JP6922154B2 - Fiber reinforced thermoplastic resin composite material and molded product - Google Patents

Fiber reinforced thermoplastic resin composite material and molded product Download PDF

Info

Publication number
JP6922154B2
JP6922154B2 JP2016016921A JP2016016921A JP6922154B2 JP 6922154 B2 JP6922154 B2 JP 6922154B2 JP 2016016921 A JP2016016921 A JP 2016016921A JP 2016016921 A JP2016016921 A JP 2016016921A JP 6922154 B2 JP6922154 B2 JP 6922154B2
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
composite material
polycarbonate
reinforced thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016016921A
Other languages
Japanese (ja)
Other versions
JP2017137367A (en
Inventor
泰隆 福永
泰隆 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2016016921A priority Critical patent/JP6922154B2/en
Publication of JP2017137367A publication Critical patent/JP2017137367A/en
Application granted granted Critical
Publication of JP6922154B2 publication Critical patent/JP6922154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、航空機部材、宇宙機部材、自動車部材、船舶部材、電子機器部材およびスポーツ関連部材などに好適に用いられる繊維強化熱可塑性樹脂複合材料および成形体に関する。 The present invention relates to a fiber-reinforced thermoplastic resin composite material and a molded product that are suitably used for aircraft members, spacecraft members, automobile members, ship members, electronic device members, sports-related members, and the like.

炭素繊維・ガラス繊維・アラミド繊維は、金属と比較して低比重でありながら、弾性率および強度に優れるため、種々のマトリックス樹脂と組み合わせた複合材料は、航空機部材、宇宙機部材、自動車部材、船舶部材、土木建築材およびスポーツ用品等の多くの分野に用いられている。特に炭素繊維とエポキシ樹脂や不飽和ポリエステル樹脂を組み合わせた複合材料が広く用いられている。 Carbon fiber, glass fiber, and aramid fiber have a lower specific gravity than metal, but have excellent elastic modulus and strength. Therefore, composite materials combined with various matrix resins are used for aircraft members, spacecraft members, automobile members, and so on. It is used in many fields such as ship materials, civil engineering and building materials, and sporting goods. In particular, composite materials that combine carbon fiber with epoxy resin or unsaturated polyester resin are widely used.

従来の熱硬化性炭素繊維強化複合材料は熱硬化に多大な時間を要する欠点があったが、近年では熱可塑性樹脂をマトリックスとする炭素繊維強化複合材料(以下“CFRTP”と称する場合がある)がハイサイクル成形可能な複合材料として期待され開発がなされている。
複雑形状の成形が可能な短繊維強化熱可塑性複合材料は既に実用化されているが、強化繊維の繊維長が短いため、軽金属と比較すると著しく低弾性率になってしまう問題がある。この為、連続繊維で強化した熱可塑性樹脂組成物が強く望まれている。
Conventional thermosetting carbon fiber reinforced composite materials have a drawback that it takes a long time to heat cure, but in recent years, carbon fiber reinforced composite materials using a thermoplastic resin as a matrix (hereinafter sometimes referred to as "CFRTP"). Is expected and developed as a composite material capable of high cycle molding.
Short fiber reinforced thermoplastic composite materials capable of forming complex shapes have already been put into practical use, but there is a problem that the elastic modulus is significantly lower than that of light metals because the fiber length of the reinforced fibers is short. Therefore, a thermoplastic resin composition reinforced with continuous fibers is strongly desired.

このCFRTPに用いるマトリックス樹脂として安価な汎用プラスチック、例えばポリプロピレン(PP)、アクリロニトリルブタジエンゴムスチレン(ABS)が期待されているが、これら熱可塑性樹脂と特に炭素繊維との複合材料の機械物性、特に曲げ強度は充分と言えるものではなかった。 Inexpensive general-purpose plastics such as polypropylene (PP) and acrylonitrile butadiene rubber styrene (ABS) are expected as the matrix resin used for this CFRTP, but the mechanical properties of the composite material of these thermoplastic resins and carbon fibers in particular, particularly bending. The strength was not sufficient.

曲げ強度の改善を目的として、炭素繊維に気相酸化や液相酸化等の酸化処理を施し、炭素繊維表面に酸素含有官能基を導入し炭素繊維とマトリックス樹脂との界面密着性を向上させる提案が行われている。
例えば、特許文献1には炭素繊維に電解処理を施すことにより、界面接着性の指標である層間剪断強度を向上させる方法が提案されているが該炭素繊維で強化された熱可塑性樹脂複合材料の曲げ強度は、充分とは言えないものであった。
Proposal to improve the interfacial adhesion between carbon fiber and matrix resin by subjecting carbon fiber to oxidation treatment such as vapor phase oxidation or liquid phase oxidation for the purpose of improving bending strength and introducing oxygen-containing functional groups on the surface of the carbon fiber. Is being done.
For example, Patent Document 1 proposes a method of improving the interlayer shear strength, which is an index of interfacial adhesiveness, by subjecting carbon fibers to electrolytic treatment. The bending strength was not sufficient.

