JP2017137368A - Fiber-reinforced thermoplastic resin composition composite material and molding - Google Patents

Fiber-reinforced thermoplastic resin composition composite material and molding Download PDF

Info

Publication number
JP2017137368A
JP2017137368A JP2016016922A JP2016016922A JP2017137368A JP 2017137368 A JP2017137368 A JP 2017137368A JP 2016016922 A JP2016016922 A JP 2016016922A JP 2016016922 A JP2016016922 A JP 2016016922A JP 2017137368 A JP2017137368 A JP 2017137368A
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
composite material
reinforced thermoplastic
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016016922A
Other languages
Japanese (ja)
Other versions
JP6884983B2 (en
Inventor
泰隆 福永
Yasutaka Fukunaga
泰隆 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2016016922A priority Critical patent/JP6884983B2/en
Publication of JP2017137368A publication Critical patent/JP2017137368A/en
Application granted granted Critical
Publication of JP6884983B2 publication Critical patent/JP6884983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced thermoplastic resin composite material that has excellent interfacial adhesion between a reinforced fiber and a thermoplastic resin and also has excellent mechanical properties.SOLUTION: A fiber-reinforced thermoplastic resin composite material comprises a continuous reinforced fiber (A) and a thermoplastic resin (B). The thermoplastic resin (B) comprises a copolymer (C) of an unsaturated dicarboxylic anhydride (c1), an aromatic vinyl monomer (c2) and a methacrylic acid ester (c3).SELECTED DRAWING: None

Description

本発明は、航空機部材、宇宙機部材、自動車部材、船舶部材、電子機器部材およびスポーツ関連部材などに好適に用いられる繊維強化熱可塑性樹脂複合材料および成形体に関する。   The present invention relates to a fiber reinforced thermoplastic resin composite material and a molded article that are suitably used for aircraft members, spacecraft members, automobile members, ship members, electronic device members, sports-related members, and the like.

炭素繊維・ガラス繊維・アラミド繊維は、金属と比較して低比重でありながら、弾性率および強度に優れるため、種々のマトリックス樹脂と組み合わせた複合材料は、航空機部材、宇宙機部材、自動車部材、船舶部材、土木建築材およびスポーツ用品等の多くの分野に用いられている。特に炭素繊維とエポキシ樹脂や不飽和ポリエステル樹脂を組み合わせた複合材料が広く用いられている。   Carbon fiber, glass fiber, and aramid fiber are low in specific gravity compared to metal and excellent in elastic modulus and strength. Therefore, composite materials combined with various matrix resins are used for aircraft members, spacecraft members, automobile members, It is used in many fields such as ship components, civil engineering materials, and sporting goods. In particular, composite materials combining carbon fibers with epoxy resins and unsaturated polyester resins are widely used.

従来の熱硬化性炭素繊維強化複合材料は熱硬化に多大な時間を要する欠点があったが、近年では熱可塑性樹脂をマトリックスとする炭素繊維強化複合材料(以下“CFRTP”と称する場合がある)がハイサイクル成形可能な複合材料として期待され開発がなされている。
複雑形状の成形が可能な短繊維強化熱可塑性複合材料は既に実用化されているが、強化繊維の繊維長が短いため、軽金属と比較すると著しく低弾性率になってしまう問題がある。この為、連続繊維で強化した熱可塑性樹脂組成物が強く望まれている。
The conventional thermosetting carbon fiber reinforced composite material has a drawback that it takes a long time for thermosetting, but in recent years, a carbon fiber reinforced composite material using a thermoplastic resin as a matrix (hereinafter sometimes referred to as “CFRTP”). Is expected to be developed as a composite material capable of high cycle molding.
Short fiber reinforced thermoplastic composite materials capable of forming complex shapes have already been put to practical use. However, since the fiber length of the reinforced fibers is short, there is a problem that the elastic modulus is remarkably lower than that of light metal. For this reason, a thermoplastic resin composition reinforced with continuous fibers is strongly desired.

このCFRTPに用いるマトリックス樹脂として安価な汎用プラスチック、例えばポリプロピレン(PP)、アクリロニトリルブタジエンゴムスチレン(ABS)が期待されているが、これら熱可塑性樹脂と特に炭素繊維との複合材料の機械物性、特に曲げ強度は充分と言えるものではなかった。   Inexpensive general-purpose plastics such as polypropylene (PP) and acrylonitrile butadiene rubber styrene (ABS) are expected as matrix resins used for CFRTP. Mechanical properties of composite materials of these thermoplastic resins and carbon fibers, in particular bending. The strength was not sufficient.

曲げ強度の改善を目的として、炭素繊維に気相酸化や液相酸化等の酸化処理を施し、炭素繊維表面に酸素含有官能基を導入し炭素繊維とマトリックス樹脂との界面密着性を向上させる提案が行われている。
例えば、特許文献1には炭素繊維に電解処理を施すことにより、界面接着性の指標である層間剪断強度を向上させる方法が提案されているが該炭素繊維で強化された熱可塑性樹脂複合材料の曲げ強度は、充分とは言えないものであった。
Proposal for improving interfacial adhesion between carbon fiber and matrix resin by subjecting carbon fiber to oxidation treatment such as gas phase oxidation and liquid phase oxidation for the purpose of improving bending strength and introducing oxygen-containing functional groups on the surface of carbon fiber Has been done.
For example, Patent Document 1 proposes a method for improving the interlaminar shear strength, which is an index of interfacial adhesion, by subjecting carbon fibers to electrolytic treatment, but a thermoplastic resin composite material reinforced with carbon fibers is proposed. The bending strength was not sufficient.

