JP2017137544A - Film deposition apparatus and substrate discrimination method - Google Patents

Film deposition apparatus and substrate discrimination method Download PDF

Info

Publication number
JP2017137544A
JP2017137544A JP2016020676A JP2016020676A JP2017137544A JP 2017137544 A JP2017137544 A JP 2017137544A JP 2016020676 A JP2016020676 A JP 2016020676A JP 2016020676 A JP2016020676 A JP 2016020676A JP 2017137544 A JP2017137544 A JP 2017137544A
Authority
JP
Japan
Prior art keywords
substrate
film forming
temperature
film
change amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016020676A
Other languages
Japanese (ja)
Other versions
JP6722466B2 (en
Inventor
中村 真也
Shinya Nakamura
真也 中村
藤井 佳詞
Yoshiji Fujii
佳詞 藤井
賢吾 堤
Kengo Tsutsumi
賢吾 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2016020676A priority Critical patent/JP6722466B2/en
Publication of JP2017137544A publication Critical patent/JP2017137544A/en
Application granted granted Critical
Publication of JP6722466B2 publication Critical patent/JP6722466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a film deposition apparatus and a substrate discrimination method capable of specifying an abnormal substrate quickly as much as possible.SOLUTION: In a substrate discrimination method, a film deposition apparatus SM including holding means 5 for holding a substrate W to be processed in a vacuum chamber 1, a film deposition source 2, E, 13 for applying a deposition process to the substrate, and temperature measuring means 6 for measuring a substrate temperature at the deposition processing time, is provided with discrimination means C for detecting a temperature change amount of the substrate per unit time based on a measured value by the temperature measuring means, and discriminating abnormality of the substrate from the detected temperature change amount.SELECTED DRAWING: Figure 1

Description

本発明は、真空チャンバ内で処理すべき基板を保持する保持手段と、基板に対して成膜処理を施す成膜源とを備える成膜装置と、この成膜装置での基板に対する成膜処理時に基板の異常状態を判別する基板判別方法に関する。   The present invention relates to a film forming apparatus including a holding unit that holds a substrate to be processed in a vacuum chamber, a film forming source that performs a film forming process on the substrate, and a film forming process on the substrate in the film forming apparatus. In some cases, the present invention relates to a substrate discrimination method for discriminating an abnormal state of a substrate.

この種の成膜装置としてスパッタリング装置が知られている(例えば特許文献1参照)。このものは、真空チャンバ内で処理すべき基板を保持する保持手段に対向配置されたターゲットと、真空チャンバ内に希ガスを導入するガス導入手段と、ターゲットに電力投入する電源とを備える。そして、真空チャンバを所定圧力まで真空排気した後、希ガスを導入し、ターゲットに負の電位を持った直流電力や高周波電力を投入することで真空チャンバ内にプラズマを形成し、プラズマ中で電離した希ガスのイオンをターゲットに衝突させてターゲットをスパッタリングし、ターゲットから飛散したスパッタ粒子を基板の一方の面に付着、堆積することでターゲット種に応じて所定の薄膜が成膜される。なお、このようなスパッタリング装置を用いた成膜中、基板を所定温度に加熱することがあり、このような場合には、基板温度を測定する温度センサを組み込んで、温度センサの測定結果に基づいて基板温度を制御することが一般に行われている。   A sputtering apparatus is known as this type of film forming apparatus (see, for example, Patent Document 1). This includes a target disposed opposite to holding means for holding a substrate to be processed in the vacuum chamber, gas introducing means for introducing a rare gas into the vacuum chamber, and a power source for supplying power to the target. Then, after evacuating the vacuum chamber to a predetermined pressure, a rare gas is introduced, and direct current or high frequency power having a negative potential is applied to the target to form plasma in the vacuum chamber. Sputtered particles scattered from the target are deposited on one surface of the substrate by depositing and depositing the rare gas ions on the target, and a predetermined thin film is formed according to the target species. In addition, during film formation using such a sputtering apparatus, the substrate may be heated to a predetermined temperature. In such a case, a temperature sensor for measuring the substrate temperature is incorporated, and based on the measurement result of the temperature sensor. In general, the substrate temperature is controlled.

ここで、例えば半導体デバイスの製造工程において上記スパッタリング装置を用いて成膜処理する場合、スパッタリング装置には、前工程にて各種処理が適切に施されたシリコンウエハなどの基板(以下、「正常基板」という)が順次搬送され、成膜終了後に後工程へと成膜済みの基板が搬送されることになるが、何らかの原因で各種処理が適切に施されていない基板(以下、これを「異常基板」という)がスパッタリング装置に搬送されてくることがある。   Here, for example, when a film formation process is performed using the above sputtering apparatus in a semiconductor device manufacturing process, the sputtering apparatus includes a substrate such as a silicon wafer (hereinafter referred to as “normal substrate”) that has been appropriately subjected to various processes in the previous process. ”) Are transferred sequentially, and the substrate on which the film has been formed is transferred to the subsequent process after the film formation is completed. However, the substrate that has not been properly treated for some reason (hereinafter referred to as“ abnormal ” Substrate ”) may be transferred to the sputtering apparatus.

