JP2017139073A - 照明装置及びその制御方法 - Google Patents

照明装置及びその制御方法 Download PDF

Info

Publication number
JP2017139073A
JP2017139073A JP2016017545A JP2016017545A JP2017139073A JP 2017139073 A JP2017139073 A JP 2017139073A JP 2016017545 A JP2016017545 A JP 2016017545A JP 2016017545 A JP2016017545 A JP 2016017545A JP 2017139073 A JP2017139073 A JP 2017139073A
Authority
JP
Japan
Prior art keywords
light
wavelength
light source
illumination
light emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016017545A
Other languages
English (en)
Inventor
太介 西尾
Tasuke Nishio
太介 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016017545A priority Critical patent/JP2017139073A/ja
Publication of JP2017139073A publication Critical patent/JP2017139073A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

【課題】 照明装置の目標発光量が高い場合において、照明装置から出力される光の色温度の変化を抑制することが可能な照明装置を提供する。【解決手段】 本発明の照明装置は、青色の光を発する青色LED112と、紫外光を発する紫外LED113と、青色LED112から青色の光を照射された場合に、照射された青色の光を透過して出力し、赤色の光を出力し、紫外LED113から紫外光を照射された場合に、青色の光と、赤色の光とを有する光を出力する量子ドットフィルム114と、量子ドットフィルム114から出力される光の発光量の目標値が所定の値よりも大きい場合に、紫外LED113の発光量の青色LED112の発光量に対する比が、そうでない場合よりも大きくなるように、青色LED112の発光と、紫外LED113の発光とを制御する照明制御基板120と、を備えることを特徴とする。【選択図】 図4

