JP2017137557A - Method of treating Sb-containing residue - Google Patents

Method of treating Sb-containing residue Download PDF

Info

Publication number
JP2017137557A
JP2017137557A JP2016021205A JP2016021205A JP2017137557A JP 2017137557 A JP2017137557 A JP 2017137557A JP 2016021205 A JP2016021205 A JP 2016021205A JP 2016021205 A JP2016021205 A JP 2016021205A JP 2017137557 A JP2017137557 A JP 2017137557A
Authority
JP
Japan
Prior art keywords
leaching
antimony
solution
hydrochloric acid
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016021205A
Other languages
Japanese (ja)
Other versions
JP6651372B2 (en
Inventor
一彰 竹林
Kazuaki Takebayashi
一彰 竹林
智也 後田
Tomoya Nochida
智也 後田
隆洋 古薗
Takahiro Furuzono
隆洋 古薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pan Pacific Copper Co Ltd
Original Assignee
Pan Pacific Copper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan Pacific Copper Co Ltd filed Critical Pan Pacific Copper Co Ltd
Priority to JP2016021205A priority Critical patent/JP6651372B2/en
Publication of JP2017137557A publication Critical patent/JP2017137557A/en
Application granted granted Critical
Publication of JP6651372B2 publication Critical patent/JP6651372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of treating Sb-containing residues that allow Sb to be recovered from Sb-containing residues with improved efficiency.SOLUTION: A method of treating Sb-containing residues is characterized in that Sb-containing residues, resulting from decopperizing and leaching of copper electrolytic sediments in a copper smelting step, are chlorinated and leached with hydrochloric acid and hydrogen peroxide, and the hydrochloric acid concentration in the chlorinating and leaching reaction is controlled to exceed 4 mol/L.SELECTED DRAWING: Figure 1

Description

本発明は、Sb含有残渣の処理方法に関する。   The present invention relates to a method for treating Sb-containing residues.

近年、非鉄金属製錬事業において、リサイクル原料の比率が高まり、付随する希少有価物を効率的に分離回収する必要性が高まっている。アンチモン(Sb)は、電子基板屑等の発火を防ぐための難燃助剤として添加されており、銅製錬工程へのインプット量が増えてきている金属の一つである。   In recent years, in the nonferrous metal smelting business, the ratio of recycled raw materials has increased, and the need to efficiently separate and recover accompanying rare valuables has increased. Antimony (Sb) is added as a flame retardant aid for preventing ignition of electronic substrate scraps and the like, and is one of the metals whose amount of input to the copper smelting process is increasing.

アンチモンは溶錬工程でマットとスラグへと分配され、その後、マットは精製されアノードに鋳造される。アノードは電解工程で電気分解されるが、電気分解の際、アノードが含有するアンチモンの一部が電解液へと溶出し、残りが不溶性のアンチモン化合物として銅電解澱物へと分配される。銅電解澱物には貴金属が濃縮されているため、銅電解澱物の処理過程で発生したアンチモンを含む残渣は、貴金属の逸損を防ぐ目的で溶錬工程へ再投入される。   Antimony is distributed to the mat and slag in the smelting process, after which the mat is refined and cast into the anode. The anode is electrolyzed in an electrolysis process. During electrolysis, a part of the antimony contained in the anode is eluted into the electrolytic solution, and the rest is distributed as an insoluble antimony compound to the copper electrolytic starch. Since the noble metal is concentrated in the copper electrolytic starch, the residue containing antimony generated during the processing of the copper electrolytic starch is re-introduced into the smelting process for the purpose of preventing the loss of the noble metal.

湿式法による銅電解澱物の処理工程では、まず銅電解澱物を硫酸浴中で酸化浸出して銅を分離する。次に、脱銅した銅電解澱物を塩酸と過酸化水素とにより浸出し、金、白金、パラジウム、セレン、テルル、アンチモン、鉛を溶解し、銀を塩化銀として分離して鉄により還元する(特許文献1〜2)。   In the process of treating a copper electrolytic starch by a wet method, first, the copper electrolytic starch is oxidized and leached in a sulfuric acid bath to separate copper. Next, the copper electrolyzed starch after copper removal is leached with hydrochloric acid and hydrogen peroxide to dissolve gold, platinum, palladium, selenium, tellurium, antimony and lead, and silver is separated as silver chloride and reduced with iron. (Patent Documents 1 and 2).

塩化銀を分離した塩化浸出後液については、後工程において槽内や配管内で不純物が析出するのを避けるため、また製品の品質を高めるため、事前に塩酸濃度と液温とを下げることで、アンチモン、鉛、テルルの溶解度を下げ、生成した析出物を分離する。アンチモン、鉛、テルルの析出物は、アルカリ浸出工程でテルルを溶解し、硫酸で中和することで粗二酸化テルルを回収する。アンチモンと鉛は溶解せず残渣として回収され自溶炉へ再投入される(特許文献3)。   In order to avoid the precipitation of impurities in the tank and piping in the post-process and to improve the quality of the product, the hydrochloric acid concentration and the liquid temperature should be lowered in advance for the liquid after leaching from the silver chloride separated. Reduces the solubility of antimony, lead and tellurium and separates the precipitate formed. The deposits of antimony, lead and tellurium are dissolved in tellurium in the alkaline leaching step and neutralized with sulfuric acid to recover crude tellurium dioxide. Antimony and lead are not dissolved but collected as a residue and re-introduced into the flash furnace (Patent Document 3).

