JP6480357B2 - Method for treating Sb-containing residue - Google Patents

Method for treating Sb-containing residue Download PDF

Info

Publication number
JP6480357B2
JP6480357B2 JP2016021199A JP2016021199A JP6480357B2 JP 6480357 B2 JP6480357 B2 JP 6480357B2 JP 2016021199 A JP2016021199 A JP 2016021199A JP 2016021199 A JP2016021199 A JP 2016021199A JP 6480357 B2 JP6480357 B2 JP 6480357B2
Authority
JP
Japan
Prior art keywords
containing residue
melting furnace
residue
molten metal
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016021199A
Other languages
Japanese (ja)
Other versions
JP2017137555A (en
Inventor
英俊 笹岡
英俊 笹岡
裕次郎 時田
裕次郎 時田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2016021199A priority Critical patent/JP6480357B2/en
Publication of JP2017137555A publication Critical patent/JP2017137555A/en
Application granted granted Critical
Publication of JP6480357B2 publication Critical patent/JP6480357B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、Sb含有残渣の処理方法に関する。   The present invention relates to a method for treating Sb-containing residues.

銅電解澱物からの精金銀工程では、Sb含有残渣として塩化鉛出浸出残渣が発生する。例えば、塩化鉛出浸出残渣は、銅電解澱物を湿式処理して得られる塩化銀を除去した浸出残渣(特許文献1参照)である。   In the fine silver process from copper electrolytic starch, lead chloride leaching residue is generated as an Sb-containing residue. For example, the lead chloride leaching residue is a leaching residue obtained by removing silver chloride obtained by wet treatment of a copper electrolytic starch (see Patent Document 1).

特開2011−68528号公報JP 2011-68528 A

この塩化鉛出浸出残渣からのSb(アンチモン)の回収が望まれている。   Recovery of Sb (antimony) from this lead chloride leaching residue is desired.

本発明は上記の課題に鑑み、Sb含有残渣からのSbの回収を効率よく行うことができるSb含有残渣の処理方法を提供すること目的とする。   An object of this invention is to provide the processing method of the Sb containing residue which can perform recovery | restoration of Sb from an Sb containing residue efficiently in view of said subject.

本発明に係るSb含有残渣の処理方法は、Sb含有残渣を溶解炉にて溶解させる処理方法において、前記溶解炉内に、前記Sb含有残渣を投入し、前記Sb含有残渣に対して重量比で0%以上10%以下のコークスを投入する投入工程と、前記溶解炉内において、前記Sb含有残渣と前記コークスとを溶解する工程と、前記溶解したSb含有残渣に追加のコークスを添加して、総量で前記Sb含有残渣に対して重量比で5%以上30%以下とし、前記Sb含有残渣を溶解還元させる溶解還元工程と、を含む。 The processing method of the Sb-containing residue according to the present invention is a processing method in which the Sb-containing residue is melted in a melting furnace. The Sb-containing residue is introduced into the melting furnace and is in a weight ratio with respect to the Sb-containing residue. and adding step of introducing at least 0% to 10% of the coke in the melting furnace, comprising the steps of dissolving the said coke and the Sb-containing residue was added an additional coke Sb-containing residue obtained by the melting, A dissolution reduction step for dissolving and reducing the Sb-containing residue in a total amount of 5% to 30% by weight with respect to the Sb-containing residue.

前記溶解炉内の温度を1000℃±100℃としてもよい。前記溶解炉から発生するダストを、前記Sb含有残渣とともに前記溶解炉に投入してもよい。前記Sb含有残渣は、銅電解澱物から脱銅して塩化浸出し、塩化浸出後液を冷却することで析出した沈殿にアルカリ浸出を行った際の浸出残渣としてもよい。前記溶解還元工程によって得られた溶融メタルに対してソーダ処理することで、不純物を前記溶融メタルから分離するソーダ処理工程と、前記ソーダ処理工程後の前記溶融メタルからSbを酸化揮発させる揮発工程と、を含んでいてもよい。前記揮発工程における前記溶融メタルのSb濃度が50mass%以下であってもよい。 The temperature in the melting furnace may be 1000 ° C. ± 100 ° C. Dust generated from the melting furnace may be charged into the melting furnace together with the Sb-containing residue. The Sb-containing residue may be a leaching residue when alkali leaching is performed on a precipitate deposited by removing copper from a copper electrolytic starch, leaching with chloride, and cooling the solution after leaching. A soda treatment process for separating impurities from the molten metal by subjecting the molten metal obtained by the dissolution and reduction process to a soda process, and a volatilization process for oxidizing and volatilizing Sb from the molten metal after the soda treatment process. , May be included. The Sb concentration of the molten metal in the volatilization step may be 50 mass% or less.