従来では、正常基板であるか異常基板であるかに拘わらず、成膜処理を行い、後工程中の検査工程での検査で異常基板を排除していたが、このような異常基板の存在は、例えば製品歩留まりや生産性を低下させるため、可及的速やかに特定し、製造工程から排除することが好ましい。また、スパッタリング装置においても、予め設定された成膜条件に従って成膜処理されるが、何らかの原因で膜厚不足等の成膜不良が生じることがあり、このような場合にも、後工程中の検査工程を待たずに、可及的速やかに特定し、製造工程から排除することが好ましい。   Conventionally, regardless of whether the substrate is a normal substrate or an abnormal substrate, a film forming process is performed, and the abnormal substrate is excluded by an inspection in an inspection process in a subsequent process. For example, in order to reduce product yield and productivity, it is preferable to specify as soon as possible and exclude it from the manufacturing process. Also, in the sputtering apparatus, the film formation process is performed according to the film formation conditions set in advance. However, a film formation failure such as a film thickness shortage may occur for some reason. It is preferable to identify as soon as possible without waiting for the inspection process and to exclude it from the manufacturing process.

特開平11−222673号公報JP-A-11-222673

本発明は、以上の点に鑑み、異常基板を可及的速やかに特定することが可能な成膜装置及び基板判別方法を提供することをその課題とするものである。   In view of the above points, an object of the present invention is to provide a film forming apparatus and a substrate discriminating method capable of specifying an abnormal substrate as quickly as possible.

上記課題を解決するために、真空チャンバ内で処理すべき基板を保持する保持手段と、基板に対して成膜処理を施す成膜源と、成膜処理時の基板温度を測定する温度測定手段とを備える本発明の成膜装置は、温度測定手段の測定値を基に単位時間当たりの基板の温度変化量を検出し、この検出した温度変化量から基板の異常状態を判別する判別手段を設けることを特徴とする。   In order to solve the above problems, a holding unit for holding a substrate to be processed in a vacuum chamber, a film forming source for performing a film forming process on the substrate, and a temperature measuring unit for measuring the substrate temperature during the film forming process The film forming apparatus according to the present invention includes a determination unit that detects a temperature change amount of the substrate per unit time based on a measurement value of the temperature measurement unit, and determines a substrate abnormal state from the detected temperature change amount. It is characterized by providing.

ここで、本発明者らは、鋭意研究を重ね、基板の材質や基板表面に成膜されている薄膜の膜厚が異なると、同一の成膜条件で成膜した場合でも単位時間当たりの基板の温度変化量が異なることを知見するのに至った。本発明によれば、成膜処理時の基板の温度変化量に基づき基板の異常状態を判別するため、後工程中の検査工程を待たずに、異常基板を可及的速やかに特定し、異常基板を製造工程から排除することができる。   Here, the present inventors have conducted extensive research and, when the substrate material and the thickness of the thin film formed on the substrate surface are different, the substrate per unit time even when the film is formed under the same film formation conditions. It came to know that the temperature change amount of was different. According to the present invention, in order to determine the abnormal state of the substrate based on the temperature change amount of the substrate during the film forming process, the abnormal substrate is identified as quickly as possible without waiting for the inspection process in the subsequent process, The substrate can be excluded from the manufacturing process.

本発明は、成膜源がターゲットと真空チャンバ内に希ガスを導入するガス導入手段とターゲットに電力投入する電源とを有してスパッタリング法により成膜処理するものであり、基板の一方の面に、成膜処理に際して発生する所定範囲の波長を持つ放射光の透過率が基板より小さい薄膜を成膜する場合、前記温度測定手段として、基板の他方の面側に配置される放射温度計を用いれば、スパッタ粒子の入射により薄膜から放射される放射光が、基板を透過して放射温度計に入射するため、基板の一方の面に形成された薄膜の膜厚を測定でき、所定の膜厚が形成されなかった異常基板を可及的速やかに特定でき、この異常基板を製造工程から排除することができる。   In the present invention, a film forming source includes a target, a gas introducing means for introducing a rare gas into a vacuum chamber, and a power source for supplying power to the target, and performs film forming processing by a sputtering method. In addition, when a thin film having a transmittance of radiation having a wavelength in a predetermined range generated during the film forming process is formed to be smaller than the substrate, a radiation thermometer disposed on the other surface side of the substrate is used as the temperature measuring means. If used, the radiated light emitted from the thin film by the incidence of sputtered particles passes through the substrate and enters the radiation thermometer, so that the film thickness of the thin film formed on one surface of the substrate can be measured. An abnormal substrate with no thickness formed can be identified as quickly as possible, and the abnormal substrate can be excluded from the manufacturing process.

また、上記課題を解決するために、本発明の基板判別方法は、真空チャンバを真空雰囲気とした後、成膜源を作動させて保持手段で保持された基板に対して成膜処理を施す成膜工程と、成膜工程にて基板温度を測定し、温度測定手段の測定値を基に単位時間当たりの基板の温度変化量を検出する検出工程と、検出した温度変化量から基板の異常状態を判別する判別工程とを含むことを特徴とする。   In order to solve the above-described problem, the substrate discrimination method of the present invention is a method for performing a film forming process on a substrate held by a holding unit by operating a film forming source after the vacuum chamber is in a vacuum atmosphere. A film process, a detection process for measuring the substrate temperature in the film formation process, and detecting the temperature change amount of the substrate per unit time based on the measured value of the temperature measuring means, and the abnormal state of the substrate from the detected temperature change amount And a discrimination step for discriminating between.