塩化浸出後液からアンチモン、鉛、テルルを分離した濾液からは、金、白金、パラジウム、セレン、テルルなどが各々分離回収される。一方、分離できなかった成分を含む排液は中和された後、自溶炉へ再投入される(特許文献1〜2)。   Gold, platinum, palladium, selenium, tellurium, and the like are separated and recovered from the filtrate obtained by separating antimony, lead, and tellurium from the solution after leaching with chloride. On the other hand, the effluent containing the components that could not be separated is neutralized and then re-entered into the flash smelting furnace (Patent Documents 1 and 2).

特開2001−316735号公報JP 2001-316735 A 特開2001−316736号公報JP 2001-316736 A 特開2011−68528号公報JP 2011-68528 A

塩化浸出工程では、アンチモンの一部が塩化銀へと分配されてしまうため、次の析出工程でアンチモンの回収率が下がってしまう。   In the chloride leaching step, a part of antimony is distributed to silver chloride, and the recovery rate of antimony is lowered in the next precipitation step.

また、アルカリ浸出工程では、テルルを浸出後の、アンチモンを含むアルカリ浸出残渣が自溶炉へと再投入されており、溶錬工程へのアンチモンの再投入量が増加してしまう。   Moreover, in the alkali leaching process, the alkali leaching residue containing antimony after leaching of tellurium is recharged into the flash smelting furnace, and the amount of recharging of antimony into the smelting process increases.

本発明は上記の課題に鑑み、Sb含有残渣からのSb回収効率を向上させる、Sb含有残渣の処理方法を提供すること目的とする。   An object of this invention is to provide the processing method of Sb containing residue which improves the Sb collection | recovery efficiency from Sb containing residue in view of said subject.

本発明に係るSb含有残渣の処理方法は、銅製錬工程の銅電解澱物を脱銅浸出したSb含有残渣を塩酸と過酸化水素とにより塩化浸出し、塩化浸出反応時の塩酸濃度が4mol/Lを上回るように調整することを特徴とする。   The method for treating a Sb-containing residue according to the present invention includes a Sb-containing residue obtained by leaching copper electrolytic starch in a copper smelting process by leaching with hydrochloric acid and hydrogen peroxide, and the hydrochloric acid concentration during the leaching reaction is 4 mol / mol. It adjusts so that it may exceed L, It is characterized by the above-mentioned.

この場合において、塩化浸出反応時の塩酸濃度が5mol/L以上となるように調整してもよい。塩化浸出後液から塩化銀を分離し、塩化銀を分離後のアンチモンを含む塩化浸出後液を、塩酸濃度が4mol/L以下となるように調整してもよい。この場合、前記塩化銀を分離後のアンチモンを含む塩化浸出後液を、塩酸濃度が3mol/L以下となるように調整してもよい。   In this case, the hydrochloric acid concentration during the leaching reaction may be adjusted to 5 mol / L or more. Silver chloride is separated from the solution after leaching with chloride, and the solution after leaching with chloride containing antimony after separation of silver chloride may be adjusted so that the hydrochloric acid concentration is 4 mol / L or less. In this case, the chlorinated leaching solution containing antimony after separation of the silver chloride may be adjusted so that the hydrochloric acid concentration is 3 mol / L or less.

前記塩化銀を分離後のアンチモンを含む塩化浸出後液を冷却してもよい。この場合、前記塩化銀を分離後のアンチモンを含む塩化浸出後液を液温が50℃未満となるよう冷却してもよい。または、前記塩化銀を分離後のアンチモンを含む塩化浸出後液を液温が25℃以下となるよう冷却してもよい。   The solution after leaching with chloride containing antimony after separating the silver chloride may be cooled. In this case, the solution after leaching containing antimony after separation of the silver chloride may be cooled so that the liquid temperature is less than 50 ° C. Or you may cool the liquid after leaching containing antimony after separating the silver chloride so that the liquid temperature becomes 25 ° C. or less.

本発明に係るSb含有残渣の処理方法によれば、Sb含有残渣からのSb回収効率を向上させることができる。   According to the method for treating an Sb-containing residue according to the present invention, Sb recovery efficiency from the Sb-containing residue can be improved.

銅電解澱物の処理工程を表す工程図である。It is process drawing showing the process of a copper electrolytic starch.

図1は、銅電解澱物の処理工程を表す工程図である。図1で例示するように、出発原料は、銅電解澱物である。   FIG. 1 is a process diagram showing a process for treating a copper electrolytic starch. As illustrated in FIG. 1, the starting material is a copper electrolytic starch.

(脱銅工程)
銅電解澱物には各種有価物が濃縮されている。この銅電解澱物を硫酸浴にリパルプし、空気を吹き込み酸化浸出することで、銅電解澱物が脱銅される。銅電解澱物中のアンチモン(Sb)は酸化物となり、脱銅した澱物中に留まる。
(Copper removal process)
Various valuable materials are concentrated in the copper electrolytic starch. The copper electrolytic starch is depulped by repulping the copper electrolytic starch into a sulfuric acid bath, blowing air and oxidizing and leaching. Antimony (Sb) in the copper electrolytic starch becomes an oxide and remains in the decoppered starch.

(塩化浸出工程)
脱銅した澱物に対しては、塩酸と過酸化水素とによる塩化浸出を行う。以下の化学反応式に示すとおり、アンチモンは過酸化水素と反応し溶解する。
SbO+H→HSbO+H
塩化物沈殿を生じる金属としては銀、鉛、及びアンチモンがある。
(Chloride leaching process)
The decoppered starch is leached with hydrochloric acid and hydrogen peroxide. As shown in the chemical reaction formula below, antimony reacts with hydrogen peroxide and dissolves.
H 3 SbO 3 + H 2 O 2 → H 3 SbO 4 + H 2 O
Metals that cause chloride precipitation include silver, lead, and antimony.