更に、炭素繊維自体の問題としては脆く、集束性および耐摩擦性に乏しいことが挙げられ、高次加工工程において毛羽や糸切れが発生しやすい。
この問題改善を目的として、特許文献2や3にあるように炭素繊維にサイジング剤を塗布する方法が提案されているがサイジング剤により、熱硬化性樹脂に対する炭素繊維の接着性は充分に付与することができるものの、依然として熱可塑性樹脂との界面接着性は低く、サイジング処理された強化繊維で強化された熱可塑性樹脂複合材料の曲げ強度は充分とは言えなかった。
Further, the problem of the carbon fiber itself is that it is brittle and has poor focusing property and abrasion resistance, and fluff and thread breakage are likely to occur in the higher processing process.
For the purpose of improving this problem, a method of applying a sizing agent to carbon fibers has been proposed as described in Patent Documents 2 and 3, but the sizing agent sufficiently imparts the adhesiveness of the carbon fibers to the thermosetting resin. However, the interfacial adhesion with the thermoplastic resin was still low, and the bending strength of the thermoplastic resin composite material reinforced with the sizing-treated reinforcing fibers was not sufficient.

上述の通り、曲げ強度を改善するためには、炭素繊維側の処理だけでは充分ではなく、十分な曲げ強度を持つ熱可塑性炭素繊維複合材料を既存技術で達成することはできなかった。 As described above, in order to improve the bending strength, the treatment on the carbon fiber side alone is not sufficient, and a thermoplastic carbon fiber composite material having sufficient bending strength cannot be achieved by the existing technology.

特開平04−361619号公報Japanese Unexamined Patent Publication No. 04-361619 米国特許第3,957,716号明細書U.S. Pat. No. 3,957,716 特公昭62−056266公報Tokukousho 62-056266 Gazette

本発明の目的は、上記の従来技術における問題点に鑑み、強化繊維と熱可塑性樹脂との界面接着性に優れ、曲げ強度や曲げ弾性率に優れた繊維強化熱可塑性樹脂複合材料を提供することである。 An object of the present invention is to provide a fiber-reinforced thermoplastic resin composite material having excellent interfacial adhesiveness between a reinforcing fiber and a thermoplastic resin and excellent bending strength and flexural modulus in view of the above-mentioned problems in the prior art. Is.

本発明者は、連続強化繊維と熱可塑性樹脂を含有する繊維強化熱可塑性樹脂複合材料において、前記熱可塑性樹脂が、特定の構造をもつポリカーボネート樹脂を含むことにより、上記の目的を達成できることを見出した。
すなわち本発明は、以下に示すものである。
The present inventor has found that in a fiber-reinforced thermoplastic resin composite material containing a continuous reinforcing fiber and a thermoplastic resin, the above-mentioned object can be achieved by including the polycarbonate resin having a specific structure in the thermoplastic resin. rice field.
That is, the present invention is as shown below.

[1] 連続強化繊維(A)及び熱可塑性樹脂(B)を含有する繊維強化熱可塑性樹複合材料であって、当該熱可塑性樹脂(B)が、下記式[1]で表される構成単位を含むポリカーボネート(C)を含むことを特徴とする、繊維強化熱可塑性樹脂複合材料。

Figure 0006922154
(式[1]中、Rは単結合、炭素原子数1〜6のアルキレン基、炭素原子数6〜10のア
リーレン基、または炭素原子数3〜8の環状アルキレン基を表し、X及びYはそれぞれ独
立に炭素原子数1〜6のアルキル基を表す。) [1] A fiber-reinforced thermoplastic tree composite material containing a continuous reinforcing fiber (A) and a thermoplastic resin (B), wherein the thermoplastic resin (B) is a structural unit represented by the following formula [1]. A fiber-reinforced thermoplastic resin composite material, which comprises a polycarbonate (C) containing.
Figure 0006922154
(In the formula [1], R represents a single bond, an alkylene group having 1 to 6 carbon atoms, an arylene group having 6 to 10 carbon atoms, or a cyclic alkylene group having 3 to 8 carbon atoms, and X and Y are. Each independently represents an alkyl group having 1 to 6 carbon atoms.)

[2] 前記連続強化繊維(A)を1〜80質量%、及び前記熱可塑性樹脂(B)を20〜99質量%含有する[1]に記載の繊維強化熱可塑性樹脂複合材料。 [2] The fiber-reinforced thermoplastic resin composite material according to [1], which contains 1 to 80% by mass of the continuous reinforcing fiber (A) and 20 to 99% by mass of the thermoplastic resin (B).

[3] 前記連続強化繊維(A)の繊維長の平均が10mm以上である[1]又は[2]に記載の繊維強化熱可塑性樹脂複合材料。 [3] The fiber-reinforced thermoplastic resin composite material according to [1] or [2], wherein the average fiber length of the continuous reinforcing fibers (A) is 10 mm or more.

[4] 前記連続強化繊維(A)が、炭素繊維、ガラス繊維およびアラミド繊維からなる群より選択される何れかの1種以上を含有する、[1]〜[3]のいずれかに記載の繊維強化熱可塑性樹脂複合材料。 [4] The method according to any one of [1] to [3], wherein the continuous reinforcing fiber (A) contains at least one selected from the group consisting of carbon fiber, glass fiber and aramid fiber. Fiber reinforced thermoplastic resin composite material.

[5] 前記熱可塑性樹脂(B)中におけるポリカーボネート(C)の含有割合が50〜100質量%である[1]〜[4]のいずれかに記載の繊維強化熱可塑性樹脂複合材料。 [5] The fiber-reinforced thermoplastic resin composite material according to any one of [1] to [4], wherein the content ratio of the polycarbonate (C) in the thermoplastic resin (B) is 50 to 100% by mass.

