JP2017133385A - 回転機械 - Google Patents

回転機械 Download PDF

Info

Publication number
JP2017133385A
JP2017133385A JP2016012222A JP2016012222A JP2017133385A JP 2017133385 A JP2017133385 A JP 2017133385A JP 2016012222 A JP2016012222 A JP 2016012222A JP 2016012222 A JP2016012222 A JP 2016012222A JP 2017133385 A JP2017133385 A JP 2017133385A
Authority
JP
Japan
Prior art keywords
rotor shaft
annular
stationary
annular region
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016012222A
Other languages
English (en)
Other versions
JP6763538B2 (ja
Inventor
倫平 川下
Rinhei Kawashita
倫平 川下
健一 藤川
Kenichi Fujikawa
健一 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2016012222A priority Critical patent/JP6763538B2/ja
Publication of JP2017133385A publication Critical patent/JP2017133385A/ja
Application granted granted Critical
Publication of JP6763538B2 publication Critical patent/JP6763538B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

【課題】静止部と回転部との隙間における流体の流れの旋回成分が抑制され、回転部の振動が抑制される回転機械を提供する。
【解決手段】回転機械は、静止部の一部分と回転部の一部分との隙間を複数の環状領域に区画する複数のシールフィンであって、回転部の一部分又は静止部の一部分とシール隙間を存して対向する内周縁又は外周縁をそれぞれ有する複数のシールフィンと、少なくとも1つの環状領域と静止部の一部分に隣接する隣接空間とを連通する連通路とを備える。連通路は、環状溝部と複数の連通孔とを含む。環状溝部は隣接空間に連なり、ロータ軸の周方向に沿って延在するとともにロータ軸の軸方向に沿って延在する。複数の連通孔は、環状溝部に連なる一端及び少なくとも1つの環状領域に連なる他端をそれぞれ有している。複数の連通孔は、少なくとも1つの環状領域における流体の流れの旋回成分を抑制可能な方向にそれぞれ延在している。
【選択図】 図4

