that simulates coronary circulation, a closed-loop liquid channel, a pump that applies a pulsatile flow to the liquid circulating in the liquid channel, and a fluid A branch pipe branching in the middle of the flow path and a flexible tube provided in the middle of the branch pipe are provided. A stent to be evaluated is placed in the flexible tube, and the stent is exposed to a liquid to which pulsatile flow is applied. Therefore, with this simulator, it is possible to examine the durability of the stent under conditions close to blood pulsation conditions during actual use.

一方、特許文献2のステント力学特性測定装置は、当該ステントの一端側を直接引っ張り、当該ステントに作用する荷重と引っ張り長さの相関関係を導出することで、力学的観点からステントの性能を評価する装置である。
特開2000−342692号公報 特開2005−278828号公報
On the other hand, the stent mechanical property measuring apparatus of Patent Document 2 directly evaluates the performance of a stent from a mechanical viewpoint by directly pulling one end of the stent and deriving a correlation between a load acting on the stent and a pulling length. It is a device to do.
JP 2000-342692 A JP 2005-278828 A

ところで、人体の大腿筋管内を通る血管である浅大腿動脈(SFA)にステントを留置した場合、浅大腿動脈が動的要素を持つ血管であることから、他の部位よりも血管の動きが大きくなり、当該血管内に留置されたステントに大きな負荷がかかり易くなる。従って、浅大腿動脈内にステントを留置した場合には、他の部位に比べて経時的な破損が生じ易くなる。具体的に、浅大腿動脈は、脚部の運動等による外力や血圧変動等によって、屈曲、ねじれ、及び圧縮・引張等の生体力学的負荷が作用し、他の血管部位よりもステントの使用環境が悪くなる。そこで、ステントの耐久性を評価する際には、他の部位と使用環境の異なる浅大腿動脈にステントを留置した場合も含めて行うことが必要となる。   By the way, when a stent is placed in the superficial femoral artery (SFA), which is a blood vessel that passes through the femoral muscle canal of the human body, the superficial femoral artery is a blood vessel having a dynamic element, and therefore, the movement of the blood vessel is larger than in other parts. Thus, a large load is easily applied to the stent placed in the blood vessel. Therefore, when a stent is placed in the superficial femoral artery, damage over time is more likely to occur compared to other sites. Specifically, the superficial femoral artery is subjected to biomechanical loads such as bending, twisting, compression and tension due to external forces and blood pressure fluctuations due to leg movements, etc., and the use environment of the stent more than other blood vessel sites Becomes worse. Therefore, when evaluating the durability of the stent, it is necessary to include the case where the stent is placed in the superficial femoral artery having a different usage environment from other sites.

しかしながら、前記ステント性能評価シミュレータ及びステント力学特性測定装置にあっては、前述したように、浅大腿動脈に特有となる前記生体力学的負荷に起因した血管の挙動を模擬することができず、浅大腿動脈にステントを留置した場合における当該ステントの耐久性を正確に評価することができない。   However, in the stent performance evaluation simulator and the stent mechanical property measurement apparatus, as described above, it is not possible to simulate the blood vessel behavior due to the biomechanical load peculiar to the superficial femoral artery. When the stent is placed in the femoral artery, the durability of the stent cannot be accurately evaluated.

また、冠動脈内に留置される冠動脈ステントにおいても、患者内に留置された状態での破損例が報告されており、生体力学的負荷を模擬した環境で耐久性を予測できるシステムの開発が求められている。   In addition, coronary stents placed in coronary arteries have been reported to be damaged when placed in patients, and development of a system that can predict durability in an environment simulating biomechanical loads is required. ing.

ところで、医師や医学生が、既販されている訓練用の人工血管を吻合することで吻合手技訓練を行った場合、得られた吻合後の人工血管に対し、実際の患者の術後状態と同様な挙動状態を再現できる装置は存在しない。従って、吻合手技訓練により得られた人工血管に対し、生体力学的負荷による挙動を付与しながら経時的に吻合部位の状態を確認することができず、血管の挙動を考慮した吻合手技の客観的評価が行えない。   By the way, when a doctor or medical student performs anastomosis technique training by anastomosing an artificial blood vessel for training that has already been sold, the postoperative state of the actual patient is compared with the obtained artificial blood vessel after anastomosis. There is no device that can reproduce the same behavioral state. Therefore, it is not possible to confirm the state of the anastomosis site over time while giving the behavior due to biomechanical load to the artificial blood vessel obtained by the anastomosis technique training, and the objective of the anastomosis technique considering the behavior of the blood vessel Evaluation cannot be performed.

本発明は、このような課題に着目して案出されたものであり、その目的は、比較的簡単な構成で、生体力学的負荷に起因する血管の挙動を模擬することができ、当該挙動を考慮したステントの耐久性評価や吻合手技の客観的評価等に有用となる血管動作シミュレータを提供することにある。   The present invention has been devised by paying attention to such a problem, and its purpose is to simulate the behavior of a blood vessel caused by a biomechanical load with a relatively simple configuration. It is an object of the present invention to provide a vascular motion simulator useful for evaluating the durability of a stent in consideration of the above and objective evaluation of an anastomosis technique.

(1)前記目的を達成するため、本発明は、液体が内部に充填される模擬血管と、この模擬血管の延出方向の両端部分を支持するとともに、当該両端部分を離間接近可能に動作する支持手段と、前記支持手段を動作させる駆動手段とを備え、
前記模擬血管は、ほぼ直線状に延びる形状の弾性体からなり、
前記駆動手段の駆動により、前記両端部分が離間接近することで、前記模擬血管をその延出方向に伸縮させる、という構成を採っている。
(1) In order to achieve the above object, the present invention supports a simulated blood vessel filled with a liquid and both end portions in the extending direction of the simulated blood vessel, and operates so that the both end portions can be separated and approached. Support means, and drive means for operating the support means,
The simulated blood vessel is made of an elastic body extending in a substantially linear shape,
By driving the driving means, the both end portions are separated and approached to expand and contract the simulated blood vessel in its extending direction.

(2)また、前記模擬血管の周囲の温度を所定温度に制御する温度制御手段を更に備える、という構成を採ることが好ましい。   (2) Further, it is preferable to adopt a configuration in which temperature control means for controlling the temperature around the simulated blood vessel to a predetermined temperature is further provided.

(3)更に、前記模擬血管内の液圧を調整する液圧調整手段を更に備える、という構成も採用することができる。   (3) Further, it is possible to adopt a configuration further including a fluid pressure adjusting means for adjusting the fluid pressure in the simulated blood vessel.

(4)また、前記支持手段は前記模擬血管を着脱自在に支持するとよい。   (4) Moreover, the said support means is good to support the said simulated blood vessel so that attachment or detachment is possible.

(5)更に、前記支持手段は、複数の模擬血管を支持可能に設けられ、当該各模擬血管に対して前記動作を同時に行うとよい。   (5) Furthermore, the support means may be provided so as to support a plurality of simulated blood vessels, and the operation may be performed simultaneously on the simulated blood vessels.

