JP2017133122A - Sea-island type composite fiber for ultra fine fiber - Google Patents

Sea-island type composite fiber for ultra fine fiber Download PDF

Info

Publication number
JP2017133122A
JP2017133122A JP2016013429A JP2016013429A JP2017133122A JP 2017133122 A JP2017133122 A JP 2017133122A JP 2016013429 A JP2016013429 A JP 2016013429A JP 2016013429 A JP2016013429 A JP 2016013429A JP 2017133122 A JP2017133122 A JP 2017133122A
Authority
JP
Japan
Prior art keywords
island
fiber
sea
component
composite fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016013429A
Other languages
Japanese (ja)
Inventor
則雄 鈴木
Norio Suzuki
則雄 鈴木
久人 齋藤
Hisato Saito
久人 齋藤
稔 藤森
Minoru Fujimori
稔 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2016013429A priority Critical patent/JP2017133122A/en
Publication of JP2017133122A publication Critical patent/JP2017133122A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sea-island type composite fiber capable of providing an ultra fine fiber excellent in fabric compactness even after elution removing a sea component and openability at rational cost.SOLUTION: There is provided a sea-island composite fiber for ultra fine fiber containing easily soluble polymer as a sea component and hardly soluble polymer as an island component and having area ratio of sea: island on a fiber surface of 10:90 to 60:40 and ebullition water shrinkage ratio of 12% or more. There is provided a sea-island composite fiber for ultra fine fiber wherein the island component of the fiber is eccentrically arranged and the island component is not exposed to a fiber surface.SELECTED DRAWING: Figure 1

Description

本発明は、極細繊維用の海島型複合繊維に関する。さらに詳しくは、海成分を溶出除去後も布帛緻密性に優れ、かつ開繊性に優れた極細繊維を提供し得る極細繊維用海島型複合繊維に関するものである。   The present invention relates to a sea-island type composite fiber for ultrafine fibers. More specifically, the present invention relates to a sea-island type composite fiber for ultrafine fibers that can provide an ultrafine fiber that is excellent in fabric density and excellent in spreadability even after elution and removal of sea components.

単繊維直径が数マイクロメートルの極細繊維(マイクロファイバー)は、布帛にした際に繊細かつソフト感のある風合いを呈するため、スエード調布帛やワイピングクロスとして広く用いられている。特に、マイクロファイバーを容易に製造する手法としては、易溶解性ポリマーからなる海成分中に難溶解性の島成分を含有する海島型複合繊維や、難溶解性のマイクロファイバーが易溶解性ポリマーで仕切られた割繊型複合繊維の利用が広く知られている(特許文献1参照)。これらの手法は一担、複合繊維として巻き取った後、溶解剤に複合繊維もしくは布帛製品を浸漬させることにより易溶解性ポリマーを除去し、難溶解性のマイクロファイバーを得ることが可能となる技術である。   Ultrafine fibers (microfibers) having a single fiber diameter of several micrometers are widely used as suede-like fabrics and wiping cloths because they exhibit a delicate and soft feel when made into fabrics. In particular, as a technique for easily producing microfibers, sea-island type composite fibers containing a hardly soluble island component in a sea component made of a readily soluble polymer, or hardly soluble microfibers are easily soluble polymers. The use of partitioned split fiber composite fibers is widely known (see Patent Document 1). These techniques are part of the technology, after winding up as a composite fiber, and then immersing the composite fiber or fabric product in a solubilizer to remove the easily soluble polymer and obtain a hardly soluble microfiber. It is.

近年では、さらに繊細な肌触りやソフト感を追求して単繊維直径が1マイクロメートル以下となる超極細繊維(ナノファイバー)が提案されている。ナノファイバーは、繊維直径のスケールダウンによる極限のソフト化のほか、単繊維群の比表面積や空隙率が飛躍的に増加することによるナノサイズ特有の効果も示唆されていることから、マイクロファイバー以上の展開可能性を秘めており、早期の研究、開発および安定的製造が求められている。   In recent years, ultrafine fibers (nanofibers) having a single fiber diameter of 1 micrometer or less have been proposed in pursuit of a more delicate touch and soft feeling. In addition to the ultimate softening by scaling down the fiber diameter, nanofibers have been suggested to have nanosize-specific effects due to the dramatic increase in specific surface area and porosity of single fiber groups. Therefore, early research, development and stable manufacturing are required.