尚、本発明においては、基板の異常状態には、前工程にて各種処理が適切に施されなかった状態、基板自体の材質が本来の基板とは異なっている状態だけでなく、予め設定された厚さで所定の薄膜が形成されなかった状態を含むものとする。   In the present invention, the abnormal state of the substrate is set not only in a state where various processes are not properly performed in the previous process, but also in a state where the material of the substrate itself is different from the original substrate. It is assumed that the predetermined thin film is not formed with a certain thickness.

本発明において、前記検出工程にて基板を透過する放射光を基に基板温度を測定し、基板の温度変化量を基に成膜される薄膜の膜厚を取得する膜厚取得工程を更に含むことが好ましい。この場合、前記基板としてシリコン基板を用い、前記検出工程で検知する放射光の波長を1.2μm〜15μmの範囲に設定することが好ましい。これによれば、当該範囲の波長の放射光が薄膜から放射されて基板を透過して検知され、この検知された放射光から基板温度が測定される。基板の温度変化量は薄膜の膜厚と相関があるため、薄膜の膜厚を取得することができる。   The present invention further includes a film thickness acquisition step of measuring the substrate temperature based on the radiated light transmitted through the substrate in the detection step and acquiring the thickness of the thin film formed based on the temperature change amount of the substrate. It is preferable. In this case, it is preferable that a silicon substrate is used as the substrate, and the wavelength of the radiated light detected in the detection step is set in a range of 1.2 μm to 15 μm. According to this, the emitted light of the wavelength of the said range is radiated | emitted from a thin film, permeate | transmitted a board | substrate, is detected, and substrate temperature is measured from this detected emitted light. Since the temperature change amount of the substrate has a correlation with the film thickness of the thin film, the film thickness of the thin film can be acquired.

本発明の実施形態の成膜装置を示す模式的断面図。1 is a schematic cross-sectional view showing a film forming apparatus according to an embodiment of the present invention. 本発明の効果を確認する実験結果を示すグラフ。The graph which shows the experimental result which confirms the effect of this invention. 本発明の効果を確認する実験結果を示すグラフ。The graph which shows the experimental result which confirms the effect of this invention. 本発明の効果を確認する実験結果を示すグラフ。The graph which shows the experimental result which confirms the effect of this invention.

以下、図面を参照して、処理すべき基板Wに酸化アルミニウム膜をスパッタリング法により成膜するスパッタリング装置を例として、本発明の実施形態の成膜装置について説明する。   Hereinafter, with reference to the drawings, a film forming apparatus according to an embodiment of the present invention will be described by taking as an example a sputtering apparatus for forming an aluminum oxide film on a substrate W to be processed by a sputtering method.

図1を参照して、SMは、マグネトロン方式のスパッタ装置であり、このスパッタ装置SMは、処理室10を画成する真空チャンバ1を備える。真空チャンバ1の底壁には、ターボ分子ポンプやロータリーポンプなどからなる真空排気手段Pに通じる排気管11が接続されている。真空チャンバ1の側壁には、アルゴン等の希ガスたるスパッタガスのガス源(図示省略)に通じるガス管12が接続され、ガス管12にはマスフローコントローラ13が介設されている。これにより、流量制御されたスパッタガスが、真空排気手段Pにより一定の排気速度で真空引きされている処理室10内に導入でき、スパッタリングによる成膜中、処理室10の圧力が略一定に保持されるようにしている。真空チャンバ1の天井部にはカソードユニットCUが取付けられている。以下においては、図1中、真空チャンバ1の天井部側を向く方向を「上」とし、その底部側を向く方向を「下」として説明する。   Referring to FIG. 1, SM is a magnetron type sputtering apparatus, and this sputtering apparatus SM includes a vacuum chamber 1 that defines a processing chamber 10. Connected to the bottom wall of the vacuum chamber 1 is an exhaust pipe 11 leading to a vacuum exhaust means P composed of a turbo molecular pump, a rotary pump or the like. A gas pipe 12 leading to a gas source (not shown) of a sputtering gas which is a rare gas such as argon is connected to the side wall of the vacuum chamber 1, and a mass flow controller 13 is interposed in the gas pipe 12. Thereby, the sputter gas whose flow rate is controlled can be introduced into the processing chamber 10 which is evacuated by the vacuum exhaust means P at a constant exhaust speed, and the pressure in the processing chamber 10 is kept substantially constant during film formation by sputtering. To be. A cathode unit CU is attached to the ceiling of the vacuum chamber 1. In the following description, in FIG. 1, the direction facing the ceiling portion side of the vacuum chamber 1 is referred to as “up” and the direction facing the bottom portion side is described as “down”.