(6)また、前記模擬血管の内部には、ステントが配置され、このステントの内面側には、当該ステントの変形を制限する拘束部が設けられる、という構成を採用するとよい。   (6) Moreover, it is good to employ | adopt the structure that the stent is arrange | positioned inside the said simulated blood vessel and the restraint part which restrict | limits the deformation | transformation of the said stent is provided in the inner surface side of this stent.

(7)更に、前記模擬血管の周囲のガス濃度を調整するガス濃度調整手段を更に備えるとよい。   (7) Furthermore, it is preferable to further include a gas concentration adjusting means for adjusting the gas concentration around the simulated blood vessel.

なお、本特許請求の範囲及び本明細書において、「模擬血管」とは、所定の人工材料及び/又は生体材料を使って人工的に作成した血管の他、動物血管をも含む概念として用いられる。   In the claims and the specification, the “simulated blood vessel” is used as a concept including an animal blood vessel in addition to a blood vessel artificially created using a predetermined artificial material and / or biological material. .

前記(1)の構成によれば、浅大腿動脈等の末梢動脈や冠動脈などのステントを留置する血管に付与される生体力学的負荷に起因する血管の挙動のうち伸縮動作を模擬することができる。更に、模擬血管内に液体が充填された状態で、当該模擬血管の両端部分が離間接近しながら、模擬血管がその延出方向に伸縮するため、当該伸縮動作に伴って模擬血管内の液圧が変動し、模擬血管内に実際の血管内と同様の脈動状態を作り出すことが可能となる。従って、当該脈動状態を発生させるために、生体を模擬した循環回路構成を採用する必要がなく、簡単な装置構成で、血管内の血圧変動並びにこれに伴う血管径方向の膨張・収縮変位を模擬することができる。総じて、本発明によれば、簡単な構成で生体力学的負荷による血管の挙動を模擬することができ、当該挙動を考慮したステントの耐久性評価や吻合手技の客観的評価等を短時間で行うことが可能となる。   According to the configuration of the above (1), it is possible to simulate the expansion / contraction operation of the behavior of the blood vessel caused by the biomechanical load applied to the blood vessel in which the stent such as the peripheral artery such as the superficial femoral artery or the coronary artery is placed. . Furthermore, since the simulated blood vessel expands and contracts in the extending direction while the simulated blood vessel is filled with liquid while both end portions of the simulated blood vessel are spaced apart from each other, the hydraulic pressure in the simulated blood vessel is And the pulsation state similar to that in the actual blood vessel can be created in the simulated blood vessel. Therefore, in order to generate the pulsation state, it is not necessary to adopt a circulation circuit configuration simulating a living body, and the blood pressure fluctuation in the blood vessel and the accompanying expansion / contraction displacement in the radial direction of the blood vessel are simulated with a simple device configuration. can do. In general, according to the present invention, the behavior of a blood vessel due to a biomechanical load can be simulated with a simple configuration, and the durability evaluation of the stent and the objective evaluation of the anastomosis technique considering the behavior are performed in a short time. It becomes possible.

前記(2)の構成により、模擬血管の周囲の温度を体温程度に維持することができ、生体とほぼ同じ状態で試験を行うことができ、形状記憶合金製のステントの耐久性試験を行うような場合に有用である。   With the configuration (2), the temperature around the simulated blood vessel can be maintained at about the body temperature, the test can be performed in almost the same state as the living body, and the durability test of the shape memory alloy stent is performed. It is useful in such cases.

前記(3)の構成により、模擬血管内の平均圧及び脈圧調整を自由に行うことができ、病態や対象となる血管部位に応じた圧力状態の模擬が可能となる。   With the configuration (3), the mean pressure and pulse pressure in the simulated blood vessel can be freely adjusted, and the pressure state according to the disease state and the target blood vessel site can be simulated.

前記(4)の構成により、種々の径、長さ、形状を有する模擬血管を選択的に支持手段に支持させることができ、対象となる血管の部位や個人差を考慮したステントの耐久性評価や吻合手技の客観的評価等が可能となる。   With the configuration of (4), it is possible to selectively support the simulated blood vessel having various diameters, lengths, and shapes on the support means, and evaluate the durability of the stent in consideration of the target blood vessel region and individual differences. And objective evaluation of anastomosis techniques.

前記(5)の構成により、種類の異なるステント等の評価対象物に対して同時に試験することが可能となり、各評価対象物の耐久性等を短時間で比較評価することができる。また、異なる吻合手技を行った評価対象物に対して、同一条件で同時に比較試験を行うことが可能になる。   With the configuration (5), it is possible to simultaneously test different types of evaluation objects such as stents, and the durability and the like of each evaluation object can be compared and evaluated in a short time. In addition, it becomes possible to simultaneously perform a comparative test under the same conditions on the evaluation objects that have undergone different anastomosis procedures.

前記(6)の構成により、実際の血管内にステントを留置した際に当該血管の内膜によってステントが拘束される状態を作り出すことができ、生体内環境に一層近い状態で、ステントの耐久性評価を行うことができる。   With the configuration (6), when the stent is placed in an actual blood vessel, it is possible to create a state where the stent is restrained by the intima of the blood vessel, and the durability of the stent in a state closer to the in vivo environment. Evaluation can be made.

前記(7)の構成によれば、模擬血管としてシリコーン製等のものを用いると、模擬血管の内外間でガス交換が行われることになるため、模擬血管の外側のガス濃度を調整して、そのpHを変えることで、模擬血管内の液体のpH調整を行うことができる。これにより、例えば、模擬血管内に収容されたステント等の評価対象物に対して、模擬血管内の液体を強酸性や強アルカリ性に変えたときに、前記評価対象物の経時的な腐食状態等の調査が可能となる。   According to the configuration of (7), when a simulated blood vessel made of silicone or the like is used, gas exchange is performed between the inside and outside of the simulated blood vessel. Therefore, by adjusting the gas concentration outside the simulated blood vessel, By changing the pH, the pH of the liquid in the simulated blood vessel can be adjusted. Thereby, for example, when the liquid in the simulated blood vessel is changed to strongly acidic or strongly alkaline with respect to the evaluation object such as a stent accommodated in the simulated blood vessel, the corrosion state of the evaluation object over time, etc. Can be investigated.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1には、本実施形態に係る血管動作シミュレータの概略正面図が示され、図2には、前記血管動作シミュレータの概略平面図が示されている。これらの図において、前記血管動作シミュレータ10は、浅大腿動脈の軸線方向に対する引張・圧縮動作すなわち伸縮動作と当該浅大腿動脈内の血圧変動に伴う血管径方向の膨張・収縮動作を模擬することのできる装置であって、当該浅大腿動脈内に留置されるステントSの耐久性評価用として主に利用される。   FIG. 1 shows a schematic front view of a blood vessel motion simulator according to the present embodiment, and FIG. 2 shows a schematic plan view of the blood vessel motion simulator. In these drawings, the vascular motion simulator 10 simulates a tension / compression operation in the axial direction of the superficial femoral artery, that is, an expansion / contraction operation and an expansion / contraction operation in the vascular diameter direction accompanying blood pressure fluctuations in the superficial femoral artery. This device can be used mainly for durability evaluation of the stent S placed in the superficial femoral artery.