[6] 前記ポリカーボネート(C)が、下記式[2]で表される構成単位20〜100質量%と、下記式[3]で表される構成単位80〜0質量%を含むポリカーボネート単一重合体もしくは共重合体である、[1]〜[6]のいずれかに記載の繊維強化熱可塑性樹脂複合材料。

Figure 0006922154
Figure 0006922154
[6] The polycarbonate (C) is a polycarbonate copolymer containing 20 to 100% by mass of a structural unit represented by the following formula [2] and 80 to 0% by mass of a structural unit represented by the following formula [3]. Alternatively, the fiber-reinforced thermoplastic resin composite material according to any one of [1] to [6], which is a copolymer.
Figure 0006922154
Figure 0006922154

[7] [1]〜[6]のいずれかに記載の繊維強化熱可塑性樹脂複合材料を用いた成形体。 [7] A molded product using the fiber-reinforced thermoplastic resin composite material according to any one of [1] to [6].

[8] 繊維強化熱可塑性樹脂複合材料の表面に、さらに別の透明樹脂が積層されてなることを特徴とする[7]に記載の成形体。 [8] The molded product according to [7], wherein another transparent resin is laminated on the surface of the fiber-reinforced thermoplastic resin composite material.

[9] 最大曲げ強度が300MPa以上である、[7]または[8]に記載の成形体。 [9] The molded product according to [7] or [8], which has a maximum bending strength of 300 MPa or more.

特定の構造をもつポリカーボネートと連続強化繊維により、機械的強度の優れた繊維強化熱可塑性樹脂複合材料が得られる。 A fiber-reinforced thermoplastic resin composite material having excellent mechanical strength can be obtained by using polycarbonate having a specific structure and continuously reinforcing fibers.

本発明の繊維強化熱可塑性樹脂複合材料は、連続強化繊維と熱可塑性樹脂を含有する繊維強化熱可塑性樹脂複合材料であり、前記熱可塑性樹脂が、特定の構造をもつポリカーボネート樹脂を含むことを特徴とする。 The fiber-reinforced thermoplastic resin composite material of the present invention is a fiber-reinforced thermoplastic resin composite material containing continuous reinforcing fibers and a thermoplastic resin, and the thermoplastic resin is characterized by containing a polycarbonate resin having a specific structure. And.

<連続強化繊維(A)>
本発明で使用される、連続強化繊維(A)は、ガラス繊維、炭素繊維又はアラミド繊維であり、弾性率の点から炭素繊維が好ましい。
連続強化繊維(A)の繊維長は平均10mm以上であることが好ましい。
また、連続強化繊維の形態としては、一方向シート、織物シート、多軸積層シート等が挙げられ、具体例としては以下に示されるが、本発明を限定するものではない。
<Continuous reinforcement fiber (A)>
The continuous reinforcing fiber (A) used in the present invention is a glass fiber, a carbon fiber or an aramid fiber, and the carbon fiber is preferable from the viewpoint of elastic modulus.
The fiber length of the continuous reinforcing fiber (A) is preferably 10 mm or more on average.
Further, examples of the form of the continuous reinforcing fiber include a unidirectional sheet, a woven sheet, a multi-axis laminated sheet and the like, and specific examples thereof are shown below, but the present invention is not limited.

ガラス繊維:(日東紡績株式会社製)WF 350 100 BS6
アラミド繊維:(帝人株式会社製)トワロン
炭素繊維:(株式会社有沢製作所製)CFP3113
Glass fiber: (manufactured by Nitto Boseki Co., Ltd.) WF 350 100 BS6
Aramid fiber: (Made by Teijin Limited) Twaron Carbon fiber: (Made by Arisawa Mfg. Co., Ltd.) CFP3113

本発明の繊維強化熱可塑性樹脂複合材料中の連続強化繊維(A)の割合は、1〜80質量%であり、繊維強化熱可塑性樹脂複合材料の機械的特性の観点から好ましくは50〜75質量%である。 The ratio of the continuously reinforced fiber (A) in the fiber-reinforced thermoplastic resin composite material of the present invention is 1 to 80% by mass, and is preferably 50 to 75% by mass from the viewpoint of the mechanical properties of the fiber-reinforced thermoplastic resin composite material. %.

<熱可塑性樹脂(B)>
本発明に用いられる熱可塑性樹脂(B)に含まれるポリカーボネート(C)は、下記式[1]で表される構成単位を含むポリカーボネートであり、式[1]で表される構成単位を含むポリカーボネートであれば、単一重合体、共重合体の何れも使用可能である。

Figure 0006922154
式[1]中、Rは単結合、炭素原子数1〜6のアルキレン基、炭素原子数6〜10のアリーレン基、または炭素原子数3〜8の環状アルキレン基を表し、X及びYはそれぞれ独立に炭素原子数1〜6のアルキル基を表す。好ましいRは、イソプロピリデン基であり、好ましいX及びYは、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert-ブチル基、n−ペンチル基、sec−ペンチル基、n−ヘキシル基であり、特に好ましくは、メチル基、エチル基、sec−ブチル基である。 <Thermoplastic resin (B)>
The polycarbonate (C) contained in the thermoplastic resin (B) used in the present invention is a polycarbonate containing a structural unit represented by the following formula [1], and is a polycarbonate containing a structural unit represented by the formula [1]. If so, either a monopolymer or a copolymer can be used.
Figure 0006922154
In the formula [1], R represents a single bond, an alkylene group having 1 to 6 carbon atoms, an arylene group having 6 to 10 carbon atoms, or a cyclic alkylene group having 3 to 8 carbon atoms, and X and Y represent, respectively. It independently represents an alkyl group having 1 to 6 carbon atoms. Preferred R is an isopropylidene group, and preferred X and Y are methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-. It is a pentyl group, a sec-pentyl group, or an n-hexyl group, and a methyl group, an ethyl group, or a sec-butyl group is particularly preferable.