Description

本開示は回転機械に関する。
蒸気タービン、ガスタービン及び圧縮機等の回転機械は、通常、静止部と回転部との間の隙間、例えば、動翼と動翼を囲繞する部材との間の隙間や静翼とロータ軸との間の隙間、における流体の流れを制限可能なシール装置を備えている。
例えば、特許文献1が開示する蒸気タービンのラビリンスシール装置は、ロータ軸を嵌装した静止部材に設けられたラビリンスシール部材と、ラビリンスシール部材の内面に付設された複数のシールフィンとを有し、複数のシールフィンが複数のシールチャンバーを区分して形成する。そして、ラビリンスシール部材の一側部には蒸気を導入する流入路が設けられ、この流入路に連通する流出口が、シールチャンバーの上流側へ蒸気を流出するように設けられている。
これら流入路及び流出口を通じて、シールチャンバーに流入する蒸気によって、ロータに沿って流れる旋回流が乱され、旋回流の運動成分が減少させられる。そしてこの結果として、ロータ軸の振れ回りが抑制され、ロータ軸の振動が抑制される。
特開昭62−118008号公報
特許文献1が開示するラビリンス装置では、流入路が円形の断面形状を有しており、流入路の流路面積が小さい。このため、流入路及び流出口を通じて、シールチャンバーに流入する蒸気の流量が少なく、ロータ軸に沿って流れる旋回流の運動成分を低減するには限界がある。
このため、特許文献1が開示するラビリンス装置を用いても、ロータ軸に沿って流れる旋回流によって、ロータ軸の振れ回りが生じ、ロータ軸が振動する可能性がある。特に近年、タービンの高出力化の要求に応えるべく作動流体の高圧化が進んでおり、かかる作動流体の高圧化の影響もあって、ロータ軸の振れ回り、ひいてはロータ軸の振動が生じる可能性がある。
上述した事情に鑑み、本発明の少なくとも一実施形態の目的は、静止部と回転部との隙間における流体の流れの旋回成分が抑制され、回転部の振動が抑制される回転機械を提供することにある。
(1)本発明の少なくとも一実施形態に係る回転機械は、
ハウジング及び前記ハウジングに固定された静翼を含む静止部と、
ロータ軸及び前記ロータ軸に固定された動翼を含み、前記静止部に対し回転可能な回転部と、
前記静止部の一部分と前記ロータ軸の径方向にて当該静止部の一部分と対向する前記回転部の一部分との隙間に設けられ、前記隙間を前記ロータ軸の軸方向にて複数の環状領域に区画する複数のシールフィンであって、前記回転部の一部分又は前記静止部の一部分とシール隙間を存して対向する内周縁又は外周縁をそれぞれ有する複数のシールフィンと、
前記静止部の一部分に設けられ、前記複数の環状領域のうち少なくとも1つの環状領域と前記ロータ軸の軸方向にて前記静止部の一部分に隣接する隣接空間とを連通する連通路と、
を備え、
前記連通路は、
前記隣接空間に連なる環状溝部であって、前記ロータ軸の周方向に沿って延在するとともに前記ロータ軸の軸方向に沿って延在する環状溝部と、
前記環状溝部に連なる一端、及び、前記少なくとも1つの環状領域に連なる他端をそれぞれ有し且つ前記ロータ軸の周方向に相互に離間して配列された複数の連通孔であって、前記シール隙間を通じて前記少なくとも1つの環状領域に流入した流体の流れの旋回成分を抑制可能な方向にそれぞれ延在する複数の連通孔と、
を含む。
上記構成(1)によれば、連通路が、ロータ軸の周方向に延在する環状溝部を含んでおり、連通路の流路面積を大きくすることができる。このため、連通路を通じて、より多くの流体を環状領域に供給することができる。この結果として、環状領域における流体の流れの旋回成分が抑制され、シール隙間における流体の流れの旋回成分が抑制され、回転部の振動が抑制される。
なお、動翼や静翼の設計によっては、静翼の内側のシール隙間を流れる流体には、ほとんど旋回成分(周方向速度)が無い場合がある。このような場合であっても、上記構成(1)によれば、流体にロータ軸の回転方向と逆方向の旋回成分を与えることができ、ロータ軸を含む回転部を安定化させることができる。
(2)幾つかの実施形態では、上記構成(1)において、
前記少なくとも1つの環状領域は、前記複数の環状領域のうち、前記隣接空間から前記ロータ軸の軸方向にて数えて2番目以降の環状領域である。
連通孔における流体の流れは、ロータ軸の径方向内側に向かっているため、遠心力により流れづらい。その上、隣接空間と当該隣接空間から数えて1番目の環状領域との間の圧力差は、隣接空間と当該隣接空間から数えて2番目以降の環状領域との間の圧力差よりも小さい。このため、連通路が、隣接空間と1番目の環状領域との間を連通している場合、連通路を通じて1番目の環状領域に供給される流体の流量は、連通路が隣接空間と2番目以降の環状領域との間を連通している場合よりも少なくなる。逆に言えば、連通路を通じて2番目以降の環状領域へ流体を供給する方が、連通路を通じて1番目の環状領域へ流体を供給するよりも、流体の供給量が多くなる。
そこで、上記構成(2)では、連通路によって、隣接空間から2番目以降の環状領域に流体を供給することで、流体の供給量を増大している。これにより、2番目以降の環状領域における流体の流れの旋回成分が抑制され、シール隙間における流体の流れの旋回成分が抑制され、回転部の振動が抑制される。
(3)幾つかの実施形態では、上記構成(1)又は(2)において、
前記複数の連通孔は、それぞれ、前記ロータ軸の径方向に対し、前記複数の連通孔を通じて前記少なくとも1つの環状領域に流入する流体の流れ方向が前記ロータ軸の回転方向とは逆方向に近づくように傾斜している。
環状領域における流体の流れの旋回成分の回転方向は、ロータ軸の回転方向と一致している。そこで、上記構成(3)では、連通孔を通じて、ロータ軸の回転方向と逆方向に近い方向で流体を環状領域に流入させている。これにより、連通孔を通じて環状領域に流入した流体の流れ方向が、環状領域における流体の流れの旋回成分の回転方向に対し、逆方向に近くなる。この結果、環状領域における流体の流れの旋回成分が抑制され、シール隙間における流体の流れの旋回成分が抑制され、回転部の振動が抑制される。
(4)幾つかの実施形態では、上記構成(1)又は(2)において、
前記少なくとも1つの環状領域に配置され、前記少なくとも1つの環状領域を、前記ロータ軸の周方向にて複数の扇状領域に区画する複数の隔壁を更に備え、