塩酸濃度が4mol/Lを上回ると、アンチモン及び鉛の溶解度が非常に大きくなる。そこで、塩化浸出反応時の塩酸濃度を4mol/Lを上回るように調整する。それにより、アンチモン及び鉛と塩化銀との分離性を良くすることができる。塩化浸出反応時の塩酸濃度を4mol/Lを上回るように調整することで、塩化浸出後液の塩酸濃度も4mol/Lを上回るようになる。それにより、塩化浸出後液においても、アンチモンを溶解させておくことができる。なお、塩化浸出反応時の塩酸濃度は、5mol/L以上が好ましく、6mol/L以上がより好ましい。   When the hydrochloric acid concentration exceeds 4 mol / L, the solubility of antimony and lead becomes very large. Therefore, the hydrochloric acid concentration during the leaching reaction is adjusted to exceed 4 mol / L. Thereby, the separability between antimony and lead and silver chloride can be improved. By adjusting the concentration of hydrochloric acid during the leaching reaction to exceed 4 mol / L, the concentration of hydrochloric acid in the leached solution after leaching also exceeds 4 mol / L. Thereby, antimony can be dissolved in the solution after leaching with chloride. The hydrochloric acid concentration during the leaching reaction is preferably 5 mol / L or more, more preferably 6 mol / L or more.

塩化銀とアンチモンとの分離は、塩化浸出後液の温度が高いほど分離性が良くなるため、50℃以上に保持しながら行うと効果が高い。   Separation of silver chloride and antimony improves as the temperature of the solution after leaching from the chloride increases, so that the effect is high when it is kept at 50 ° C. or higher.

(析出工程)
次に、塩化浸出後液から塩化銀を分離し、塩化銀を分離後の塩化浸出後液の塩酸濃度を希釈等により4mol/L以下になるよう調整する。これにより、鉛及びアンチモンの溶解度が小さくなり、鉛及びアンチモンが沈殿析出する。なお、塩化銀を分離後の塩化浸出後液の塩酸濃度は、3mol/L以下が好ましく、2mol/L以下がより好ましい。さらに、塩化浸出後液を冷却してもよい。この場合、冷却による塩化浸出後液の液温は50℃未満が好ましく、25℃以下がより好ましく、5℃以下がさらに好ましい。これにより、鉛及びアンチモンの溶解度をさらに小さくすることができる。冷却による塩化浸出後液の温度に特に下限はなく、塩化浸出後液が凍結しない範囲であればよい。塩化浸出後液から沈殿析出した析出物をX線回折分析した結果、鉛の形態は塩化鉛、アンチモンの形態は酸化物、あるいはテルル化合物であると推定される。
(Precipitation process)
Next, silver chloride is separated from the solution after leaching with chloride, and the hydrochloric acid concentration in the solution after leaching after separation after silver chloride is adjusted to 4 mol / L or less by dilution or the like. Thereby, the solubility of lead and antimony is reduced, and lead and antimony are precipitated. The hydrochloric acid concentration in the solution after leaching after separation of silver chloride is preferably 3 mol / L or less, more preferably 2 mol / L or less. Further, the solution after leaching with chloride may be cooled. In this case, the temperature of the solution after leaching of chloride by cooling is preferably less than 50 ° C, more preferably 25 ° C or less, and further preferably 5 ° C or less. Thereby, the solubility of lead and antimony can be further reduced. There is no particular lower limit to the temperature of the solution after leaching of chloride by cooling, as long as the solution after leaching of chloride is not frozen. As a result of X-ray diffraction analysis of the precipitate deposited from the solution after leaching with chloride, it is presumed that the form of lead is lead chloride and the form of antimony is an oxide or a tellurium compound.

(アルカリ浸出)
析出した、鉛とアンチモンとを含む析出物は、テルルやセレンを含有している。このためアルカリ浸出を施し、テルルとセレンを溶解分離する。浸出条件は、30〜60g/LのNaOHからなる80℃のアルカリ溶液で浸出するのがよい。スラリー濃度は100〜200g/Lであり、かつ浸出時間が2〜4時間である。この方法により、セレンとテルルを浸出することができ、浸出残渣中にアンチモンを濃縮することができる(特許文献3)。この浸出残渣がアルカリ浸出残渣である。
(Alkaline leaching)
The deposited precipitate containing lead and antimony contains tellurium and selenium. For this reason, alkali leaching is performed to dissolve and separate tellurium and selenium. The leaching conditions are preferably leached with an alkaline solution at 80 ° C. composed of 30 to 60 g / L NaOH. The slurry concentration is 100 to 200 g / L, and the leaching time is 2 to 4 hours. By this method, selenium and tellurium can be leached, and antimony can be concentrated in the leaching residue (Patent Document 3). This leaching residue is an alkali leaching residue.