本発明に係るSb含有残渣の処理方法によれば、Sb含有残渣からSbを効率よく回収することができる。   According to the method for treating a Sb-containing residue according to the present invention, Sb can be efficiently recovered from the Sb-containing residue.

塩化鉛出浸出残渣の処理方法を表す工程図である。It is process drawing showing the processing method of a lead chloride leaching residue. (a)はSbの分配率を示し、(b)はSeの分配率を示す。(A) shows the distribution rate of Sb, and (b) shows the distribution rate of Se.

本発明の対象である「不純物を含むSb」とは、不純物を含むメタル状のSbのことである。Sbは、銅電解澱物中の各種の有価物の一つである。銅電解澱物中の各種の有価物を分離回収していく中で、Sbも濃縮される。本明細書では、「不純物を含むSb」として、濃縮されたが、まだ、多くの不純物を含む状態のSbであり、濃縮回収工程における中間状態を対象とする。以下、「不純物を含むSb」の一例として、銅電解澱物には各種有価物が濃縮する工程の中の発生するSbを多く含む塩化鉛出浸出残渣からの処理方法を例にして説明するが、これに限定されるものではない。   “Sb containing impurities”, which is the subject of the present invention, is a metallic Sb containing impurities. Sb is one of various valuable materials in the copper electrolytic starch. Sb is also concentrated while various valuables in the copper electrolytic starch are separated and recovered. In this specification, although it concentrated as "Sb containing an impurity", it is Sb of a state which still contains many impurities, and it is aimed at the intermediate state in a concentration collection process. Hereinafter, as an example of “Sb containing impurities”, a copper electrolytic starch will be described with an example of a treatment method from a lead chloride leaching residue containing a large amount of Sb generated in the process of concentrating various valuable materials. However, the present invention is not limited to this.

銅電解澱物には各種有価物が濃縮されている。この銅電解澱物を硫酸浴にリパルプし、空気を吹き付け酸化浸出することで、銅電解澱物が脱銅される。銅電解澱物中のSb(アンチモン)は酸化物となり、脱銅した澱物中に留まる。脱銅した澱物に対しては、塩化浸出を行う。得られる塩化銀を分離した塩化浸出後液を冷却することによって、鉛とアンチモンを沈殿析出させることができる。析出した鉛とアンチモンの析出物にアルカリ浸出を行って不純物を除去することで、浸出残渣中にアンチモンを濃縮することができる。この浸出残渣が、塩化鉛出浸出残渣である。塩化鉛出浸出残渣は、Sb含有残渣の一例である。   Various valuable materials are concentrated in the copper electrolytic starch. The copper electrolytic starch is depulped by repulping the copper electrolytic starch into a sulfuric acid bath, blowing air and oxidizing and leaching. Sb (antimony) in the copper electrolytic starch becomes an oxide and remains in the decoppered starch. Chlorinated leaching is performed on the decoppered starch. Lead and antimony can be precipitated by cooling the solution after leaching of chloride from which the resulting silver chloride has been separated. Antimony can be concentrated in the leaching residue by performing alkaline leaching on the deposited lead and antimony precipitate to remove impurities. This leaching residue is a lead chloride leaching residue. The lead chloride leaching residue is an example of an Sb-containing residue.

図1は、塩化鉛出浸出残渣の処理方法を表す工程図である。図1で例示するように、出発原料は、塩化鉛出浸出残渣である。この塩化鉛出浸出残渣には、塩化鉛とともにSb(アンチモン)などの不純物が濃縮されている。塩化鉛出浸出残渣の成分は、例えば、Sb、Pb(鉛)、Se(セレン)、Te(テルル)、Cu(銅)、Fe(鉄)、Sn(錫)、Ag(銀)などである。例えば、塩化鉛出浸出残渣の各品位は、Sb:50mass%以下、Pb:30mass%以下、Se:1mass%以下、Te:5mass%以下、Cu:7mass%以下である。   FIG. 1 is a process diagram showing a method for treating a lead chloride leaching residue. As illustrated in FIG. 1, the starting material is lead chloride leaching residue. In this lead chloride leaching residue, impurities such as Sb (antimony) are concentrated together with lead chloride. The components of the lead chloride leaching residue are, for example, Sb, Pb (lead), Se (selenium), Te (tellurium), Cu (copper), Fe (iron), Sn (tin), Ag (silver), and the like. . For example, each grade of the lead chloride leaching residue is Sb: 50 mass% or less, Pb: 30 mass% or less, Se: 1 mass% or less, Te: 5 mass% or less, and Cu: 7 mass% or less.