ナノファイバーを製造する方法の一つとしては、ポリマーブレンド技術とポリマー溶解除去技術の組み合わせによる、バンドル状ナノファイバーの製造方法が提案されている(特許文献2参照)。この提案により製造されるナノファイバー自体は短繊維ではあるが、短繊維からなる集合体を成しているため長繊維状糸条として織物や編物のような布帛製品とすることが可能である。また、長繊維ナノファイバーを得るための方法としては、従来の海島型複合繊維の技術を発展させて、複合繊維1本の繊維断面の島数を超多島化するにより、海成分溶出後にナノファイバーを得る方法などが技術開示されている。例えば特許文献3では、易溶解ポリマー(海成分)として5−ナトリウムスルホイソフタル酸とポリエチレングリコールの共重合ポリエステルを用い、さらに海島型複合繊維中の島成分配置を規定することにより、生産性の高いナノファイバーを製造する方法が提案されている。しかるに、これらの提案に代表される従来技術に例示されている海島型複合繊維においては、海成分溶出後に得られる極細繊維はいずれもストレート形状であり、まるでソウメンを束ねたような繊維束となってしまう問題があり、開繊性が悪いため、極細繊維間の空隙を得ることが困難となり、テキスタイルとした際の発色性の低下やワイピング性の低下などを誘発し、極細繊維としての機能を十分に活かしきれていなかった。加えて、海成分の溶出処理によって繊維が痩せるため、布帛緻密性が低下して布帛の形態安定性が著しく低下する欠点があった。開繊性を高める目的で、仮撚加工を施す方法なども提案されているが(特許文献4参照)、製造コストが高騰するほか、海成分溶出処理による布帛の緻密性の低下を補うには、効果が不十分であった。   As one of the methods for producing nanofibers, a method for producing bundled nanofibers by combining a polymer blend technique and a polymer dissolution and removal technique has been proposed (see Patent Document 2). Although the nanofiber itself manufactured by this proposal is a short fiber, since it forms the aggregate | assembly which consists of a short fiber, it can be set as textile products, such as a textile fabric and a knitted fabric, as a long fiber-like thread. In addition, as a method for obtaining long-fiber nanofibers, the conventional sea-island type composite fiber technology has been developed, and the number of islands in the fiber cross section of one composite fiber is increased to super-islands. Techniques for obtaining fibers and the like have been disclosed. For example, in Patent Document 3, nanofibers with high productivity are obtained by using a copolymer polyester of 5-sodium sulfoisophthalic acid and polyethylene glycol as an easily soluble polymer (sea component) and further defining the island component arrangement in the sea-island type composite fiber. There has been proposed a method of manufacturing. However, in the sea-island type composite fibers exemplified in the prior art represented by these proposals, the ultrafine fibers obtained after elution of sea components are all straight, and the fiber bundles are like bundles of sawmen. Since the openability is poor, it is difficult to obtain the gaps between the ultrafine fibers, causing a decrease in color development and wiping when used as a textile, and functioning as an ultrafine fiber. It was not fully utilized. In addition, since the fibers are thinned by the elution treatment of the sea component, there is a disadvantage that the fabric density is lowered and the shape stability of the fabric is significantly lowered. For the purpose of improving the spreadability, a method of applying false twisting has also been proposed (see Patent Document 4). However, in addition to the increase in manufacturing cost, it is also necessary to compensate for the decrease in fabric density due to sea component elution treatment. The effect was insufficient.