カソードユニットCUは、ターゲット2と、ターゲット2の上面にインジウム等のボンディング材(図示省略)を介して接合されるバッキングプレート3と、バッキングプレート3の上方に配置された磁石ユニット4とを有する。ターゲット2は、基板Wの輪郭に応じて、公知の方法で平面視円形の板状に形成された酸化アルミニウム製のものである。バッキングプレート3は、その内部に冷媒通路30を有し、この冷媒通路30を流れる冷媒(例えば冷却水)との熱交換でターゲット2を冷却できるようになっている。ターゲット2を装着した状態でバッキングプレート3の周縁部31が、絶縁体Iを介して真空チャンバ1の上壁に取り付けられる。ターゲット2には高周波電源Eからの出力が接続され、成膜処理時、ターゲット2に高周波電力が投入される。   The cathode unit CU includes a target 2, a backing plate 3 joined to the upper surface of the target 2 through a bonding material (not shown) such as indium, and a magnet unit 4 disposed above the backing plate 3. The target 2 is made of aluminum oxide formed into a circular plate shape in plan view by a known method according to the contour of the substrate W. The backing plate 3 has a refrigerant passage 30 therein, and the target 2 can be cooled by heat exchange with a refrigerant (for example, cooling water) flowing through the refrigerant passage 30. With the target 2 mounted, the peripheral edge 31 of the backing plate 3 is attached to the upper wall of the vacuum chamber 1 via the insulator I. An output from the high frequency power source E is connected to the target 2, and high frequency power is input to the target 2 during the film forming process.

磁石ユニット4は、ターゲット2のスパッタ面(下面)21の下方空間に磁場を発生させ、スパッタ時にスパッタ面21の下方で電離した電子等を捕捉してターゲット2から飛散したスパッタ粒子を効率よくイオン化する公知の構造を有するものであり、ここでは詳細な説明を省略する。   The magnet unit 4 generates a magnetic field in the space below the sputter surface (lower surface) 21 of the target 2, captures electrons etc. ionized below the sputter surface 21 during sputtering, and efficiently ionizes the sputtered particles scattered from the target 2. Therefore, the detailed description is omitted here.

真空チャンバ1の底部には、ターゲット2に対向させて保持手段としての例えば金属製のステージ5が配置され、基板Wがその成膜面たる上面を開放した状態で位置決め保持されるようにしている。この場合、ターゲット2と基板Wとの間の間隔(T−S距離)は、生産性や散乱回数等を考慮して25〜80mmの範囲に設定される。   At the bottom of the vacuum chamber 1, for example, a metal stage 5 is disposed as a holding means so as to face the target 2, and the substrate W is positioned and held in a state where the upper surface as the film forming surface is opened. . In this case, an interval (TS distance) between the target 2 and the substrate W is set in a range of 25 to 80 mm in consideration of productivity, the number of scattering times, and the like.

ステージ5の基板Wの下面側には温度測定手段としての放射温度計6が配置されている。放射温度計6は、ステージ5に開設された透孔51を介して基板Wからの放射光を検出して基板Wの温度を測定する。放射温度計6としては、図示省略するが、放射光の強度を検出する検出素子と、検出素子に放射光を導くレンズ等の光学系と、検出素子の検出値を温度に変換する変換処理部とを有する公知の構造を有するものを用いることができるため、ここではこれ以上の詳細な説明を省略する。放射温度計6の上部にはフランジ61が設けられ、フランジ61上面に形成された凹溝にOリング62をはめ込み、この状態でステージ5下面に取り付けて真空シールしている。放射温度計6は、後述する制御手段Cに接続されている。   A radiation thermometer 6 as a temperature measuring means is arranged on the lower surface side of the substrate W of the stage 5. The radiation thermometer 6 measures the temperature of the substrate W by detecting the radiation light from the substrate W through the through-hole 51 provided in the stage 5. Although not shown, the radiation thermometer 6 includes a detection element that detects the intensity of the emitted light, an optical system such as a lens that guides the emitted light to the detection element, and a conversion processing unit that converts the detection value of the detection element into a temperature. Since what has the well-known structure which has can be used, detailed description beyond this is abbreviate | omitted here. A flange 61 is provided on the upper portion of the radiation thermometer 6, and an O-ring 62 is fitted into a concave groove formed on the upper surface of the flange 61, and in this state, attached to the lower surface of the stage 5 and vacuum-sealed. The radiation thermometer 6 is connected to the control means C described later.