更に、炭素繊維自体の問題としては脆く、集束性および耐摩擦性に乏しいことが挙げられ、高次加工工程において毛羽や糸切れが発生しやすい。
この問題改善を目的として、特許文献2や3にあるように炭素繊維にサイジング剤を塗布する方法が提案されているがサイジング剤により、熱硬化性樹脂に対する炭素繊維の接着性は充分に付与することができるものの、依然として熱可塑性樹脂との界面接着性は低く、サイジング処理された強化繊維で強化された熱可塑性樹脂複合材料の曲げ強度は充分とは言えなかった。
Further, the problem of the carbon fiber itself is that it is brittle and has poor bundling and friction resistance, and fluff and yarn breakage are likely to occur in higher processing steps.
For the purpose of improving this problem, a method of applying a sizing agent to carbon fibers has been proposed as in Patent Documents 2 and 3, but the sizing agent sufficiently imparts the adhesion of the carbon fibers to the thermosetting resin. However, the interfacial adhesion with the thermoplastic resin was still low, and the bending strength of the thermoplastic resin composite material reinforced with the sized reinforced fiber was not sufficient.

上述の通り、曲げ強度を改善するためには、炭素繊維側の処理だけでは充分ではなく、十分な曲げ強度を持つ熱可塑性炭素繊維複合材料を既存技術で達成することはできなかった。   As described above, in order to improve the bending strength, the treatment on the carbon fiber side is not sufficient, and a thermoplastic carbon fiber composite material having sufficient bending strength cannot be achieved by the existing technology.

特開平04−361619号公報Japanese Patent Laid-Open No. 04-361619 米国特許第3,957,716号明細書US Pat. No. 3,957,716 特公昭62−056266公報Japanese Examined Patent Publication No. 62-056266

本発明の目的は、上記の従来技術における問題点に鑑み、強化繊維と熱可塑性樹脂との界面接着性に優れ、曲げ強度や曲げ弾性率に優れた繊維強化熱可塑性樹脂複合材料を提供することである。   An object of the present invention is to provide a fiber-reinforced thermoplastic resin composite material that is excellent in interfacial adhesion between a reinforced fiber and a thermoplastic resin and excellent in bending strength and bending elastic modulus in view of the problems in the above-described conventional technology. It is.

本発明者らは、連続強化繊維と熱可塑性樹脂を含有する繊維強化熱可塑性樹脂複合材料において、前記熱可塑性樹脂が、不飽和ジカルボン酸無水物、芳香族系ビニルモノマー及びメタクリル酸エステルの共重合体を含むことにより、上記の目的を達成できることを見出した。
すなわち本発明は、以下に示すものである。
In the fiber reinforced thermoplastic resin composite material containing continuous reinforced fibers and a thermoplastic resin, the present inventors provide a co-polymer of an unsaturated dicarboxylic acid anhydride, an aromatic vinyl monomer, and a methacrylic acid ester. It has been found that the above object can be achieved by including coalescence.
That is, the present invention is as follows.

[1] 連続強化繊維(A)及び熱可塑性樹脂(B)を含有する繊維強化熱可塑性樹脂組成物であって、当該熱可塑性樹脂(B)が、不飽和ジカルボン酸無水物(c1)、芳香族系ビニルモノマー(c2)及びアクリル酸エステル(c3)の共重合体(C)を含む繊維強化熱可塑性樹脂複合材料。 [1] A fiber-reinforced thermoplastic resin composition containing continuous reinforcing fibers (A) and a thermoplastic resin (B), wherein the thermoplastic resin (B) is an unsaturated dicarboxylic acid anhydride (c1), aromatic A fiber-reinforced thermoplastic resin composite material comprising a copolymer (C) of an aromatic vinyl monomer (c2) and an acrylate ester (c3).

[2] 連続強化繊維(A)を1〜80質量%、及び熱可塑性樹脂(B)を20〜99質量%含有する[1]に記載の繊維強化熱可塑性樹脂複合材料。 [2] The fiber-reinforced thermoplastic resin composite material according to [1], containing 1 to 80% by mass of the continuous reinforcing fiber (A) and 20 to 99% by mass of the thermoplastic resin (B).

[3] 前記連続強化繊維(A)の繊維長の平均が10mm以上である[1]又は[2]に記載の繊維強化熱可塑性樹脂複合材料。。 [3] The fiber-reinforced thermoplastic resin composite material according to [1] or [2], wherein an average fiber length of the continuous reinforcing fibers (A) is 10 mm or more. .

[4] 前記連続強化繊維が、炭素繊維、ガラス繊維およびアラミド繊維からなる群より選択される何れかの1種以上を含有する、[1]〜[3]のいずれかに記載の繊維強化熱可塑性樹脂複合材料。 [4] The fiber reinforced heat according to any one of [1] to [3], wherein the continuous reinforcing fiber contains one or more selected from the group consisting of carbon fiber, glass fiber, and aramid fiber. Plastic resin composite material.