上記の事情から、海成分を溶出除去後も布帛の緻密性に優れ、かつ開繊性に優れた極細繊維を合理的なコストで提供し得る海島型複合繊維が求められていた。   In view of the above circumstances, there has been a demand for a sea-island type composite fiber that can provide ultrafine fibers with excellent fabric density and excellent spreadability even at a reasonable cost after elution and removal of sea components.

特開2005−163234号公報JP 2005-163234 A 特開2004−162244号公報JP 2004-162244 A 特開2007−100243号公報JP 2007-100343 A 特開2008−75228号公報JP 2008-75228 A

本発明の目的は、上記の課題を克服し、海成分を溶出除去後も布帛緻密性に優れ、かつ開繊性に優れた極細繊維が得られる海島型複合繊維を、合理的なコストで提供することにある。   The object of the present invention is to provide a sea-island type composite fiber that can overcome the above-mentioned problems and obtain ultrafine fibers that are excellent in fabric denseness and excellent in openability even after sea components are eluted and removed at a reasonable cost. There is to do.

上記課題は以下の手段により解決される。
(1)易溶解性ポリマーを海成分、難溶解性ポリマーを島成分とする海島複合繊維であって、繊維断面における海:島の面積比が10:90〜60:40であり、沸騰水収縮率が12%以上であることを特徴とする極細繊維用海島型複合繊維。
(2)繊維断面において、以下のA〜Dの要件を満足する、島成分が偏芯配置されていることを特徴とする(1)に記載の極細繊維用海島型複合繊維。
The above problem is solved by the following means.
(1) A sea-island composite fiber having an easily soluble polymer as a sea component and a hardly soluble polymer as an island component, the sea: island area ratio in the fiber cross section being 10:90 to 60:40, and boiling water shrinkage A sea-island composite fiber for ultrafine fibers, characterized in that the rate is 12% or more.
(2) The sea-island type composite fiber for ultrafine fibers according to (1), wherein the island component is eccentrically arranged to satisfy the following requirements A to D in the fiber cross section.

A.繊維中心と外周部を結ぶ半径線上に島成分が存在しない島欠エリアが存在すること。       A. There is an island missing area where no island component exists on the radius line connecting the fiber center and the outer periphery.

B.島欠エリアの周囲は島成分で被覆され、繊維表面に該エリアが露出しないこと。       B. The area around the island lacking area should be covered with island components so that the area is not exposed on the fiber surface.

C.島欠エリアの円周方向の両端と、繊維中心とがなす角度(A)が、60°≦A≦270°であること。       C. The angle (A) formed by both ends in the circumferential direction of the island missing area and the fiber center is 60 ° ≦ A ≦ 270 °.

D.島欠エリアの繊維直径方向の厚み(S)と、繊維直径(R)との比、S/Rが、0.18≦S/R≦0.45であること。
(3)海成分溶出後の島成分繊維の150℃における乾熱収縮率が18.0%以上であることを特徴とする(1)または(2)に記載の極細繊維用海島型複合繊維。
(4)海成分溶解後の繊維に捲縮ピッチ10以下の捲縮コイルが発現する、潜在捲縮性を有することを特徴とする(1)から(3)のいずれか1項に記載の極細繊維用海島型複合繊維。
D. The ratio of the thickness (S) in the fiber diameter direction of the island missing area to the fiber diameter (R), S / R, is 0.18 ≦ S / R ≦ 0.45.
(3) The sea-island composite fiber for ultrafine fibers according to (1) or (2), wherein the island component fiber after elution of the sea component has a dry heat shrinkage at 150 ° C. of 18.0% or more.
(4) The ultrafine material as set forth in any one of (1) to (3), which has a latent crimp property in which a crimped coil having a crimp pitch of 10 or less appears in the fiber after dissolution of the sea component. Sea-island composite fiber for textiles.