上記スパッタリング装置SMは、特に図示しないが、公知のマイクロコンピュータやシーケンサ等を備える制御手段Cを有する。制御手段Cは、真空排気手段Pの稼働、高周波電源Eの稼働、マスフローコントローラ13の稼働等を統括管理するだけでなく、放射温度計6の測定値を基に単位時間当たりの基板Wの温度変化量を検出し、この検出した温度変化量から基板Wの異常状態を判別することができる。このため、制御手段Cが特許請求の範囲の「判別手段」に対応する。尚、基板Wの異常状態には、前工程にて基板Wに各種処理が適切に施されていない状態(例えば、基板W裏面に対して研磨処理が施されないことで、基板W裏面に本来形成されないはずの膜が形成されている状態等)や、基板W自体の材質が本来の基板とは異なる状態(例えばロット違い)だけでなく、基板W表面に予め設定された厚さで所定の薄膜が形成されなかった状態(基板W表面に薄膜が形成されているものの、その膜厚が予め設定された許容範囲を外れている状態)を含むものとする。以下、上記スパッタリング装置SMを用いて、基板Wの表面に酸化アルミニウム膜を成膜する際に基板Wの異常状態を判別する場合を例として、本発明の基板判別方法の実施形態について説明する。   Although not particularly shown, the sputtering apparatus SM has a control means C including a known microcomputer, sequencer, and the like. The control means C not only manages the operation of the vacuum evacuation means P, the operation of the high frequency power supply E, the operation of the mass flow controller 13, etc., but also the temperature of the substrate W per unit time based on the measured value of the radiation thermometer 6. The change amount is detected, and the abnormal state of the substrate W can be determined from the detected temperature change amount. For this reason, the control means C corresponds to the “discriminating means” in the claims. In addition, the abnormal state of the substrate W is a state in which various processes are not appropriately performed on the substrate W in the previous process (for example, the substrate W is not formed on the back surface of the substrate W, so that it is originally formed on the back surface of the substrate W. Not only in a state where a film that should not be formed, etc.) and in a state where the material of the substrate W itself is different from the original substrate (for example, different lots), but also in a predetermined thin film with a predetermined thickness on the surface of the substrate W In which the film thickness is not formed (though the thin film is formed on the surface of the substrate W but the film thickness is outside the preset allowable range). Hereinafter, an embodiment of the substrate discriminating method of the present invention will be described by taking as an example a case where an abnormal state of the substrate W is discriminated when an aluminum oxide film is formed on the surface of the substrate W using the sputtering apparatus SM.

真空チャンバ1内のステージ5に基板Wをセットした後、真空ポンプPを作動させて処理室10内を真空引きする。処理室10内が所定圧力(例えば、1×10−5Pa)に達すると、マスフローコントローラ13を制御してアルゴンガスを所定の流量(例えば、5〜2000sccm)で導入する(このとき、処理室10内の圧力が0.06〜26Paとなる)。これと併せて、スパッタ電源Eからターゲット2に高周波電力(2〜40MHz(例えば、13.56MHz)、0.1〜40kW)を投入して真空チャンバ1内にプラズマを形成する。これにより、ターゲット2のスパッタ面21をスパッタし、飛散したスパッタ粒子を基板W表面に付着、堆積させることにより酸化アルミニウム膜が成膜される(成膜工程)。 After the substrate W is set on the stage 5 in the vacuum chamber 1, the inside of the processing chamber 10 is evacuated by operating the vacuum pump P. When the inside of the processing chamber 10 reaches a predetermined pressure (for example, 1 × 10 −5 Pa), the mass flow controller 13 is controlled to introduce argon gas at a predetermined flow rate (for example, 5 to 2000 sccm) (at this time, the processing chamber The pressure in 10 becomes 0.06-26 Pa). At the same time, high frequency power (2 to 40 MHz (for example, 13.56 MHz), 0.1 to 40 kW) is supplied from the sputtering power source E to the target 2 to form plasma in the vacuum chamber 1. As a result, the sputtering surface 21 of the target 2 is sputtered, and the sputtered particles scattered are adhered and deposited on the surface of the substrate W, whereby an aluminum oxide film is formed (film formation step).

本発明では、成膜工程にて、放射温度計6により基板Wの温度を測定する(検出工程)。ここで、基板Wの材質が異なると、基板Wの裏面の放射率が異なり、その裏面からの放射光の強度が異なり、単位時間当たりの基板の温度変化量が異なる。例えば、正常基板がシリコン基板である場合、シリコン基板に酸化アルミニウム膜を成膜したときの単位時間当たりの基板の温度変化量を予め求めておき、この予め求めた温度変化量と、検出工程で求めた温度変化量との差が許容範囲を超える場合に、正常基板と材質が異なる異種基板(例えば、酸化アルミニウム基板)であると特定することができる。   In the present invention, the temperature of the substrate W is measured by the radiation thermometer 6 in the film forming process (detection process). Here, when the material of the substrate W is different, the emissivity of the back surface of the substrate W is different, the intensity of the radiated light from the back surface is different, and the temperature change amount of the substrate per unit time is different. For example, when the normal substrate is a silicon substrate, the temperature change amount of the substrate per unit time when an aluminum oxide film is formed on the silicon substrate is obtained in advance, and the temperature change amount obtained in advance and the detection step When the difference from the obtained temperature change amount exceeds the allowable range, it can be specified that the substrate is a different substrate (for example, an aluminum oxide substrate) whose material is different from that of the normal substrate.

このように基板自体の材質が異なる場合だけではなく、基板の裏面に正常基板では形成されない膜が形成されている場合がある。例えば、正常基板がシリコン基板であり、この正常基板では形成されない酸化アルミニウム膜が裏面に形成されているシリコン基板である。この場合も、基板Wの裏面の放射率が異なるため、この裏面からの放射光の強度が異なる。そして、予め求めた温度変化量と、検出工程で求めた温度変化量との差が許容範囲を超える場合に、異常基板であると特定することができる。   In this way, not only the material of the substrate itself is different, but also a film that is not formed on the normal substrate may be formed on the back surface of the substrate. For example, a normal substrate is a silicon substrate, and a silicon substrate in which an aluminum oxide film that is not formed on the normal substrate is formed on the back surface. Also in this case, since the emissivity of the back surface of the substrate W is different, the intensity of the emitted light from the back surface is different. And when the difference of the temperature change amount calculated | required in advance and the temperature change amount calculated | required at the detection process exceeds an allowable range, it can identify as an abnormal board | substrate.