(還元工程)
アルカリ浸出残渣には水分が含まれていることから、乾燥によって水分量を低減する。例えば、アルカリ浸出残渣をコルゲート缶などに入れ、蒸気熱を用いた乾燥設備等で乾燥を行う。次に、乾燥後のアルカリ浸出残渣を溶解炉に投入し、アルカリ浸出残渣に対して重量比で0〜10%のコークスを溶解炉に投入する。このとき、スラグ形成に必要なナトリウム量をアルカリ浸出残渣中のナトリウムで確保できないときは、アルカリ浸出残渣とともにソーダ灰(無水炭酸ソーダ)を投入してもよい。溶解炉の温度は、1000℃±100℃とすることが好ましい。この場合、溶解炉内が弱還元雰囲気となる。弱還元雰囲気では、アルカリ浸出残渣に含まれるアンチモン酸ソーダ(NaSbO)が酸化ナトリウムと酸化アンチモン(Sb、Sb)とに分解すると推定される。アンチモン酸ソーダ(NaSbO)の融点が1427℃であるのに対して、Sbの融点:656℃およびSbの融点:380℃が低くなっている。また、SbおよびSbの融点は、上記溶解炉の温度よりも低くなっている。したがって、アルカリ浸出残渣の溶解を促進することができる。
(Reduction process)
Since the alkali leaching residue contains moisture, the moisture content is reduced by drying. For example, the alkali leaching residue is put in a corrugated can and dried with a drying facility using steam heat. Next, the dried alkali leaching residue is put into a melting furnace, and 0 to 10% of coke by weight with respect to the alkali leaching residue is put into the melting furnace. At this time, when the amount of sodium required for slag formation cannot be secured by sodium in the alkali leaching residue, soda ash (anhydrous sodium carbonate) may be added together with the alkali leaching residue. The temperature of the melting furnace is preferably 1000 ° C. ± 100 ° C. In this case, the inside of the melting furnace is a weak reducing atmosphere. In a weak reducing atmosphere, it is estimated that sodium antimonate (NaSbO 3 ) contained in the alkali leaching residue decomposes into sodium oxide and antimony oxide (Sb 2 O 3 , Sb 2 O 5 ). The melting point of sodium antimonate (NaSbO 3 ) is 1427 ° C., whereas the melting point of Sb 2 O 3 is 656 ° C. and the melting point of Sb 2 O 5 is 380 ° C. The melting points of Sb 2 O 3 and Sb 2 O 5 are lower than the temperature of the melting furnace. Therefore, dissolution of the alkali leaching residue can be promoted.

また、上記コークスの添加によって、アルカリ浸出残渣を還元することができる。還元によって、アルカリ浸出残渣中の塩化成分から塩素が除去され、溶融メタルと、溶融スラグとに分離する。溶融メタルには、Sb,Pb,Agなどが含まれる。溶融スラグには、アルカリ浸出残渣やソーダ灰に含まれるNa,Oなどとともに、Se,Teなどが含まれる。なお、溶解炉から発生するダストにはSb,Pbなどが含まれるため、溶解炉にアルカリ浸出残渣とともに再度投入される。   Moreover, the alkali leaching residue can be reduced by adding the coke. By the reduction, chlorine is removed from the chlorinated component in the alkali leaching residue and separated into molten metal and molten slag. The molten metal includes Sb, Pb, Ag, and the like. The molten slag contains Se, Te and the like as well as Na and O contained in the alkali leaching residue and soda ash. Since dust generated from the melting furnace contains Sb, Pb, etc., the dust is again put into the melting furnace together with the alkaline leaching residue.

なお、上記溶解炉の温度範囲においては、コークスは固体状態で存在する。アルカリ浸出残渣が溶解しなければ、上記の還元は、固固反応によって進むことになる。この場合、良好な反応性が得られないため、還元率が低下する。これに対して、アルカリ浸出残渣が溶解すれば、上記の還元は、固液反応によって進むことになる。この場合、良好な反応性が得られるため、還元率が向上する。   Note that coke exists in a solid state in the temperature range of the melting furnace. If the alkali leaching residue does not dissolve, the above reduction proceeds by a solid-solid reaction. In this case, since a good reactivity cannot be obtained, the reduction rate decreases. On the other hand, if the alkali leaching residue is dissolved, the above reduction proceeds by a solid-liquid reaction. In this case, good reactivity can be obtained, so that the reduction rate is improved.

コークスの投入量が少な過ぎると、Sbの還元反応が不十分になるため、Sbがスラグへ残留するおそれがある。一方で、コークスの投入量が多すぎると、Sbの還元率が低下するおそれがある。したがって、コークスの投入量には最適な範囲が存在する。本発明者の鋭意研究によって、溶解炉に対するアルカリ浸出残渣の投入量に対するコークスの投入量は、重量比で、5%以上30%以下とすることが好ましいことがわかった。この範囲では、溶融メタルへのSbの分配率が特に高くなる。   If the amount of coke input is too small, the reduction reaction of Sb becomes insufficient, so that Sb may remain in the slag. On the other hand, if the input amount of coke is too large, the reduction rate of Sb may be reduced. Therefore, there is an optimum range for the amount of coke input. As a result of diligent research by the present inventor, it has been found that the amount of coke introduced relative to the amount of alkali leaching residue introduced into the melting furnace is preferably 5% to 30% by weight. In this range, the distribution ratio of Sb to the molten metal is particularly high.