前記血管動作シミュレータ10は、箱型のケース11と、このケース11の内部に設けられたシミュレーション部12と、ケース11の外側に設けられ、シミュレーション部12を動作させる駆動手段としてのリニアモータ14と、ケース11の内部に設けられた温度センサ17及びヒータ18と、ケース11の外側に設けられ、温度センサ17の測定値に基づきヒータ18の作動を制御するヒータ制御装置19とを備えて構成されている。   The blood vessel motion simulator 10 includes a box-shaped case 11, a simulation unit 12 provided inside the case 11, a linear motor 14 provided outside the case 11 and serving as a driving unit for operating the simulation unit 12, The temperature sensor 17 and the heater 18 provided inside the case 11, and the heater control device 19 provided outside the case 11 and controlling the operation of the heater 18 based on the measured value of the temperature sensor 17. ing.

前記ケース11は、設置面となる平面視ほぼ方形状のベース21と、このベース21の周縁に沿って起立する周壁22と、周壁22の上端側に配置されて、当該周壁22で囲まれる空間を上方から閉塞する頂壁23とを備えている。   The case 11 has a substantially rectangular base 21 as an installation surface, a peripheral wall 22 that rises along the periphery of the base 21, and a space that is disposed on the upper end side of the peripheral wall 22 and is surrounded by the peripheral wall 22. And a top wall 23 that closes from above.

前記シミュレーション部12は、リニアモータ14のシャフト25の先端に固定されて図2中上下方向に延びるドライブプレート26と、このドライブプレート26の同図中上下二箇所に連結されるとともに、ドライブプレート26から同図中右方に向ってそれぞれ設けられた第1及び第2のライン28,29とを備えている。   The simulation unit 12 is connected to the drive plate 26 fixed to the tip of the shaft 25 of the linear motor 14 and extending in the vertical direction in FIG. , And first and second lines 28 and 29 provided toward the right in FIG.

前記第1及び第2のライン28,29は、図2中上下方向にほぼ対称となるように配置されており、当該配置の向きを除き、実質的に同一の構成となっている。このため、図2中上側に位置する第2のライン29については、同図中下側に位置する第1のライン28と同一若しくは同等の構成部分に同一符号を用い、説明を省略若しくは簡略にする。   The first and second lines 28 and 29 are arranged so as to be substantially symmetric in the vertical direction in FIG. 2, and have substantially the same configuration except for the direction of the arrangement. Therefore, for the second line 29 located on the upper side in FIG. 2, the same reference numerals are used for the same or equivalent components as the first line 28 located on the lower side in the figure, and the description is omitted or simplified. To do.

前記第1のライン28は、延出方向両端側が開放するチューブ状の模擬血管31と、ドライブプレート26に固定されるとともに、模擬血管31の図1中左端部分を保持する第1の保持部材32と、模擬血管31の図1中右端部分を保持する第2の保持部材33と、当該第2の保持部材33を支持するとともに、ベース21に対して起立配置された側面視ほぼL字状の起立プレート35とを備えて構成されている。   The first line 28 is fixed to the drive plate 26 and the first holding member 32 that holds the left end portion of the simulated blood vessel 31 in FIG. And a second holding member 33 that holds the right end portion of the simulated blood vessel 31 in FIG. 1, and supports the second holding member 33, and is substantially L-shaped in a side view arranged upright with respect to the base 21. The upright plate 35 is provided.

前記模擬血管31の内部には、評価対象となるステントSが収容されるようになっている。この模擬血管31は、特に限定されるものではないが、人体の血管と同様な弾性を有するシリコーンやラテックス等からなる弾性体により形成され、図1に示されるように、延出方向となる軸線方向にほぼ直線状に延びる形状に設けられている。また、模擬血管31として、グルタールアルデヒド等で化学固定処理された動物血管を用いても良い。   A stent S to be evaluated is accommodated inside the simulated blood vessel 31. The simulated blood vessel 31 is not particularly limited, but is formed of an elastic body made of silicone, latex, or the like having elasticity similar to that of a human blood vessel. As shown in FIG. It is provided in a shape extending substantially linearly in the direction. Further, as the simulated blood vessel 31, an animal blood vessel chemically treated with glutaraldehyde or the like may be used.

前記第1の保持部材32は、段付きの円柱状に設けられており、図3に示されるように、ドライブプレート26に取り付けられた大径側の基部38と、その同図中右端中央に連なる小径側の突部39とからなる。この突部39は、模擬血管31の内径に対して同程度若しくは小さな外径に設定されており、模擬血管31の延出方向一端側(図3中左端側)から当該模擬血管31内に嵌め入れられるようになっている。なお、突部39が模擬血管31内に嵌め入れられた状態では、当該模擬血管31が第1の保持部材32から脱落しないように、模擬血管31の同図中左端部分が外側からクランプ部材40で締め付けられる。この際、模擬血管31の同図中左端側の開放部分から内部への空気の流入が阻止される。   The first holding member 32 is provided in a stepped columnar shape. As shown in FIG. 3, the first holding member 32 has a large-diameter base 38 attached to the drive plate 26 and a right end center in the figure. Consecutive small-diameter side projections 39 are formed. The protrusion 39 is set to have an outer diameter that is the same or smaller than the inner diameter of the simulated blood vessel 31 and is fitted into the simulated blood vessel 31 from one end side (left end side in FIG. 3) of the simulated blood vessel 31 in the extending direction. It can be put in. In the state where the projection 39 is fitted in the simulated blood vessel 31, the left end portion of the simulated blood vessel 31 in the drawing is clamped from the outside so that the simulated blood vessel 31 does not fall off from the first holding member 32. It can be tightened with. At this time, the inflow of air from the open portion of the simulated blood vessel 31 on the left end side in the figure is blocked.

前記第2の保持部材33は、起立プレート35に固定された円筒状の基部43と、この基部43の中央に連なって図3中左方に延びる円筒状の突部44と、基部43の外側から内部に向って埋め込まれた注入路49及び圧力センサ50とを備えている。   The second holding member 33 includes a cylindrical base 43 fixed to the upright plate 35, a cylindrical protrusion 44 that extends to the left in FIG. The injection path 49 and the pressure sensor 50 are embedded inward from the inside.

前記基部43は、その図3中左端側が開放する穴52を備えており、当該穴52の内周面に、注入路49の注入口と圧力センサ50の測定部とが配置されるようになっている。   The base 43 is provided with a hole 52 that is open on the left end side in FIG. 3, and the inlet of the injection path 49 and the measurement part of the pressure sensor 50 are arranged on the inner peripheral surface of the hole 52. ing.