Description

本発明は、波長変換手段を備える照明装置とその制御方法に関する。
液晶表示装置等に用いられる照明装置(バックライト)に、一次光源から照射された波長の光を吸収して、照射された光の波長と異なる波長の光を発する波長変換部材を用いた照明装置がある。
波長変換部材は例えば、所定の波長よりも短い波長の光が照射された場合に、照射された光によって励起され、所定の波長よりも長い波長の光を発する量子ドットを含むフィルム状の部材(量子ドットフィルム)等である。例えば、ある量子ドットフィルムに対して、青色の光を照射すると、量子ドットフィルムに含まれる量子ドットにより光が赤色および緑色の光に変換され、出力される。これらの赤色の光および緑色の光と、量子ドットフィルムを透過する青色の光とによって、量子ドットフィルムから白色光が出力される。一次光源から波長変換部材に照射される光の発光量に応じて、波長変換部材から出力される光の発光量が調整される。
特許文献1には、複数の一次光源から照射された光を異なる波長の光に変換して再放射する再放射部材を備えるディスプレイであって、複数の一次光源のうち、いずれかの一次光源が劣化した場合に、劣化した一次光源の発光量を増大させる技術が開示されている。
特開2008−112154号公報
光源から発せられる光の波長が、光源の温度によって変わることがある。例えば、青色の光を発する青色LED光源は、青色LED光源の温度が上がると、発光スペクトルが長波長側にシフトすることがある。
一次光源に青色LED光源を用いた照明装置では、照明装置に設定される目標発光量が高い場合に、青色LED光源の負荷が増加し、青色LED光源の温度が上昇する。このとき、青色LED光源から発せられる光の波長が長波長側に変化する。波長変換部材が量子ドットフィルムであった場合、量子ドットフィルムを透過する青色の光の波長が変わるため、照明装置から出力される光の色温度が変わってしまうことがある。
そこで、本発明は、上記課題に鑑みて、波長変換部材を用いた照明装置であって、照明装置の目標発光量が高い場合においても、照明装置から出力される光の色温度の変化を抑制することが可能な照明装置を提供することを目的とする。
上述した課題を解決するために、本発明にかかる照明装置は、第1の波長をピーク波長とする第1の光を発する第1の光源と、前記第1の波長と異なる第2の波長をピーク波長とする第2の光を発する第2の光源と、前記第1の光源から前記第1の光を照射された場合に、照射された前記第1の光を透過し、前記第1の波長と前記第2の波長と異なる第3の波長をピーク波長とする第3の光を出力し、前記第2の光源から前記第2の光を照射された場合に、前記第1の光と、前記第3の光を出力する波長変換手段と、前記波長変換手段から出力される光の発光量が所定の値よりも大きい場合に、前記第2の光源の発光量の前記第1の光源の発光量に対する比が、そうでない場合よりも大きくなるように、前記第1の光源の発光と、前記第2の光源の発光とを制御する制御手段と、を備えることを特徴とする。
波長変換部材を用いた照明装置であって、照明装置の目標発光量が高い場合においても、照明装置から出力される光の色温度の変化を抑制することが可能となる。
第1の実施例における照明装置を用いた画像表示装置1の分解斜視図である。 照明ユニットの模式図である。 照明ブロックの断面図である。 照明装置の機能ブロックを示したブロック図である。 目標発光量が所定の値よりも低い照明ブロックにおける出力光のプロファイルを示した模式図である。 目標発光量が所定の値よりも高い照明ブロックにおける出力光のプロファイルを示した第1の模式図である。 目標発光量が所定の値よりも高い照明ブロックにおける出力光のプロファイルを示した第2の模式図である。 量子ドットフィルムに入射する励起光のピーク波長に対して、量子ドットフィルムから出力される赤色(Red,R)、緑色(Green,G)、および青色(Blue、B)の出力比率を示した図である。 分割領域を照明する照明ブロックを配列することで、局所的に照明輝度を制御できる照明装置を示した模式図である。 分割領域を照明する照明ブロックを重ねて配列した照明装置において、下層の照明ブロックには量子ドットフィルムを設置しない場合の照明装置を示した模式図である。 図9、および図10に示した照明装置の分割領域毎の照明輝度を示した模式図である。 第2の実施例に係る照明装置の機能構成の一例を示すブロック図である。 第3の実施例に係る照明装置の機能構成の一例を示すブロック図である。 第4の実施例に係る表示装置の機能構成の一例を示す機能ブロック図である。
以下、図面を用いて本発明の実施の形態について説明する。なお、本発明の技術的範囲は、特許請求の範囲によって確定され、以下に例示する実施例によって限定されるものではない。また、実施例の中で説明されている特徴の組み合わせすべてが本発明に必須とは限らない。本明細書および図面に記載の内容は例示であって、本発明を制限するものと見なすべきではない。本発明の趣旨に基づき種々の変形(各実施例の有機的な組合せを含む)が可能であり、それらを本発明の範囲から除外するものではない。
(第1の実施例)
図1は、第1の実施例における照明装置100を用いた画像表示装置1の分解斜視図である。画像表示装置1は、液晶パネル10、表示制御基板20、メモリ30、照明装置1100を備える。
液晶パネル10は、個別に透過率を制御することが可能な複数の液晶素子を有する透過型の表示パネルである。液晶パネル10は、表示制御基板20により、各液晶素子の透過率を制御される。後述する照明装置100から液晶パネル10に照射された光が、各液晶素子を透過して、液晶パネル10の画面に画像が表示される。
表示制御基板20は、入力画像に基づき、液晶パネル10の各液晶素子の透過率を制御する制御基板である。表示制御基板20は、複数の電子回路、Central Processing Unit(CPU)や、Micro Processing Unit(MPU)等の演算処理装置、およびメモリ等を備える。
メモリ30は、表示制御基板20や、照明装置100が備える照明制御基板120に接続し、それぞれの基板が制御に用いるプログラムやパラメータ等を記憶する。メモリ30は、ハードディスクのような不揮発性の記憶媒体や、半導体メモリのような揮発性の記憶媒体である。
照明装置100は、液晶パネル10に光を照射するバックライトユニットである。照明装置100は、照明ユニット110と、照明制御基板120とを備える。
図2は、照明ユニット110の模式図である。照明ユニット110は、個別に発光量を制御可能な複数の照明ブロック111を有する。第1の実施例において、照明ユニット110は、複数の照明ブロック111が2次元的に配置されている。
図3は、照明ブロック111が光を照射する方向における照明ブロック111の断面図である。照明ブロック111は、青色LED112、紫外LED113、量子ドットフィルム114、および反射部材115を備える。
青色LED112は、ピーク波長λ(B)を有する青色の光を発する一次光源である。紫外LED113は、ピーク波長λ(UV)を有する紫外光を発する一次光源である。ピーク波長は、各光源から出力される光のうち、もっとも発光量が大きい波長を示す指標である。また、ピーク波長λ(UV)は、ピーク波長λ(B)よりも短い。
青色LED112と紫外LED113とは、照明ブロック111の底面側に配置され、後述する量子ドットフィルム114へ光を照射する。なお、照明ブロック111において、底面側は、画像表示装置1における背面側と同方向であり、上面側は、画像表示装置1における前面側と同方向であるとする。
量子ドットフィルム114は、青色LED112および紫外LED113に対して上面側に配置され、照射された励起光に基づいて所定の波長を有する光を出力する波長変換部材である。量子ドットフィルム114は、励起光が照射された場合に赤色の光を出力する赤色量子ドットと、励起光が照射された場合に緑色の光を出力する緑色量子ドットと、励起光が照射された場合に青色の光を出力する青色量子ドットとを含む。
第1の実施例において、量子ドットフィルム114は、青色LED112、および、紫外LED113から照射された光を励起光とする。量子ドットフィルム114に青色LED112から光が照射された場合、量子ドットフィルム114は、赤色量子ドットと、緑色量子ドットとが励起されて、それぞれ赤色の光と、緑色の光を出力する。また、量子ドットフィルム114は、青色LED112から照射された光の一部を透過して出力する。したがって、青色LED112から光が照射された場合、量子ドットフィルム114は、白色光を出力する。
また、量子ドットフィルム114に紫外LED113から光が照射された場合、量子ドットフィルム114は、赤色量子ドットと、緑色量子ドットと、青色量子ドットとが励起されて、それぞれ赤色の光と、緑色の光と、青色の光とを出力する。したがって、紫外LED113から光が照射された場合、量子ドットフィルム114は、白色光を出力する。
ここで、量子ドットフィルム114は、青色LED112から光を照射した場合と、紫外LED113から光を照射した場合とで、出力される白色光における青色の光の割合が同等程度になるように、量子ドットフィルム114を設計する。より具体的には、量子ドットフィルム114の透過率や、量子ドットフィルム114に含まれる青色量子ドット光源の密度、粒径等を調整する。
反射部材115は、青色LED112および紫外LED113から発せられた光を、量子ドットフィルム114に反射させる部材である。反射部材115は、照明ブロック111の上面側に開口を有する略箱形の部材である。反射部材115は、少なくとも略箱形の内側に光を反射する特性を有する部材を備える。
照明ブロック111の底面側の反射部材115に、青色LED112と紫外LED113とが配置されている。反射部材115の上面側に設けられた開口に、量子ドットフィルム114が設置される。各光源から出力された光は、直接、もしくは反射部材115によって反射されて、量子ドットフィルム114に到達する。
発熱する各光源と量子ドットフィルム114とを離して設置することにより、量子ドットフィルム114の温度変化を抑制する。即ち、各量子ドットの発光特性の変化を抑制する。