(乾燥工程)
塩化鉛出浸出残渣には水分が含まれていることから、乾燥によって水分量を低減する。例えば、塩化鉛出浸出残渣をコルゲート缶などに入れ、蒸気熱を用いた乾燥設備等で乾燥を行う。
(Drying process)
Since the lead chloride leaching residue contains moisture, the moisture content is reduced by drying. For example, the lead chloride leaching residue is put in a corrugated can and dried with a drying facility using steam heat.

(投入工程)
次に、乾燥後の塩化鉛出浸出残渣をソーダ灰(無水炭酸ソーダ)などとともに溶解炉に投入し、塩化鉛出浸出残渣に対して重量比で0〜10%のコークスを溶解炉に投入する。溶解炉の温度は、1000℃±100℃とすることが好ましい。この場合、溶解炉内が弱還元雰囲気となる。弱還元雰囲気では、塩化鉛出浸出残渣に含まれるアンチモン酸ソーダ(NaSbO)が酸化ナトリウムと酸化アンチモン(Sb、Sb)とに分解すると推定される。アンチモン酸ソーダ(NaSbO)の融点が1427℃であるのに対して、Sbの融点:656℃およびSbの融点:380℃が低くなっている。また、SbおよびSbの融点は、上記溶解炉の温度よりも低くなっている。したがって、塩化鉛出浸出残渣の溶解を促進することができる。
(Input process)
Next, the lead chloride leaching residue after drying is put into a melting furnace together with soda ash (anhydrous sodium carbonate) and the like, and 0 to 10% by weight of coke with respect to the lead chloride leaching residue is put into the melting furnace. . The temperature of the melting furnace is preferably 1000 ° C. ± 100 ° C. In this case, the inside of the melting furnace is a weak reducing atmosphere. In a weak reducing atmosphere, it is estimated that sodium antimonate (NaSbO 3 ) contained in the lead chloride leaching residue is decomposed into sodium oxide and antimony oxide (Sb 2 O 3 , Sb 2 O 5 ). The melting point of sodium antimonate (NaSbO 3 ) is 1427 ° C., whereas the melting point of Sb 2 O 3 is 656 ° C. and the melting point of Sb 2 O 5 is 380 ° C. The melting points of Sb 2 O 3 and Sb 2 O 5 are lower than the temperature of the melting furnace. Therefore, dissolution of the lead chloride leaching residue can be promoted.

(溶解還元工程)
また、上記コークスの添加によって、塩化鉛出浸出残渣を還元することができる。還元によって、塩化鉛出浸出残渣中の塩化成分から塩素が除去され、溶融メタルと、溶融スラグとに分離する。溶融メタルには、Sb,Pb,Agなどが含まれる。溶融スラグには、ソーダ灰に含まれるNa,Oなどとともに、Se,Teなどが含まれる。なお、溶解炉から発生するダストにはSb,Pbなどが含まれるため、溶解炉に塩化鉛出浸出残渣とともに再度投入される。
(Dissolution reduction process)
Moreover, the lead chloride leaching residue can be reduced by the addition of the coke. By the reduction, chlorine is removed from the chloride component in the lead chloride leaching residue and separated into molten metal and molten slag. The molten metal includes Sb, Pb, Ag, and the like. The molten slag contains Se, Te, etc., as well as Na, O, etc., contained in soda ash. Since dust generated from the melting furnace contains Sb, Pb, etc., the dust is again fed into the melting furnace together with the lead chloride leaching residue.