前記複数の連通孔の他端は、それぞれ、前記複数の扇状領域に連なっている。
上記構成(4)では、隔壁によって環状領域が複数の扇状領域に区画される。ここで、もし連通孔の他端が扇状領域に連なっていなければ、ロータ軸の軸方向に沿って見たとき、扇状領域では、ロータ軸の回転に伴って、ロータ軸の回転方向とは逆方向の旋回流が生成される。しかし、上記構成(4)では、連通孔の他端が扇状領域に連なっており、連通孔を通じて扇状領域に流入した流体の流れによって、ロータ軸の回転に伴う扇状領域内での旋回流の生成を阻害することができる。そして、扇状領域内での旋回流の生成を阻害することで、環状領域を流れる流体の旋回成分が抑制され、シール隙間における流体の流れの旋回成分が抑制され、回転部の振動が抑制される。
(5)幾つかの実施形態では、上記構成(4)において、
前記複数の連通孔の他端は、前記ロータ軸の回転方向にて、前記複数の扇状領域の前方側にそれぞれ連なっている。
上記構成(5)では、連通孔の他端が、ロータ軸の回転方向にて扇状領域の前方側に連なっている。ロータ軸の回転に伴って扇状領域内で生成される旋回流は、扇状領域の前方側ではロータ軸の径方向外側に向かって流れる。これに対し、連通孔を通じて、ロータ軸の径方向内側に向かって流体を扇状領域に流入させることで、ロータ軸の回転に伴う扇状領域内での旋回流の生成を的確に阻害することができる。この結果として、扇状領域を流れる流体の旋回成分が抑制され、シール隙間における流体の流れの旋回成分が抑制され、回転部の振動が抑制される。
(6)幾つかの実施形態では、上記構成(5)において、
前記複数の連通孔は、それぞれ、前記ロータ軸の径方向に沿って延在している。
ロータ軸の回転に伴って扇状領域内で生成される旋回流は、ロータ軸の軸方向に沿って見たとき、ロータ軸の回転方向にて扇状領域の前方側では隔壁に沿ってロータ軸の径方向外側に向かって流れる。そこで、上記構成(6)では、連通孔36をロータ軸7の径方向に沿って延在させることで、連通孔36を通じて扇状領域40に流入する流体の流れの方向を、ロータ軸の径方向内側に向けている。これにより、連通孔を通じて扇状領域に流入する流体の流れが、ロータ軸の回転に伴い扇状領域で発生する旋回流と相互に逆向きに衝突し、ロータ軸の回転に伴う扇状領域内での旋回流の生成を的確に阻害することができる。この結果として、扇状領域を流れる流体の旋回成分が抑制され、シール隙間における流体の流れの旋回成分が抑制され、回転部の振動が抑制される。
(7)幾つかの実施形態では、上記構成(5)において、
前記複数の連通孔は、それぞれ、前記ロータ軸の径方向に対し、前記複数の連通孔を通じて前記複数の扇状領域に流入する前記流体の流れ方向が前記ロータ軸の回転方向に近づくように傾斜している。
ロータ軸の回転に伴って扇状領域内で生成される旋回流は、ロータ軸の軸方向に沿って見たとき、静止部の表面側では、ロータ軸の回転方向とは逆方向に流れる。
そこで、上記構成(7)では、連通孔を通じて扇状領域に流入する流体の流れ方向を、ロータ軸の回転方向に近づけている。これにより、連通孔を通じて扇状領域に流入する流体の流れが、ロータ軸の回転に伴い扇状領域で発生する旋回流と相互に逆向きに衝突し、ロータ軸の回転に伴う扇状領域内での旋回流の生成を的確に阻害することができる。この結果として、扇状領域を流れる流体の旋回成分が抑制され、シール隙間における流体の流れの旋回成分が抑制され、回転部の振動が抑制される。
(8)幾つかの実施形態では、上記構成(1)乃至(7)の何れか1つにおいて、
前記少なくとも1つの環状領域における、前記ロータ軸の径方向での前記静止部の一部分と前記回転部の一部分との間隔は、他の環状領域における間隔に比べて短い。
上記構成(8)では、連通路を通じて隣接空間と連通している少なくとも1つの環状領域における静止部の一部と回転部の一部の間隔が、他の環状領域における間隔に比べて短い。このため、連通孔の他端が、回転部の一部に近く、連通孔の他端から環状領域に流入した流体が、環状領域を流れる流体の旋回成分に対し、より強く干渉することができる。この結果として、環状領域を流れる流体の旋回成分が抑制され、シール隙間における流体の流れの旋回成分が抑制され、回転部の振動が抑制される。
(9)幾つかの実施形態では、上記構成(1)乃至(8)の何れか1つにおいて、
前記静止部の一部分及び前記回転部の一部分は、前記静翼の先端部及び当該静翼の先端部と対向する前記ロータ軸の一部分であるか、又は、前記ハウジングの一部分及び当該ハウジングの一部と対向する前記動翼の先端部である。
上記構成(9)では、静止部の一部分及び回転部の一部分が、静翼の先端部及び当該静翼の先端部と対向するロータ軸の一部分である場合には、静翼の先端部と当該静翼の先端部と対向するロータ軸の一部分との隙間を流れる流体の旋回成分が抑制される。この結果として、シール隙間における流体の流れの旋回成分が抑制され、回転部の振動が抑制される。一方、静止部の一部分及び回転部の一部分が、ハウジングの一部分及び当該ハウジングの一部と対向する動翼の先端部である場合には、ハウジングの一部分と当該ハウジングの一部と対向する動翼の先端部との隙間を流れる流体の旋回成分が抑制される。この結果として、シール隙間における流体の流れの旋回成分が抑制され、回転部の振動が抑制される。
本発明の少なくとも一実施形態によれば、静止部と回転部との隙間における流体の流れの旋回成分が抑制され、回転部の振動が抑制される回転機械が提供される。
本発明の一実施形態に係るタービンの概略的な構成を示す縦断面図である。 図1のタービンの一部を拡大して概略的に示す縦断面図である。 図2中の領域IIIの拡大図である。 図3中のIV−IV線に沿う、タービンの一部の概略的な横断面図である。 シール隙間を流れる流体の旋回成分によるロータ軸の振れ回りを説明するための図である。 他の実施形態に係るタービンの図3に対応する縦断面図である。 他の実施形態に係るタービンの図3に対応する縦断面図である。 他の実施形態に係るタービンの図3に対応する縦断面図である。 図8中のIX−IX線に沿う、タービンの一部の概略的な横断面図である。 図9中の領域Xの拡大図である。 他の実施形態に係るタービンの図10に対応する横断面図である。 他の実施形態に係るタービンの図3に対応する縦断面図である。 図1中の領域XIIIの拡大図である。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