照明制御基板120は、照明ユニット110から出力される光の発光量を制御する駆動制御基板である。照明制御基板120は、各照明ブロック111から出力される光の発光量を制御する。また、照明制御基板120は、各照明ブロック111に含まれる青色LED112と紫外LED113とのそれぞれの駆動電流量を制御し、青色LED112と紫外LED113とから出力される光の発光量を制御する。
また、照明制御基板120は、各照明ブロック111から出力される光の発光量の目標値が、所定の値よりも大きい場合に、当該照明ブロック111から出力される青色の光の発光量の当該照明ブロック111から出力される紫外光の発光量に対する比が、そうでない場合よりも小さくなるように、各光源の発光量を制御する。以下で、照明制御基板120の具体的な制御方法について説明する。
量子ドットフィルム114に入射する励起光を出力する青色LED112と紫外LED113の発光量に応じて、量子ドットフィルム114から光が出力される。また、青色LED112と紫外LED113とは、青色LED112と紫外LED113とに流れる駆動電流量に応じて、光を出力する。したがって、照明制御基板120は、青色LED112と紫外LED113とに流れる駆動電流量が所定の電流値よりも大きい場合に、当該照明ブロック111から出力される青色の光の発光量の当該照明ブロック111から出力される紫外光の発光量に対する比が、そうでない場合よりも小さくなるように、各光源の発光量を制御するとも言える。
図4は、照明装置100の機能ブロックを示したブロック図である。照明制御基板120は、入力部121、代表輝度取得部122、目標発光量決定部123、電流決定部124、混合比率決定部125、制御値算出部126、および発光制御部127を備える。
入力部121は、入力画像を取得する入力インターフェースである。入力部121は、入力された画像を、代表輝度取得部122に出力する。入力画像は、マトリクス状に配置された各画素に対して、それぞれ階調値を指定したデータである。第1の実施例において、入力された画像の各画素の階調値は、0〜255の8ビットデータで記述される。なお、入力された画像の符号化方式や表示ビット数等は、上述の例に限られない。また、入力部121は、入力された画像に所定の階調変換等の処理を施した画像を代表輝度取得部122に出力してもよい。
代表輝度取得部122は、各照明ブロック111の発光量を決定するために用いる代表輝度値を、各照明ブロック111に対応する入力画像の領域毎に取得する。代表輝度取得部122は、入力画像を、各照明ブロック111に対応する液晶パネル10の表示領域に表示される画像領域に分割する。代表輝度取得部122は、各照明ブロック111に対応する入力画像の領域毎に代表輝度値を取得し、各領域の位置および代表輝度値を目標発光量決定部123に出力する。第1の実施例において、代表輝度値は、画像の最大階調値である。代表輝度値は、画像の明るさ(輝度)を示すパラメータである。代表輝度値は、画像の平均階調値であってもよい。また、画像が各画素に対して表示輝度を指定している場合は、代表輝度値は最大輝度、もしくは平均輝度であってもよい。
目標発光量決定部123は、代表輝度取得部122から取得した代表輝度値を用いて、各照明ブロック111の目標発光量を決定する。目標発光量決定部123は、各画像領域の代表輝度値を用いて、対応する照明ブロック111の目標発光量を決定する。目標発光量決定部123は、メモリ30から読み出した代表輝度値と目標発光量とを関連付けた目標発光量情報と、各画像領域の代表輝度値とを用いて対応する照明ブロック111の目標発光量を決定する。目標発光量決定部123は、決定した各照明ブロック111の目標発光量を、電流決定部124と制御値算出部126とに出力する。
電流決定部124は、各照明ブロック111の目標発光量を用いて、各照明ブロック111の各光源を駆動する駆動電流値を決定する。電流決定部124は、目標発光量が所定の値よりも大きい照明ブロック111に対して、駆動電流値を高輝度用の電流値とし、目標発光量が所定の値以下である照明ブロック111に対して、駆動電流値を低輝度用の電流値とする。高輝度用の電流値は、低輝度用の電流値よりも大きい。所定の値は、低輝度用の電流値で駆動した場合に、発光可能な最大の発光量である。低輝度用の電流値は、後述するパルス幅変調駆動において最大のパルス幅で駆動した場合に、照明ブロック111の温度上昇が、許容可能な昇温量となる電流値である。例えば、所定の値は、照明ブロック111の最大の発光量の1/3程度である。
なお、電流決定部124は、目標輝度値が大きいほど、駆動電流値が大きくなるように、駆動電流を決定することも可能である。電流決定部124は、各照明ブロック111の駆動電流値を、混合比率決定部125と制御値算出部126とに出力する。
混合比率決定部125は、電流決定部124より取得した各照明ブロック111の駆動電流値に基づいて、青色LED112および紫外LED113それぞれの発光比率を決定する。混合比率決定部125は、各照明ブロック111の青色LED112と紫外LED113との発光比率を制御値算出部126に出力する。
第1の実施例において、発光比率は、青色LED112と紫外LED113との発光量の合計に対する各光源から出力される光の発光量の比率である。なお、発光比率は、青色LED112から出力される光の発光量に対する紫外LED113から出力される光の発光量の比率であってもよい。混合比率決定部125は、ある照明ブロック111の駆動電流値が所定の電流値よりも大きい場合に、当該照明ブロック111の紫外LED113の発光比率が、そうでない場合よりも大きくなるように、各発光比率を決定する。
制御値算出部126は、目標発光量と、駆動電流値と、青色LED112および紫外LED113との発光比率と、に基づいて、各照明ブロック111の青色LED112および紫外LED113の発光量を制御する制御値を決定する。制御値算出部126は、各照明ブロック111の制御値を、発光制御部127に出力する。
青色LED112および紫外LED113の発光量をパルス幅変調(Pulse Width Modulation:PWM)により制御する場合、制御値算出部126は、青色LED112および紫外LED113それぞれに対して、パルス幅の値(デューティー比、PWM制御値)を決定する。つまり、制御値算出部126は、各照明ブロック111ごとに、青色LED112を制御するPWM制御値と、紫外LED113を制御するPWM制御値とを決定する。
なお、制御値算出部126は、目標発光量決定部123が決定した目標発光量に基づいた発光量の光が出力されるように、青色LED112および紫外LED113の発光量を制御する制御値を決定する。例えば、制御値算出部126は、青色LED112と紫外LED113のうち一方のLEDの発光量を下げた場合、低減した発光量の分だけ、他方のLEDの発光量を上げて、照明ブロック111の発光量の変化を抑制する。また、制御値算出部126は、青色LED112および紫外LED113それぞれの光に対する量子ドットフィルム114の光の変換効率に応じてPWM制御値を補正することも可能である。
LED光源は、LEDに流す電流値を大きくするとLEDの発光効率が低下することがある。従って、PWM制御値と、量子ドットフィルム114から出力される光の発光量との関係は、駆動電流値毎に保持するのが望ましい。本実施例においては、高輝度用の電流値と低輝度用の電流値とのそれぞれに対応する、PWM制御値と量子ドットフィルム114から出力される光の発光量との関係を示すテーブルデータが、メモリ30に保持される。制御値算出部126は、メモリ30からテーブルデータを読み出して、PWM制御値を決定する。
発光制御部127は、制御値算出部126が決定した制御値を用いて、各照明ブロック111の青色LED112と、紫外LED113との発光を制御する。
図5は、目標発光量が所定の値よりも低い照明ブロック111における、青色LED112と紫外LED113とから出力される光のプロファイルと、量子ドットフィルム114から出力される光のプロファイルと、を示した模式図である。図5(a)は、目標発光量決定部123が決定した目標発光量が所定の値よりも低い照明ブロック111において、青色LED112と紫外LED113とから出力される光のプロファイルを示した模式図である。
目標発光量が所定の値よりも低い場合、電流決定部124は、照明ブロック111の駆動電流値を低輝度用の電流値と決定する。混合比率決定部125は、青色LED112の発光比率を0.8とし、紫外LED113の発光比率を0.2とする。言い換えると、紫外LED113から出力される光の発光量の青色LED112から出力される光の発光量に対する比率は0.25であるとも言える。
制御値算出部126は、各光源の発光比率と、電流決定部124が決定した低輝度用の電流値とに基づいて、各光源の制御値を決定する。発光制御部127は、各光源の制御値に基づいて、各光源の発光を制御する。青色LED112から、ピーク波長λ(B)を有する青色の光が出力され、また、紫外LED113から、ピーク波長λ(UV)を有する紫外光が出力される。
図5(b)は、各光源から出力された光が量子ドットフィルム114に照射された場合に、量子ドットフィルム114から出力される光のプロファイルを示した模式図である。
紫外LED113から照射された紫外光によって、量子ドットフィルム114から、ピーク波長λ(R)を有する赤色の光と、ピーク波長λ(G)を有する緑色の光と、ピーク波長λ(B)を有する青色の光とが出力される。また、青色LED112から照射された青色の光によって、量子ドットフィルム114から、ピーク波長λ(R)を有する赤色の光と、ピーク波長λ(G)を有する緑色の光と、が出力される。さらに、青色LED112から照射された青色の光の一部が透過することにより、量子ドットフィルム114から、ピーク波長λ(B)を有する青色の光が出力される。
従って、量子ドットフィルム114から、ピーク波長λ(R)を有する赤色の光と、ピーク波長λ(G)を有する緑色の光と、ピーク波長λ(B)を有する青色の光とからなる白色光が出力される。