本発明によれば、海成分を溶出除去後も布帛緻密性に優れ、かつ開繊性に優れた極細繊維が得られる極細繊維用海島型複合繊維を、合理的なコストで得ることができる。具体的には、海成分の溶出処理時に繊維の痩せによって生じる布帛組織間の空隙を、自己補修でき、布帛緻密性を維持することができる海島型複合繊維を提供するものである。   ADVANTAGE OF THE INVENTION According to this invention, the sea-island type | mold composite fiber for ultrafine fibers from which the ultrafine fiber which was excellent in the fabric denseness and excellent in the openability after the elution removal of the sea component can be obtained can be obtained at a reasonable cost. Specifically, the present invention provides a sea-island type composite fiber that can self-repair gaps between fabric structures caused by thinning of fibers during the elution treatment of sea components, and can maintain fabric density.

さらに本発明の海島型複合繊維より得られる布帛は、極細繊維ゆえの軽量性に布帛の緻密性が加わったことにより、これまで敬遠されてきたスポーツ用途衣料やアウター素材として極細繊維の特徴である繊細な肌触りやソフト感を生かした新たな素材として、幅広く好適に用いることができるようになる。   Furthermore, the fabric obtained from the sea-island type composite fiber of the present invention is characterized by ultrafine fibers as sports clothing and outer materials that have been avoided so far due to the addition of the fineness of the fabric to the lightness of ultrafine fibers. As a new material that makes use of delicate touch and soft feeling, it can be used widely and suitably.

図1は、本発明の極細繊維用海島型複合繊維の繊維断面の一例である。FIG. 1 is an example of a fiber cross section of the sea-island composite fiber for ultrafine fibers of the present invention. 図2は、本発明外の極細繊維用海島型複合繊維の繊維断面である。FIG. 2 is a fiber cross-section of a sea-island type composite fiber for ultrafine fibers outside the present invention. 図3は、本発明の極細繊維用海島型複合繊維の繊維断面における繊維直径(R)と島欠エリアを説明するための模式図である。FIG. 3 is a schematic diagram for explaining a fiber diameter (R) and an island missing area in a fiber cross section of the sea-island composite fiber for ultrafine fibers of the present invention. 図4は、本発明の極細繊維用海島型複合繊維の繊維断面における繊維直径方向の厚み(S)を説明するための模式図である。FIG. 4 is a schematic diagram for explaining the thickness (S) in the fiber diameter direction in the fiber cross section of the sea-island composite fiber for ultrafine fibers of the present invention.

以下、本発明について、望ましい実施形態とともに詳述する。
本発明の海島型複合繊維は、易溶解性ポリマーを海成分、難溶解性ポリマーを島成分とする海島型複合繊維である。海または島を形成するポリマーは互いに非相溶であり、繊維形成性の熱可塑性重合体であれば特に限定されないが、ポリエステル、ポリアミド、ポリエチレン、ポリプロピレンなどが挙げられ、中でもポリエステル、ポリアミドが好ましく用いられる。ポリエステルをさらに具体的に述べると、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレートや、それらにジカルボン酸成分、ジオール成分あるいはオキシカルボン酸成分が共重合されたもの、あるいはそれらポリエステルをブレンドしたものが挙げられる。さらには、生分解性ポリエステルとして知られるポリ乳酸、ポリブチレンサクシネート、ポリε−カプロラクタム等の脂肪族ポリエステルでもよい。また、ポリアミドとは、例えばナイロン6、ナイロン66、ナイロン69、ナイロン46、ナイロン610、ナイロン12、ポリメタキシレンアジパミドやこれら各成分を共重合したものやブレンドしたもの等が挙げられる。上記の熱可塑性樹脂には、酸化チタンなどの艶消し剤、難燃剤、滑剤、抗酸化剤、着色顔料等として無機微粒子や有機化合物、カーボンブラックを必要に応じて添加することができる。
Hereinafter, the present invention will be described in detail together with preferred embodiments.
The sea-island type composite fiber of the present invention is a sea-island type composite fiber having a readily soluble polymer as a sea component and a hardly soluble polymer as an island component. The polymer forming the sea or island is not particularly limited as long as it is incompatible with each other and is a fiber-forming thermoplastic polymer, and examples thereof include polyester, polyamide, polyethylene, and polypropylene. Of these, polyester and polyamide are preferably used. It is done. More specifically, polyesters include, for example, polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, those obtained by copolymerizing a dicarboxylic acid component, a diol component or an oxycarboxylic acid component, or a blend of these polyesters. It is done. Furthermore, aliphatic polyesters such as polylactic acid, polybutylene succinate and polyε-caprolactam known as biodegradable polyesters may be used. Examples of the polyamide include nylon 6, nylon 66, nylon 69, nylon 46, nylon 610, nylon 12, polymetaxylene adipamide, and those obtained by copolymerizing or blending these components. If necessary, inorganic fine particles, organic compounds, and carbon black can be added to the thermoplastic resin as a matting agent such as titanium oxide, a flame retardant, a lubricant, an antioxidant, and a coloring pigment.