[5] 前記熱可塑性樹脂(B)における共重合体(C)の含有割合が50〜100質量%である[1]〜[4]のいずれかに記載の繊維強化熱可塑性樹脂複合材料。 [5] The fiber-reinforced thermoplastic resin composite material according to any one of [1] to [4], wherein the content ratio of the copolymer (C) in the thermoplastic resin (B) is 50 to 100% by mass.

[6] 前記共重合体(C)における不飽和ジカルボン酸無水物(c1)の割合が5〜60質量%、芳香族系ビニルモノマー(c2)の割合が40〜90質量%かつアクリル酸エステル(c3)の割合が5〜35質量%である[1]〜[5]のいずれかに記載の繊維強化熱可塑性樹脂複合材料。 [6] In the copolymer (C), the proportion of the unsaturated dicarboxylic acid anhydride (c1) is 5 to 60% by mass, the proportion of the aromatic vinyl monomer (c2) is 40 to 90% by mass, and the acrylic ester ( The fiber-reinforced thermoplastic resin composite material according to any one of [1] to [5], wherein the ratio of c3) is 5 to 35 mass%.

[7] 前記共重合体(C)において、(c1)が無水マレイン酸‐、(c2)がメタクリル酸メチル、(c3)がスチレンである[1]〜[6]のいずれかの一に記載の繊維強化熱可塑性樹脂複合材料。 [7] The copolymer (C), wherein (c1) is maleic anhydride-, (c2) is methyl methacrylate, and (c3) is styrene. Fiber reinforced thermoplastic resin composite material.

[8] [1]〜[7]のいずれかの一に記載の繊維強化熱可塑性樹脂複合材料を用いた成形体。 [8] A molded body using the fiber-reinforced thermoplastic resin composite material according to any one of [1] to [7].

[9] [繊維強化熱可塑性樹脂複合材料の表面に、さらに別の透明樹脂が積層されてなることを特徴とする[8]に記載の成形体。 [9] The molded article according to [8], wherein another transparent resin is further laminated on the surface of the fiber-reinforced thermoplastic resin composite material.

[10] 最大曲げ強度が300MPa以上である、[8]または[9]に記載の成形体。 [10] The molded article according to [8] or [9], wherein the maximum bending strength is 300 MPa or more.

特定の共重合体と連続強化繊維により、機械的強度の優れた繊維強化熱可塑性樹脂複合材料が得られる。   A fiber-reinforced thermoplastic resin composite material having excellent mechanical strength can be obtained by using a specific copolymer and continuous reinforcing fibers.

本発明の繊維強化熱可塑性樹脂複合材料は、連続強化繊維と熱可塑性樹脂を含有する繊維強化熱可塑性樹脂複合材料であって、前記熱可塑性樹脂が、不飽和ジカルボン酸無水物、芳香族系ビニルモノマー及びメタクリル酸エステルの共重合体を含むことを特徴とする。   The fiber-reinforced thermoplastic resin composite material of the present invention is a fiber-reinforced thermoplastic resin composite material containing continuous reinforcing fibers and a thermoplastic resin, wherein the thermoplastic resin is an unsaturated dicarboxylic acid anhydride, an aromatic vinyl. It contains a copolymer of a monomer and a methacrylic acid ester.

<連続強化繊維(A)>
本発明で使用される、連続強化繊維(A)は、ガラス繊維、炭素繊維又はアラミド繊維であり、弾性率の点から炭素繊維が好ましい。
連続強化繊維(A)の繊維長は平均10mm以上であることが好ましい。
また、連続強化繊維の形態としては、一方向シート、織物シート、多軸積層シート等が挙げられ、具体例としては以下に示されるが、本発明を限定するものではない。
<Continuous reinforcing fiber (A)>
The continuous reinforcing fiber (A) used in the present invention is glass fiber, carbon fiber or aramid fiber, and carbon fiber is preferable from the viewpoint of elastic modulus.
The fiber length of the continuous reinforcing fiber (A) is preferably 10 mm or more on average.
Examples of the continuous reinforcing fiber include a unidirectional sheet, a woven sheet, a multiaxial laminated sheet, and the like. Specific examples are shown below, but the present invention is not limited thereto.

ガラス繊維:(日東紡績株式会社製)WF 350 100 BS6
アラミド繊維:(帝人株式会社製)トワロン
炭素繊維:(株式会社有沢製作所製)CFP3113
Glass fiber: (made by Nitto Boseki Co., Ltd.) WF 350 100 BS6
Aramid fiber: Twaron (manufactured by Teijin Limited) Carbon fiber: (manufactured by Arisawa Manufacturing Co., Ltd.) CFP3113

本発明の繊維強化熱可塑性樹脂複合材料中の連続強化繊維(A)の割合は、1〜80質量%であり、繊維強化熱可塑性樹脂複合材料の機械的特性の観点から好ましくは50〜75質量%である。   The ratio of the continuous reinforcing fiber (A) in the fiber reinforced thermoplastic resin composite material of the present invention is 1 to 80% by mass, and preferably 50 to 75 mass from the viewpoint of the mechanical properties of the fiber reinforced thermoplastic resin composite material. %.