また、放射温度計6により検知する放射光の波長をシリコンを透過する1.2μm〜15μmの範囲に設定すれば、シリコン基板W上に成膜された酸化アルミニウム膜から放射される放射光がシリコン基板Wを透過して放射温度計6で検知される。このとき、酸化アルミニウム膜の膜厚と検出工程で求めた温度変化量との間には相関があるため、このような相関を検量線として予め求めておけば、酸化アルミニウム膜の膜厚を求めることができる(膜厚取得工程)。酸化アルミニウム膜の膜厚が許容範囲を外れた場合には、異常基板と判別することができる。   Moreover, if the wavelength of the radiated light detected by the radiation thermometer 6 is set in the range of 1.2 μm to 15 μm that transmits silicon, the radiated light emitted from the aluminum oxide film formed on the silicon substrate W is silicon. The light is transmitted through the substrate W and detected by the radiation thermometer 6. At this time, since there is a correlation between the film thickness of the aluminum oxide film and the temperature change obtained in the detection step, the film thickness of the aluminum oxide film is obtained if such a correlation is obtained in advance as a calibration curve. (Film thickness acquisition step). When the film thickness of the aluminum oxide film is out of the allowable range, it can be determined as an abnormal substrate.

本実施形態によれば、成膜処理時の基板Wの温度変化量に基づき基板Wの異常状態を判別するため、後工程中の検査工程を待たずに、異常基板を可及的速やかに特定し、異常基板を製造工程から排除することができる。   According to the present embodiment, since the abnormal state of the substrate W is determined based on the temperature change amount of the substrate W during the film forming process, the abnormal substrate is identified as quickly as possible without waiting for the inspection process in the subsequent process. In addition, the abnormal substrate can be excluded from the manufacturing process.

次に、上記効果を確認するために、上記スパッタリング装置SMを用いて次の実験を行った。本実験では、基板Wとしてφ300mmのベアシリコン基板W1を用い、このベアシリコン基板W1を真空チャンバ1内のステージ5にセットした後、アルゴンガスを流量100sccmで処理室10内に導入し(このときの処理室10内の圧力は約1.3Pa)、ターゲット2に13.56MHzの高周波電力を2kW投入した。これにより、処理室10内にプラズマが形成され、ターゲット2をスパッタリングして、ベアシリコン基板W1の表面に酸化アルミニウム膜を成膜した。この成膜中、基板W1の温度を測定した結果を図2に破線L1で示す。このとき、放射温度計6により検知する放射光の波長は、シリコンを透過しない0.8μmに設定した。図2には、酸化アルミニウム基板W2の表面に酸化アルミニウム膜を成膜した場合の温度測定結果を実線L2で示し、予め酸化アルミニウム膜が5400Å成膜済みのシリコン基板の表面に酸化アルミニウム膜を成膜した場合の温度測定結果を実線L3で示す。そして、ベアシリコン基板W1表面に酸化アルミニウム膜を成膜した場合の単位時間当たりの基板温度変化量を求めた結果を図3に破線L1で示す。図2には、酸化アルミニウム基板W2の表面に酸化アルミニウム膜を成膜した場合の単位時間当たりの基板温度変化量を実線L2で示す。これによれば、基板の種類が異なると、単位時間当たりの基板温度変化量が異なることが確認された。従って、温度変化量を求めれば、基板の種類が正常基板とは異なる異常基板を検出できることが判った。   Next, in order to confirm the effect, the following experiment was performed using the sputtering apparatus SM. In this experiment, a bare silicon substrate W1 having a diameter of 300 mm was used as the substrate W, and this bare silicon substrate W1 was set on the stage 5 in the vacuum chamber 1, and then argon gas was introduced into the processing chamber 10 at a flow rate of 100 sccm (at this time) The pressure in the processing chamber 10 was about 1.3 Pa), and a high frequency power of 13.56 MHz was supplied to the target 2 at 2 kW. Thereby, plasma was formed in the processing chamber 10, and the target 2 was sputtered to form an aluminum oxide film on the surface of the bare silicon substrate W1. The result of measuring the temperature of the substrate W1 during the film formation is shown by a broken line L1 in FIG. At this time, the wavelength of the radiated light detected by the radiation thermometer 6 was set to 0.8 μm which does not transmit silicon. FIG. 2 shows a temperature measurement result when an aluminum oxide film is formed on the surface of the aluminum oxide substrate W2 by a solid line L2, and the aluminum oxide film is formed on the surface of the silicon substrate on which 5400 mm of the aluminum oxide film has been formed in advance. A temperature measurement result when the film is formed is indicated by a solid line L3. And the result of having calculated | required the amount of substrate temperature changes per unit time at the time of forming an aluminum oxide film | membrane on the bare silicon substrate W1 surface is shown with the broken line L1 in FIG. In FIG. 2, the solid line L2 indicates the amount of change in substrate temperature per unit time when an aluminum oxide film is formed on the surface of the aluminum oxide substrate W2. According to this, it was confirmed that the substrate temperature change amount per unit time is different when the type of the substrate is different. Accordingly, it has been found that if the amount of temperature change is obtained, an abnormal substrate having a different substrate type from a normal substrate can be detected.