前記突部44は、模擬血管31の内径に対して同程度若しくは小さな外径に設定されており、模擬血管31の延出方向他端側(図3中右端側)から当該模擬血管31内に嵌め入れられるようになっている。この突部44が模擬血管31内に嵌め入れられた状態でも、図3中左側部分と同様に、脱落防止用のクランプ部材54で模擬血管31が締め付けられる。また、突部44は、その図3中左端側が開放し、同右端側が基部43の穴52に連なるようになっている。このため、模擬血管31が第1及び第2の保持部材32,33に取り付けられた状態では、模擬血管31の内部空間と、第2の保持部材33における突部44の内部空間と、穴52とが連なって相通じることになる。なお、この状態では、模擬血管31の図3中左端側の開放部分は、突部39により閉塞された状態となり、また、穴52に連なる注入路49内は、液体が常に充填された状態になっている。このため、模擬血管31及び突部44の各内部空間と穴52に充填された液体は、大気非接触の状態となり、模擬血管31を第1及び第2の保持部材32,33から取り外さない限り、模擬血管31の外部に流出しないことになる。   The protrusion 44 is set to have an outer diameter that is the same or smaller than the inner diameter of the simulated blood vessel 31, and enters the simulated blood vessel 31 from the other end side in the extending direction of the simulated blood vessel 31 (right end side in FIG. 3). It can be inserted. Even in a state in which the projection 44 is fitted in the simulated blood vessel 31, the simulated blood vessel 31 is clamped by the drop-off preventing clamp member 54, as in the left part of FIG. Further, the protrusion 44 is open at the left end side in FIG. 3 and is connected to the hole 52 of the base portion 43 at the right end side. For this reason, in a state where the simulated blood vessel 31 is attached to the first and second holding members 32 and 33, the internal space of the simulated blood vessel 31, the internal space of the protrusion 44 in the second holding member 33, and the hole 52. Will be connected to each other. In this state, the open portion of the simulated blood vessel 31 on the left end side in FIG. 3 is closed by the protrusion 39, and the injection passage 49 connected to the hole 52 is always filled with liquid. It has become. For this reason, the liquid filled in each internal space of the simulated blood vessel 31 and the protrusion 44 and the hole 52 is in a non-atmospheric state, so long as the simulated blood vessel 31 is not removed from the first and second holding members 32 and 33. Therefore, the blood does not flow out of the simulated blood vessel 31.

前記注入路49は、図示しないポンプやシリンジ等によって、血液と同質の液体を前記穴52内に注入可能に設けられている。従って、模擬血管31が第1及び第2の保持部材32,33に取り付けられた状態では、穴52内に注入された液体が、当該穴52に連なる突部44の内部空間を通って、模擬血管31内に充填されることになる。この状態では、模擬血管31内が大気と非接触の状態とされ、空気の存在しない血管内環境に模擬される。   The injection path 49 is provided so that a liquid having the same quality as blood can be injected into the hole 52 by a pump or a syringe (not shown). Therefore, in a state in which the simulated blood vessel 31 is attached to the first and second holding members 32 and 33, the liquid injected into the hole 52 passes through the internal space of the protrusion 44 connected to the hole 52 and simulates it. The blood vessel 31 is filled. In this state, the inside of the simulated blood vessel 31 is not in contact with the atmosphere, and is simulated as an intravascular environment in which no air exists.

前記模擬血管31内に充填される液体としては、特に限定されるものではないが、リン酸緩衝溶液(PBS)や動物等の血清が用いられる。リン酸緩衝溶液を用いることにより、生体内のpH環境に近い環境下で、ステントSを模擬血管31内に収容させることができる他、金属製のステントSに対する経時的な腐食が防止される。なお、ステントSの耐久性試験に問題のない限り、他の液体に代替することも可能である。   The liquid filled in the simulated blood vessel 31 is not particularly limited, but phosphate buffer solution (PBS) or serum from animals or the like is used. By using the phosphate buffer solution, the stent S can be accommodated in the simulated blood vessel 31 in an environment close to the pH environment in the living body, and corrosion of the metal stent S with time is prevented. In addition, as long as there is no problem in the durability test of the stent S, it can be replaced with another liquid.

前記圧力センサ50は、模擬血管31内に充填された液体の液圧を測定可能に設けられており、当該液圧の測定値によって、注入路49からの液体の注入量が調整される。ここでの調整は、液圧の測定値を作業者が目視し、当該作業者により手動にて行っても良いし、図示しない所定の液圧制御装置を介して注入路49からの液体の注入量を自動的に制御しても良い。後者の場合は、注入路49、圧力センサ50及び前記液圧制御装置は、模擬血管31内の液圧を調整する液圧調整手段を構成することになる。なお、圧力センサ50の取り付け部には、図示省略した栓が設けられ、当該栓を開放することで、模擬血管31内に液体を注入する際の空気抜きを行えるようになっている。   The pressure sensor 50 is provided so as to be able to measure the liquid pressure of the liquid filled in the simulated blood vessel 31, and the amount of liquid injected from the injection path 49 is adjusted by the measured value of the liquid pressure. The adjustment here may be performed manually by the operator by visually checking the measured value of the hydraulic pressure, or by injecting the liquid from the injection path 49 via a predetermined hydraulic pressure control device (not shown). The amount may be controlled automatically. In the latter case, the injection path 49, the pressure sensor 50, and the fluid pressure control device constitute fluid pressure adjusting means for adjusting fluid pressure in the simulated blood vessel 31. Note that a stopper (not shown) is provided at the attachment portion of the pressure sensor 50, and by opening the stopper, air can be vented when the liquid is injected into the simulated blood vessel 31.

前記リニアモータ14としては、特に限定されるものではないが、ボイスコイルモータが採用され、このモータ14は、前記シャフト25を所定のタイミングで図1中左右方向に繰り返し移動させるように駆動する。従って、当該シャフト25に繋がるドライブプレート26に支持された第1の保持部材32は、図1中左右方向(矢印方向)に繰り返し動作することになる。その一方で、第2の保持部材33は、固定配置された起立プレート35に支持されているため、第1の保持部材32は、模擬血管31を介して連結された第2の保持部材33に対し、図1中左右方向に繰り返し離間接近するように動作する。従って、第1及び第2の保持部材32,33は、模擬血管31の延出方向の両端部分を離間接近可能に動作し且つ模擬血管31を着脱自在に支持する支持手段を構成する。     The linear motor 14 is not particularly limited, and a voice coil motor is employed. The motor 14 drives the shaft 25 so as to repeatedly move in the left-right direction in FIG. 1 at a predetermined timing. Accordingly, the first holding member 32 supported by the drive plate 26 connected to the shaft 25 repeatedly operates in the left-right direction (arrow direction) in FIG. On the other hand, since the second holding member 33 is supported by the upright plate 35 fixedly arranged, the first holding member 32 is connected to the second holding member 33 connected via the simulated blood vessel 31. On the other hand, it operates so as to repeatedly separate and approach in the left-right direction in FIG. Accordingly, the first and second holding members 32 and 33 constitute support means that operate so as to allow the simulated blood vessel 31 to be separated and approachable at both ends in the extending direction of the simulated blood vessel 31 and detachably support the simulated blood vessel 31.