図6は、目標発光量が所定の値よりも高い照明ブロック111における、青色LED112と紫外LED113とから出力される光のプロファイルと、量子ドットフィルム114から出力される光のプロファイルと、を示した模式図である。図6(a)は、目標発光量決定部123が決定した目標発光量が所定の値以上である照明ブロック111において、青色LED112と紫外LED113とから出力される光のプロファイルを示した模式図である。
目標発光量が所定の値よりも高い場合、電流決定部124は、照明ブロック111の駆動電流値を高輝度用の電流値と決定する。混合比率決定部125は、青色LED112の発光比率を0.13とし、紫外LED113の発光比率を0.87とする。言い換えると、紫外LED113から出力される光の発光量の青色LED112から出力される光の発光量に対する比率は6.5であるともいえる。従って、電流決定部124が決定した照明ブロック111の駆動電流値が高輝度用の電流値の場合、紫外LED113の発光比率は、照明ブロック111の駆動電流値が低輝度用の電流値である場合よりも高い。
制御値算出部126は、各光源の発光比率と、電流決定部124が決定した高輝度用の電流値とに基づいて、各光源の制御値を決定する。発光制御部127は、各光源の制御値に基づいて、各光源の発光を制御する。青色LED112から、ピーク波長λ(B)を有する青色の光が出力され、紫外LED113から、ピーク波長λ(UV)を有する紫外光が出力される。
このとき、青色LED112および紫外LED113から出力される発光量の合計は、図5(a)に示した目標発光量が所定の値よりも低い場合に、青色LED112および紫外LED113から出力される発光量の合計よりも小さい。
図6(b)は、電流決定部124が決定した照明ブロック111の駆動電流値が高輝度用の電流値の場合に、量子ドットフィルム114から出力される光のプロファイルを示した模式図である。
目標発光量が所定の値よりも低い場合と同様に、紫外LED113から照射された紫外光によって、量子ドットフィルム114から、ピーク波長λ(R)を有する赤色の光と、ピーク波長λ(G)を有する緑色の光と、ピーク波長λ(B)を有する青色の光とが出力される。また、青色LED112から照射された青色の光によって、量子ドットフィルム114から、ピーク波長λ(R)を有する赤色の光と、ピーク波長λ(G)を有する緑色の光と、が出力される。さらに、青色LED112から照射された青色の光の一部が透過することにより、量子ドットフィルム114から、ピーク波長λ(B)を有する青色の光が出力される。
照明ブロック111から出力される白色光の有する各色のピーク波長は、目標発光量が所定の値よりも小さい場合と同程度となる。したがって、照明ブロック111の駆動電流の変化による照明ブロック111から出力される白色光の色温度の変化が抑制される。
以下で、第1の実施例との比較のため、所定の値以上の目標発光量で、青色LED112のみを備える照明ブロック111を駆動した場合に、照明ブロック111から出力される光の発光プロファイルについて説明する。
図7は、目標発光量が所定の値よりも高い照明ブロック111において、青色LED112のみから光を出力した場合の、青色LED112から出力される光のプロファイルと、量子ドットフィルム114から出力される光のプロファイルとを示した模式図である。
図7(a)は、青色LED光源のみを備える照明ブロック111において、目標発光量決定部123が決定した目標発光量が所定の値以上である場合に、青色LED112から出力される光のプロファイルを示した模式図である。目標発光量が所定の値以上であることから、電流決定部124は、照明ブロック111の駆動電流を高輝度用の電流値と決定する。
制御値算出部126は、高輝度用の電流値に基づいて、青色LED光源510の制御値を決定する。発光制御部127は、青色LED光源510の制御値に基づいて、青色LED光源510の発光を制御する。
青色LED光源510に高輝度用の電流値が流れることにより、青色LED光源510の負荷が増加する。青色LED光源510の負荷が増加することにより、青色LED光源510の温度が上昇する。青色LED光源510の温度が上昇することによって、青色LED光源510から出力される光のピーク波長がλ(B)からλ’(B)に変化する。ここで、λ’(B)はλ(B)よりも長い。
図7(b)は、図7(a)に示した各光源から出力された光が量子ドットフィルム114に照射された場合に、量子ドットフィルム114から出力される光のプロファイルを示した模式図である。
青色LED112から照射された青色の光によって、量子ドットフィルム114から、ピーク波長λ(R)を有する赤色の光と、ピーク波長λ(G)を有する緑色の光と、が出力される。さらに、青色LED112から照射された青色の光の一部が透過することにより、量子ドットフィルム114から、ピーク波長λ’(B)を有する青色の光が出力される。
従って、量子ドットフィルム114から、ピーク波長λ(R)を有する赤色の光と、ピーク波長λ(G)を有する緑色の光と、ピーク波長λ’(B)を有する青色の光からなる白色光が出力される。
照明ブロック111の目標発光量が低い場合、青色LED112の負荷は小さくなるため、青色LED112の温度変化によるピーク波長の変化は小さい。つまり、照明ブロック111の目標発光量の変化に応じて、照明ブロック111から出力される白色光の青色の光のピーク波長が異なる。したがって、照明ブロック111の目標発光量の変化に応じて、照明ブロック111から出力される白色光の色温度が変化してしまう。
第1の実施例における照明装置100によれば、照明ブロック111の目標発光量が所定の値よりも大きい場合に、量子ドットフィルム114から出力される光のうち、透過光の影響が小さい紫外LED113から出力される光の発光比率を増加させる。これにより、一次光源の温度が上昇して、一次光源から出力される光の波長が変化しても、量子ドットフィルム114から出力される光の波長の変化が抑制される。したがって、量子ドットフィルム114から白色光が出力される場合に、出力される白色光の色温度が、目標発光量によって変化することを抑制することが可能となる。
また、照明ブロック111の目標発光量が所定の値以下である場合に、紫外LED113から出力される紫外光の発光量を低くすることにより、紫外光による照明ブロック111の部材への影響を低減することが可能となる。
また、第1の実施例における照明装置100による別の効果について、図8を用いて説明する。図8は、量子ドットフィルム114に入射する励起光のピーク波長に対して、量子ドットフィルム114から出力される赤色(Red,R)、緑色(Green,G)、および青色(Blue、B)の出力比率を示した図である。出力比率は、各励起光の発光量を同一とした場合に、量子ドットフィルム114から出力されるRGBの光の発光量比を示したものである。出力される光のRGBバランスが異なると、白色光の色温度が異なることを示している。
量子ドットフィルム114は、青色LED112から光を照射した場合と、紫外LED113から光を照射した場合とで、出力される白色光の色温度が同等程度になるように設計されている。したがって、紫外LED113から発せられた紫外光によって、量子ドットフィルム114から出力される光のRGBバランスは“1.0:1.0:1.0”である。また、青色LED112から発せられたピーク波長がλ(Blue)である青色の光によって、量子ドットフィルム114から出力される光のRGBバランスは“1.0:1.0:1.0”である。
励起光が長波長になると、光子のエネルギーが小さくなる、エネルギーが小さくなると量子ドットを励起させにくくなる。つまり、量子ドット光源の発光効率が低下してしまう。例えば、図7に示すように、青色LED112から発せられる光のピーク波長が長くなることによって、励起される緑色量子ドット光源の発光効率が0.8に低下するような場合がある。その結果、RGBバランスは“1.0:0.8:1.0”となり、RGBバランスが崩れてしまう。
一方、紫外LED113の光は、緑色量子ドット光源を励起させるのに十分なエネルギーを有している。従って、スペクトルがシフトしたとしても、緑色量子ドット光源の発光効率を低下させない。
高輝度照明時に、青色LED112のみを駆動させた場合、上述のように青色LED112の温度が高温になる。このとき、青色LED112のピーク波長がλ(Blue)からλ’(Blue)にシフトし、発光スペクトルが長波長側にシフトする。従って、量子ドットフィルム114から出力される白色光の色温度は、低輝度照明時に出力される白色光の色温度と異なる。
本実施例では、高輝度照明時に青色LED112の駆動電流と紫外LED113の駆動電流との比を“0.13:0.87”とする。その結果として、RGBバランスは“1.0:0.97:1.0”となり、従来例よりも、RGBバランスの崩れを防止することができる。即ち、白色照明光の色温度のずれを抑止することができる。
なお、第1の実施例では、照明装置100は、複数の照明ブロック111を2次元的に配列して構成されているとしたが、照明装置はこれに限らない。照明装置は、1つの照明ブロック111で構成されていてもよい。
また、照明装置は、照明ブロック1111を垂直に並べたものと、水平に並べたものを重ねた2層構造で形成される照明装置1100であってもよい。照明ブロック1111は、照明装置1100の光の照射方向に対して垂直な方向に長い形状を有している。照明ブロック1111は、青色LED1112、紫外LED1113、量子ドットフィルム1114、反射部材1115、導光板1116とを備える。
図9は、分割領域を照明する照明ブロック1111を配列することで、局所的に照明輝度を制御できる照明装置1100を示した模式図である。図9(a)は、照明ブロック1111の断面図を表している。
照明ブロック1111の下面に反射部材1115が配置され、反射部材1115の上部に導光板1116が配置される。さらに、量子ドットフィルム1114が、導光板1116の上部に配置される。青色LED1112、および紫外LED1113は、照明ブロック1111の端部に配置され、導光板1116に光を入射する。