なお、上記溶解炉の温度範囲においては、コークスは固体状態で存在する。塩化鉛出浸出残渣が溶解しなければ、上記の還元は、固固反応によって進むことになる。この場合、良好な反応性が得られないため、還元率が低下する。これに対して、塩化鉛出浸出残渣が溶解すれば、上記の還元は、固液反応によって進むことになる。この場合、良好な反応性が得られるため、還元率が向上する。   Note that coke exists in a solid state in the temperature range of the melting furnace. If the lead chloride leaching residue does not dissolve, the above reduction proceeds by a solid-solid reaction. In this case, since a good reactivity cannot be obtained, the reduction rate decreases. On the other hand, if the lead chloride leaching residue is dissolved, the above reduction proceeds by a solid-liquid reaction. In this case, good reactivity can be obtained, so that the reduction rate is improved.

コークスの投入量が少な過ぎると、Sbの還元反応が不十分になるため、Sbがスラグへ残留するおそれがある。一方で、コークスの投入量が多すぎると、Sbの還元率が低下するおそれがある。したがって、コークスの投入量には最適な範囲が存在する。本発明者の鋭意研究によって、溶解炉に対する塩化鉛出浸出残渣の投入量に対するコークスの投入量は、重量比で、5%以上30%以下とすることが好ましいことがわかった。この範囲では、溶融メタルへのSbの分配率が特に高くなる。   If the amount of coke input is too small, the reduction reaction of Sb becomes insufficient, so that Sb may remain in the slag. On the other hand, if the input amount of coke is too large, the reduction rate of Sb may be reduced. Therefore, there is an optimum range for the amount of coke input. As a result of diligent research by the present inventors, it has been found that the amount of coke to be added to the amount of lead chloride leaching residue in the melting furnace is preferably 5% to 30% by weight. In this range, the distribution ratio of Sb to the molten metal is particularly high.

そこで、還元率を向上させるために、必要に応じて追加でコークスを溶解炉に投入することが好ましい。この場合において、溶解炉に投入する塩化鉛出浸出残渣に対するコークスの総量(重量比)が5%〜30%になるように、コークスを投入する。溶解炉に投入する塩化鉛出浸出残渣に対するコークスの総量(重量比)は、10%以上15%以下とすることがより好ましい。また、投入工程で投入するコークスの投入量は、溶解還元工程で投入するコークスの投入量以下であることが好ましい。この工程で得られるメタル状のSbは、本実施形態が対象とする「不純物を含むSb」となりうる。さらに、溶融メタルの状態で揮発工程に持ち込むことも可能である。   Therefore, in order to improve the reduction rate, it is preferable to add coke to the melting furnace as needed. In this case, the coke is introduced so that the total amount (weight ratio) of coke with respect to the lead chloride leaching residue introduced into the melting furnace is 5% to 30%. More preferably, the total amount (weight ratio) of coke relative to the lead chloride leaching residue introduced into the melting furnace is 10% or more and 15% or less. Moreover, it is preferable that the amount of coke input in the input step is equal to or less than the amount of coke input in the dissolution reduction step. The metal-like Sb obtained in this step can be “Sb containing impurities” targeted by the present embodiment. Furthermore, it is possible to bring it into the volatilization process in the form of molten metal.

(ソーダ処理工程)
しかしながら、不純物および不純物の量によっては、溶融メタルを揮発工程に直接持ち込むことが好ましくない場合がある。たとえば、Se,Te,Asなどを多く含む場合である。この場合には、溶融メタルを苛性ソーダ溶液でソーダ処理する必要がある。ソーダ処理によって、Se,Te,Asなどを、スカムとして溶融メタルから分離することができる。溶融メタルには、Pb,Ag,Biの1種以上が不純物として含まれるので、本実施形態が対象とする「不純物を含むSb」として、ソーダ処理工程後のメタルは、揮発工程に持ち込まれる。溶融メタルの状態で揮発工程に持ち込むことも可能である。
(Soda treatment process)
However, depending on the impurities and the amount of impurities, it may not be preferable to bring the molten metal directly into the volatilization process. For example, it includes a large amount of Se, Te, As and the like. In this case, it is necessary to soda the molten metal with a caustic soda solution. By soda treatment, Se, Te, As, etc. can be separated from the molten metal as scum. Since one or more of Pb, Ag, and Bi are contained as impurities in the molten metal, the metal after the soda treatment process is brought into the volatilization process as “Sb containing impurities” targeted by the present embodiment. It is also possible to bring it into the volatilization process in the form of molten metal.