本発明の海島型複合繊維は、上述した如く、溶解剤に対し易溶解性ポリマーの海成分と難溶解性ポリマーの島成分からなる。両ポリマーは互いに非相溶であり、脱海処理時の溶解速度差がある範囲内で、可能な限り大きな組み合わせで製糸することが重要である。この溶解速度の範囲としては、海成分の溶解速度を島成分に対して5倍以上もしくは溶解剤に対して全く溶解しない島成分ポリマーを選択する必要がある。溶解速度差を5倍以上とすることで、海成分の溶解除去がスムーズに実行され、海島単糸の表面/芯部での島成分溶解剤接触時間差が少なくなるため、島繊維径バラツキが小さなナノファイバー単糸群を得ることができる。溶解速度差のより好ましい範囲は20倍以上である。   As described above, the sea-island type composite fiber of the present invention comprises a sea component of an easily soluble polymer and an island component of a hardly soluble polymer with respect to a solubilizer. Both polymers are incompatible with each other, and it is important to produce yarns in as large a combination as possible within a range in which there is a difference in dissolution rate during sea removal treatment. As the range of the dissolution rate, it is necessary to select an island component polymer in which the dissolution rate of the sea component is at least 5 times that of the island component or not dissolved in the dissolving agent at all. By making the difference in dissolution rate 5 times or more, dissolution and removal of sea components are performed smoothly, and the difference in contact time of the island component solubilizer at the surface / core portion of the sea island single yarn is reduced, so the island fiber diameter variation is small. A group of nanofiber single yarns can be obtained. A more preferable range of the dissolution rate difference is 20 times or more.

上記ポリマーの組み合わせの一例を以下に列挙する。海成分ポリマー溶解剤がアルカリ水溶液の場合は、海成分に共重合ポリエステル樹脂または脂肪族ポリエステル樹脂を、島成分にはホモポリエステル樹脂またはポリアミド系樹脂、芳香族ジカルボン酸からなるポリエステル樹脂などを組み合わせる。   Examples of combinations of the above polymers are listed below. When the sea component polymer solubilizer is an alkaline aqueous solution, the sea component is combined with a copolymerized polyester resin or an aliphatic polyester resin, and the island component is combined with a homopolyester resin or a polyamide resin, a polyester resin composed of an aromatic dicarboxylic acid, or the like.

溶解剤が酸水溶液の場合は、海成分にポリアミド系樹脂かつ島成分にポリエステル系樹脂などを組み合わせる。溶解剤がトルエンやトリクロロエチレンのような有機溶媒の場合は、海成分にポリオレフィン系樹脂、島成分にはポリエステル系樹脂、ポリアミド系樹脂などを組み合わせる。   When the dissolving agent is an acid aqueous solution, the sea component is combined with a polyamide resin and the island component is combined with a polyester resin. When the dissolving agent is an organic solvent such as toluene or trichlorethylene, the sea component is combined with a polyolefin resin, and the island component is combined with a polyester resin or a polyamide resin.