図1は、本発明の一実施形態に係るタービン1Aの概略的な構成を示す縦断面図である。図2は、タービン1Aの一部を拡大して概略的に示す縦断面図である。図3は、図2中の領域IIIの拡大図である。図4は、図3中のIV−IV線に沿う、タービン1Aの一部の概略的な横断面図である。図5は、シール隙間を流れる流体の旋回成分によるロータ軸の振れ回りを説明するための図である。図6〜図8は、それぞれ、他の実施形態に係るタービン1B,1C,1Dの図3に対応する縦断面図である。図9は、図8中のIX−IX線に沿う、タービン1Dの一部の概略的な断面図である。図10は、図9中の領域Xの拡大図である。図11は、他の実施形態に係るタービン1Eの図10に対応する横断面図である。図12は、他の実施形態に係るタービン1Fの図3に対応する縦断面図である。図13は、図1中の領域XIIIの拡大図である。
なお、以下の説明では、タービン1A〜1Fを一括してタービン1とも称する。
図1に示したように、タービン1は、例えばコンバインドサイクル発電に適用可能な蒸気タービンであり、発電機3に接続されている。タービン1は、蒸気を利用してトルクを発生させ、発電機3はタービン1が出力したトルクを利用して発電する。
タービン1は、ハウジング(車室)5と、ロータ軸7と、ハウジング5に固定された静翼列と、ロータ軸7に固定された複数の動翼列とを有する。ロータ軸7は、ジャーナル軸受装置9,10及びスラスト軸受装置11によって、水平軸の回りで回転可能に支持され、ロータ軸7の少なくとも一部は、例えば筒形状のハウジング5内を延びている。ロータ軸7の一端側に、発電機3が接続されている。
ハウジング5とロータ軸7との間には筒状の内部流路12が形成され、内部流路12に複数の静翼列及び動翼列が配置される。各静翼列は、ロータ軸7の周方向に配列された複数の静翼14からなり、各静翼14はハウジング5に対して固定されている。各動翼列は、ロータ軸7の周方向に配列された複数の動翼15からなり、各動翼15は、ロータ軸7に対して固定されている。各静翼列では、蒸気の流れが加速され、各動翼列では、蒸気のエネルギがロータ軸7の回転エネルギに変換される。
つまり、タービン1は、大別すると、静止部17と、静止部17に対し相対回転可能な回転部19とを有しており、ハウジング5及び静翼14は静止部17を構成し、ロータ軸7及び動翼15は回転部19を構成している。
なお、タービン1は、高圧タービン20、中圧タービン22及び低圧タービン24を含んでいるが、高圧タービン20、中圧タービン22及び低圧タービン24のいずれも、静止部17と、静止部17に対し相対回転可能な回転部19とを有している。
図2、図3、図6〜図8、図12及び図13に示したように、タービン1は、静止部17の一部分とロータ軸7の径方向にて当該静止部17の一部分と対向する回転部19の一部分との間に隙間を有する。そして、タービン1は、隙間毎に、隙間をロータ軸7の軸方向にて複数の環状領域26に区画する複数のシールフィン28を有している。更に、タービン1は連通路30を有している。
シールフィン28は、環板形状を有しており、ロータ軸7の径方向及び周方向に沿って延在している。シールフィン28の外周縁が、静止部17の一部分に連なるように固定され、シールフィン28の内周縁が、回転部19の一部分とシール隙間Gを存して対向している。なお、シールフィン28の内周縁が回転部19の一部分に連なるように固定され、シールフィン28の外周縁が静止部17の一部分とシール隙間Gを存して対向していてもよい。
なお、シールフィン28は、ロータ軸7の周方向に並べられた扇形状の薄板によって構成されていてもよい。また、シールフィン28の固定方法は特に限定されることはなく、シールフィン28をワイヤや溶接によって静止部17の一部又は回転部19の一部に固定してもよく、或いは、シールフィン28を静止部17の一部又は回転部19の一部と一体に形成してもよい。
連通路30は、静止部17の一部分に設けられており、自身を通じて、複数の環状領域26のうち少なくとも1つの環状領域26とロータ軸7の軸方向にて静止部17の一部分に隣接する隣接空間32とを連通させる。
そして、連通路30は、図2〜図4及び図6〜図13に示したように、環状溝部34と、複数の連通孔36とを含む。
環状溝部34は、隣接空間32に向かって開口しており、隣接空間32に連なっている。つまり、環状溝部34の開口は、隣接空間32に面している。環状溝部34は、ロータ軸7の周方向に沿って延在するとともにロータ軸7の軸方向に沿って延在している。
複数の連通孔36の一端は、それぞれ、環状溝部34に連なっている。一方、複数の連通孔36の他端は、それぞれ、連通路30によって隣接空間32と連通する環状領域26に連なっている。複数の連通孔36は、ロータ軸7の周方向に相互に離間して配列されている。そして、複数の連通孔36は、連通路30によって隣接空間32と連通する環状領域26における流体の流れの旋回成分を抑制可能な方向に、それぞれ延在している。
ここで、図5に示したように、シール隙間Gの広さがロータ軸7の周方向にて一定ではない場合、当該シール隙間Gを通過する蒸気の流れが旋回成分SWを含んでいると、シール隙間Gがロータ軸7の周方向にて部分的に狭くなっている領域でロータ軸7に力F0が作用する。そして、力F0の分力F1がロータ軸7に作用することによって、ロータ軸7の振れ回りが発生し、ロータ軸7が振動することがある。
これに対し上記構成によれば、連通路30が、ロータ軸7の周方向に延在する環状溝部34を含んでおり、連通路30の流路面積を大きくすることができる。このため、連通路30を通じて、より多くの流体を環状領域26に供給することができる。この結果として、環状領域26における流体の旋回成分が抑制されて、シール隙間Gにおける流体の流れの旋回成分SWが抑制され、回転部19の振動が抑制される。
なお、動翼15や静翼14の設計によっては、静翼14の内側のシール隙間Gを流れる流体には、ほとんど旋回成分(周方向速度)が無い場合がある。このような場合であっても、上記構成によれば、流体にロータ軸7の回転方向Rと逆方向の旋回成分を与えることができ、ロータ軸7を含む回転部19を安定化させることができる。