前記ヒータ制御装置19は、温度センサ17の測定値を基に、模擬血管31を含むケース11内の温度を人間の体温(37℃)程度に保つように、ヒータ18の作動制御を行う。従って、温度センサ17、ヒータ18、及びヒータ制御装置19は、模擬血管31の周囲の温度を所定温度に制御する温度制御手段を構成する。この温度制御手段を設けることで、体内の温度環境と同じ状態で試験を行うことができ、温度変化によって性状が変化する形状記憶合金製等のステントSを評価対象とする場合に有用である。なお、温度変化にあまり影響を及ぼさないステントSのみを評価するような場合には、前記温度制御手段を省略することも可能である。   The heater control device 19 controls the operation of the heater 18 so as to keep the temperature in the case 11 including the simulated blood vessel 31 at about the human body temperature (37 ° C.) based on the measurement value of the temperature sensor 17. Accordingly, the temperature sensor 17, the heater 18, and the heater control device 19 constitute a temperature control unit that controls the temperature around the simulated blood vessel 31 to a predetermined temperature. By providing this temperature control means, the test can be performed in the same state as the temperature environment in the body, which is useful when a stent S made of a shape memory alloy or the like whose properties change due to temperature changes is an evaluation target. In the case where only the stent S that does not significantly affect the temperature change is evaluated, the temperature control means can be omitted.

次に、前記血管動作シミュレータ10を使ったステントSの耐久性評価の流れについて説明する。   Next, the flow of durability evaluation of the stent S using the blood vessel motion simulator 10 will be described.

先ず、模擬血管31の内部に評価対象のステントSを挿入し、当該模擬血管31の延出方向の両端部分を第1及び第2の保持部材32,33に取り付けて図1の状態とする。この状態で、注入路49から穴52内に液体を注入して、圧力センサ50の取り付け部分の前記栓(図示省略)から空気を抜きながら、模擬血管31内に液体を充填し、所望の状態になったところで、注入路49からの液体の注入を停止する。次いで、所定の周波数でリニアモータ14を駆動させ、第1の保持部材32を第2の保持部材33に対して図1中左右方向に繰り返し離間接近させる。ここで、第1の保持部材32が第2の保持部材33に接近する方向に移動すると、当該第1及び第2の保持部材32,33の直線離間距離が減少し、これに伴い、それらに連結された模擬血管31は、軸線に沿って圧縮する方向に弾性変形する。そして、逆に、第1の保持部材32が第2の保持部材33に離間する方向に移動すると、当該第1及び第2の保持部材32,33の直線離間距離が増大し、これに伴い、模擬血管31は、軸線に沿って引っ張る方向に弾性変形する。これら一連の動作は繰り返し行われ、つまり、第1及び第2の保持部材32,33が繰り返し離間接近することで、模擬血管31の延出方向における伸縮動作が繰り返し行われることになる。なお、この際、模擬血管31の外径もその弾性によって拡縮する。   First, the stent S to be evaluated is inserted into the simulated blood vessel 31, and both end portions in the extending direction of the simulated blood vessel 31 are attached to the first and second holding members 32 and 33 to obtain the state shown in FIG. In this state, liquid is injected into the hole 52 from the injection path 49, and the simulated blood vessel 31 is filled with the liquid while the air is drawn from the stopper (not shown) of the attachment portion of the pressure sensor 50, and a desired state is obtained. Then, the liquid injection from the injection path 49 is stopped. Next, the linear motor 14 is driven at a predetermined frequency, and the first holding member 32 is repeatedly separated and approached in the left-right direction in FIG. 1 with respect to the second holding member 33. Here, when the first holding member 32 moves in the direction approaching the second holding member 33, the linear separation distance between the first and second holding members 32, 33 decreases, and accordingly, The connected simulated blood vessel 31 is elastically deformed in a compressing direction along the axis. And conversely, when the first holding member 32 moves in the direction away from the second holding member 33, the linear separation distance between the first and second holding members 32, 33 increases, and accordingly, The simulated blood vessel 31 is elastically deformed in a pulling direction along the axis. These series of operations are repeatedly performed, that is, the first and second holding members 32 and 33 are repeatedly separated and approached so that the expansion / contraction operation in the extending direction of the simulated blood vessel 31 is repeatedly performed. At this time, the outer diameter of the simulated blood vessel 31 also expands and contracts due to its elasticity.

このような模擬血管31の伸縮動作に伴い、模擬血管31の内部の体積が変化し、これに伴い、当該内部の液圧が変動することになる。このため、前記伸縮動作が反復して行われることで、模擬血管31内の液体に脈圧が発生する。本発明者らの実験によれば、内径が6mmのシリコーン製の模擬血管31を使用し、リニアモータ14のストロークを6.5mmとして周波数40Hzで駆動したときに、模擬血管31の長さが自然長から6.5mm程度伸長する範囲で伸縮動作が繰り返し行われるとともに、リニアモータ14の駆動周波数に合わせて、圧力差が20〜30mmHgとなる脈圧を発生させることができる。   Along with the expansion and contraction operation of the simulated blood vessel 31, the volume inside the simulated blood vessel 31 changes, and accordingly, the internal fluid pressure fluctuates. For this reason, a pulse pressure is generated in the liquid in the simulated blood vessel 31 by repeatedly performing the expansion and contraction operation. According to the experiments by the present inventors, when the simulated blood vessel 31 made of silicone having an inner diameter of 6 mm is used and the stroke of the linear motor 14 is 6.5 mm and driven at a frequency of 40 Hz, the length of the simulated blood vessel 31 is natural. The expansion and contraction operation is repeatedly performed in a range extending about 6.5 mm from the length, and a pulse pressure with a pressure difference of 20 to 30 mmHg can be generated in accordance with the drive frequency of the linear motor 14.

以上の状態で所定時間放置した後、リニアモータ14の駆動を停止し、模擬血管31内からステントSを取り出す。そして、当該ステントSに対し、図示しないマイクロスコープを使って表面の破損状態の観察を行う他、ステントSの経時的な使用によって溶液中に流れ出た金属成分を測定し、また、ステントS表面の元素の定性分析等を行う等、定量的にステントSの耐久性が評価される。   After being left for a predetermined time in the above state, the driving of the linear motor 14 is stopped, and the stent S is taken out from the simulated blood vessel 31. In addition to observing the damaged state of the surface of the stent S using a microscope (not shown), the metal component that has flowed into the solution by using the stent S over time is measured. The durability of the stent S is quantitatively evaluated, such as by performing a qualitative analysis of elements.

従って、このような実施形態によれば、極めて簡単な構成で、浅大腿動脈内に留置されるステントSの耐久性試験を実際に生体内に留置した場合に近い状態で行うことができる。特に、模擬血管31の伸縮動作に伴って、当該模擬血管31内に脈圧を発生させることができ、生体の血液循環状態を模擬した大掛かりな循環回路構成を採用せずに、脈圧を考慮した血管の挙動を模擬することができる。   Therefore, according to such an embodiment, with a very simple configuration, the durability test of the stent S placed in the superficial femoral artery can be performed in a state close to that when actually placed in the living body. In particular, as the simulated blood vessel 31 expands and contracts, a pulse pressure can be generated in the simulated blood vessel 31, and the pulse pressure is taken into account without adopting a large-scale circulation circuit configuration that simulates the blood circulation state of the living body. It is possible to simulate the blood vessel behavior.