溶解剤が熱水である場合は、海成分にポリビニルアルコール系樹脂、島成分にポリエステル系樹脂やポリアミド系樹脂などを組み合わせる。   When the dissolving agent is hot water, the sea component is combined with a polyvinyl alcohol resin, and the island component is combined with a polyester resin or a polyamide resin.

別の一例として、ポリエステル系ポリマーとポリアミド系ポリマーといった異なる種類の樹脂を使用しても、ポリマー特性差(分子配向差)に起因した収縮差を発生させることができる。   As another example, even when different types of resins such as a polyester-based polymer and a polyamide-based polymer are used, a difference in shrinkage due to a difference in polymer characteristics (difference in molecular orientation) can be generated.

本発明の海島型複合繊維の島成分に用いるポリマーはポリエステル、例えばホモポリエチレンテレフタレートを用いることが可能であるが高収縮性ポリマーを用いることが好ましい。ポリエステル系の高収縮に用いるポリマーとしては、イソフタル酸等の共重合ポリエステルが好適に用いることが可能である。海成分の溶解除去により島成分の高収縮繊維が超極細の単独糸となるが、この超極細高収縮繊維は潜在捲縮性を有することが必要である。潜在捲縮性を有することで糸長に差が生じ、ランダムな糸長となることで繊維間の開繊性が良好となり好ましい。そして、高収縮ポリマーからなる超極細繊維なので、高次工程で熱を加えることにより(例えば高温染色+高温乾熱バルクアップ処理など)繊維は大きく収縮し、布帛は膨らみを増し、海成分の溶解除去による布帛の痩せ細りを補い、緻密性を高めることができるので好ましい。   The polymer used for the island component of the sea-island type composite fiber of the present invention can be polyester, for example, homopolyethylene terephthalate, but is preferably a highly shrinkable polymer. As a polymer used for polyester-based high shrinkage, a copolyester such as isophthalic acid can be suitably used. By dissolving and removing the sea component, the highly shrinkable fiber of the island component becomes an ultrafine single yarn, and this ultrafine highly shrinkable fiber needs to have latent crimpability. By having the latent crimpability, a difference occurs in the yarn length, and a random yarn length is preferable because the fiber-opening property is good. And because it is an ultra-fine fiber made of a highly shrinkable polymer, heat is applied in a high-order process (for example, high-temperature dyeing + high-temperature dry heat bulk-up treatment), the fiber shrinks greatly, the fabric swells, and the sea component dissolves. It is preferable because the thinness of the fabric due to the removal can be compensated and the denseness can be improved.

本発明の海島型複合繊維が、海成分の溶解除去後島成分の高収縮繊維が超極細の単独糸となるが、単独成分糸でありながら潜在捲縮性を有する理由について詳細に説明する。   In the sea-island type composite fiber of the present invention, after the sea component is dissolved and removed, the high-shrinking fiber of the island component becomes a superfine single yarn, but the reason why it has latent crimping property while being a single component yarn will be described in detail.

本発明の海島型複合繊維は、繊維横断面において、島成分を全横断面に一様に配置した多密配置形状であっても優れた布帛緻密性を発揮するが、以下に示すように島成分を偏芯して配置させると、より一段と優れた布帛緻密性と風合いを得ることができ好ましい。   The sea-island type composite fiber of the present invention exhibits excellent fabric density even in a multi-packed shape in which the island components are uniformly arranged in the entire cross section in the fiber cross section. If the components are arranged eccentrically, it is possible to obtain more excellent fabric density and texture.