<熱可塑性樹脂(B)>
本発明に用いられる熱可塑性樹脂(B)は、不飽和ジカルボン酸無水物(c1)、芳香族系ビニルモノマー(c2)及びメタクリル酸エステル(c3)の共重合体(C)を含有する。
<Thermoplastic resin (B)>
The thermoplastic resin (B) used in the present invention contains a copolymer (C) of an unsaturated dicarboxylic acid anhydride (c1), an aromatic vinyl monomer (c2) and a methacrylic acid ester (c3).

不飽和ジカルボン酸無水物(c1)としては、例えば、無水マレイン酸、無水シトラコン酸、ジメチル無水マレイン酸、ジクロロ無水マレイン酸、ブロモ無水マレイン酸、ジブロモ無水マレイン酸、フェニル無水マレイン酸、ジフェニル無水マレイン酸などが挙げられ、無水マレイン酸が好ましい。これらは、単独で用いても2種以上を併用してもよい。
共重合体(C)において、不飽和ジカルボン酸無水物(c1)の割合は、5質量%〜60質量%であり、強化繊維との界面接着性の理由から10質量%〜35質量%であることが好ましい。
Examples of the unsaturated dicarboxylic acid anhydride (c1) include maleic anhydride, citraconic anhydride, dimethyl maleic anhydride, dichloromaleic anhydride, bromomaleic anhydride, dibromomaleic anhydride, phenylmaleic anhydride, and diphenylmaleic anhydride. An acid etc. are mentioned, Maleic anhydride is preferable. These may be used alone or in combination of two or more.
In the copolymer (C), the proportion of the unsaturated dicarboxylic acid anhydride (c1) is 5% by mass to 60% by mass, and is 10% by mass to 35% by mass for the reason of interfacial adhesion with the reinforcing fiber. It is preferable.

芳香族系ビニルモノマー(c2)とは、芳香環を有するビニルモノマーであり、例えばスチレン、ブロモスチレンなどが挙げられる。入手容易性の観点からスチレンが好ましい。
共重合体(C)において芳香族系ビニルモノマー(c2)の割合は、40質量%〜90質量%であり、強化繊維との界面接着性の観点から45質量%〜75質量%であることが好ましい。
The aromatic vinyl monomer (c2) is a vinyl monomer having an aromatic ring, and examples thereof include styrene and bromostyrene. Styrene is preferred from the viewpoint of availability.
In the copolymer (C), the ratio of the aromatic vinyl monomer (c2) is 40% by mass to 90% by mass, and 45% by mass to 75% by mass from the viewpoint of interfacial adhesion with the reinforcing fiber. preferable.

メタクリル酸エステル(c3)とは、メタクリル酸のエステルであり、例えばメタクリル酸アルキルエステルである。アルキルとしては炭素数1〜8のアルキルが例示され特に好ましくはメチルである。
共重合体(C)おいてメタクリル酸エステル(c3)の割合は、5質量%〜35質量%であり、強化繊維との界面接着性の観点から20質量%〜30質量%であることが好ましい。
Methacrylic acid ester (c3) is an ester of methacrylic acid, for example, methacrylic acid alkyl ester. Examples of alkyl include alkyl having 1 to 8 carbon atoms, and methyl is particularly preferable.
In the copolymer (C), the proportion of the methacrylic acid ester (c3) is 5% by mass to 35% by mass, and preferably 20% by mass to 30% by mass from the viewpoint of interfacial adhesion with the reinforcing fiber. .

このような共重合体(C)としては例えば、無水マレイン酸‐メタクリル酸メチル‐スチレン共重合体が挙げられる。
この共重合体は市販品でも入手することができ、具体的には、電気化学工業社製レジスファイ R‐100、R‐200、R‐300が挙げられる。ただし、発明の効果を奏する限りにおいて、これらに限定されない。
熱可塑性樹脂(B)中の上記共重合体(C)の割合は50〜100質量%であり、80〜100質量%のものが特に機械的特性に優れた繊維強化熱可塑性樹脂複合材料が得られるため好ましい。
Examples of such a copolymer (C) include maleic anhydride-methyl methacrylate-styrene copolymer.
This copolymer can also be obtained as a commercial product, and specific examples include Regis R-100, R-200, and R-300 manufactured by Denki Kagaku Kogyo. However, the present invention is not limited to these as long as the effects of the invention are achieved.
The proportion of the copolymer (C) in the thermoplastic resin (B) is 50 to 100% by mass, and 80 to 100% by mass provides a fiber-reinforced thermoplastic resin composite material particularly excellent in mechanical properties. Therefore, it is preferable.

熱可塑性樹脂(B)には発明の効果を奏する限りにおいて前記共重合体(C)以外の成分を含んでいてもよく、その他の樹脂及び、離型剤、難燃剤、酸化防止剤などの各種添加剤を配合することができる。
例えば耐熱性や耐薬性などの改善を目的としたエンジニアリングプラスチックやスーパーエンジニアリングプラスチックなど(ポリカーボネート、ポリアミド、ポリエステルなど)を加えてアロイとして用いることが出来る。
これらの成分の熱可塑性樹脂(B)100質量%中の割合は0〜50質量%であり、0〜20質量%のものが安価な繊維強化熱可塑性樹脂複合材料が得られるため好ましい。
The thermoplastic resin (B) may contain components other than the copolymer (C) as long as the effects of the invention are exhibited, and other resins and various types such as a release agent, a flame retardant, and an antioxidant. Additives can be blended.
For example, engineering plastics and super engineering plastics (polycarbonate, polyamide, polyester, etc.) intended to improve heat resistance and chemical resistance can be added and used as alloys.
The ratio of these components in 100% by mass of the thermoplastic resin (B) is 0 to 50% by mass, and 0 to 20% by mass is preferable because an inexpensive fiber-reinforced thermoplastic resin composite material can be obtained.