そこで、還元率を向上させるために、必要に応じて追加でコークスを溶解炉に投入することが好ましい。この場合において、溶解炉に投入するアルカリ浸出残渣に対するコークスの総量(重量比)が5%〜30%になるように、コークスを投入する。溶解炉に投入するアルカリ浸出残渣に対するコークスの総量(重量比)は、10%以上15%以下とすることがより好ましい。また、投入工程で投入するコークスの投入量は、溶解還元工程で投入するコークスの投入量以下であることが好ましい。この工程で得られるメタル状のSbは、本実施形態が対象とする「不純物を含むSb」となりうる。さらに、溶融メタルの状態で揮発工程に持ち込むことも可能である。   Therefore, in order to improve the reduction rate, it is preferable to add coke to the melting furnace as needed. In this case, the coke is charged so that the total amount (weight ratio) of coke with respect to the alkaline leaching residue charged into the melting furnace is 5% to 30%. The total amount (weight ratio) of coke with respect to the alkaline leaching residue charged into the melting furnace is more preferably 10% or more and 15% or less. Moreover, it is preferable that the amount of coke input in the input step is equal to or less than the amount of coke input in the dissolution reduction step. The metal-like Sb obtained in this step can be “Sb containing impurities” targeted by the present embodiment. Furthermore, it is possible to bring it into the volatilization process in the form of molten metal.

(ソーダ処理工程)
しかしながら、不純物および不純物の量によっては、溶融メタルを揮発工程に直接持ち込むことが好ましくない場合がある。たとえば、Se,Te,Asなどを多く含む場合である。この場合には、溶融メタルを苛性ソーダ溶液でソーダ処理する必要がある。ソーダ処理によって、Se,Te,Asなどを、スカムとして溶融メタルから分離することができる。溶融メタルには、Pb,Ag,Biの1種以上が不純物として含まれるので、本実施形態が対象とする「不純物を含むSb」として、ソーダ処理工程後のメタルは、揮発工程に持ち込まれる。溶融メタルの状態で揮発工程に持ち込むことも可能である。
(Soda treatment process)
However, depending on the impurities and the amount of impurities, it may not be preferable to bring the molten metal directly into the volatilization process. For example, it includes a large amount of Se, Te, As and the like. In this case, it is necessary to soda the molten metal with a caustic soda solution. By soda treatment, Se, Te, As, etc. can be separated from the molten metal as scum. Since one or more of Pb, Ag, and Bi are contained as impurities in the molten metal, the metal after the soda treatment process is brought into the volatilization process as “Sb containing impurities” targeted by the present embodiment. It is also possible to bring it into the volatilization process in the form of molten metal.

(揮発工程)
溶融還元によって得られたメタルおよびソーダ処理によって得られたメタルを「不純物を含むSb」として、揮発炉に投入し、熱によって溶解する。さらに、溶湯を酸化することによって、Sbを酸化させて揮発性のSbを生成する。例えば、溶湯に対して酸素を吹き付ける、吹き込む、酸化剤を添加する、などによってSbを酸化させることができる。Sbは揮発性が高いため、溶湯から揮発する。それにより、Sbを回収することができる。例えば、溶湯温度を660℃〜700℃とし、溶湯への吹きつけ空気量を溶湯表面1mあたり51〜56Nm/hとすることが好ましい。溶湯温度を680℃〜700℃とすることがより好ましい。また、溶湯中のSb濃度を50mass%以下、好ましくは40mass%以下とすることで、不揮発性のSb,Sb13などの生成を抑制して、Sbを生成することができる。なお、溶湯中のSb濃度を希釈するに際して、Sb品位の低い(40mass%以下)原料を用いることができる。例えば、PbやBiなどの低融点金属を主成分とする原料を用いることが好ましい。ただし、Pbは揮発性を有していることから、Biを用いることがより好ましい。なお、揮発によって得られた揮発滓は、上記の溶解炉に戻して還元に供することが好ましい。
(Volatile process)
The metal obtained by the smelting reduction and the metal obtained by the soda treatment are put into a volatilization furnace as “Sb containing impurities” and melted by heat. Further, by oxidizing the molten metal, Sb is oxidized to generate volatile Sb 2 O 3 . For example, Sb can be oxidized by blowing oxygen to the molten metal, blowing it, or adding an oxidizing agent. Since Sb 2 O 3 has high volatility, it volatilizes from the molten metal. Thereby, Sb can be recovered. For example, the molten metal temperature is preferably 660 ° C. to 700 ° C., and the amount of air blown onto the molten metal is preferably 51 to 56 Nm 3 / h per 1 m 2 of the molten metal surface. More preferably, the molten metal temperature is 680 ° C to 700 ° C. Moreover, the production of nonvolatile Sb 2 O 4 , Sb 6 O 13, etc. is suppressed and Sb 2 O 3 is produced by setting the Sb concentration in the molten metal to 50 mass% or less, preferably 40 mass% or less. Can do. In addition, when diluting Sb density | concentration in a molten metal, a raw material with low Sb quality (40 mass% or less) can be used. For example, it is preferable to use a raw material whose main component is a low melting point metal such as Pb or Bi. However, it is more preferable to use Bi because Pb has volatility. The volatile soot obtained by volatilization is preferably returned to the melting furnace and used for reduction.

本実施形態によれば、銅電解澱物を脱銅浸出したSb含有残渣を塩酸と過酸化水素とにより塩化浸出し、塩化浸出反応時の塩酸濃度が常に4mol/Lを上回るように調整することで、塩化浸出後液へのアンチモンの溶解度を高めることができる。これにより、アンチモンと塩化銀との分離性を良くすることができる。すなわち、塩化銀へと分配されるアンチモンを低減することができるため、アンチモンの回収効率を向上させることができる。なお、塩化浸出反応時の塩酸濃度は、5mol/L以上が好ましく、6mol/L以上がより好ましい。   According to the present embodiment, the Sb-containing residue obtained by leaching copper electrolytic starch is leached with hydrochloric acid and hydrogen peroxide, and the hydrochloric acid concentration during the leaching reaction is adjusted to always exceed 4 mol / L. Thus, the solubility of antimony in the solution after leaching with chloride can be increased. Thereby, the separability between antimony and silver chloride can be improved. That is, since antimony distributed to silver chloride can be reduced, antimony recovery efficiency can be improved. The hydrochloric acid concentration during the leaching reaction is preferably 5 mol / L or more, more preferably 6 mol / L or more.