すなわち、繊維断面において、繊維中心と外周部を結ぶ半径線上に島成分が存在しない、島欠エリアが存在することが好ましい。該島欠エリアの周囲は島成分で被覆され、繊維表面に該島欠エリアが露出しない形状であると、島成分の分子配向にグラデーションが生じ、海成分溶出後の極細繊維が捲縮コイルを呈するようになる。これは、島欠エリアの存在によって、島欠エリア周辺と島欠エリアから離れている箇所の島成分にかかる紡糸応力配分が異なるため、島成分分子配向グラデーションが生じる。さらに、島欠エリアの外周部に島成分を一列又は二列配置することで、より島成分分子配向グラデーションに差が生じるので好ましい。さらに、島欠エリアの外周部に配置した島成分は口金から吐出した糸条の曲がりを抑制する効果があるので複合繊維の均質性の点からも好ましい。   That is, in the fiber cross section, it is preferable that there is an island lack area where no island component exists on the radius line connecting the fiber center and the outer periphery. If the periphery of the island defect area is coated with an island component and the island defect area is not exposed on the fiber surface, gradation will occur in the molecular orientation of the island component, and the ultrafine fiber after elution of the sea component will have crimped coils. Present. This is because, due to the existence of the island missing area, the spinning stress distribution applied to the island components around the island missing area and the area away from the island missing area is different, resulting in an island component molecular orientation gradation. Furthermore, it is preferable to arrange the island components in one or two rows on the outer periphery of the island missing area because a difference in the island component molecular orientation gradation is further generated. Furthermore, since the island component arranged in the outer peripheral portion of the island missing area has an effect of suppressing the bending of the yarn discharged from the die, it is preferable from the viewpoint of the homogeneity of the composite fiber.

特に、島欠エリアの円周方向の両端と、繊維中心とがなす角度(A)が、60°≦A≦270°かつ、島欠エリアの繊維直径方向の厚み(S)と、繊維直径(R)との比、S/Rが0.18≦S/R≦0.45の関係下にあると、効率的に捲縮コイルが発現しやすく、風合いの向上が図れる。   In particular, the angle (A) between the circumferential ends of the island notch area and the fiber center is 60 ° ≦ A ≦ 270 °, and the thickness (S) in the fiber diameter direction of the island notch area and the fiber diameter ( When the ratio S / R and the ratio S / R are in the relationship of 0.18 ≦ S / R ≦ 0.45, crimped coils are easily developed efficiently, and the texture can be improved.

この捲縮コイルは捲縮の山と谷の間隔(L)を山と谷の高さ(H)で割り返した値(捲縮ピッチ)が10以下であると極細繊維束が直線棒状の束から曲線部で構成された棒状のウェーブがかった形状となるため、繊維表面での光反射が抑制され深色性に優れる。更に好ましくは5以下である。島欠エリアの円周方向の両端と、繊維中心とがなす角度(A)が60°以上とすると、島成分の分子配向グラデーションがつきやすく、270°以下とすると、より少ない海成分比率で島欠エリアを効果的に形成しやすい。より好ましくは75°以上180°以下、更に好ましくは90°以上120°以下とすると良い。   In this crimp coil, if the value (crimp pitch) obtained by dividing the interval (L) between the crest and trough of the crimp by the height (H) of the crest and trough is 10 or less, the ultrafine fiber bundle is a bundle of straight rods. From the above, since it has a rod-like wave-like shape composed of curved portions, light reflection on the fiber surface is suppressed and excellent deep color properties are achieved. More preferably, it is 5 or less. If the angle (A) between the circumferential ends of the island-missing area and the fiber center is 60 ° or more, the molecular orientation gradation of the island component is likely to occur, and if it is 270 ° or less, the island component is reduced with a smaller sea component ratio. Easily form missing areas effectively. More preferably, it is 75 degrees or more and 180 degrees or less, More preferably, it is 90 degrees or more and 120 degrees or less.

また、島欠エリアの繊維直径方向の厚み(S)と、繊維直径(R)との関係は、0.18≦S/R≦0.45の範囲にあると最も効率的に捲縮コイルを発現させることができる。より好ましくは0.20以上0.40以下、更に好ましくは、0.23以上0.37以下である。   Further, when the relationship between the fiber diameter direction thickness (S) of the island lacking area and the fiber diameter (R) is in the range of 0.18 ≦ S / R ≦ 0.45, the crimped coil is most efficiently used. Can be expressed. More preferably, they are 0.20 or more and 0.40 or less, More preferably, they are 0.23 or more and 0.37 or less.