また、前記実施形態によれば、模擬血管31に対して、伸縮と血圧変動による繰り返し負荷を高速サイクルで与えることができ、ステントSの耐久性評価を短時間で行うことが可能になる。このことは、本発明者らの実験により実証されており、具体的に、リニアモータ14の周波数条件を40Hzとしたときに、生体内に1年間留置した場合の疲労状態を10日間で行うことができる。   Further, according to the embodiment, a repeated load due to expansion and contraction and blood pressure fluctuation can be applied to the simulated blood vessel 31 in a high-speed cycle, and the durability evaluation of the stent S can be performed in a short time. This has been proved by experiments of the present inventors. Specifically, when the frequency condition of the linear motor 14 is set to 40 Hz, the fatigue state when left in a living body for one year is performed for 10 days. Can do.

更に、第1及び第2の保持部材32,33は、模擬血管31を着脱自在に支持できるため、種々の形状の模擬血管31に交換してステントSの耐久性試験を行うことができる。具体的に、全体的に内径がほぼ同一となる直線状の模擬血管31やそうでないテーパ状の模擬血管31等、形状の異なる模擬血管31、或いは、径及び長さの異なる模擬血管31を血管動作シミュレータ10に任意にセット可能である。従って、血管の径、長さ、形状は、個人差があるが、このような個人差を考慮したステントSの耐久性試験を模擬血管31の交換によって簡単に行うことができる。また、本実施形態では、浅大腿動脈における生体力学的負荷を考慮した血管の挙動を模擬しているが、内径等の異なる模擬血管31の交換によって、末梢血管、冠動脈血管、大動脈血管等の他の部位を対象とした耐久性試験にも簡単に対応可能となる。なお、前記各突部39,44を着脱自在とし、嵌め込まれる模擬血管31の内径にほぼぴったりとなる外径を備えた突部39,44を選択的に交換可能にすることで、種々の形状の模擬血管31に交換したときでも、模擬血管31の嵌め合い部分からの液体の漏れを一層効果的に防止できる。   Furthermore, since the first and second holding members 32 and 33 can detachably support the simulated blood vessel 31, the durability test of the stent S can be performed by replacing the simulated blood vessel 31 with various shapes. Specifically, the simulated blood vessel 31 having a different shape or the simulated blood vessel 31 having a different diameter and length, such as a linear simulated blood vessel 31 having substantially the same inner diameter or a tapered simulated blood vessel 31 that is not so, is used as a blood vessel. The operation simulator 10 can be set arbitrarily. Therefore, although the diameter, length, and shape of the blood vessel vary among individuals, the durability test of the stent S considering such individual variation can be easily performed by replacing the simulated blood vessel 31. Further, in this embodiment, the behavior of the blood vessel in consideration of the biomechanical load in the superficial femoral artery is simulated, but other than the peripheral blood vessel, coronary artery blood vessel, aortic blood vessel, etc. It is possible to easily cope with the durability test for these parts. The protrusions 39 and 44 are detachable, and the protrusions 39 and 44 having an outer diameter that is almost the same as the inner diameter of the simulated blood vessel 31 to be fitted can be selectively replaced, thereby allowing various shapes. Even when the simulated blood vessel 31 is replaced, liquid leakage from the fitting portion of the simulated blood vessel 31 can be more effectively prevented.

なお、前記シミュレーション部12は、第1及び第2のライン28,29で構成したが、本発明はこれに限らず、ライン構成を1若しくは3以上としてもよい。本実施形態のように、複数のライン構成にすれば、例えば、材質や性能の異なる別種のステントSを同時に試験することができ、これらステントSの比較評価を効率良く行うことができる。   The simulation unit 12 includes the first and second lines 28 and 29. However, the present invention is not limited to this, and the line configuration may be 1 or 3 or more. If a plurality of line configurations are used as in the present embodiment, for example, different types of stents S having different materials and performances can be tested simultaneously, and comparative evaluation of these stents S can be performed efficiently.

また、模擬血管31を第1及び第2の保持部材32,33にセットする前に、前記模擬血管31の内部に挿入されたステントSの内面側に、シリコーン、ラテックス等からなる液体樹脂、或いは、これら液体樹脂に粉末ナトリウムやカルシウムを混合した液体を流し込んで、ステントSの内面に付着させ、これら液体を放置して固化させることで、ステントSの変形を制限する拘束部を形成するとよい。例えば、液体のシリコーンを使用した場合は、図4に示されるように、前記拘束部としてシリコーン層74が形成される。この理由は次の通りである。すなわち、実際の血管内に留置されたステントSは、1ヶ月前後で血管の内膜によって覆われて一種の拘束状態となる。このため、このようなステントSの拘束に起因して、前記生体力学的負荷によるステントSへの影響も変化すると考えられる。従って、前記拘束部を形成してステントSを拘束状態に置くことで、実際の生体内におけるステントSの拘束状態を考慮して、ステントSの耐久性試験を行うことができる。なお、シリコーン層74の厚みは、模擬血管31の厚みの1/2程度を例示できる。   Further, before setting the simulated blood vessel 31 to the first and second holding members 32 and 33, a liquid resin made of silicone, latex, or the like on the inner surface side of the stent S inserted into the simulated blood vessel 31 or A restraint portion that restricts deformation of the stent S may be formed by pouring a liquid obtained by mixing powdered sodium or calcium into the liquid resin, adhering it to the inner surface of the stent S, and allowing the liquid to stand and solidify. For example, when liquid silicone is used, as shown in FIG. 4, a silicone layer 74 is formed as the restraining portion. The reason is as follows. That is, the stent S placed in an actual blood vessel is covered with the intima of the blood vessel in about one month and becomes a kind of restraint state. For this reason, it is considered that the influence of the biomechanical load on the stent S also changes due to the restraint of the stent S. Therefore, the durability test of the stent S can be performed in consideration of the actual restraint state of the stent S by forming the restraint portion and placing the stent S in the restraint state. In addition, the thickness of the silicone layer 74 can illustrate about 1/2 of the thickness of the simulated blood vessel 31.

更に、前記実施形態では、第1の保持部材32を第2の保持部材33に離間接近させた構造を図示説明したが、本発明はこれに限らず、第2の保持部材33を第1の保持部材32に離間接近させる構造や、各保持部材32,33がそれぞれ独立して動作してそれら相互に離間接近する構造としてもよい。要するに、第1及び第2の保持部材32,33が離間接近し、模擬血管31の延出方向の両端部分の離間距離を変えることで、当該模擬血管31に生体力学的負荷を与えることのできる構造であれば何でも良い。   Furthermore, in the said embodiment, although the structure which made the 1st holding member 32 space apart from the 2nd holding member 33 was illustrated and demonstrated, this invention is not limited to this, The 2nd holding member 33 is 1st. A structure in which the holding member 32 is spaced apart or a structure in which the holding members 32 and 33 are independently operated to be separated from each other may be employed. In short, the first and second holding members 32, 33 are separated and approached, and the biomechanical load can be applied to the simulated blood vessel 31 by changing the separation distance between both ends in the extending direction of the simulated blood vessel 31. Any structure is acceptable.