また、本実施形態によれば、塩化浸出後液から塩化銀を分離し、塩化銀を分離後のアンチモンを含む塩化浸出後液の塩酸濃度を4mol/L以下に調整することで、塩化浸出後液へのアンチモンの溶解度を下げ、アンチモンを含む析出物を回収することができる。なお、塩化銀を分離後の塩化浸出後液の塩酸濃度は、3mol/L以下が好ましく、2mol/L以下がより好ましい。   In addition, according to the present embodiment, silver chloride is separated from the solution after chloride leaching, and the concentration of hydrochloric acid in the solution after chloride leaching containing antimony after separation of silver chloride is adjusted to 4 mol / L or less, so that after chloride leaching. The solubility of antimony in the liquid can be lowered, and the precipitate containing antimony can be recovered. The hydrochloric acid concentration in the solution after leaching after separation of silver chloride is preferably 3 mol / L or less, more preferably 2 mol / L or less.

また、本実施形態によれば、塩化銀を分離後の塩化浸出後液を冷却することで、塩化浸出後液へのアンチモンの溶解度を更に下げ、アンチモンを含む析出物を回収することができる。なお、冷却による塩化浸出後液の液温は50℃未満が好ましく、25℃以下がより好ましく、5℃以下がさらに好ましい。   Moreover, according to this embodiment, by cooling the solution after leaching after separation of silver chloride, the solubility of antimony in the solution after leaching of chloride can be further reduced, and the precipitate containing antimony can be recovered. In addition, the liquid temperature of the solution after leaching of chloride by cooling is preferably less than 50 ° C, more preferably 25 ° C or less, and further preferably 5 ° C or less.

塩化浸出後液の塩酸濃度を予め調整した上で、80℃に加温してから、塩化アンチモン及び塩化鉛を飽和状態になるまで過剰に添加し撹拌し、その後、50℃、25℃、5℃に温度を下げていく過程でサンプリングし、溶解しているアンチモン及び鉛の濃度を測定した。また、同様の処理を塩化銀に対して行い、溶解している銀の濃度を測定した。塩酸濃度と液温とに対するアンチモンの溶解度は、表1に示すとおりである。また、塩酸濃度と液温とに対する鉛の溶解度は、表2に示すとおりである。また、塩酸濃度に対する銀の溶解度は、表3に示すとおりである。

Figure 2017137557
Figure 2017137557
Figure 2017137557
After pre-adjusting the hydrochloric acid concentration of the solution after leaching with chloride, the solution is heated to 80 ° C., then antimony chloride and lead chloride are added excessively until they become saturated, and then stirred at 50 ° C., 25 ° C., 5 ° C. Sampling was performed in the process of lowering the temperature to 0 ° C., and the concentrations of dissolved antimony and lead were measured. Moreover, the same process was performed with respect to silver chloride, and the density | concentration of the melt | dissolved silver was measured. The solubility of antimony with respect to hydrochloric acid concentration and liquid temperature is as shown in Table 1. Further, the solubility of lead with respect to hydrochloric acid concentration and liquid temperature is as shown in Table 2. Further, the solubility of silver with respect to the hydrochloric acid concentration is as shown in Table 3.
Figure 2017137557
Figure 2017137557
Figure 2017137557

表1及び表2に示すように、塩化浸出後液の塩酸濃度が4mol/Lを上回ると、アンチモン及び鉛の溶解度が非常に大きくなり、銅電解澱物中に含まれるアンチモンを基準物量として、塩化銀へと分配されるアンチモンは33%から19%へと低減した。   As shown in Tables 1 and 2, when the concentration of hydrochloric acid in the solution after leaching of chloride exceeds 4 mol / L, the solubility of antimony and lead becomes very large, and antimony contained in the copper electrolytic starch is used as a standard amount. Antimony distributed to silver chloride was reduced from 33% to 19%.

一方、表3に示すように、塩化浸出後液中の銀の溶解度は、塩酸濃度が高くなるにつれて大きくなったが、塩酸濃度が4〜5mol/Lであっても銀濃度は200〜400mg/L程度であるため、塩化銀中の銀量に対して、塩化浸出後液への銀の分配率は約0.3%前後と銀の回収率には大きな影響を与えない。   On the other hand, as shown in Table 3, the solubility of silver in the solution after leaching with chloride increased as the hydrochloric acid concentration increased, but the silver concentration was 200 to 400 mg / L even if the hydrochloric acid concentration was 4 to 5 mol / L. Since it is about L, the distribution ratio of silver to the solution after leaching with respect to the amount of silver in the silver chloride is about 0.3%, which does not greatly affect the silver recovery rate.