導光板1116は下面に凹部1116aが設けられている。青色LED1112、および紫外LED1113から入射し、凹部1116aで反射した光が、導光板1116の上面から量子ドットフィルム1114に入射する。このように、導光板1116を用いて、発熱するLED光源と量子ドットフィルムとを離して設置することにより、量子ドットフィルム1114の温度変化を抑制する。即ち、量子ドット光源の発光特性の変化を抑制する。
図9(b)は、図9(a)に示した照明ブロック1111を配置した、照明装置1100を示した模式図である。図9(a)に示した照明ブロック1111を垂直に並べたものと、水平に並べたものを重ねる構造(2層構造)をしている。2層構造の下側の層の照明ブロック1111の底面には反射部材が設置されているが、上側の層の照明ブロック1111の底面には反射部材が設置されない。
そのため、下層の照明ブロック1111の照明光は、上層に入射され、図9(b)の斜線矢印で示すように上層の照明ブロック1111の上面から出力される。また、上層の照明ブロック1111の照明光は、図9(b)の黒矢印で示すように上層の照明ブロック1111の上面から出力される。上層の照明ブロック1111と、下層の照明ブロック1111との発光をそれぞれ個別に制御することにより、局所的に照明輝度を制御することが可能となる。
なお、照明装置1100は、量子ドットフィルム1114を設置しない照明ブロック1111を下層に配置してもよい。つまり、下層の照明ブロック1111は、白色量子ドット照明ではなく、単に、青色光および紫外光の面状照明としてもよい。図10は、分割領域を照明する照明ブロック1111を重ねて配列した照明装置1100において、下層の照明ブロック1111には量子ドットフィルム1114を設置しない場合の照明装置1100を示した模式図である。
図11は、図9、および図10に示した照明装置1100の分割領域毎の照明輝度を示した模式図である。図11(a)は入力画像の分割領域毎の輝度特徴量を表す。図9、および図10に示した照明装置1100における照明ブロック1111は、1次元方向にしか領域分割できない。そのため、分割領域毎の輝度特徴量から、行毎の輝度特徴量と列毎の輝度特徴量を算出し、行毎、または、列毎の輝度特徴量に基づいて、照明ブロック1111毎の照明輝度を算出する。本実施例においては、分割領域毎の輝度特徴量の行毎の最大値、及び、列毎の最大値を算出し、当該最大値を行毎、及び、列毎の輝度特徴量とする。
図11(b)は分割領域毎の照明輝度を表す。図9、および図10に示した照明装置1100における照明ブロック1111は、1次元方向にしか領域分割できないため、列、または行に1つの照明輝度が決定される。図9、および図10に示した照明装置1100における下層の照明ブロック1111は、行毎の輝度特徴量に基づいて行毎の照明輝度を決定する。図9、および図10に示した照明装置1100における上層の照明ブロック1111は、列毎の輝度特徴量に基づいて列毎の照明輝度を決定する。
ここで、図9、および図10に示した照明装置1100は2層構造であるので、図11(b)に示すように、2次元的な分割領域毎の照明輝度は、上層のブロック照明の照明輝度と下層のブロック照明の照明輝度との組み合わせによって決まる。図11(b)では、2次元的な分割領域毎の照明輝度を、当該分割領域が属する行の行毎の照明輝度と、属する列の列毎の照明輝度との平均値で表している。
以上のように、1次元方向にしか領域分割できないブロック照明(1次元ブロック照明)を2層構造にすることで、2次元的な局所照明輝度制御が可能となる。
なお、図11では説明の簡単化のために、輝度特徴量と照明輝度との関係を、上層と下層のブロック照明の間で同一のものとしたが、これに限らない。実際には、下層のブロック照明の光は、上層のブロック照明を透過する分しか、バックライトモジュールの表層まで届かない。従って、下層のブロック照明は上層のブロック照明よりも高い輝度にて照明するように設計する。
(第2の実施例)
以下、本発明の第2の実施例に係る照明装置、およびその制御方法について説明する。
第1の実施例と同様に、本実施例の照明装置は、入力画像の明るさを示す代表輝度値に応じて、照明装置から出力される発光量を制御可能な照明装置である。より具体的には、照明装置は、入力画像が明るい場合には高い発光量で光を出力し、入力画像が暗い場合には低い発光量で光を出力する。
図12は第2の実施例に係る照明装置200の機能構成の一例を示すブロック図である。なお、説明の重複を避けるため、第1の実施例と同名の機能ブロックは、動作説明を省略する。
照明装置200は、照明ユニット210と照明制御基板220とを備える。照明ユニット210は、複数の照明ブロック211を備える。照明ユニット210および照明ブロック211の構成は、第1の実施例と同様である。照明制御基板220は、第1の実施例と同名の機能ブロックに加えて、光量積算部228を具備する。
混合比率決定部225は、照明ブロック211のLEDの駆動電流値が所定の電流値よりも大きい場合、もしくは、照明ブロック211の照明光量の時間的積算値が大きい場合に、紫外LEDの発光比率が大きくなるように各LEDの発光比率を決定する。混合比率決定部225は、光量積算部228が算出した分割領域毎の照明光量の時間的積算値と、電流決定部224が出力する各照明ブロック211のLEDの駆動電流値に応じて、対応する照明ブロック211の各LEDの発光比率を算出する。
光量積算部228は、照明ブロック211毎に、目標発光量の所定期間内の積算値を算出する。より具体的には、現在から起算した過去の所定期間内における、照明ブロック211毎の目標発光量の積算値を算出し、混合比率決定部225に出力する。
本実施例において、光量積算部228が算出した照明ブロック211毎の目標発光量の時間的積算値に応じて、混合比率決定部225が青色LED212と紫外LED213との発光比率を算出する方法をより具体的に説明する。
時間的に連続し、また変化する複数のフレーム画像から成る動画像の輝度特徴量に応じて、本実施例の照明装置の目標発光量を制御する場合を考える。
光量積算部228は、照明ブロック211毎に、目標発光量が所定値以上となるフレームのフレーム数(高輝度フレーム数)を、所定期間にわたって計数する。また、光量積算部228は、照明ブロック211毎に、目標発光量が所定値以下となるフレームのフレーム数(低輝度フレーム数)を、所定期間にわたって計数する。所定期間は現在から起算した過去の所定期間である。
混合比率決定部225は、高輝度フレーム数が所定値以上である照明ブロック211が備える各LEDが高温であると判断する。また、高輝度フレーム数が所定値以上となった後、低輝度フレーム数が所定値以上となるまでの間、当該照明ブロック211が備える各LEDは、高温であると判断する。即ち、当該照明ブロック211が備える青色LED212の発光スペクトルがシフトし、当該照明ブロック211から出力される白色光の色温度がずれるおそれがあるものと判断する。混合比率決定部225は、当該高温であると判断された照明ブロック211について、紫外LED213の発光比率が大きくなるように、発光比率を決定する。
一方で、混合比率決定部225は、高輝度フレーム数が所定値以上となった後に、低輝度フレーム数が所定値以上となった場合、当該照明ブロック211は、高温でないと判断する。換言すると、高温であると判断された照明ブロック211は、低輝度フレーム数が所定値以上となることで、冷却されたものと判断する。即ち、当該照明ブロック211が備える青色LED212の発光スペクトルのシフトが小さいと判断する。この場合、混合比率決定部225は、高温でないと判断した照明ブロック211について、青色LEDの発光比率が大きくなるように、発光比率を決定する。
本実施例によれば、第1の実施例と同様に、照明装置から出力される光の色温度の変化を抑制することができる。また、紫外LEDの寿命を延ばしつつ、紫外線の放射量を抑制できる。
また、本実施例によれば、低輝度照明時に生じる色温度のずれも抑止できる。LEDの温度上昇によって、青色LEDの発光スペクトルがシフトする場合、照明輝度が低くなって流れる電流が小さくなっても、温度は急には下がらない。つまり、低輝度照明時であっても、LEDの温度が下がるまでは色温度がずれる虞がある。また、逆に、高輝度照明期間が短い期間であれば、温度上昇しない場合も考えられる。
本実施例では、照明光量の時間的積算値に応じて発光比率を制御するので、高輝度照明期間が長く、LEDの温度が高い場合であれば、現在の照明輝度が低輝度であっても紫外LEDの発光比率を大きくして、色温度ずれを防止する。
なお、本実施例では、照明光量の時間的積算値を元に、LEDの温度を予測するが、温度センサを設けて、LEDの温度を取得してもよい。
(第3の実施例)
以下、本発明の第3の実施例に係る照明装置、およびその制御方法について説明する。
第1の実施例と同様に、本実施例の照明装置は、入力画像の明るさを示す代表輝度値に応じて、照明装置から出力される発光量を制御可能な照明装置である。より具体的には、照明装置は、入力画像が明るい場合には高い発光量で光を出力し、入力画像が暗い場合には低い発光量で光を出力する。
また、本実施例の照明装置は、量子ドットを励起させるLED光源の温度変化に起因する、量子ドットフィルムの温度変化が小さいものとする。即ち、LED光源の温度変化による量子ドット光源の発光特性の変化は、無視できるものとする。より具体的には、発光時に内部から熱を発するLED光源から十分離した位置に量子ドットフィルムを配する構造とする。
図13は第3の実施例に係る照明装置300の機能構成の一例を示すブロック図である。なお、説明の重複を避けるため、第1の実施例と同名の機能ブロックの動作の説明を省略する。
照明装置300は、照明ユニット310と照明制御基板320とを備える。照明ユニット310は、複数の照明ブロック311を備える。照明ユニット310および照明ブロック311の構成は、第1の実施例と同様である。照明制御基板320は、第1の実施例と同名の機能ブロックに加えて、面積算出部329を具備する。
面積算出部329は、照明ブロック311のうち、所定の値以上の目標発光量が設定された照明ブロック311の数が所定の数以上であるか否かを算出する。言い換えると、面積算出部329は、所定の値以上の目標発光量が設定された照明ブロック311が光を出力する高輝度照明領域の面積が所定の値よりも大きいか否かを判定する。