本発明では、前記ポリカーボネート(C)が上記式[1]で表される構成単位を20〜100質量%含むことが好ましく、40〜100質量%含むことがより好ましく、60〜100質量%含むことが特に好ましい。前記ポリカーボネート(C)が共重合体の場合には、本発明の効果を損なわない範囲で、上記式[1]で表される構成単位以外の構成単位が含まれていてもよい。 In the present invention, the polycarbonate (C) preferably contains 20 to 100% by mass, more preferably 40 to 100% by mass, and 60 to 100% by mass of the structural unit represented by the above formula [1]. Is particularly preferable. When the polycarbonate (C) is a copolymer, a structural unit other than the structural unit represented by the above formula [1] may be contained as long as the effect of the present invention is not impaired.

また、本発明では、前記ポリカーボネート(C)が下記式[2]

Figure 0006922154
で表される構成単位20〜100質量%と、下記式[3]
Figure 0006922154
で表される構成単位80〜0質量%を含むポリカーボネート単一重合体もしくは共重合体
であることが好ましい。更に、上記式[2]で表される構成単位が40〜100質量%で
あることがより好ましく、上記式[2]で表される構成単位が60〜100質量%である
ことが特に好ましい。 Further, in the present invention, the polycarbonate (C) is represented by the following formula [2].
Figure 0006922154
20 to 100% by mass of the structural unit represented by, and the following formula [3]
Figure 0006922154
It is preferably a polycarbonate monopolymer or copolymer containing 80 to 0% by mass of the structural unit represented by. Further, the structural unit represented by the above formula [2] is more preferably 40 to 100% by mass, and the structural unit represented by the above formula [2] is particularly preferably 60 to 100% by mass.

本発明で特に好ましく用いられるポリカーボネート(C)を構成するモノマーの具体例としては、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−エチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−sec−ブチルフェニル)プロパン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロヘキサンなどが挙げられるが、これらに限定されるものではない。 Specific examples of the monomer constituting the polycarbonate (C) that is particularly preferably used in the present invention include 2,2-bis (4-hydroxy-3-methylphenyl) propane and 2,2-bis (4-hydroxy-3-3). Ethylphenyl) propane, 2,2-bis (4-hydroxy-3-sec-butylphenyl) propane, 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane and the like can be mentioned, but are limited thereto. It's not something.

本発明で用いる熱可塑性樹脂(B)中のポリカーボネート(C)の割合は、50〜1000質量%が好ましく、より好ましくは80〜100質量%であり、特に好ましくは100質量%である。このような割合とすることで得られる繊維強化熱可塑性樹脂複合材料は機械的強度を有するものとなる。
熱可塑性樹脂(B)には発明の効果を奏する限りにおいて前記ポリカーボネート(C)以外の成分を含んでいてもよく、その他の樹脂及び、離型剤、難燃剤、酸化防止剤などの各種添加剤を配合することができる。
例えば耐熱性や耐薬性などの改善を目的としたエンジニアリングプラスチックやスーパーエンジニアリングプラスチックなど(ポリアミド、ポリエステルなど)を加えてアロイとして用いることが出来る。
これらの成分の熱可塑性樹脂(B)100質量%中の割合は0〜50質量%であり、0〜20質量%のものが安価な繊維強化熱可塑性樹脂複合材料が得られるため好ましい。
The proportion of the polycarbonate (C) in the thermoplastic resin (B) used in the present invention is preferably 50 to 1000% by mass, more preferably 80 to 100% by mass, and particularly preferably 100% by mass. The fiber-reinforced thermoplastic resin composite material obtained by such a ratio has mechanical strength.
The thermoplastic resin (B) may contain components other than the polycarbonate (C) as long as the effects of the invention are exhibited, and other resins and various additives such as mold release agents, flame retardants, and antioxidants. Can be blended.
For example, engineering plastics and super engineering plastics (polyamide, polyester, etc.) for the purpose of improving heat resistance and chemical resistance can be added and used as an alloy.
The ratio of these components in 100% by mass of the thermoplastic resin (B) is 0 to 50% by mass, and those having 0 to 20% by mass are preferable because an inexpensive fiber-reinforced thermoplastic resin composite material can be obtained.