なお、複数の連通孔36が、連通路30によって隣接空間32と連通する環状領域26における流体の流れの旋回成分を抑制可能な方向に、それぞれ延在しているとは、複数の連通孔36を通じて環状領域26に流入した流体が、シール隙間Gを通じて環状領域26に流入した流体の旋回成分と衝突する等干渉し、当該旋回成分を低減可能であるように、複数の連通孔36がそれぞれ延在していることを意味する。
幾つかの実施形態では、図6に示したように、連通孔36の流路面積が、環状領域26に近づくにつれて徐々に小さくなっている。
上記構成によれば、連通孔36の流路面積が、環状領域26に近づくにつれて徐々に小さくなっていることで、連通孔36を流れる流体の流速を増大することができ、連通孔36を通じて環状領域26に流入する流体の流速を増大することができる。この結果として、環状領域26における流体の流れの旋回成分が抑制されて、シール隙間Gにおける流体の流れの旋回成分SWが抑制され、回転部19の振動が抑制される。
幾つかの実施形態では、図7に示したように、連通路30を通じて隣接空間32と連通する少なくとも1つの環状領域26は、複数の環状領域26のうち、隣接空間32からロータ軸7の軸方向にて数えて2番目以降の環状領域26である。
換言すれば、タービンの場合、連通路30を通じて隣接空間32と連通する少なくとも1つの環状領域26は、複数の環状領域26のうち、隙間におけるロータ軸7の軸方向での流体の流れ方向にて上流から2番目以降の環状領域26である。
連通孔36における流体の流れは、ロータ軸7の径方向内側に向かっているため、遠心力により流れづらい。その上、隣接空間32と当該隣接空間32から数えて1番目の環状領域26との間の圧力差は、隣接空間32と当該隣接空間32から数えて2番目以降の環状領域26との間の圧力差よりも小さい。このため、連通路30が、図3等に示したように隣接空間32と1番目の環状領域26との間を連通している場合、連通路30を通じて1番目の環状領域26に供給される流体の流量は、図7に示したように連通路30が隣接空間32と2番目以降の環状領域26との間を連通している場合よりも少なくなる。逆に言えば、連通路30を通じて2番目以降の環状領域26へ流体を供給する方が、連通路30を通じて1番目の環状領域26へ流体を供給するよりも、流体の供給量が多くなる。
そこで、上記構成では、連通路30によって、隣接空間32から2番目以降の環状領域26に流体を供給することで、流体の供給量を増大している。これにより、3番目以降のシール隙間Gにおける流体の流れの旋回成分SWが抑制され、回転部19の振動が抑制される。
幾つかの実施形態では、図4に示したように、複数の連通孔36は、それぞれ、ロータ軸7の径方向に対し、複数の連通孔36を通じて少なくとも1つの環状領域26に流入する流体の流れ方向がロータ軸7の回転方向Rとは逆方向に近づくように傾斜している。
環状領域26における流体の流れの旋回成分の回転方向は、ロータ軸7の回転方向Rと一致している。そこで、上記構成では、連通孔36を通じて、ロータ軸7の回転方向Rと逆方向に近い方向で流体を環状領域26に流入させている。これにより、連通孔36を通じて環状領域26に流入した流体の流れ方向が、環状領域26における流体の流れの旋回成分の回転方向に対し、逆方向に近くなる。この結果、環状領域26における流体の流れの旋回成分が抑制され、シール隙間Gにおける流体の流れの旋回成分SWが抑制され、回転部19の振動が抑制される。
幾つかの実施形態では、図8〜図11に示したように、タービン1C,1Dは複数の隔壁38を更に備えている。複数の隔壁38は、連通路30を通じて隣接空間32と連通する少なくとも1つの環状領域26に配置され、環状領域26を、ロータ軸7の周方向にて複数の扇状領域40に区画する。そして、複数の連通孔36の他端は、それぞれ、複数の扇状領域40に連なっている。複数の隔壁38も、シールフィン28と同様に、外縁が静止部17の一部に連なり、内縁がシール隙間を存して回転部19の一部、即ちロータ軸7の一部と対向している。
上記構成では、隔壁38によって環状領域26が複数の扇状領域40に区画される。ここで、もし連通孔36の他端が扇状領域40に連なっていなければ、ロータ軸7の軸方向に沿って見たとき、図10に示したように、扇状領域40では、ロータ軸7の回転に伴って、ロータ軸7の回転方向Rとは逆方向の旋回流S1が生成される。しかし、上記構成では、連通孔36の他端が扇状領域40に連なっており、連通孔36を通じて扇状領域40に流入した流体の流れS2によって、ロータ軸7の回転に伴う扇状領域40内での旋回流S1の生成を阻害することができる。そして、扇状領域40内での旋回流S1の生成を阻害することで、扇状領域40を流れる流体の旋回成分が抑制され、シール隙間Gにおける流体の流れの旋回成分SWが抑制され、回転部19の振動が抑制される。
なお例えば、各隔壁38は、ロータ軸7の周方向と直交するようにロータ軸7の径方向に沿って延びており、且つ、ロータ軸7の軸方向にて隣り合う2つのシールフィン28同士の間に渡って延びている。
幾つかの実施形態では、図10及び図11に示したように、複数の連通孔36の他端は、ロータ軸7の回転方向Rにて、複数の扇状領域40の前方側にそれぞれ連なっている。
上記構成では、連通孔36の他端が、ロータ軸7の回転方向Rにて扇状領域40の前方側に連なっている。ロータ軸7の回転に伴って扇状領域40内で生成される旋回流S1は、扇状領域40の前方側では隔壁38に沿ってロータ軸7の径方向外側に向かって流れる。これに対し、連通孔36を通じて、ロータ軸7の径方向内側に向かって流体を扇状領域40に流入させることで、ロータ軸7の回転に伴う扇状領域40内での旋回流S1の生成を的確に阻害することができる。この結果として、扇状領域40を流れる流体の旋回成分が抑制され、シール隙間Gにおける流体の流れの旋回成分SWが抑制され、回転部19の振動が抑制される。
なお、連通孔36の他端が、ロータ軸7の回転方向Rにて、扇状領域40の前方側に連なっているとは、連通孔36の他端が、扇状領域40を区画する2つの隔壁38のうち、後方側の隔壁38よりも前方側の隔壁38の近くに位置しているということである。