面積算出部329は、電流決定部324から各照明ブロック311に設定された駆動電流を取得し、高輝度用の電流値が設定された照明ブロック311の数を計測して、高輝度照明領域の面積を取得する。なお、面積算出部329は、各照明ブロック311に設定された目標発光値を取得して、高輝度照明領域の面積を取得することも可能である。
混合比率決定部325は、面積算出部329の判定結果と、電流決定部324が出力する分割領域毎のLEDの駆動電流値に応じて、青色LED312と紫外LED313の発光比率を算出する。混合比率決定部325は、高輝度照明領域の面積が所定の面積よりも小さいと判定した場合に、紫外LED313の発光比率が大きくなるように、各照明ブロック311の発光比率を決定する。また、混合比率決定部325は、高輝度照明領域の面積が所定の値よりも大きいと判定された場合に、青色LED312の発光比率が大きくなるように、発光比率を決定する。
本実施例によれば、第1の実施例と同様に、高輝度照明時に生ずる色温度のずれを防止し、照明輝度に関わらず、所望の色温度の白色光で照明することができる。また、紫外LEDの寿命を延ばしつつ、紫外線の放射量を抑制できる。
また、本実施例によれば、色温度のずれが目立ちやすい入力画像の場合に色温度のずれを防止し、色温度のずれが目立ちにくい入力画像の場合には紫外線の放射量を抑制できる。
高輝度照明領域の面積が小さい場合、色温度のずれがムラとして視認されるために、色温度のずれが目立ってしまう。一方、大面積の色温度がずれている場合には、色温度のずれが目立ちにくい。
一方で、大面積が高輝度である場合に、分割領域の多くが紫外LEDの発光比率を大きくしてしまうと、紫外線の放射総量が大きくなってしまう。
本実施例では、高輝度照明領域の面積が小さい場合は紫外LEDの発光比率を大きくするので、色温度のムラを防止することができる。一方で、高輝度照明領域の面積が大きい場合は紫外LEDの発光比率を小さくするので、紫外線の放射総量を抑制することができる。
(第4の実施例)
図14は、第4の実施例に係る表示装置4の機能構成の一例を示す機能ブロック図である。表示装置4は、液晶パネル10、表示制御基板20、メモリ30、および照明装置400を備える。液晶パネル10は、第1の実施例と同様の機能を発揮する表示パネルである。表示制御基板20は、入力画像に基づいて、液晶パネル10の各液晶素子の透過率を制御する制御基板である。
表示制御基板20は、入力部21、画像補正部22、および表示制御部23を備える。表示制御基板20の各機能ブロックの処理については、後述する。表示制御基板20には、CPU等の演算処理装置が設けられており、メモリ30から読み出したプログラムを実行することによって、表示制御基板20の各機能ブロックの処理が実行される。また、表示制御基板20の各機能ブロックは、表示制御基板20に設けられた電子回路によって実行されてもよい。
照明装置400は、照明ユニット410と、照明制御基板420とを備える。照明ユニット410は、第1の実施例と同様に複数の照明ブロック411を2次元上に配置したバックライトモジュールである。各照明ブロック411は、青色LED412、紫外LED413、量子ドットフィルム414、および反射部材415を備える。
第4の実施例において、照明ブロック411の備える各構成要素の機能は、量子ドットフィルム414以外は、第1の実施例の同名の構成要素と同様である。
量子ドットフィルム414は、青色LED412から青色の光を照射された場合に出力される白色光の色温度と、紫外LED413から紫外光を照射された場合に出力される白色光の色温度が異なる。青色LED412からのみ光を照射された場合に、量子ドットフィルム414から出力される光の色温度は、Tbである。色温度Tbの光におけるRGB各成分の発光量の比は、R:G:B=1.0:1.0:1.0である。紫外LED413からのみ光を照射された場合に、量子ドットフィルム414から出力される光の色温度は、Tuである。色温度Tuの光におけるRGB各成分の発光量の比は、R:G:B=1.0:1.0:1.2である。
つまり、紫外光を励起光とした場合に量子ドットフィルム414から出力される光は、青色の光を励起光とした場合に量子ドットフィルム414から出力される光に対して、青色の光の成分が強い。
照明制御基板420が備える機能ブロックのうち、混合比率決定部425以外の機能ブロックは、第1の実施例と同名の機能ブロックの動作と同様の処理を行うものである。
混合比率決定部425は、電流決定部424が決定した各照明ブロック411の駆動電流に基づいて、対応する照明ブロック411が備える青色LED412と紫外LED413との発光比率を決定する。さらに、混合比率決定部425は、各照明ブロック411が備える青色LED412と紫外LED413との発光比率を、制御値算出部426と、表示制御基板20の画像補正部22とに出力する。第4の実施例において、発光比率は、青色LED412と紫外LED413とから出力される光の発光量の総和に対する、それぞれのLEDから出力される光の発光量の比である。
以下、表示制御基板20の各機能ブロックについて説明する。入力部21は、入力画像を取得する入力インターフェースである。入力部21は、入力された画像を、画像補正部22に出力する。入力画像は、マトリクス状に配置された各画素に対して、それぞれ階調値を指定したデータである。
画像補正部22は、混合比率決定部425から取得した各照明ブロック411の発光比率に応じて、対応する液晶パネル10に表示される入力画像を補正した表示画像データを出力する。
画像補正部22は、各照明ブロック411の発光比率と、出力される光の色温度との関係に基づいて、所定の色温度Tgで画像が表示されるように、対応する液晶パネル10の領域に表示される入力画像を補正して、表示画像データを出力する。画像補正部22は、入力画像のRGBの各画素値に対して色毎のゲインを乗じることで、画像データを補正する。
第4の実施例では、所定の色温度Tgは、青色LED412の発光比率を100%(紫外LED413は0%)とした場合に量子ドットフィルム414から出力される光の色温度Tbと同等であるとする。したがって、所定の色温度Tgにおける光のRGB各成分の発光量の比は、R:G:B=1.0:1.0:1.0である。なお、所定の色温度Tgは、ユーザが任意に設定することも可能である。
混合比率決定部425が紫外LED413の発光比率を100%と決定した照明ブロック411に対応する液晶パネル10に表示される入力画像の補正方法について、以下に示す。
ある照明ブロック411の紫外LED413の発光比率が100%であった場合、量子ドットフィルム414から出力される光の色温度は、前述の通りTuである。このとき、RGB各成分の発光量の比が、R:G:B=1.0:1.0:1.2であることから、画像補正部22は、RGB各成分に対する補正ゲインを、R:G:B=1.0:1.0:0.83と決定する。
画像補正部22は、決定した補正ゲインを入力画像の画素値に乗算して、表示画像データを生成し、表示制御部23に出力する。画像補正部22は、上述の照明ブロック411に対応する入力画像の各画素値に対して、補正ゲイン(R:G:B=1.0:1.0:0.83)を乗算する。つまり、入力画像のうち、青色に対応する画素値が0.83倍に補正される。例えば、入力画像の画素値が(R,G,B)=(255,255,255)である場合、補正後の表示画像データの画素値は、(R,G,B)=(255,255,212)となる。
表示制御部23は、表示画像データの各画素値に基づいて、液晶パネル10の各液晶素子の透過率を制御する。上述した混合比率決定部425が紫外LED413の発光比率を100%と決定した照明ブロック411に対応する液晶パネル10において、青色の画素値は、入力画像に対して0.83倍に補正される。したがって、青色の画素に対応する液晶素子の透過率は、入力画像に基づいて制御した場合よりも小さくなる。
一方で、照明ブロック411から出力される光の青色の成分が、他の色よりも大きい。液晶パネル10の前面側に透過する光の量は、照明ブロック411から出力される光の発光量と液晶パネル10の透過率とを乗算した値によって、決定される。言い換えると、液晶パネル10の前面側に透過する光の色温度は、照明ブロック411から出力される光の色温度と、補正後の表示画像データとの乗算によって決定される。補正後の表示画像データは、入力画像に対して、補正ゲインを乗算した値であることから、液晶パネル10の前面側に透過する光の色温度は、照明ブロック411から出力される光の色温度と、補正ゲインとの乗算によって決定される。
紫外LED413の発光比率が100%である照明ブロック411に対応する液晶パネル10において視認される色温度は、(照明ブロック411から出力される光の色温度=1.0:1.0:1.2)×(補正ゲイン=1.0:1.0:0.83)となる。したがって、液晶パネル10に表示される表示輝度は、所定の色温度Tg(R:G:B=1.0:1.0:1.0)に制御される。
なお、上記の説明では、紫外LED413の発光比率が100%である場合を例示したが、0〜100%の間の任意の発光比率について、発光比率とそれぞれの発光比率における色温度との関係を示すデータに基づいて、同様の処理を行うことができる。
本実施例によれば、前記照明装置において、青色LED単体で励起させる場合と、紫外LED単体で励起させる場合とで、照明光の色温度が異なっていたとしても、第1の実施例と同様の効果を得ることができる。
即ち、第1の実施例と同様に、高輝度照明時に生ずる色温度のずれを防止し、照明輝度に関わらず、所望の色温度の白色光で照明することができる。また、紫外LEDの寿命を延ばしつつ、紫外線の放射量を抑制できる。
(その他の実施例)
上述の実施例では、照明装置は、赤色の光、緑色の光、および青色の光を出力することによって白色光を出力する表示装置に用いられるバックライトであったが、本発明における照明装置はこれに限られない。例えば、屋内を照明する照明器具や、懐中電灯等であってもよい。また、照明装置は、白色光に限らず、例えば、青色の光と、赤色の光とが混合してマゼンタの色の光を出力するものであってもよい。
100 照明装置
112 青色LED
113 紫外LED
114 量子ドットフィルム
120 照明制御基板