<繊維強化熱可塑性樹脂複合材料>
本発明の繊維強化熱可塑性樹脂複合材料中の連続強化繊維(A)と熱可塑性樹脂(B)の割合は、通常、連続強化繊維(A)1〜80質量%、熱可塑性樹脂(B)20〜99質量%であり、繊維強化熱可塑性樹脂複合材料の機械的特性の観点から、好ましくは、連続強化繊維(A)50〜75質量%、熱可塑性樹脂(B)25〜50質量%である。
この範囲よりも強化繊維の割合が少ない場合、繊維強化熱可塑性樹脂組成物の機械的特性は軽金属と同等以下となってしまい、強化繊維割合がこの範囲よりも多い場合では、樹脂量が少なく、マトリックス樹脂による強化繊維の集束作用が機能せず、機械的強度が低下する。
本発明の繊維強化熱可塑性樹脂複合材料中の連続強化繊維(A)と熱可塑性樹脂(B)の合計割合は、通常、70質量%以上であり、好ましくは80質量%以上、より好ましくは90質量%以上、特に好ましくは100質量%である。
本発明の繊維強化熱可塑性樹脂複合材料は連続強化繊維(A)と熱可塑性樹脂(B)以外の成分を含んでいても良い。これらの成分としては、離型剤、難燃剤、酸化防止剤などの各種添加剤が挙げられる。
<Fiber-reinforced thermoplastic resin composite material>
The ratio of the continuous reinforcing fiber (A) to the thermoplastic resin (B) in the fiber-reinforced thermoplastic resin composite material of the present invention is usually 1 to 80% by mass of the continuous reinforcing fiber (A), and the thermoplastic resin (B) 20. It is ~ 99% by mass, and is preferably 50 to 75% by mass of the continuous reinforcing fiber (A) and 25 to 50% by mass of the thermoplastic resin (B) from the viewpoint of the mechanical properties of the fiber-reinforced thermoplastic resin composite material. ..
If the proportion of reinforcing fibers is less than this range, the mechanical properties of the fiber-reinforced thermoplastic resin composition will be equal to or less than that of light metals, and if the proportion of reinforcing fibers is more than this range, the amount of resin will be small. The focusing action of the reinforcing fibers by the matrix resin does not work, and the mechanical strength is reduced.
The total ratio of the continuously reinforced fibers (A) and the thermoplastic resin (B) in the fiber-reinforced thermoplastic resin composite material of the present invention is usually 70% by mass or more, preferably 80% by mass or more, more preferably 90. It is 100% by mass or more, particularly preferably 100% by mass.
The fiber-reinforced thermoplastic resin composite material of the present invention may contain components other than the continuous reinforcing fiber (A) and the thermoplastic resin (B). Examples of these components include various additives such as mold release agents, flame retardants, and antioxidants.

繊維強化熱可塑性樹脂複合材料を製造する方法は特に限定されず、例えば、熱可塑性樹脂(B)の溶融樹脂を押出機のTダイから流し、繰り出された連続強化繊維(A)と合流させ含浸させる方法、粉末樹脂を連続強化繊維(A)上に分散し加熱溶融させる方法、樹脂をフィルム化して連続強化繊維(A)と熱ラミネートする方法、樹脂を溶剤に溶解させた後に連続強化繊維(A)に含浸・乾燥させる方法などがある。 The method for producing the fiber-reinforced thermoplastic resin composite material is not particularly limited. For example, the molten resin of the thermoplastic resin (B) is poured from the T-die of the extruder and merged with the fed-out continuous reinforcing fiber (A) to be impregnated. A method of dispersing the powdered resin on the continuous reinforcing fiber (A) and melting it by heating, a method of forming a film of the resin and heat-laminating it with the continuous reinforcing fiber (A), and a method of dissolving the resin in a solvent and then continuously reinforcing the fiber ( There is a method of impregnating and drying A).

以下、実施例および比較例により本発明を具体的に説明する。尚、発明の効果を奏する限りにおいて、適宜実施形態を変更することが出来る。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The embodiments can be changed as appropriate as long as the effects of the invention are exhibited.

[合成例1]
2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン/2,2−ビス(4−ヒドロキシフェニル)プロパン=6/4共重合ポリカーボネートの合成。
9.0w/w%の水酸化ナトリウム水溶液54.5Lに、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン(本州化学工業株式会社製)6174.7g(24.12mol)と2,2−ビス(4−ヒドロキシフェニル)プロパン(新日鐵化学株式会社製)4086g(17.98mol)、トリエチルベンジルアンモニウムクロライド3.8g、及びハイドロサルファイト50.0gを溶解した。
これにメチレンクロライド24Lを加えて撹拌しつつ、15℃に保ちながら、引き続き、ホスゲン5390gを40分間で吹き込んだ。
ホスゲンの吹き込み終了後、p−t−ブチルフェノール210gを加え、激しく撹拌して、反応液を乳化させ、乳化後、110mlのトリエチルアミンを加え、温度20〜25℃にて約1時間撹拌し、重合させた。
[Synthesis Example 1]
Synthesis of 2,2-bis (4-hydroxy-3-methylphenyl) propane / 2,2-bis (4-hydroxyphenyl) propane = 6/4 copolymerized polycarbonate.
2,2-Bis (4-hydroxy-3-methylphenyl) propane (manufactured by Honshu Chemical Industry Co., Ltd.) 6174.7 g (24.12 mol) and 2 in 54.5 L of 9.0 w / w% aqueous sodium hydroxide solution. , 2-Bis (4-hydroxyphenyl) propane (manufactured by Nippon Steel Chemical Co., Ltd.) 4086 g (17.98 mol), 3.8 g of triethylbenzylammonium chloride, and 50.0 g of hydrosulfite were dissolved.
To this, 24 L of methylene chloride was added, and while stirring, 5390 g of phosgene was continuously blown in for 40 minutes while keeping the temperature at 15 ° C.
After the blowing of phosgene is completed, 210 g of pt-butylphenol is added and stirred vigorously to emulsify the reaction solution. After emulsification, 110 ml of triethylamine is added, and the mixture is stirred at a temperature of 20 to 25 ° C. for about 1 hour to polymerize. rice field.

重合終了後、反応液を水相と有機相に分離し、有機相をリン酸で中和した。洗浄水の導電率が10μS/cm以下になるまで有機相の水洗を繰り返した。得られた有機相を、62℃に保った温水に滴下し、溶媒を蒸発除去して白色粉末状沈殿物を得た。得られた沈殿物を濾過し、温度120℃、24時間乾燥して、目的のポリカーボネート重合体粉末を得た。得られたポリカーボネート樹脂(C1)の重量平均分子量は31,000であった。 After completion of the polymerization, the reaction solution was separated into an aqueous phase and an organic phase, and the organic phase was neutralized with phosphoric acid. The organic phase was washed with water until the conductivity of the washing water became 10 μS / cm or less. The obtained organic phase was added dropwise to warm water maintained at 62 ° C., and the solvent was evaporated and removed to obtain a white powdery precipitate. The obtained precipitate was filtered and dried at a temperature of 120 ° C. for 24 hours to obtain the desired polycarbonate polymer powder. The weight average molecular weight of the obtained polycarbonate resin (C1) was 31,000.