また、模擬血管31の動作中におけるその外径変化を測定可能な外径測定手段を設けるとよい。この外径測定手段としては、図示しないレーザ変位センサを例示でき、この場合は、レーザ光が模擬血管31を横切るように、模擬血管31を挟む側方位置にレーザ光の発光部及び受光部が配置される。   Further, it is preferable to provide an outer diameter measuring means capable of measuring the outer diameter change during the operation of the simulated blood vessel 31. As this outer diameter measuring means, a laser displacement sensor (not shown) can be exemplified. In this case, a laser light emitting part and a light receiving part are provided at lateral positions sandwiching the simulated blood vessel 31 so that the laser light crosses the simulated blood vessel 31. Be placed.

更に、第2の保持部材33側に、模擬血管31の引張力を測定可能なロードセルを配置し、模擬血管31の伸縮によって、ステントSに作用する負荷を求めるようにしてもよい。   Furthermore, a load cell capable of measuring the tensile force of the simulated blood vessel 31 may be arranged on the second holding member 33 side, and the load acting on the stent S may be obtained by the expansion and contraction of the simulated blood vessel 31.

また、図示省略しているが、模擬血管31の周囲のガス濃度を調整するガス濃度調整手段を更に備えるとよい。当該ガス濃度調整手段としては、ケース11の外部にガスボンベ等のガス供給装置を設け、当該ガス供給装置からケース11内への二酸化炭素や酸素等の所定のガスの供給によって、ケース11内における当該ガスの濃度を変える構成を例示できる。これによって、シリコーン等からなる模擬血管31を隔ててその内外間でガス交換が行われ、模擬血管31内の液体内の前記ガスの濃度が変わって、当該液体のpH調整を行うことができる。従って、例えば、模擬血管31内の液体を強酸性や強アルカリ性に変えてステントSの経時的な腐食状態を調査することができる。なお、ケース11内に供給されたガスは、ケース11に設けられた僅かな隙間からケース11の外側に排出される。   Although not shown, it is preferable to further include a gas concentration adjusting means for adjusting the gas concentration around the simulated blood vessel 31. As the gas concentration adjusting means, a gas supply device such as a gas cylinder is provided outside the case 11, and the gas supply device supplies a predetermined gas such as carbon dioxide or oxygen from the gas supply device to the case 11. A configuration for changing the gas concentration can be exemplified. Accordingly, gas exchange is performed between the inside and outside of the simulated blood vessel 31 made of silicone or the like, and the concentration of the gas in the liquid in the simulated blood vessel 31 is changed, so that the pH of the liquid can be adjusted. Therefore, for example, the temporal corrosion state of the stent S can be investigated by changing the liquid in the simulated blood vessel 31 to strong acidity or strong alkalinity. Note that the gas supplied into the case 11 is discharged to the outside of the case 11 through a slight gap provided in the case 11.

更に、前記血管動作シミュレータ10は、前述したステントSの性能評価の他の用途にも利用することができる。例えば、前記シミュレーション部12にセットされる模擬血管31として、医師や医学生による吻合手技訓練により吻合された人工血管を用いることで、吻合部位を実際の術後の状態と同様の挙動状態にして経時的に評価可能になる。   Furthermore, the blood vessel motion simulator 10 can be used for other applications for evaluating the performance of the stent S described above. For example, by using an artificial blood vessel that has been anastomosed by an anastomosis technique training by a doctor or medical student as the simulated blood vessel 31 set in the simulation unit 12, the anastomotic site is made to behave in a state similar to the actual postoperative state. Evaluation becomes possible over time.

また、前記血管動作シミュレータ10は、模擬血管31内に、体内分解吸収性高分子又は無細胞化組織を収容させ、これらを使って所定の細胞を加速環境下で培養する装置としても利用できる。   The blood vessel motion simulator 10 can also be used as a device for accommodating a biodegradable absorbable polymer or acellular tissue in a simulated blood vessel 31, and culturing predetermined cells in an accelerated environment using these.

その他、本発明における装置各部の構成は図示構成例に限定されるものではなく、実質的に同様の作用を奏する限りにおいて、種々の変更が可能である。   In addition, the configuration of each part of the apparatus in the present invention is not limited to the illustrated configuration example, and various modifications are possible as long as substantially the same operation is achieved.

本実施形態に係る血管動作シミュレータの概略正面図。1 is a schematic front view of a blood vessel motion simulator according to the present embodiment. 前記血管動作シミュレータの概略平面図。FIG. 2 is a schematic plan view of the blood vessel motion simulator. 図1のA−A線に沿う要部拡大断面図。The principal part expanded sectional view which follows the AA line of FIG. 変形例に係る模擬血管の概略断面図。The schematic sectional drawing of the simulated blood vessel which concerns on a modification.

符号の説明Explanation of symbols

10 血管動作シミュレータ
14 リニアモータ(駆動手段)
17 温度センサ(温度制御手段)
18 ヒータ(温度制御手段)
19 ヒータ制御装置(温度制御手段)
31 模擬血管
32 第1の保持部材(支持手段)
33 第2の保持部材(支持手段)
49 注入路(液圧調整手段)
50 圧力センサ(液圧調整手段)
74 シリコーン層(拘束部)
10 Blood vessel motion simulator 14 Linear motor (drive means)
17 Temperature sensor (temperature control means)
18 Heater (temperature control means)
19 Heater control device (temperature control means)
31 Simulated blood vessel 32 First holding member (supporting means)
33 Second holding member (supporting means)
49 Injection path (hydraulic pressure adjusting means)
50 Pressure sensor (hydraulic pressure adjusting means)
74 Silicone layer (restraint part)

Claims (7)

液体が内部に充填される模擬血管と、この模擬血管の延出方向の両端部分を支持するとともに、当該両端部分を離間接近可能に動作する支持手段と、前記支持手段を動作させる駆動手段とを備え、
前記模擬血管は、ほぼ直線状に延びる形状の弾性体からなり、
前記駆動手段の駆動により、前記両端部分が離間接近することで、前記模擬血管をその延出方向に伸縮させることを特徴とする血管動作シミュレータ。
A simulated blood vessel filled with liquid, supporting means for supporting both ends of the simulated blood vessel in the extending direction, and operating the both end parts so as to be separated and approachable, and driving means for operating the supporting means Prepared,
The simulated blood vessel is made of an elastic body extending in a substantially linear shape,
A blood vessel motion simulator characterized in that the simulated blood vessel is expanded and contracted in the extending direction when the both end portions are separated and approached by the driving means.
前記模擬血管の周囲の温度を所定温度に制御する温度制御手段を更に備えたことを特徴とする請求項1記載の血管動作シミュレータ。   2. The blood vessel motion simulator according to claim 1, further comprising temperature control means for controlling a temperature around the simulated blood vessel to a predetermined temperature. 前記模擬血管内の液圧を調整する液圧調整手段を更に備えたことを特徴とする請求項1又は2記載の血管動作シミュレータ。   The blood vessel operation simulator according to claim 1 or 2, further comprising a fluid pressure adjusting means for adjusting fluid pressure in the simulated blood vessel. 前記支持手段は、前記模擬血管を着脱自在に支持することを特徴とする請求項1、2又は3記載の血管動作シミュレータ。   4. The blood vessel operation simulator according to claim 1, wherein the support means removably supports the simulated blood vessel. 前記支持手段は、複数の模擬血管を支持可能に設けられ、当該各模擬血管に対して前記動作を同時に行うことを特徴とする請求項1〜4の何れかに記載の血管動作シミュレータ。   The vascular motion simulator according to any one of claims 1 to 4, wherein the support means is provided so as to support a plurality of simulated blood vessels, and simultaneously performs the operation on the simulated blood vessels. 前記模擬血管の内部には、ステントが配置され、このステントの内面側には、当該ステントの変形を制限する拘束部が設けられていることを特徴とする請求項1〜5の何れかに記載の血管動作シミュレータ。   The stent is disposed inside the simulated blood vessel, and a restraining portion that restricts deformation of the stent is provided on the inner surface side of the stent. Blood vessel motion simulator. 前記模擬血管の周囲のガス濃度を調整するガス濃度調整手段を更に備えたことを特徴とする請求項1〜6の何れかに記載の血管動作シミュレータ。   The blood vessel operation simulator according to claim 1, further comprising a gas concentration adjusting unit that adjusts a gas concentration around the simulated blood vessel.
JP2006192228A 2006-07-12 2006-07-12 Blood vessel motion simulator Active JP4822521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006192228A JP4822521B2 (en) 2006-07-12 2006-07-12 Blood vessel motion simulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006192228A JP4822521B2 (en) 2006-07-12 2006-07-12 Blood vessel motion simulator