<繊維強化熱可塑性樹脂複合材料>
本発明の繊維強化熱可塑性樹脂複合材料中の連続強化繊維(A)と熱可塑性樹脂(B)の割合は、通常、連続強化繊維(A)1〜80質量%、熱可塑性樹脂(B)20〜99質量%であり、繊維強化熱可塑性樹脂複合材料の機械的特性の観点から、好ましくは、連続強化繊維(A)50〜75質量%、熱可塑性樹脂(B)25〜50質量%である。
この範囲よりも強化繊維の割合が少ない場合、繊維強化熱可塑性樹脂組成物の機械的特性は軽金属と同等以下となってしまい、強化繊維割合がこの範囲よりも多い場合では、樹脂量が少なく、マトリックス樹脂による強化繊維の集束作用が機能せず、機械的強度が低下する。
本発明の繊維強化熱可塑性樹脂複合材料中の連続強化繊維(A)と熱可塑性樹脂(B)の合計割合は、通常、70質量%以上であり、好ましくは80質量%以上、より好ましくは90質量%以上、特に好ましくは100質量%である。
本発明の繊維強化熱可塑性樹脂複合材料は連続強化繊維(A)と熱可塑性樹脂(B)以外の成分を含んでいても良い。これらの成分としては、離型剤、難燃剤、酸化防止剤などの各種添加剤が挙げられる。
<Fiber-reinforced thermoplastic resin composite material>
The ratio of the continuous reinforcing fiber (A) and the thermoplastic resin (B) in the fiber-reinforced thermoplastic resin composite material of the present invention is usually 1 to 80% by mass of the continuous reinforcing fiber (A), and the thermoplastic resin (B) 20 From the viewpoint of mechanical properties of the fiber-reinforced thermoplastic resin composite material, preferably 50 to 75% by weight of continuous reinforcing fiber (A) and 25 to 50% by weight of thermoplastic resin (B). .
When the proportion of reinforcing fibers is less than this range, the mechanical properties of the fiber-reinforced thermoplastic resin composition will be equal to or less than that of light metals, and when the proportion of reinforcing fibers is more than this range, the amount of resin is small, The focusing action of the reinforcing fibers by the matrix resin does not function, and the mechanical strength decreases.
The total ratio of the continuous reinforcing fiber (A) and the thermoplastic resin (B) in the fiber-reinforced thermoplastic resin composite material of the present invention is usually 70% by mass or more, preferably 80% by mass or more, more preferably 90%. It is at least 100% by mass, particularly preferably 100% by mass.
The fiber-reinforced thermoplastic resin composite material of the present invention may contain components other than the continuous reinforcing fiber (A) and the thermoplastic resin (B). Examples of these components include various additives such as a mold release agent, a flame retardant, and an antioxidant.

繊維強化熱可塑性樹脂複合材料を製造する方法は特に限定されず、例えば、熱可塑性樹脂(B)の溶融樹脂を押出機のTダイから流し、繰り出された連続強化繊維(A)と合流させ含浸させる方法、粉末樹脂を連続強化繊維(A)上に分散し加熱溶融させる方法、樹脂をフィルム化して連続強化繊維(A)と熱ラミネートする方法、樹脂を溶剤に溶解させた後に連続強化繊維(A)に含浸・乾燥させる方法などがある。   The method for producing the fiber reinforced thermoplastic resin composite material is not particularly limited. For example, the molten resin of the thermoplastic resin (B) is poured from the T-die of the extruder and joined with the drawn continuous reinforcing fiber (A). A method of dispersing the powdered resin on the continuous reinforcing fiber (A) and heating and melting, a method of forming a resin film and heat laminating with the continuous reinforcing fiber (A), a continuous reinforcing fiber after dissolving the resin in a solvent ( A) includes a method of impregnation and drying.

以下、実施例および比較例により本発明を具体的に説明する。尚、発明の効果を奏する限りにおいて、適宜実施形態を変更することが出来る。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In addition, as long as there exists an effect of invention, embodiment can be changed suitably.