幾つかの実施形態では、図10に示したように、複数の連通孔36は、それぞれ、ロータ軸7の径方向に沿って延在している。
ロータ軸7の回転に伴って扇状領域40内で生成される旋回流S1は、ロータ軸7の軸方向に沿って見たとき、ロータ軸7の回転方向Rにて扇状領域40の前方側では隔壁38に沿ってロータ軸7の径方向外側に向かって流れる。そこで、上記構成では、連通孔36をロータ軸7の径方向に沿って延在させることで、連通孔36を通じて扇状領域40に流入する流体の流れS2の方向を、ロータ軸7の径方向内側に向けている。これにより、連通孔36を通じて扇状領域40に流入する流体の流れS2が、ロータ軸7の回転に伴い扇状領域40で発生する旋回流S1と相互に逆向きに衝突し、ロータ軸7の回転に伴う扇状領域40内での旋回流S1の生成を的確に阻害することができる。この結果として、扇状領域40を流れる流体の旋回成分が抑制され、シール隙間Gにおける流体の流れの旋回成分SWが抑制され、回転部19の振動が抑制される。
なお、動翼15や静翼14の設計によっては、静翼14の内側のシール隙間Gを流れる流体には、ほとんど旋回成分(周方向速度)が無い場合がある。このような場合であっても、上記構成によれば、流体にロータ軸7の回転方向Rと逆方向の旋回成分を与えることができ、ロータ軸7を含む回転部19を安定化させることができる。
幾つかの実施形態では、図11に示したように、複数の連通孔36は、それぞれ、ロータ軸7の径方向に対し、複数の連通孔36を通じて複数の扇状領域40に流入する流体の流れS2の方向がロータ軸7の回転方向Rに近づくように傾斜している。
ロータ軸7の回転に伴って扇状領域40内で生成される旋回流S1は、ロータ軸7の軸方向に沿って見たとき、静止部17の表面側では、ロータ軸7の回転方向Rとは逆方向に流れる。
そこで、上記構成では、連通孔36を通じて扇状領域40に流入する流体の流れS2の方向を、ロータ軸7の回転方向Rに近づけている。これにより、連通孔36を通じて扇状領域40に流入する流体の流れS2が、ロータ軸7の回転に伴い扇状領域40で発生する旋回流S1と相互に逆向きに衝突し、ロータ軸7の回転に伴う扇状領域40内での旋回流S1の生成を的確に阻害することができる。この結果として、扇状領域40を流れる流体の旋回成分が抑制され、シール隙間Gにおける流体の流れの旋回成分SWが抑制され、回転部19の振動が抑制される。
幾つかの実施形態では、図12に示したように、連通路30を通じて隣接空間32と隣接する少なくとも1つの環状領域26における、ロータ軸7の径方向での静止部17の一部分と回転部19の一部分との間隔は、他の環状領域26における間隔に比べて短い。
上記構成では、連通孔36の他端が、回転部19の一部に近く、連通孔36の他端から環状領域26に流入した流体が、環状領域26を流れる流体の旋回成分に対し、より強く干渉することができる。この結果として、環状領域26を流れる流体の旋回成分が抑制され、シール隙間Gにおける流体の流れの旋回成分SWが抑制され、回転部19の振動が抑制される。
幾つかの実施形態では、静止部17の一部分及び回転部19の一部分は、図3、図4、及び図6〜図12に示したように、静翼14の先端部及び当該静翼14の先端部と対向するロータ軸7の一部分であるか、又は、図13に示したように、ハウジング5の一部分及び当該ハウジング5の一部と対向する動翼15の先端部である。
上記構成では、静止部17の一部分及び回転部19の一部分が、静翼14の先端部及び当該静翼14の先端部と対向するロータ軸7の一部分である場合には、静翼14の先端部と当該静翼14の先端部と対向するロータ軸7の一部分との間の環状領域26を流れる流体の旋回成分が抑制され、シール隙間Gにおける流体の流れの旋回成分SWが抑制され、回転部19の振動が抑制される。一方、静止部17の一部分及び回転部19の一部分が、ハウジング5の一部分及び当該ハウジング5の一部分と対向する動翼15の先端部である場合には、ハウジング5の一部分と当該ハウジング5の一部分と対向する動翼15の先端部との間の環状領域26を流れる流体の旋回成分が抑制され、シール隙間Gにおける流体の流れの旋回成分SWが抑制され、回転部19の振動が抑制される。
なお、静翼14の先端部は、図3、図4、及び図6〜図12に示したように、静翼14の本体に固定された内輪42であってもよいし、静翼14に固定されたラビリンスシールの台座であってもよい。そして、動翼15の先端部は、図13に示したように、動翼15の本体と一体に形成されたシュラウド44であってもよいし、動翼15に固定されたラビリンスシールの台座であってもよい。また、動翼15の先端部と対向するハウジング5の一部分は、静翼14を支持する翼環であってもよいし、図13に示したように、翼環に固定されたラビリンスシールの台座46であってもよい。つまり、シールフィン28が配置される回転部19の一部分と静止部17の一部分との間の隙間は、ロータ軸7の径方向にて動翼15の径方向外側又は静翼14の径方向内側に存する隙間であればよい。
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変更を加えた形態や、これらの形態を組み合わせた形態も含む。
例えば、回転部19の一部分と静止部17の一部分との間の各隙間におけるシールフィン28の数は4つに限定されることはない。
例えば、本発明を適用するタービンは、コンバインドサイクル発電に適用可能なタービンに限定されることはない。また、本発明を適用するタービンは、蒸気タービンに限定されず、ガスタービンであってもよい。また更に、本発明は、タービン以外の回転機械、例えば圧縮機にも適用可能である。従って、作動流体は蒸気に限定されることはない。
また例えば、連通路30は、隣接空間32と2つ以上の環状領域26との間を連通するように構成されていてもよい。
1,1A〜1F タービン
3 発電機
5 ハウジング(車室)
7 ロータ軸
9,10 ジャーナル軸受装置
11 スラスト軸受装置
12 内部流路
14 静翼
15 動翼
17 静止部
19 回転部
20 高圧タービン
22 中圧タービン
24 低圧タービン
26 環状領域
28 シールフィン
30 連通路
32 隣接空間
34 環状溝部
36 連通孔
38 隔壁
40 扇状領域
42 内輪
44 シュラウド
46 ラビリンスシールの台座