Publications (2)

Publication Number Publication Date
JP2008020654A true JP2008020654A (en) 2008-01-31
JP4822521B2 JP4822521B2 (en) 2011-11-24

Family

ID=39076634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006192228A Active JP4822521B2 (en) 2006-07-12 2006-07-12 Blood vessel motion simulator

Country Status (1)

Country Link
JP (1) JP4822521B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100960A1 (en) * 2009-03-06 2010-09-10 テルモ株式会社 Device to be placed in blood vessel, angiostenosis model using same and method for construction thereof
CN101976528A (en) * 2010-09-09 2011-02-16 华南理工大学 Biomechanical experiment simulation device for implantation of intravascular stent
JP2011525989A (en) * 2008-06-25 2011-09-29 ボーズ・コーポレーション High frequency multi-axis simulation system
JP2017140334A (en) * 2016-02-12 2017-08-17 学校法人早稲田大学 Durability test apparatus and durability test method of medical test object
CN107610571A (en) * 2016-07-11 2018-01-19 苏州迈迪威检测技术有限公司 Simulate blood pathway system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167063A (en) * 1998-12-04 2000-06-20 Yuichi Mori Stent and stent graft
JP2000279530A (en) * 1999-03-30 2000-10-10 Yuichi Mori Stent and stent-type artificial lumen
JP2000342692A (en) * 1999-06-04 2000-12-12 Univ Waseda Artificial coronary artery, coronary artery stunt performance evaluation simulator
JP2005278828A (en) * 2004-03-29 2005-10-13 Yamaguchi Univ Stent mechanical characteristic measuring instrument
JP2006122354A (en) * 2004-10-29 2006-05-18 Univ Waseda Bloodstream simulator and stream converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167063A (en) * 1998-12-04 2000-06-20 Yuichi Mori Stent and stent graft
JP2000279530A (en) * 1999-03-30 2000-10-10 Yuichi Mori Stent and stent-type artificial lumen
JP2000342692A (en) * 1999-06-04 2000-12-12 Univ Waseda Artificial coronary artery, coronary artery stunt performance evaluation simulator
JP2005278828A (en) * 2004-03-29 2005-10-13 Yamaguchi Univ Stent mechanical characteristic measuring instrument
JP2006122354A (en) * 2004-10-29 2006-05-18 Univ Waseda Bloodstream simulator and stream converter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525989A (en) * 2008-06-25 2011-09-29 ボーズ・コーポレーション High frequency multi-axis simulation system
WO2010100960A1 (en) * 2009-03-06 2010-09-10 テルモ株式会社 Device to be placed in blood vessel, angiostenosis model using same and method for construction thereof
JP5205509B2 (en) * 2009-03-06 2013-06-05 テルモ株式会社 Blood vessel indwelling device, blood vessel stenosis model using the same, and method for producing the same
CN101976528A (en) * 2010-09-09 2011-02-16 华南理工大学 Biomechanical experiment simulation device for implantation of intravascular stent
JP2017140334A (en) * 2016-02-12 2017-08-17 学校法人早稲田大学 Durability test apparatus and durability test method of medical test object
CN107610571A (en) * 2016-07-11 2018-01-19 苏州迈迪威检测技术有限公司 Simulate blood pathway system

Also Published As

Publication number Publication date
JP4822521B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP4968821B2 (en) Blood vessel motion simulator
US8491308B2 (en) Endurance test apparatus for medical instrument and endurance test method
JP4822335B2 (en) Blood vessel motion simulator
JP4968822B2 (en) Blood vessel motion simulator
JP4822521B2 (en) Blood vessel motion simulator
EP2150104B1 (en) Method for producing dynamic conditions in a three dimensional tubular structure
WO2007100090A1 (en) System for evaluating cardiac surgery training
US20140322688A1 (en) System for evaluating cardiac surgery training
US7968329B2 (en) Method of conditioning a hybrid synthetic tubular structure to yield a functional human hybrid coronary bypass graft
US20080177131A1 (en) Systems and methods of preparing a hybrid coronary bypass vascular graft intended for implantation into a mammal
US8409847B2 (en) System and method for controlling the diameter of a mammilian hybrid coronary bypass graft
US20090028919A1 (en) Systems and methods of promoting engraftment of a hybrid lower limb artery bypass vascular graft in a mammal
US20140255967A1 (en) System and method for coating or impregnating a structure with cells that exhibit an in vivo physiologic function
US7964387B2 (en) Method of conditioning a hybrid synthetic tubular structure to yield a functional human hybrid hemodialysis access graft
US20080227202A1 (en) Method of promoting differentiation of one or more human stem cells into human coronary endothelial cells on a synthetic tubular structure
US20080234806A1 (en) Systems and methods of coating a hybrid lower limb artery bypass vascular graft in a mammal
US8158407B2 (en) Systems and methods of coating a hybrid hemodialysis access graft or a hybrid femoral artery bypass graft in a mammal
US20080234802A1 (en) Systems and methods of coating a hybrid carotid bypass vascular graft in a mammal
US20080243237A1 (en) Systems and methods of promoting endothelialization of a hybrid carotid bypass vascular graft in a mammal
US20080242921A1 (en) Systems and methods of promoting engraftment of a hybrid hemodialysis access graft or a hybrid femoral artery bypass graft in a mammal
US20080234803A1 (en) Systems and methods of promoting endothelialization of a hybrid carotid bypass vascular graft in a mammal
US20080242922A1 (en) Hybrid hemodialysis access grafts or a hybrid femoral artery bypass graft and systems and methods for producing or modifying the same
US20080234801A1 (en) Systems and methods of promoting engraftment of a hybrid carotid bypass vascular graft in a mammal
US20080234805A1 (en) Hybrid lower limb artery bypass grafts and systems and methods for producing or modifying the same
Kueh Redesign and quantitative assessment of an accelerated venous valve fatigue apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R150 Certificate of patent or registration of utility model

Ref document number: 4822521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250