[実施例1]
平織炭素繊維クロス(有沢製作所製、CFP−3113:質量200g/m2、厚み0.2mm、繊維長タテ210mm、ヨコ300mm)を、無水マレイン酸‐メタクリル酸メチル‐スチレン共重合体(電気化学工業社製「レジスファイ R‐200」(無水マレイン酸32.6質量%、メタクリル酸メチル21.5質量%、スチレン45.9質量%))25質量部とメチルエチルケトン(以下、単にMEKと表すこともある。)75質量部を含むワニスに30秒含浸させた後、100℃1時間の乾燥を行うことで溶剤を除去し、無水マレイン酸‐メタクリル酸メチル‐スチレン共重合体中に炭素繊維クロスが配されたプリプレグを得た。
このプリプレグ材を6枚準備し、これらを重ねたものを、150℃に加熱された状態の平板形状の金型を用いてプレス時間5分、成形圧力1.0MPaの条件でプレス成形を行い、連続繊維強化無水マレイン酸‐メタクリル酸メチル‐スチレン共重合体シートを得た。
得られたシートをJIS K 7074のA法に従い曲げ特性(曲げ弾性率、曲げ強度)を評価し、結果を表1に示した。
[Example 1]
Plain weave carbon fiber cloth (Arisawa Seisakusho, CFP-3113: mass 200 g / m2, thickness 0.2 mm, fiber length 210 mm, width 300 mm) and maleic anhydride-methyl methacrylate-styrene copolymer (Electrochemical Co., Ltd.) “Regisfi R-200” (32.6 mass% maleic anhydride, 21.5 mass% methyl methacrylate, 45.9 mass% styrene) and methyl ethyl ketone (hereinafter simply referred to as MEK) may be used. ) After impregnating varnish containing 75 parts by mass for 30 seconds, the solvent was removed by drying at 100 ° C for 1 hour, and carbon fiber cloth was placed in the maleic anhydride-methyl methacrylate-styrene copolymer. A prepreg was obtained.
6 sheets of this prepreg material were prepared, and a stack of these prepreg materials was subjected to press molding under the conditions of a pressing time of 5 minutes and a molding pressure of 1.0 MPa using a flat plate mold heated to 150 ° C. A continuous fiber reinforced maleic anhydride-methyl methacrylate-styrene copolymer sheet was obtained.
The obtained sheet was evaluated for bending properties (flexural modulus, bending strength) according to A method of JIS K7074. The results are shown in Table 1.

[比較例1]
平織炭素繊維クロス(有沢製作所製、CFP−3113:質量200g/m2、厚み0.2mm、繊維長タテ210mm、ヨコ300mm)を、ポリメタクリル酸メチル‐スチレン(MS)樹脂(新日鉄住金化学社製「エスチレン MS‐200」)25質量部とMEK75質量部を含むワニスに30秒含浸させた後、100℃で1時間の乾燥を行うことにより溶剤を除去し、MS樹脂中に炭素繊維クロスが配されたプリプレグを得た。
このプリプレグ材を6枚準備し、これらを重ねたものを、150℃に加熱された状態の平板形状の金型を用いてプレス時間5分、成形圧力1.0MPaの条件でプレス成形を行い、連続繊維強化MS樹脂シートを得た。
得られたシートをJIS K 7074のA法に従い曲げ特性(曲げ弾性率、曲げ強度)を評価し、結果を表1に示した。
[Comparative Example 1]
Plain woven carbon fiber cloth (Arisawa Manufacturing Co., Ltd., CFP-3113: mass 200 g / m2, thickness 0.2 mm, fiber length length 210 mm, width 300 mm) and polymethyl methacrylate-styrene (MS) resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) Estyrene MS-200 ”) After impregnating a varnish containing 25 parts by mass and 75 parts by mass of MEK for 30 seconds, the solvent was removed by drying at 100 ° C. for 1 hour, and a carbon fiber cloth was placed in the MS resin. A prepreg was obtained.
6 sheets of this prepreg material were prepared, and a stack of these prepreg materials was subjected to press molding under the conditions of a pressing time of 5 minutes and a molding pressure of 1.0 MPa using a flat plate mold heated to 150 ° C. A continuous fiber reinforced MS resin sheet was obtained.
The obtained sheet was evaluated for bending properties (flexural modulus, bending strength) according to A method of JIS K7074. The results are shown in Table 1.

[比較例2]
炭素短繊維強化ポリアミド(PA)66(東レ社製、トレカ短繊維ペレット、3101T40、繊維長1mm以下)を用いて射出成形により厚み1mm、幅15mm、長さ60mmの曲げ試験片を作成し、短繊維強化PA66樹脂シートを得た。シリンダー温度は290℃、金型温度は80℃とした。 得られたシートをJIS K 7074のA法に従い曲げ特性(曲げ弾性率、曲げ強度)を評価し、結果を表1に示した。
[Comparative Example 2]
Bending test pieces having a thickness of 1 mm, a width of 15 mm, and a length of 60 mm were prepared by injection molding using carbon short fiber reinforced polyamide (PA) 66 (Toray Industries, Torayca short fiber pellets, 3101T40, fiber length of 1 mm or less). A fiber reinforced PA66 resin sheet was obtained. The cylinder temperature was 290 ° C. and the mold temperature was 80 ° C. The obtained sheet was evaluated for bending properties (flexural modulus, bending strength) according to A method of JIS K7074. The results are shown in Table 1.

Figure 2017137368
Figure 2017137368

上記の実施例1及び比較例1、2から以下のことが言える。
CFRTPにおいてマトリックス樹脂を不飽和ジカルボン酸無水物‐メタクリル酸メチル‐スチレン共重合体にした場合、マトリックス樹脂がMS樹脂である場合と比較して、曲げ弾性率・曲げ強度が向上する(実施例1、比較例1)。これは、不飽和ジカルボン酸無水物‐メタクリル酸メチル‐スチレン共重合体に含まれるシアノ基が曲げ弾性率・曲げ強度の向上に寄与していると考えられる。
The following can be said from Example 1 and Comparative Examples 1 and 2 described above.
When the matrix resin in CFRTP is an unsaturated dicarboxylic acid anhydride-methyl methacrylate-styrene copolymer, the flexural modulus and the bending strength are improved as compared with the case where the matrix resin is an MS resin (Example 1). Comparative Example 1). This is considered that the cyano group contained in the unsaturated dicarboxylic acid anhydride-methyl methacrylate-styrene copolymer contributes to the improvement of the flexural modulus and the flexural strength.