Claims (9)

  1. ハウジング及び前記ハウジングに固定された静翼を含む静止部と、
    ロータ軸及び前記ロータ軸に固定された動翼を含み、前記静止部に対し回転可能な回転部と、
    前記静止部の一部分と前記ロータ軸の径方向にて当該静止部の一部分と対向する前記回転部の一部分との隙間に設けられ、前記隙間を前記ロータ軸の軸方向にて複数の環状領域に区画する複数のシールフィンであって、前記回転部の一部分又は前記静止部の一部分とシール隙間を存して対向する内周縁又は外周縁をそれぞれ有する複数のシールフィンと、
    前記静止部の一部分に設けられ、前記複数の環状領域のうち少なくとも1つの環状領域と前記ロータ軸の軸方向にて前記静止部の一部分に隣接する隣接空間とを連通する連通路と、
    を備え、
    前記連通路は、
    前記隣接空間に連なる環状溝部であって、前記ロータ軸の周方向に沿って延在するとともに前記ロータ軸の軸方向に沿って延在する環状溝部と、
    前記環状溝部に連なる一端、及び、前記少なくとも1つの環状領域に連なる他端をそれぞれ有し且つ前記ロータ軸の周方向に相互に離間して配列された複数の連通孔であって、前記少なくとも1つの環状領域における流体の流れの旋回成分を抑制可能な方向にそれぞれ延在する複数の連通孔と、
    を含む
    ことを特徴とする回転機械。
  2. 前記少なくとも1つの環状領域は、前記複数の環状領域のうち、前記隣接空間から前記ロータ軸の軸方向にて数えて2番目以降の環状領域である
    ことを特徴とする請求項1に記載の回転機械。
  3. 前記複数の連通孔は、それぞれ、前記ロータ軸の径方向に対し、前記複数の連通孔を通じて前記少なくとも1つの環状領域に流入する流体の流れ方向が前記ロータ軸の回転方向とは逆方向に近づくように傾斜している
    ことを特徴とする請求項1又は2に記載の回転機械。
  4. 前記少なくとも1つの環状領域に配置され、前記少なくとも1つの環状領域を、前記ロータ軸の周方向にて複数の扇状領域に区画する複数の隔壁を更に備え、
    前記複数の連通孔の他端は、それぞれ、前記複数の扇状領域に連なっている
    ことを特徴とする請求項1又は2に記載の回転機械。
  5. 前記複数の連通孔の他端は、前記ロータ軸の回転方向にて、前記複数の扇状領域の前方側にそれぞれ連なっている
    ことを特徴とする請求項4に記載の回転機械。
  6. 前記複数の連通孔は、それぞれ、前記ロータ軸の径方向に沿って延在している
    ことを特徴とする請求項5に記載の回転機械。
  7. 前記複数の連通孔は、それぞれ、前記ロータ軸の径方向に対し、前記複数の連通孔を通じて前記複数の扇状領域に流入する前記流体の流れ方向が前記ロータ軸の回転方向に近づくように傾斜している
    ことを特徴とする請求項5に記載の回転機械。
  8. 前記少なくとも1つの環状領域における、前記ロータ軸の径方向での前記静止部の一部分と前記回転部の一部分との間隔は、他の環状領域における間隔に比べて短い
    ことを特徴とする請求項1乃至7の何れか1項に記載の回転機械。
  9. 前記静止部の一部分及び前記回転部の一部分は、前記静翼の先端部及び当該静翼の先端部と対向する前記ロータ軸の一部分であるか、又は、前記ハウジングの一部分及び当該ハウジングの一部と対向する前記動翼の先端部である
    ことを特徴とする請求項1乃至8の何れか1項に記載の回転機械。
JP2016012222A 2016-01-26 2016-01-26 回転機械 Active JP6763538B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016012222A JP6763538B2 (ja) 2016-01-26 2016-01-26 回転機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016012222A JP6763538B2 (ja) 2016-01-26 2016-01-26 回転機械