また、放射温度計6により検知する放射光の波長をシリコンを透過する10μmに設定し、ベアシリコン基板W1の表面に酸化アルミニウム膜を成膜する間、基板温度を測定し、測定値から単位時間当たりの基板温度変化量を求めた。酸化アルミニウム膜の膜厚と温度変化量との関係を図4に示す。これによれば、単位時間当たりの基板温度変化量を予め求めて検量線や数式を作成することで、酸化アルミニウム膜の膜厚を測定できることが判った。   Further, the wavelength of the radiated light detected by the radiation thermometer 6 is set to 10 μm that transmits silicon, and the substrate temperature is measured while the aluminum oxide film is formed on the surface of the bare silicon substrate W1. The amount of change in substrate temperature per hit was determined. FIG. 4 shows the relationship between the thickness of the aluminum oxide film and the amount of change in temperature. According to this, it was found that the film thickness of the aluminum oxide film can be measured by previously obtaining the amount of change in substrate temperature per unit time and creating a calibration curve or a mathematical expression.

以上、本発明の実施形態について説明したが、本発明は上記に限定されるものではない。上記実施形態においては、酸化アルミニウムのような絶縁物製のターゲット2を用いて絶縁物膜を成膜する場合を例に説明したが、アルミニウムや銅のような金属製のターゲットを用いて金属膜を成膜する場合にも当然に本発明を適用することができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited above. In the above embodiment, the case where an insulator film is formed using an insulator target 2 such as aluminum oxide has been described as an example. However, a metal film using a metal target such as aluminum or copper is used. Of course, the present invention can also be applied to the film formation.

また、上記実施形態では、スパッタリング装置を例に説明したが、CVD装置や真空蒸着装置のような他の成膜装置に対しても本発明を適用することができる。   Moreover, although the said embodiment demonstrated the sputtering apparatus to the example, this invention is applicable also to other film-forming apparatuses like a CVD apparatus and a vacuum evaporation system.

C…制御手段(判別手段)、E…スパッタ電源(成膜源、電源)、SM…スパッタリング装置(成膜装置)、W…基板、1…真空チャンバ、2…ターゲット(成膜源)、5…基板ステージ(保持手段)、6…放射温度計(測定手段)、13…マスフローコントローラ(成膜源、ガス導入手段)。   C: Control means (discriminating means), E: Sputtering power source (film forming source, power source), SM ... Sputtering apparatus (film forming apparatus), W ... Substrate, 1 ... Vacuum chamber, 2 ... Target (film forming source), 5 ... substrate stage (holding means), 6 ... radiation thermometer (measuring means), 13 ... mass flow controller (film forming source, gas introducing means).

Claims (5)

真空チャンバ内で処理すべき基板を保持する保持手段と、基板に対して成膜処理を施す成膜源と、成膜処理時の基板温度を測定する測定手段とを備える成膜装置において、
温度測定手段の測定値を基に単位時間当たりの基板の温度変化量を検出し、この検出した温度変化量から基板の異常状態を判別する判別手段を設けることを特徴とする成膜装置。
In a film forming apparatus comprising: a holding unit that holds a substrate to be processed in a vacuum chamber; a film forming source that performs a film forming process on the substrate; and a measuring unit that measures a substrate temperature during the film forming process.
A film forming apparatus, comprising: a determination unit that detects a temperature change amount of a substrate per unit time based on a measurement value of a temperature measurement unit, and determines an abnormal state of the substrate from the detected temperature change amount.
請求項1記載の成膜装置であって、成膜源がターゲットと真空チャンバ内に希ガスを導入するガス導入手段とターゲットに電力投入する電源とを有してスパッタリング法により成膜処理するものであり、基板の一方の面に、成膜処理に際して発生する所定範囲の波長を持つ放射光の透過率が基板より小さい薄膜を成膜するものにおいて、
前記温度測定手段として、基板の他方の面側に配置される放射温度計を用いることを特徴とする成膜装置。
2. The film forming apparatus according to claim 1, wherein the film forming source has a target, a gas introducing means for introducing a rare gas into the vacuum chamber, and a power source for supplying power to the target, and performs a film forming process by a sputtering method. In the case where a thin film having a transmittance of radiated light having a wavelength in a predetermined range generated during the film forming process is smaller than the substrate is formed on one surface of the substrate,
A film forming apparatus using a radiation thermometer arranged on the other surface side of the substrate as the temperature measuring means.
真空チャンバを真空雰囲気とした後、成膜源を作動させて保持手段で保持された基板に対して成膜処理を施す成膜工程と、
成膜工程にて基板温度を測定し、基板温度の測定値を基に単位時間当たりの基板の温度変化量を検出する検出工程と、
検出した温度変化量から基板の異常状態を判別する判別工程とを含むことを特徴とする基板判別方法。
A film forming step of performing a film forming process on the substrate held by the holding unit by operating the film forming source after the vacuum chamber is in a vacuum atmosphere;
A detection step of measuring the substrate temperature in the film forming step, and detecting a temperature change amount of the substrate per unit time based on the measured value of the substrate temperature;
And a discrimination step of discriminating an abnormal state of the substrate from the detected temperature change amount.
前記検出工程にて基板を透過する波長の放射光を基に基板温度を測定し、基板の温度変化量を基に成膜される薄膜の膜厚を取得する膜厚取得工程を更に含むことを特徴とする請求項3記載の基板判別方法。   It further includes a film thickness acquisition step of measuring the substrate temperature based on the radiation having a wavelength transmitted through the substrate in the detection step and acquiring the film thickness of the thin film formed based on the temperature change amount of the substrate. The substrate discrimination method according to claim 3, wherein: 請求項3記載の基板判別方法において、前記基板としてシリコン基板を用い、前記検出工程で検知する放射光の波長は1.2μm〜15μmの範囲に設定することを特徴とする請求項3記載の基板判別方法。   4. The substrate discriminating method according to claim 3, wherein a silicon substrate is used as the substrate, and the wavelength of the radiated light detected in the detecting step is set in a range of 1.2 [mu] m to 15 [mu] m. How to determine.
JP2016020676A 2016-02-05 2016-02-05 Film forming apparatus and substrate discrimination method Active JP6722466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016020676A JP6722466B2 (en) 2016-02-05 2016-02-05 Film forming apparatus and substrate discrimination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016020676A JP6722466B2 (en) 2016-02-05 2016-02-05 Film forming apparatus and substrate discrimination method