CFRTPにおいて強化繊維を連続繊維とした場合、強化繊維が短繊維である場合と比較して、弾性率が大幅に向上する(実施例1、比較例2)。マトリックス樹脂に、複合材料の曲げ強度が高くなるPA66を使用しても、強化繊維が短繊維の場合に軽金属と同等の弾性率を得ることは困難であり、強化繊維を連続繊維とすることの重要性がわかる。   When the reinforcing fiber is a continuous fiber in CFRTP, the elastic modulus is greatly improved as compared with the case where the reinforcing fiber is a short fiber (Example 1, Comparative Example 2). Even when PA66, which has a higher bending strength of the composite material, is used as the matrix resin, it is difficult to obtain an elastic modulus equivalent to that of light metal when the reinforcing fibers are short fibers. I understand the importance.

Claims (10)

連続強化繊維(A)及び熱可塑性樹脂(B)を含有する繊維強化熱可塑性樹脂組成物であって、当該熱可塑性樹脂(B)が、不飽和ジカルボン酸無水物(c1)、芳香族系ビニルモノマー(c2)及びアクリル酸エステル(c3)の共重合体(C)を含む繊維強化熱可塑性樹脂複合材料。   A fiber reinforced thermoplastic resin composition containing a continuous reinforcing fiber (A) and a thermoplastic resin (B), wherein the thermoplastic resin (B) is an unsaturated dicarboxylic acid anhydride (c1), an aromatic vinyl A fiber-reinforced thermoplastic resin composite material comprising a copolymer (C) of a monomer (c2) and an acrylate ester (c3). 連続強化繊維(A)を1〜80質量%、及び熱可塑性樹脂(B)を20〜99質量%含有する請求項1に記載の繊維強化熱可塑性樹脂複合材料。   The fiber-reinforced thermoplastic resin composite material according to claim 1, comprising 1 to 80% by mass of the continuous reinforcing fiber (A) and 20 to 99% by mass of the thermoplastic resin (B). 前記連続強化繊維(A)の繊維長の平均が10mm以上である請求項1又は2に記載の繊維強化熱可塑性樹脂複合材料。   The fiber reinforced thermoplastic resin composite material according to claim 1 or 2, wherein an average fiber length of the continuous reinforcing fibers (A) is 10 mm or more. 前記連続強化繊維が、炭素繊維、ガラス繊維およびアラミド繊維からなる群より選択される何れかの1種以上を含有する、請求項1〜3のいずれかに記載の繊維強化熱可塑性樹脂複合材料。   The fiber-reinforced thermoplastic resin composite material according to any one of claims 1 to 3, wherein the continuous reinforcing fiber contains one or more selected from the group consisting of carbon fiber, glass fiber, and aramid fiber. 前記熱可塑性樹脂(B)における共重合体(C)の含有割合が50〜100質量%である請求項1〜4のいずれかに記載の繊維強化熱可塑性樹脂複合材料。   The fiber-reinforced thermoplastic resin composite material according to any one of claims 1 to 4, wherein a content ratio of the copolymer (C) in the thermoplastic resin (B) is 50 to 100% by mass. 前記共重合体(C)における不飽和ジカルボン酸無水物(c1)の割合が5〜60質量%、芳香族系ビニルモノマー(c2)の割合が40〜90質量%かつアクリル酸エステル(c3)の割合が5〜35質量%である請求項1〜5のいずれかに記載の繊維強化熱可塑性樹脂複合材料。   In the copolymer (C), the proportion of the unsaturated dicarboxylic acid anhydride (c1) is 5 to 60% by mass, the proportion of the aromatic vinyl monomer (c2) is 40 to 90% by mass, and the acrylic ester (c3). The fiber reinforced thermoplastic resin composite material according to any one of claims 1 to 5, wherein the ratio is 5 to 35 mass%. 前記共重合体(C)において、(c1)が無水マレイン酸、(c2)がメタクリル酸メチル、(c3)がスチレンである請求項1〜6のいずれかに記載の繊維強化熱可塑性樹脂複合材料。   In the copolymer (C), (c1) is maleic anhydride, (c2) is methyl methacrylate, and (c3) is styrene. The fiber-reinforced thermoplastic resin composite material according to any one of claims 1 to 6. . 請求項1〜7のいずれかに記載の繊維強化熱可塑性樹脂複合材料を用いた成形体。   The molded object using the fiber reinforced thermoplastic resin composite material in any one of Claims 1-7. 繊維強化熱可塑性樹脂複合材料の表面に、さらに別の透明樹脂が積層されてなることを特徴とする請求項8に記載の成形体。   The molded article according to claim 8, wherein another transparent resin is further laminated on the surface of the fiber-reinforced thermoplastic resin composite material. 曲げ強度が300MPa以上である、請求項8または9に記載の成形体。   The molded body according to claim 8 or 9, wherein the bending strength is 300 MPa or more.
JP2016016922A 2016-02-01 2016-02-01 Fiber Reinforced Thermoplastic Resin Composition Composite Material and Mold Active JP6884983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016016922A JP6884983B2 (en) 2016-02-01 2016-02-01 Fiber Reinforced Thermoplastic Resin Composition Composite Material and Mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016016922A JP6884983B2 (en) 2016-02-01 2016-02-01 Fiber Reinforced Thermoplastic Resin Composition Composite Material and Mold