Claims (13)

  1. 第1の波長をピーク波長とする第1の光を発する第1の光源と、
    前記第1の波長と異なる第2の波長をピーク波長とする第2の光を発する第2の光源と、
    前記第1の光源から前記第1の光を照射された場合に、照射された前記第1の光を透過して出力し、かつ前記第1の波長と異なる第3の波長をピーク波長とする第3の光を出力し、前記第2の光源から前記第2の光を照射された場合に、前記第1の光と、前記第3の光を出力する波長変換手段と、
    前記波長変換手段から出力される光の発光量の目標値が所定の値よりも大きい場合に、前記第2の光源の発光量の前記第1の光源の発光量に対する比が、そうでない場合よりも大きくなるように、前記第1の光源の発光と、前記第2の光源の発光とを制御する制御手段と、
    を備えることを特徴とする照明装置。
  2. 前記第2の波長は、前記第1の波長よりも短いことを特徴とする請求項1に記載の照明装置。
  3. 前記第1の波長は、青色の光のスペクトルに対応する波長であり、
    前記第2の波長は、紫外光のスペクトルに対応する波長であることを特徴とする請求項1または請求項2に記載の照明装置。
  4. 前記波長変換手段は、前記第1の光が照射された場合に、照射された前記第1の光の一部を透過し、前記第3の光と、前記第1の波長、前記第2の波長、および前記第3の波長と異なる第4の波長をピーク波長とする第4の光とを出力し、前記第2の光が照射された場合に、前記第1の光と、前記第3の光と、前記第4の光とを出力することを特徴とする請求項1乃至請求項3のいずれか1項に記載の照明装置。
  5. 前記第1の光は、青色の光であり、
    前記第2の光は、紫外光であり、
    前記第3の光は、赤色の光であり、
    前記第4の光は、緑色の光であり、
    前記波長変換手段は、前記第1の光もしくは前記第2の光が照射された場合に、白色光を出力することを特徴とする請求項4に記載の照明装置。
  6. 前記制御手段は、前記第1の光源の電流値を制御することにより、前記第1の光源の発光を制御し、前記第2の光源の電流値を制御することにより、前記第2の光源の発光を制御することを特徴とする請求項1乃至請求項5のいずれか1項に記載の照明装置。
  7. 前記第1の光源と、前記第2の光源とはそれぞれLED光源であることを特徴とする請求項1乃至請求項6のいずれか1項に記載の照明装置。
  8. 前記制御手段は、前記波長変換手段から出力される光の発光量が所定の値よりも大きい期間が、所定の期間よりも大きい場合に、前記第2の光源の発光量の前記第1の光源の発光量に対する比が、そうでない場合よりも大きくなるように、前記第1の光源の発光と、前記第2の光源の発光とを制御することを特徴とする請求項1乃至請求項7のいずれか1項に記載の照明装置。
  9. 前記第1の光源と、前記第2の光源と、前記波長変換手段を備える複数の照明ブロックを備え、
    前記制御手段は、前記所定の値よりも大きい発光量の光を出力する第1の照明ブロックの数が所定の数よりも多い場合に、前記第1の照明ブロックにおいて、前記第2の光源の発光量の前記第1の光源の発光量に対する比が、そうでない場合よりも小さくなるように、前記第1の照明ブロックの前記第1の光源の発光と、前記第1の照明ブロックの前記第2の光源の発光とを制御することを特徴とする請求項1乃至請求項8のいずれか1項に記載の照明装置。
  10. 入力された入力画像に基づいて、前記照明装置から発せられる光を透過して画像を表示する表示手段と、
    請求項1乃至請求項9のいずれか1項に記載の前記照明装置とを備える画像表示装置。
  11. 前記入力画像の明るさを示す代表輝度値に基づいて、前記波長変換手段から出力する光の目標発光量を決定する発光量決定手段を備え、
    前記制御手段は、前記目標発光量に基づいて、前記第1の光源の発光と前記第2の光源の発光とを制御することを特徴とする請求項10に記載の画像表示装置。
  12. 前記第1の光源から発せられる光に基づいて、前記波長変換手段が変換した光の色温度と、前記第2の光源から発せられる光に基づいて、前記波長変換手段が変換した光の色温度と、前記第1の光源の発光量の前記第2の光源の発光量に対する比とに基づいて、前記入力画像を補正する画像補正手段を備えることを特徴とする請求項10または請求項11に記載の画像表示装置。
  13. 第1の波長をピーク波長とする第1の光を発する第1の光源と、前記第1の波長と異なる第2の波長をピーク波長とする第2の光を発する第2の光源と、前記第1の光源から前記第1の光を照射された場合に、照射された前記第1の光を透過し、前記第1の波長と前記第2の波長と異なる第3の波長をピーク波長とする第3の光を出力し、前記第2の光源から前記第2の光を照射された場合に、前記第1の光と、前記第3の光を出力する波長変換手段と、を備える照明装置の制御方法であって、
    前記波長変換手段から出力される光の発光量が所定の値よりも大きい場合に、前記第2の光源の発光量の前記第1の光源の発光量に対する比が、そうでない場合よりも大きくなるように、前記第1の光源の発光と、前記第2の光源の発光とを制御する制御工程を備えることを特徴とする照明装置の制御方法。
JP2016017545A 2016-02-01 2016-02-01 照明装置及びその制御方法 Pending JP2017139073A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016017545A JP2017139073A (ja) 2016-02-01 2016-02-01 照明装置及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016017545A JP2017139073A (ja) 2016-02-01 2016-02-01 照明装置及びその制御方法