[実施例1]
平織炭素繊維クロス(有沢製作所製、CFP−3113:質量200g/m2、厚み0.2mm、繊維長タテ210mm、ヨコ300mm)を、合成例1で合成したポリカーボネート樹脂(C1)25質量部とメチルエチルケトン(以下、単にMEKと表すこともある。)75質量部を含むワニスに30秒含浸させた後、100℃1時間の乾燥を行うことで溶剤を除去し、ポリカーボネート樹脂(C1)中に炭素繊維クロスが配されたプリプレグを得た。
このプリプレグ材を6枚準備し、これらを重ねたものを、150℃に加熱された状態の平板形状の金型を用いてプレス時間5分、成形圧力1.0MPaの条件でプレス成形を行い、連続繊維強化ポリカーボネート樹脂シートを得た。
得られたシートをJIS K 7074のA法に従い曲げ特性(曲げ弾性率、曲げ強度)を評価し、結果を表1に示した。
[Example 1]
25 parts by mass of polycarbonate resin (C1) and methyl ethyl ketone (C1) synthesized from plain weave carbon fiber cloth (manufactured by Arisawa Seisakusho, CFP-3113: mass 200 g / m2, thickness 0.2 mm, fiber length 210 mm, horizontal 300 mm) in Synthesis Example 1 Hereinafter, it may be simply referred to as MEK.) After impregnating a varnish containing 75 parts by mass for 30 seconds, the solvent is removed by drying at 100 ° C. for 1 hour, and the carbon fiber cloth is contained in the polycarbonate resin (C1). Obtained a prepreg with.
Six pieces of this prepreg material were prepared, and the stacked pieces were press-molded using a flat plate-shaped mold heated to 150 ° C. under the conditions of a press time of 5 minutes and a molding pressure of 1.0 MPa. A continuous fiber reinforced polycarbonate resin sheet was obtained.
The obtained sheet was evaluated for bending characteristics (bending elastic modulus, bending strength) according to the method A of JIS K 7074, and the results are shown in Table 1.

[比較例1]
平織炭素繊維クロス(有沢製作所製、CFP−3113:質量200g/m2、厚み0.2mm、繊維長タテ210mm、ヨコ300mm)を、ポリメタクリル酸メチル‐スチレン(MS)樹脂(新日鉄住金化学社製「エスチレン MS‐200」)25質量部とMEK75質量部を含むワニスに30秒含浸させた後、100℃で1時間の乾燥を行うことにより溶剤を除去し、MS樹脂中に炭素繊維クロスが配されたプリプレグを得た。
このプリプレグ材を6枚準備し、これらを重ねたものを、150℃に加熱された状態の平板形状の金型を用いてプレス時間5分、成形圧力1.0MPaの条件でプレス成形を行い、連続繊維強化MS樹脂シートを得た。
得られたシートをJIS K 7074のA法に従い曲げ特性(曲げ弾性率、曲げ強度)を評価し、結果を表1に示した。
[Comparative Example 1]
Plain woven carbon fiber cloth (manufactured by Arisawa Seisakusho, CFP-3113: mass 200 g / m2, thickness 0.2 mm, fiber length 210 mm, horizontal 300 mm) is made of polymethylmethacrylate-styrene (MS) resin (manufactured by Nippon Steel & Sumitomo Metal Chemical Corporation). Estyrene MS-200 ") After impregnating a varnish containing 25 parts by mass and 75 parts by mass of MEK for 30 seconds, the solvent was removed by drying at 100 ° C. for 1 hour, and carbon fiber cloth was arranged in the MS resin. I got a prepreg.
Six pieces of this prepreg material were prepared, and the stacked pieces were press-molded using a flat plate-shaped mold heated to 150 ° C. under the conditions of a press time of 5 minutes and a molding pressure of 1.0 MPa. A continuous fiber reinforced MS resin sheet was obtained.
The obtained sheet was evaluated for bending characteristics (bending elastic modulus, bending strength) according to the method A of JIS K 7074, and the results are shown in Table 1.

[比較例2]
炭素短繊維強化ポリアミド(PA)66(東レ社製、トレカ短繊維ペレット、3101T40、繊維長1mm以下)を用いて射出成形により厚み1mm、幅15mm、長さ60mmの曲げ試験片を作成し、短繊維強化PA66樹脂シートを得た。シリンダー温度は290℃、金型温度は80℃とした。得られたシートをJIS K 7074のA法に従い曲げ特性(曲げ弾性率、曲げ強度)を評価し、結果を表1に示した。
[Comparative Example 2]
A bending test piece having a thickness of 1 mm, a width of 15 mm, and a length of 60 mm was prepared by injection molding using carbon short fiber reinforced polyamide (PA) 66 (manufactured by Toray Co., Ltd., Treca short fiber pellet, 3101T40, fiber length of 1 mm or less). A fiber-reinforced PA66 resin sheet was obtained. The cylinder temperature was 290 ° C. and the mold temperature was 80 ° C. The obtained sheet was evaluated for bending characteristics (bending elastic modulus, bending strength) according to the method A of JIS K 7074, and the results are shown in Table 1.