Publications (2)

Publication Number Publication Date
JP2017137368A true JP2017137368A (en) 2017-08-10
JP6884983B2 JP6884983B2 (en) 2021-06-09

Family

ID=59565542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016016922A Active JP6884983B2 (en) 2016-02-01 2016-02-01 Fiber Reinforced Thermoplastic Resin Composition Composite Material and Mold

Country Status (1)

Country Link
JP (1) JP6884983B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160757A (en) * 2022-07-01 2022-10-11 中国石油化工股份有限公司 Flame-retardant glass fiber reinforced PC material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223152A (en) * 1988-03-03 1989-09-06 Asahi Chem Ind Co Ltd Glass-fiber reinforced methacrylic resin composition
JP2001003266A (en) * 1999-06-17 2001-01-09 Mitsubishi Rayon Co Ltd Sizing agent for carbon fiber, sizing of carbon fiber, sizing-treated carbon fiber, sheets from the sized carbon fiber, and fiber-reinforced composite material
JP2011001527A (en) * 2009-06-22 2011-01-06 Asahi Kasei Chemicals Corp Glass fiber-reinforced methacrylic resin composition
CN104072923A (en) * 2014-06-18 2014-10-01 金发科技股份有限公司 High-heat-resistant transparent reinforcing material as well as preparation method and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223152A (en) * 1988-03-03 1989-09-06 Asahi Chem Ind Co Ltd Glass-fiber reinforced methacrylic resin composition
JP2001003266A (en) * 1999-06-17 2001-01-09 Mitsubishi Rayon Co Ltd Sizing agent for carbon fiber, sizing of carbon fiber, sizing-treated carbon fiber, sheets from the sized carbon fiber, and fiber-reinforced composite material
JP2011001527A (en) * 2009-06-22 2011-01-06 Asahi Kasei Chemicals Corp Glass fiber-reinforced methacrylic resin composition
CN104072923A (en) * 2014-06-18 2014-10-01 金发科技股份有限公司 High-heat-resistant transparent reinforcing material as well as preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160757A (en) * 2022-07-01 2022-10-11 中国石油化工股份有限公司 Flame-retardant glass fiber reinforced PC material and preparation method thereof

Also Published As

Publication number Publication date
JP6884983B2 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
Adekunle et al. Mechanical properties of natural fiber hybrid composites based on renewable thermoset resins derived from soybean oil, for use in technical applications
TWI601771B (en) Conductive fiber reinforced polymer composite and multifunctional composite
JP6816010B2 (en) Thermoplastic composites and moldings
WO2020040287A1 (en) Carbon fiber sheet material, prepreg, molded article, carbon fiber sheet material production method, prepreg production method, and molded article production method
Jang et al. Influence of processing method on the fracture toughness of thermoplastic-modified, carbon-fiber-reinforced epoxy composites
JP7132200B2 (en) REINFORCED FIBER BUNDLE, REINFORCED FIBER SPREAD FABRIC, FIBER REINFORCED COMPOSITE, AND METHOD OF MANUFACTURING THEREOF
JP6750616B2 (en) Fiber-reinforced thermoplastic resin composition
Mourad et al. Wet lay-up technique for manufacturing of advanced laminated composites
JP2017137368A (en) Fiber-reinforced thermoplastic resin composition composite material and molding
WO2020137946A1 (en) Metal-fiber reinforced plastic composite material
Mei et al. Mechanical properties of carbon fiber reinforced bisphenol A dicyanate ester composites modified with multiwalled carbon nanotubes
WO2011148619A1 (en) Fiber-reinforced composite material
JP4863630B2 (en) Carbon fiber reinforced resin
JP2020051020A (en) Opened carbon fiber bundle, fiber-reinforced composite material, and method for producing opened carbon fiber bundle
JP2012206348A (en) Fiber-reinforced abs-based resin material and molding
JP6922154B2 (en) Fiber reinforced thermoplastic resin composite material and molded product
Cheon et al. Effect of MWCNT anchoring to the carbon fiber surface on the interlaminar property and fracture topography of carbon fabric/vinyl ester composites: comparisons between conventional and semi-spread carbon fabrics
JP3035618B2 (en) Fiber-reinforced thermoplastic resin sheet material and method for producing the same
JP2012224762A (en) Fiber-reinforced abs-based resin molding and method for producing the same
JP7193039B1 (en) Prepreg, its manufacturing method, and compact
JP7339836B2 (en) Fiber reinforced composite material and its manufacturing method
JP7360511B2 (en) Thermoplastic resin emulsion, fiber bundling composition, and resin-impregnated fibers and molded products using the same
Bayraktar et al. A new approach to fabricate carbon fiber reinforced polymer with roller pre‐stretching method and characterization of their mechanical properties
Durgun A comparative study on the mechanical properties of carbon and glass fibre-reinforced epoxy, polyester and vinyl ester-based composites
JP2004300222A (en) Vapor grown carbon fiber-containing prepreg and method for producing the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R151 Written notification of patent or utility model registration

Ref document number: 6884983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151