(揮発工程)
溶融還元によって得られたメタルおよびソーダ処理によって得られたメタルを「不純物を含むSb」として、揮発炉に投入し、熱によって溶解する。さらに、溶湯を酸化することによって、Sbを酸化させて揮発性のSbを生成する。例えば、溶湯に対して酸素を吹き付ける、吹き込む、酸化剤を添加する、などによってSbを酸化させることができる。Sbは揮発性が高いため、溶湯から揮発する。それにより、Sbを回収することができる。例えば、溶湯温度を660℃〜700℃とし、溶湯への吹きつけ空気量を溶湯表面1mあたり51〜56Nm/hとすることが好ましい。溶湯温度を680℃〜700℃とすることがより好ましい。また、溶湯中のSb濃度を50mass%以下、好ましくは40mass%以下とすることで、不揮発性のSb,Sb13などの生成を抑制して、Sbを生成することができる。なお、溶湯中のSb濃度を希釈するに際して、Sb品位の低い(40mass%以下)原料を用いることができる。例えば、PbやBiなどの低融点金属を主成分とする原料を用いることが好ましい。ただし、Pbは揮発性を有していることから、Biを用いることがより好ましい。なお、揮発によって得られた揮発滓は、上記の溶解炉に戻して還元に供することが好ましい。
(Volatile process)
The metal obtained by the smelting reduction and the metal obtained by the soda treatment are put into a volatilization furnace as “Sb containing impurities” and melted by heat. Further, by oxidizing the molten metal, Sb is oxidized to generate volatile Sb 2 O 3 . For example, Sb can be oxidized by blowing oxygen to the molten metal, blowing it, or adding an oxidizing agent. Since Sb 2 O 3 has high volatility, it volatilizes from the molten metal. Thereby, Sb can be recovered. For example, the molten metal temperature is preferably 660 ° C. to 700 ° C., and the amount of air blown onto the molten metal is preferably 51 to 56 Nm 3 / h per 1 m 2 of the molten metal surface. More preferably, the molten metal temperature is 680 ° C to 700 ° C. Moreover, the production of nonvolatile Sb 2 O 4 , Sb 6 O 13, etc. is suppressed and Sb 2 O 3 is produced by setting the Sb concentration in the molten metal to 50 mass% or less, preferably 40 mass% or less. Can do. In addition, when diluting Sb density | concentration in a molten metal, a raw material with low Sb quality (40 mass% or less) can be used. For example, it is preferable to use a raw material whose main component is a low melting point metal such as Pb or Bi. However, it is more preferable to use Bi because Pb has volatility. The volatile soot obtained by volatilization is preferably returned to the melting furnace and used for reduction.

本実施形態によれば、Sb含有残渣を溶解炉にて溶解させる処理方法において、溶解炉内に、Sb含有残渣を投入し、Sb含有残渣に対して重量比で0%以上10%以下のコークスを投入する投入工程が行われる。それにより、溶解炉内が弱還元性雰囲気となり、Sb含有残渣の溶解が促進される。投入工程後、追加のコークスを添加しもしくは添加しないで、総量でSb含有残渣に対して重量比で5%以上30%以下とすることで、還元率を向上させることができる。また、ソーダ処理によって、Se,Teなどを溶液中に浸出させ、スカムとして溶融メタルから分離することができる。また、ソーダ処理後のメタル中のSbを酸化させることで、Sbを揮発分離することができる。   According to the present embodiment, in the treatment method of dissolving the Sb-containing residue in the melting furnace, the Sb-containing residue is introduced into the melting furnace, and the coke having a weight ratio of 0% to 10% with respect to the Sb-containing residue. A charging process for charging is performed. Thereby, the inside of the melting furnace becomes a weak reducing atmosphere, and dissolution of the Sb-containing residue is promoted. After the charging step, the reduction rate can be improved by adding 5 to 30% by weight with respect to the Sb-containing residue in total with or without adding additional coke. Further, by soda treatment, Se, Te and the like can be leached into the solution and separated from the molten metal as scum. Moreover, Sb can be volatilized and separated by oxidizing Sb in the metal after the soda treatment.