Figure 0006922154
Figure 0006922154

上記の実施例1及び比較例1、2から以下のことが言える。
CFRTPにおいてマトリックス樹脂をポリカーボネート樹脂(C1)にした場合、マトリックス樹脂がMS樹脂である場合と比較して、曲げ弾性率・曲げ強度が向上する(実施例1、比較例1)。これは、式[1]で表される構造単位が曲げ弾性率・曲げ強度の向上に寄与していると考えられる。
The following can be said from the above-mentioned Example 1 and Comparative Examples 1 and 2.
When the matrix resin is a polycarbonate resin (C1) in CFRTP, the flexural modulus and bending strength are improved as compared with the case where the matrix resin is an MS resin (Example 1, Comparative Example 1). It is considered that the structural unit represented by the formula [1] contributes to the improvement of the flexural modulus and the bending strength.

CFRTPにおいて強化繊維を連続繊維とした場合、強化繊維が短繊維である場合と比較して、弾性率が大幅に向上する(実施例1、比較例2)。マトリックス樹脂に、複合材料の曲げ強度が高くなるPA66を使用しても、強化繊維が短繊維の場合に軽金属と同等の弾性率を得ることは困難であり、強化繊維を連続繊維とすることの重要性がわかる。 When the reinforcing fiber is a continuous fiber in CFRTP, the elastic modulus is significantly improved as compared with the case where the reinforcing fiber is a short fiber (Example 1, Comparative Example 2). Even if PA66, which increases the bending strength of the composite material, is used as the matrix resin, it is difficult to obtain an elastic modulus equivalent to that of a light metal when the reinforcing fiber is a short fiber. I understand the importance.

Claims (10)

連続強化繊維(A)及び熱可塑性樹脂(B)を含有する繊維強化熱可塑性樹複合材料であって、当該熱可塑性樹脂(B)が、下記式[1]で表される構成単位を含むポリカーボネート(C)を含み、
前記連続強化繊維(A)を1〜80質量%、及び前記熱可塑性樹脂(B)を20〜99質量%含有し、
前記ポリカーボネート(C)が、20質量%以上の下記式[2]で表される構成単位と80質量%以下の下記式[3]で表される構成単位を含むポリカーボネート共重合体であって、少なくとも2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン/2,2−ビス(4−ヒドロキシフェニル)プロパン=6/4の共重合ポリカーボネートを含み、
前記熱可塑性樹脂(B)中におけるポリカーボネート(C)の含有割合が80〜100質量%である、ことを特徴とする、繊維強化熱可塑性樹脂複合材料。
Figure 0006922154

(式[1]中、Rは単結合、炭素原子数1〜6のアルキレン基、炭素原子数6〜10のアリーレン基、または炭素原子数3〜8の環状アルキレン基を表し、X及びYはそれぞれ独立に炭素原子数1〜6のアルキル基を表す。)
Figure 0006922154

Figure 0006922154
A fiber-reinforced thermoplastic tree composite material containing a continuous reinforcing fiber (A) and a thermoplastic resin (B), wherein the thermoplastic resin (B) is a polycarbonate containing a structural unit represented by the following formula [1]. Including (C)
The continuous reinforcing fiber (A) is contained in an amount of 1 to 80% by mass, and the thermoplastic resin (B) is contained in an amount of 20 to 99% by mass.
The polycarbonate (C) is 20 mass% or more of the following formula and represented by structure unit of [2], polycarbonate copolymer comprising a structure unit of which is represented by 80 wt% or less of the following formula [3] It contains at least 2,2-bis (4-hydroxy-3-methylphenyl) propane / 2,2-bis (4-hydroxyphenyl) propane = 6/4 copolymerized polycarbonate.
A fiber-reinforced thermoplastic resin composite material, wherein the content ratio of the polycarbonate (C) in the thermoplastic resin (B) is 80 to 100% by mass.
Figure 0006922154

(In the formula [1], R represents a single bond, an alkylene group having 1 to 6 carbon atoms, an arylene group having 6 to 10 carbon atoms, or a cyclic alkylene group having 3 to 8 carbon atoms, and X and Y represent. Each independently represents an alkyl group having 1 to 6 carbon atoms.)
Figure 0006922154