Publications (2)

Publication Number Publication Date
JP2017137544A true JP2017137544A (en) 2017-08-10
JP6722466B2 JP6722466B2 (en) 2020-07-15

Family

ID=59565629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016020676A Active JP6722466B2 (en) 2016-02-05 2016-02-05 Film forming apparatus and substrate discrimination method

Country Status (1)

Country Link
JP (1) JP6722466B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019017591A (en) * 2017-07-14 2019-02-07 株式会社三洋物産 Game machine
JP2019017589A (en) * 2017-07-14 2019-02-07 株式会社三洋物産 Game machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295543A (en) * 1992-02-17 1993-11-09 Hitachi Ltd Vacuum treatment device and film forming method and film forming device using this device
JPH08120447A (en) * 1994-10-24 1996-05-14 Hitachi Metals Ltd Film formation by sputtering
JPH08330232A (en) * 1995-03-15 1996-12-13 Matsushita Electric Ind Co Ltd Equipment and method for manufacturing semiconductor thin film of chalocopyrite structure
JP2008184625A (en) * 2007-01-26 2008-08-14 Osaka Vacuum Ltd Sputtering method and sputtering device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295543A (en) * 1992-02-17 1993-11-09 Hitachi Ltd Vacuum treatment device and film forming method and film forming device using this device
JPH08120447A (en) * 1994-10-24 1996-05-14 Hitachi Metals Ltd Film formation by sputtering
JPH08330232A (en) * 1995-03-15 1996-12-13 Matsushita Electric Ind Co Ltd Equipment and method for manufacturing semiconductor thin film of chalocopyrite structure
JP2008184625A (en) * 2007-01-26 2008-08-14 Osaka Vacuum Ltd Sputtering method and sputtering device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019017591A (en) * 2017-07-14 2019-02-07 株式会社三洋物産 Game machine
JP2019017589A (en) * 2017-07-14 2019-02-07 株式会社三洋物産 Game machine

Also Published As

Publication number Publication date
JP6722466B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
TWI599669B (en) Film forming apparatus and film forming method
JP6140539B2 (en) Vacuum processing equipment
TWI564412B (en) Sputtering device and sputtering method
JP2017137544A (en) Film deposition apparatus and substrate discrimination method
KR100786366B1 (en) Automated control of metal thickness during film deposition
JP6425431B2 (en) Sputtering method
US20190341230A1 (en) Ceramic liner with integrated faraday shielding
TWI547576B (en) Cathode assembly, physical vapor deposition system, and method for physical vapor deposition
TWI802617B (en) Substrate processing apparatus and method of processing a substrate and of manufacturing a processed workpiece
JP6645856B2 (en) Plasma processing equipment
JP7478049B2 (en) Sputtering apparatus and method for forming metal compound film
TWI793441B (en) Plasma processing device and wafer processing method
JP7286851B2 (en) OPERATING METHOD OF PLASMA PROCESSING APPARATUS AND MEMBER FOR PLASMA PROCESSING APPARATUS
JP3937272B2 (en) Sputtering apparatus and sputtering method
JP2008311384A (en) Plasma treatment equipment
KR20170120175A (en) Method and apparatus for depositing aluminum oxide film and sputtering apparatus
JP6527786B2 (en) Target assembly
JPS6075588A (en) Spattering and etching apparatus furnished with heating mechanism
JP2016211040A (en) Target assembly, sputtering device, and use limit determination method for target material
JPS6383258A (en) Sputtering device
JPS6383261A (en) Sputtering device
KR20030047278A (en) Sputtering apparatus
JPH04168269A (en) Sputtering system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200622

R150 Certificate of patent or registration of utility model

Ref document number: 6722466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250