溶解炉中で塩化鉛出浸出残渣を酸化させた後に、コークスを添加して還元を行った。還元においては、溶解炉を1000℃に維持し、還元時間を8時間とした。また、塩化鉛出浸出残渣に対するコークスの添加率を、重量比で、5%(サンプル1)、10%(サンプル2)、15%(サンプル3)、25%(サンプル4)とした。この場合の、Sb,Ag,Seの分配率を測定した。図2(a)は、Sbの分配率を示す。図2(b)は、Seの分配率を示す。表1は、各分配率の数値を示す

Figure 0006480357
After oxidation of the lead chloride leaching residue in a melting furnace, coke was added for reduction. In the reduction, the melting furnace was maintained at 1000 ° C., and the reduction time was 8 hours. The addition ratio of coke to the lead chloride leaching residue was 5% (sample 1), 10% (sample 2), 15% (sample 3), and 25% (sample 4). In this case, the distribution ratio of Sb, Ag, and Se was measured. FIG. 2A shows the distribution ratio of Sb. FIG. 2B shows the distribution rate of Se. Table 1 shows the numerical value of each distribution ratio.
Figure 0006480357

図2(a)および表1に示すように、サンプル2〜4において、溶融メタルへのSbの分配率が高くなった。これは、コークスの添加量を重量比で10%以上30%以下とすることで、還元率が向上したからであると考えられる。また、サンプル2およびサンプル3では、サンプル1およびサンプル4よりも、溶融メタルへのSbの分配率が高くなった。   As shown in FIG. 2A and Table 1, in Samples 2 to 4, the distribution ratio of Sb to the molten metal was high. This is presumably because the reduction rate was improved by setting the amount of coke added to 10% to 30% by weight. In addition, in Sample 2 and Sample 3, the distribution ratio of Sb to the molten metal was higher than in Sample 1 and Sample 4.

以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

Claims (6)

Sb含有残渣を溶解炉にて溶解させる処理方法において、
前記溶解炉内に、前記Sb含有残渣を投入し、前記Sb含有残渣に対して重量比で0%以上10%以下のコークスを投入する投入工程と、
前記溶解炉内において、前記Sb含有残渣と前記コークスとを溶解する工程と、
前記溶解したSb含有残渣に追加のコークスを添加して、総量で前記Sb含有残渣に対して重量比で5%以上30%以下とし、前記Sb含有残渣を溶解還元させる溶解還元工程と、を含むことを特徴とするSb含有残渣の処理方法。
In the processing method of dissolving the Sb-containing residue in a melting furnace,
A charging step of charging the Sb-containing residue into the melting furnace and charging coke at a weight ratio of 0% to 10% with respect to the Sb-containing residue;
Melting the Sb-containing residue and the coke in the melting furnace;
A step of dissolving and reducing the Sb-containing residue by adding additional coke to the dissolved Sb-containing residue so that the total amount is 5% to 30% by weight with respect to the Sb-containing residue. A method for treating an Sb-containing residue.
前記溶解炉内の温度を1000℃±100℃とすることを特徴とする請求項1記載のSb含有残渣の処理方法。   The method for treating an Sb-containing residue according to claim 1, wherein the temperature in the melting furnace is 1000 ° C ± 100 ° C. 前記溶解炉から発生するダストを、前記Sb含有残渣とともに前記溶解炉に投入することを特徴とする請求項1または2記載のSb含有残渣の処理方法。   The method for treating a Sb-containing residue according to claim 1 or 2, wherein dust generated from the melting furnace is charged into the melting furnace together with the Sb-containing residue. 前記Sb含有残渣は、銅電解澱物から脱銅して塩化浸出し、塩化浸出後液を冷却することで析出した沈殿にアルカリ浸出を行った際の浸出残渣であることを特徴とする請求項1〜3のいずれか一項に記載のSb含有残渣の処理方法。   The Sb-containing residue is a leaching residue when alkali leaching is performed on a precipitate deposited by removing copper from a copper electrolytic starch, leaching with chloride, and cooling the solution after leaching. The processing method of Sb containing residue as described in any one of 1-3. 前記溶解還元工程によって得られた溶融メタルに対してソーダ処理することで、不純物を前記溶融メタルから分離するソーダ処理工程と、
前記ソーダ処理工程後の前記溶融メタルからSbを酸化揮発させる揮発工程と、を含むことを特徴とする請求項1〜4のいずれか一項に記載のSb含有残渣の処理方法。
A soda treatment process for separating impurities from the molten metal by performing a soda process on the molten metal obtained by the dissolution and reduction process;
A method for treating a Sb-containing residue according to any one of claims 1 to 4, further comprising a volatilization step of oxidizing and volatilizing Sb from the molten metal after the soda treatment step.
前記揮発工程における前記溶融メタルのSb濃度が50mass%以下であることを特徴とする請求項5に記載のSb含有残渣の処理方法。The method for treating an Sb-containing residue according to claim 5, wherein the molten metal in the volatilization step has an Sb concentration of 50 mass% or less.
JP2016021199A 2016-02-05 2016-02-05 Method for treating Sb-containing residue Active JP6480357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016021199A JP6480357B2 (en) 2016-02-05 2016-02-05 Method for treating Sb-containing residue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016021199A JP6480357B2 (en) 2016-02-05 2016-02-05 Method for treating Sb-containing residue