Publications (2)

Publication Number Publication Date
JP2017133385A true JP2017133385A (ja) 2017-08-03
JP6763538B2 JP6763538B2 (ja) 2020-09-30

Family

ID=59503565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016012222A Active JP6763538B2 (ja) 2016-01-26 2016-01-26 回転機械

Country Status (1)

Country Link
JP (1) JP6763538B2 (ja)

Also Published As

Publication number Publication date
JP6763538B2 (ja) 2020-09-30

Similar Documents

Publication Publication Date Title
CN105934615B (zh) 密封构造及旋转机械
JP6344735B2 (ja) シール構造、及び回転機械
US20120121411A1 (en) Labyrinth Seals for Turbomachinery
KR101939520B1 (ko) 터빈
JP2019157662A (ja) 動翼側シール装置、静翼側シール装置及び回転機械
JP6712873B2 (ja) シール構造及びターボ機械
JP6684842B2 (ja) タービン動翼及び回転機械
JP2014141912A (ja) 回転機械
JP2013177866A (ja) ターボ機械
WO2020158105A1 (ja) 回転機械
JP6584617B2 (ja) 回転機械
JP2017133385A (ja) 回転機械
JP2021036136A (ja) 回転機械
JP6662661B2 (ja) シール構造及びターボ機械
JP6930896B2 (ja) タービン及び動翼
KR101914776B1 (ko) 터빈용 하이브리드 실링장치
WO2021220950A1 (ja) シール装置及び回転機械
US11092026B2 (en) Rotary machine
JP2019100204A (ja) タービン、動翼

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20181205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200903

R150 Certificate of patent or registration of utility model

Ref document number: 6763538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150