Publications (1)

Publication Number Publication Date
JP2017139073A true JP2017139073A (ja) 2017-08-10

Family

ID=59566082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016017545A Pending JP2017139073A (ja) 2016-02-01 2016-02-01 照明装置及びその制御方法

Country Status (1)

Country Link
JP (1) JP2017139073A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107894679A (zh) * 2017-12-29 2018-04-10 西安智盛锐芯半导体科技有限公司 背光模组及液晶显示装置
CN108051951A (zh) * 2017-12-29 2018-05-18 西安智盛锐芯半导体科技有限公司 Led光源、背光模组及液晶显示装置
KR20200053869A (ko) * 2018-11-09 2020-05-19 삼성전자주식회사 백 라이트 유닛, 이를 포함하는 디스플레이장치 및 그 제어방법
JP2020531903A (ja) * 2017-08-25 2020-11-05 ナノシス・インク. ナノ構造体ベースの表示装置における多重励起波長の使用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020531903A (ja) * 2017-08-25 2020-11-05 ナノシス・インク. ナノ構造体ベースの表示装置における多重励起波長の使用
CN107894679A (zh) * 2017-12-29 2018-04-10 西安智盛锐芯半导体科技有限公司 背光模组及液晶显示装置
CN108051951A (zh) * 2017-12-29 2018-05-18 西安智盛锐芯半导体科技有限公司 Led光源、背光模组及液晶显示装置
CN107894679B (zh) * 2017-12-29 2023-01-10 苏州九骏电子科技有限公司 背光模组及液晶显示装置
KR20200053869A (ko) * 2018-11-09 2020-05-19 삼성전자주식회사 백 라이트 유닛, 이를 포함하는 디스플레이장치 및 그 제어방법
KR102689685B1 (ko) * 2018-11-09 2024-07-31 삼성전자주식회사 백 라이트 유닛, 이를 포함하는 디스플레이장치 및 그 제어방법

Similar Documents

Publication Publication Date Title
US10210821B2 (en) Light source apparatus, image display apparatus and control method for light source apparatus
KR101554917B1 (ko) 화상 표시 장치 및 그 구동 방법과, 화상 표시 장치 조립체 및 그 구동 방법
JP4757585B2 (ja) 光源ユニット及び照明装置
US7847784B2 (en) Method for driving liquid crystal display assembly
KR101785728B1 (ko) 화상 표시 장치의 구동 방법 및 화상 표시 장치 조립체의 구동 방법
US9903544B2 (en) Light-emitting apparatus
JP4839379B2 (ja) バックライト装置、及びこれを用いた表示装置
US8294387B2 (en) Backlight device and display device using the same for adjusting color tone of illumination light
JP4497212B2 (ja) 光源システム
US20070296689A1 (en) Display device and display control method
JP4742145B2 (ja) バックライト装置、及びこれを用いた表示装置
JP2005115372A (ja) Ledの二次元アレイを用いるlcdバックライト
WO2008050506A1 (fr) Dispositif d'affichage à cristaux liquides
JP2007240858A (ja) 照明装置、映像表示装置、および映像信号制御方法
JP2017139073A (ja) 照明装置及びその制御方法
US20120050352A1 (en) Display apparatus
JP2007027421A (ja) Ledパッケージ及び照明装置
JP2009042302A (ja) 面状光源装置及び液晶表示装置組立体
US20150212371A1 (en) Light emitting apparatus, backlight apparatus, and display apparatus
JP2011134620A (ja) バックライト装置及びこれを用いた液晶表示装置
JP6724196B2 (ja) 光源装置、画像表示装置、及び、光源装置の制御方法
JP5426734B2 (ja) 照明装置、映像表示装置、および映像信号制御方法
JP2009229974A (ja) 液晶表示装置、及び、液晶表示装置における光の色設定方法
JP2010061869A (ja) 発光装置及びその制御方法
JP2008078410A (ja) バックライト装置、及びこれを用いた表示装置