Publications (2)

Publication Number Publication Date
JP2017137555A JP2017137555A (en) 2017-08-10
JP6480357B2 true JP6480357B2 (en) 2019-03-06

Family

ID=59565677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016021199A Active JP6480357B2 (en) 2016-02-05 2016-02-05 Method for treating Sb-containing residue

Country Status (1)

Country Link
JP (1) JP6480357B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4194904A (en) * 1978-08-04 1980-03-25 N L Industries, Inc. Production of purified lead and antimony oxide
JPS60200925A (en) * 1984-03-23 1985-10-11 Sumitomo Metal Mining Co Ltd Reducing method of electrolytic slime
JP3424885B2 (en) * 1996-06-13 2003-07-07 住友金属鉱山株式会社 Copper electrolytic slime treatment method
JP5110421B2 (en) * 2007-03-30 2012-12-26 Jx日鉱日石金属株式会社 Bi recovery method
JP4874375B2 (en) * 2009-09-28 2012-02-15 Jx日鉱日石金属株式会社 Method for recovering tellurium from copper electrolytic deposits
CN101818266B (en) * 2009-12-23 2012-03-07 株洲冶炼集团股份有限公司 Production method for recovering antimony from antimonyoxychloride
CN102560132B (en) * 2012-02-03 2013-06-12 锡矿山闪星锑业有限责任公司 Method for treating selenium alkali residues in antimony pyro-refining
JP6475403B2 (en) * 2013-03-27 2019-02-27 パンパシフィック・カッパー株式会社 How to recover tellurium
JP6335519B2 (en) * 2014-01-17 2018-05-30 Jx金属株式会社 Method for treating antimony-containing material discharged from tin smelting process
CN103924100B (en) * 2014-04-28 2016-01-06 锡矿山闪星锑业有限责任公司 A kind of method and device producing needle antimony containing weisspiessglanz material bath smelting

Also Published As

Publication number Publication date
JP2017137555A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
US9017542B2 (en) Process for recovering valuable metals from precious metal smelting slag
US4135923A (en) Extraction of metals
JP5862305B2 (en) Smoke ash treatment method
JP5755572B2 (en) Method for producing bismuth anode for electrolytic purification
JP6335519B2 (en) Method for treating antimony-containing material discharged from tin smelting process
JP6480358B2 (en) Sb recovery method
JP6480357B2 (en) Method for treating Sb-containing residue
JP2009242850A (en) Method for leaching lead slag by sulfuric acid
JP6437367B2 (en) Recovery method of rhenium from molybdenum concentrate
JP2011214021A (en) Method of producing valuable metal
JP6651372B2 (en) Method for treating Sb-containing residue
JP4874375B2 (en) Method for recovering tellurium from copper electrolytic deposits
JP6869053B2 (en) How to collect antimony
KR101619340B1 (en) Recovery method of Sn from Sn containing dross using dry reduction process
JP7336075B2 (en) Separation method of selenium and platinum group elements
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium
JP4274069B2 (en) Reuse method of copper alloy and mat obtained by slag fuming method
JP2022130015A (en) Tin recovery method
JP6457039B2 (en) Silver recovery method
JP5936421B2 (en) Method for recovering tin from arsenic-containing solutions
JP2004190135A (en) Method of recovering silver from silver and lead-containing material
Tursunbay et al. STUDY OF THE EFFECT OF TEMPERATURE AND PROCESS TIME ON THE PREPARATION OF THE LEACHING PROCESS OF CRUDE WAELZ OXIDE
JPH0742525B2 (en) Treatment method of copper electrolytic slime
JP6847738B2 (en) Sb recovery method and Sb volatilization furnace
JP5647158B2 (en) Method for treating copper-containing impurity mass discharged from lead smelting and method for refining lead using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190207

R150 Certificate of patent or registration of utility model

Ref document number: 6480357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250