その後、塩化銀を分離後の塩化浸出後液の塩酸濃度を2mol/Lに調整し、液温を5℃まで冷却した。これにより、アンチモンの溶解度を小さくすることができ、回収した析出物をアルカリ浸出することで、アンチモンを濃縮した残渣を得ることができた。銅電解澱物中に含まれるアンチモンを基準物量として、残渣へと分配されるアンチモンは、63%から70%へと向上した。   Thereafter, the hydrochloric acid concentration in the solution after leaching of chloride after separation of silver chloride was adjusted to 2 mol / L, and the solution temperature was cooled to 5 ° C. As a result, the solubility of antimony could be reduced, and the collected precipitates were alkaline leached to obtain a residue enriched with antimony. Using antimony contained in the copper electrolytic starch as a reference amount, antimony distributed to the residue was improved from 63% to 70%.

アルカリ浸出残渣中のアンチモンの形態は、アンチモン酸ナトリウムであり、アンチモン品位は40mass%前後であった。残渣中の鉛は水酸化鉛であると考えられ、鉛品位は10mass%前後であった。   The form of antimony in the alkali leaching residue was sodium antimonate, and the antimony quality was around 40 mass%. The lead in the residue was considered to be lead hydroxide, and the lead quality was around 10 mass%.

以上の結果によれば、塩化浸出反応時の塩酸濃度を4mol/Lを上回るように調整することで、アンチモンの回収効率を向上させることができることが明らかとなった。また、塩化銀を分離後の塩化浸出後液の塩酸濃度を4mol/L以下に調整することで、アンチモンの溶解度を下げ、アンチモンを沈殿析出させることができることが明らかとなった。さらに、塩化浸出後液を冷却することで、アンチモンの溶解度をさらに下げ、アンチモンを沈殿析出させることができることが明らかとなった。さらに、アンチモンと鉛とを含む析出物をアルカリ浸出することで、テルルを分離し、浸出残渣中のアンチモン品位を高めることができることが明らかとなった。   From the above results, it was revealed that the recovery efficiency of antimony can be improved by adjusting the hydrochloric acid concentration during the leaching reaction to exceed 4 mol / L. It was also found that the solubility of antimony can be lowered and antimony can be precipitated by adjusting the concentration of hydrochloric acid in the solution after leaching after separation of silver chloride to 4 mol / L or less. Furthermore, it became clear that the solubility of antimony can be further lowered and the antimony can be precipitated by cooling the solution after leaching with chloride. Furthermore, it has become clear that tellurium can be separated by alkali leaching of a precipitate containing antimony and lead, and the quality of antimony in the leaching residue can be improved.

また、アルカリ浸出工程によって得られたSb含有残渣を溶解炉に投入し、酸化させた後に、コークスを添加して還元を行った。還元においては、溶解炉を1000℃に維持し、還元時間を8時間とした。また、残渣に対するコークスの添加率を、重量比で、5%、10%、15%、25%として、Sbのメタルへの分配率を確認した。その結果、残渣に対するコークスの添加率が10%、15%では、80%を超えうる分配率であったが、5%、25%では、70%を下回った。   Further, the Sb-containing residue obtained by the alkali leaching step was put into a melting furnace and oxidized, and then coke was added to perform reduction. In the reduction, the melting furnace was maintained at 1000 ° C., and the reduction time was 8 hours. The distribution ratio of Sb to metal was confirmed by setting the addition ratio of coke to the residue to 5%, 10%, 15%, and 25% by weight. As a result, when the addition ratio of coke to the residue was 10% and 15%, the distribution ratio could exceed 80%, but when it was 5% and 25%, it was less than 70%.

また、ソーダ処理工程後の溶融メタルに対して揮発工程を実施した。7.1tの溶融メタルに対して、溶湯温度を680℃〜700℃とし、溶湯への吹きつけ空気量を100m/hとし、吹き付け位置を溶湯面から20mm〜40mmの高さとした。Sbを酸化させて揮発性のSbを生成させることによりSbを回収することができるが、Sb品位の低いPb電解澱物還元メタルを添加してSb濃度を50%以下にしたところ、より良好な速度で、Sbを揮発させることができた。なお、その際、溶湯表面の成分に対してXRD分析を行った結果、溶湯面に不揮発性のSb,Sb13などは生成しなかったことが確認された。 Moreover, the volatilization process was implemented with respect to the molten metal after a soda processing process. With respect to 7.1 t of molten metal, the molten metal temperature was set to 680 ° C. to 700 ° C., the amount of air blown to the molten metal was set to 100 m 3 / h, and the spray position was set to a height of 20 mm to 40 mm from the molten metal surface. Sb can be recovered by oxidizing Sb to produce volatile Sb 2 O 3 , but when Sb concentration is reduced to 50% or less by adding Pb electrolytic starch reduced metal having low Sb quality, Sb 2 O 3 could be volatilized at a better rate. At that time, as a result of XRD analysis of the components on the surface of the molten metal, it was confirmed that nonvolatile Sb 2 O 4 , Sb 6 O 13 and the like were not generated on the molten metal surface.

以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

Claims (7)