Figure 0006922154
前記連続強化繊維(A)を50〜75質量%、及び前記熱可塑性樹脂(B)を25〜50質量%含有する請求項1に記載の繊維強化熱可塑性樹脂複合材料。 The fiber-reinforced thermoplastic resin composite material according to claim 1, which contains 50 to 75% by mass of the continuous reinforcing fiber (A) and 25 to 50% by mass of the thermoplastic resin (B). 前記連続強化繊維(A)の繊維長の平均が10mm以上である請求項1又は2に記載の繊維強化熱可塑性樹脂複合材料。 The fiber-reinforced thermoplastic resin composite material according to claim 1 or 2, wherein the average fiber length of the continuous reinforcing fibers (A) is 10 mm or more. 前記連続強化繊維(A)が、炭素繊維、ガラス繊維およびアラミド繊維からなる群より選択される何れかの1種以上を含有する、請求項1〜3のいずれかに記載の繊維強化熱可塑性樹脂複合材料。 The fiber-reinforced thermoplastic resin according to any one of claims 1 to 3, wherein the continuous reinforcing fiber (A) contains at least one selected from the group consisting of carbon fiber, glass fiber and aramid fiber. Composite material. 前記熱可塑性樹脂(B)が、重量平均分子量が31,000であるポリカーボネート(C)を含む、請求項1〜4のいずれかに記載の繊維強化熱可塑性樹脂複合材料。 The fiber-reinforced thermoplastic resin composite material according to any one of claims 1 to 4, wherein the thermoplastic resin (B) contains a polycarbonate (C) having a weight average molecular weight of 31,000. 前記熱可塑性樹脂(B)中におけるポリカーボネート(C)の含有割合が100質量%である請求項1〜5のいずれかに記載の繊維強化熱可塑性樹脂複合材料。 The fiber-reinforced thermoplastic resin composite material according to any one of claims 1 to 5, wherein the content ratio of the polycarbonate (C) in the thermoplastic resin (B) is 100% by mass. 前記ポリカーボネート(C)が、40質量%以上の前記式[2]で表される構成単位を含むポリカーボネート共重合体である、請求項1〜6のいずれかに記載の繊維強化熱可塑性樹脂複合材料。 The polycarbonate (C) is a polycarbonate copolymer containing a constitutional unit of which is represented by 40 wt% or more of the above formula [2], fiber-reinforced thermoplastic resin composite according to claim 1 material. 請求項1〜7のいずれかに記載の繊維強化熱可塑性樹脂複合材料を用いた成形体。 A molded product using the fiber-reinforced thermoplastic resin composite material according to any one of claims 1 to 7. 繊維強化熱可塑性樹脂複合材料の表面に、さらに別の透明樹脂が積層されてなることを特徴とする請求項8に記載の成形体。 The molded product according to claim 8, wherein another transparent resin is laminated on the surface of the fiber-reinforced thermoplastic resin composite material. 曲げ強度が300MPa以上である、請求項8または9に記載の成形体。 The molded product according to claim 8 or 9, wherein the bending strength is 300 MPa or more.
JP2016016921A 2016-02-01 2016-02-01 Fiber reinforced thermoplastic resin composite material and molded product Active JP6922154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016016921A JP6922154B2 (en) 2016-02-01 2016-02-01 Fiber reinforced thermoplastic resin composite material and molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016016921A JP6922154B2 (en) 2016-02-01 2016-02-01 Fiber reinforced thermoplastic resin composite material and molded product

Publications (2)

Publication Number Publication Date
JP2017137367A JP2017137367A (en) 2017-08-10
JP6922154B2 true JP6922154B2 (en) 2021-08-18

Family

ID=59566615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016016921A Active JP6922154B2 (en) 2016-02-01 2016-02-01 Fiber reinforced thermoplastic resin composite material and molded product

Country Status (1)

Country Link
JP (1) JP6922154B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0416474A (en) * 2003-11-14 2007-03-06 Basf Ag use of a compound, composition, and compounds
TWI598392B (en) * 2012-09-21 2017-09-11 Mitsubishi Gas Chemical Co Synthetic resin laminate
JP2014091825A (en) * 2012-11-07 2014-05-19 Mitsubishi Rayon Co Ltd Prepreg, and composite material
JP6424455B2 (en) * 2014-04-13 2018-11-21 三菱瓦斯化学株式会社 Method for producing continuous fiber reinforced thermoplastic resin
JP6284836B2 (en) * 2014-06-26 2018-02-28 三菱エンジニアリングプラスチックス株式会社 Carbon fiber reinforced composite molded body and method for producing the same

Also Published As

Publication number Publication date
JP2017137367A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
JP7175342B2 (en) Polyamide particles, method for producing the same, resin composition and molded article
KR101642616B1 (en) Fiber-reinforced resin composite material and process for producing same
CN107075142B (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
JP2016166364A (en) Benzoxazine resins
RU2690115C1 (en) Prepreg with resin compositions having different curing rates
US10370509B2 (en) Fiber-reinforced resin, process for producing same, and molded article
EP3024649B1 (en) Improvements in or relating to fibre reinforced composites
US20230017814A1 (en) Carbon fiber bundle, prepreg, and fiber-reinforced composite material
Jang et al. Influence of processing method on the fracture toughness of thermoplastic-modified, carbon-fiber-reinforced epoxy composites
EP1582553B1 (en) Method for producing fiber-reinforced thermoplastic plastic and fiber-reinforced thermoplastic plastic
CN109161194A (en) A kind of fishing rod high-strength tenacity composite material
JP6922154B2 (en) Fiber reinforced thermoplastic resin composite material and molded product
JP6750616B2 (en) Fiber-reinforced thermoplastic resin composition
JP6884983B2 (en) Fiber Reinforced Thermoplastic Resin Composition Composite Material and Mold
WO2018216517A1 (en) Sheet formed from carbon fiber reinforced thermoplastic resin, and production method of said sheet
JP2016216565A (en) Continuous fiber-reinforced polycarbonate resin prepreg
JP6493633B1 (en) Thermosetting resin composition for fiber reinforced composite material, preform, fiber reinforced composite material and method for producing fiber reinforced composite material
KR20200078474A (en) Prepreg, fiber reinforced composite material and molded body
JP3935531B2 (en) Intermediate for molding composite materials
Park et al. Matrices for Carbon Fiber Composites
JP2017203142A (en) Epoxy resin composition, prepreg, fiber-reinforced composite material, and method for producing the same
Park et al. Matrices for Carbon Fiber Composites
JPH04146930A (en) Composite resin/sheet laminate
JP2013199613A (en) Fiber-reinforced composite material and production method thereof
JPH05228928A (en) Thermoplastic composite material precursor and thermoplastic composite material

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R151 Written notification of patent or utility model registration

Ref document number: 6922154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151