銅製錬工程の銅電解澱物を脱銅浸出したSb含有残渣を塩酸と過酸化水素とにより塩化浸出し、塩化浸出反応時の塩酸濃度が4mol/Lを上回るように調整することを特徴とするSb含有残渣の処理方法。   The Sb-containing residue obtained by copper leaching of the copper electrolytic starch in the copper smelting process is leached with hydrochloric acid and hydrogen peroxide, and the hydrochloric acid concentration during the leaching reaction is adjusted to exceed 4 mol / L. Processing method of Sb containing residue. 前記塩化浸出反応時の塩酸濃度が5mol/L以上となるように調整することを特徴とする請求項1に記載のSb含有残渣の処理方法。   It adjusts so that the hydrochloric acid density | concentration at the time of the said leaching reaction may be 5 mol / L or more, The processing method of the Sb containing residue of Claim 1 characterized by the above-mentioned. 塩化浸出後液から塩化銀を分離し、塩化銀を分離後のアンチモンを含む塩化浸出後液を、塩酸濃度が4mol/L以下となるように調整することを特徴とする請求項1又は2に記載のSb含有残渣の処理方法。   The silver chloride is separated from the solution after leaching with chloride, and the solution after leaching with chloride containing antimony after the silver chloride is separated is adjusted so that the hydrochloric acid concentration is 4 mol / L or less. The processing method of Sb containing residue of description. 前記塩化銀を分離後のアンチモンを含む塩化浸出後液を、塩酸濃度が3mol/L以下となるように調整することを特徴とする請求項3に記載のSb含有残渣の処理方法。   4. The method for treating an Sb-containing residue according to claim 3, wherein the solution after anti-chlorine leaching containing antimony after separating the silver chloride is adjusted so that the hydrochloric acid concentration is 3 mol / L or less. 前記塩化銀を分離後のアンチモンを含む塩化浸出後液を冷却することを特徴とする請求項3又は4に記載のSb含有残渣の処理方法。   The method for treating an Sb-containing residue according to claim 3 or 4, wherein the solution after anti-chlorine leaching containing antimony after separating the silver chloride is cooled. 前記塩化銀を分離後のアンチモンを含む塩化浸出後液を液温が50℃未満となるよう冷却することを特徴とする請求項5記載のSb含有残渣の処理方法。   6. The method for treating an Sb-containing residue according to claim 5, wherein the solution after anti-chlorine leaching containing antimony after separating the silver chloride is cooled so that the liquid temperature is less than 50 ° C. 前記塩化銀を分離後のアンチモンを含む塩化浸出後液を液温が25℃以下となるよう冷却することを特徴とする請求項5記載のSb含有残渣の処理方法。   6. The method for treating an Sb-containing residue according to claim 5, wherein the solution after anti-chlorine leaching containing antimony after separating the silver chloride is cooled so that the liquid temperature becomes 25 ° C. or less.
JP2016021205A 2016-02-05 2016-02-05 Method for treating Sb-containing residue Active JP6651372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016021205A JP6651372B2 (en) 2016-02-05 2016-02-05 Method for treating Sb-containing residue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016021205A JP6651372B2 (en) 2016-02-05 2016-02-05 Method for treating Sb-containing residue

Publications (2)

Publication Number Publication Date
JP2017137557A true JP2017137557A (en) 2017-08-10
JP6651372B2 JP6651372B2 (en) 2020-02-19

Family

ID=59566367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016021205A Active JP6651372B2 (en) 2016-02-05 2016-02-05 Method for treating Sb-containing residue

Country Status (1)

Country Link
JP (1) JP6651372B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110669932A (en) * 2019-09-25 2020-01-10 中南大学 Method for comprehensively utilizing copper electrolyte purification resources

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231397A (en) * 2006-03-03 2007-09-13 Sumitomo Metal Mining Co Ltd Method for refining silver chloride
JP2012246198A (en) * 2011-05-30 2012-12-13 Pan Pacific Copper Co Ltd Method for purifying selenium by wet process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231397A (en) * 2006-03-03 2007-09-13 Sumitomo Metal Mining Co Ltd Method for refining silver chloride
JP2012246198A (en) * 2011-05-30 2012-12-13 Pan Pacific Copper Co Ltd Method for purifying selenium by wet process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110669932A (en) * 2019-09-25 2020-01-10 中南大学 Method for comprehensively utilizing copper electrolyte purification resources
CN110669932B (en) * 2019-09-25 2021-04-20 中南大学 Method for comprehensively utilizing copper electrolyte purification resources

Also Published As

Publication number Publication date
JP6651372B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
US9017542B2 (en) Process for recovering valuable metals from precious metal smelting slag
JP6810887B2 (en) Separation and recovery methods for selenium, tellurium, and platinum group elements
JP4505843B2 (en) Copper dry refining method
Ling et al. A review of the technologies for antimony recovery from refractory ores and metallurgical residues
JP2007191782A (en) Method for producing cadmium
JP6335519B2 (en) Method for treating antimony-containing material discharged from tin smelting process
JP2009242850A (en) Method for leaching lead slag by sulfuric acid
JP6651372B2 (en) Method for treating Sb-containing residue
TW201638343A (en) Method for leaching valuable metals in copper removal slime
JP5702272B2 (en) Treatment method of bismuth electrolytic deposits
JP5981821B2 (en) Tin recovery method
JP5447357B2 (en) Chlorine leaching method for copper electrolytic slime
JP6480358B2 (en) Sb recovery method
JP6480357B2 (en) Method for treating Sb-containing residue
JP4874375B2 (en) Method for recovering tellurium from copper electrolytic deposits
JP2007231397A (en) Method for refining silver chloride
JP6127902B2 (en) Method for leaching nickel and cobalt from mixed sulfides
JP6517165B2 (en) Method of treating bismuth electrolytic precipitate
JP4155177B2 (en) Method for recovering silver from silver-lead-containing materials
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium
US2365177A (en) Process for refining lead or lead alloys
JP4155176B2 (en) Method for recovering silver from silver-lead-containing materials
US712640A (en) Process of treating anode residues.
JP6491617B2 (en) Method for producing bismuth
JP5936421B2 (en) Method for recovering tin from arsenic-containing solutions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200122

R150 Certificate of patent or registration of utility model

Ref document number: 6651372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250