このように本発明の好ましい海島型複合繊維は、島成分を偏芯して配置させることで、単独成分でありながら潜在捲縮性能を有し、海成分を溶解除去後は、島成分は超極細の高収縮繊維が捲縮コイルを発現し、ランダムな糸長差となり開繊性が大幅に向上し、緻密性に富んだ布帛が得られるのである。   As described above, the preferred sea-island type composite fiber of the present invention has a latent crimping performance even though it is a single component by arranging the island component in an eccentric manner. The ultra-fine high-shrinkable fibers develop crimped coils, resulting in random yarn length differences, greatly improving the spreadability and obtaining a fabric with high density.

ここで、繊維断面における海:島の面積比は、10:90〜60:40の範囲であることが重要である。海成分を10%以上とすることで、島成分同士の融着を防ぐことができるため脱海性に優れ、高強度かつ高品質な布帛を得ることができる。また、海成分を60%以下とすることで、海成分溶解除去時で生じる繊維の痩せを抑制でき、布帛緻密性の自己回復能を効果的に発揮できる。加えて、海成分溶出による製品ロスを低減できるため極細繊維の生産性も高くなるので好ましい。より好ましくは20:80〜50:50の範囲、さらに好ましくは30:70〜40:60の範囲である。   Here, it is important that the area ratio of sea: island in the fiber cross section is in the range of 10:90 to 60:40. By setting the sea component to 10% or more, the island components can be prevented from being fused to each other, so that a fabric having excellent sea removal properties and high strength and high quality can be obtained. Further, by setting the sea component to 60% or less, it is possible to suppress the thinning of the fiber that occurs when the sea component is dissolved and removed, and to effectively exhibit the self-healing ability of the fabric denseness. In addition, since product loss due to sea component elution can be reduced, productivity of ultrafine fibers is also increased, which is preferable. More preferably, it is the range of 20: 80-50: 50, More preferably, it is the range of 30: 70-40: 60.

本発明の海島型複合繊維における海島型複合繊維単糸中の島数は、30〜200島の範囲であることが好ましい。島数を30島以上にすると、海島型複合繊維の形態安定性および極細繊維の生産性が高くなる。また、島数を200島以下とすることで、島成分融着欠点を回避させることが可能であり、さらに海成分溶解除去時に海島型複合繊維単糸の表面/芯部での溶解剤接触時間差が少なくなることで、繊維径バラツキが小さく、高強度な極細繊維を得ることが可能となる。海島型複合繊維単糸中の島数のより好ましい範囲は、50〜180島であり、さらに好ましくは80〜150島である。   The number of islands in the sea-island composite fiber single yarn in the sea-island composite fiber of the present invention is preferably in the range of 30 to 200 islands. When the number of islands is 30 or more, the shape stability of the sea-island type composite fiber and the productivity of the ultrafine fiber are increased. Further, by setting the number of islands to 200 islands or less, it is possible to avoid the island component fusion defect, and further, the difference in the contact time of the solubilizer at the surface / core portion of the sea-island type composite fiber monofilament when the sea component is dissolved and removed. By reducing the number of fibers, it is possible to obtain ultra-fine fibers with small fiber diameter variations and high strength. A more preferable range of the number of islands in the sea-island type composite fiber single yarn is 50 to 180 islands, and more preferably 80 to 150 islands.

本発明の海島型複合繊維の繊維径は、30〜300dtexであることが好ましい。繊維径が30dtex以上とすることで高強度かつ高品質な布帛を得ることができる。また、250dtexとすることでさらに極細繊維の繊細な肌触りやソフト感が得られるのである。より好ましくは、40〜150dtexである。   The fiber diameter of the sea-island composite fiber of the present invention is preferably 30 to 300 dtex. By setting the fiber diameter to 30 dtex or more, a high-strength and high-quality fabric can be obtained. Moreover, the fine touch and soft feeling of an extra fine fiber are obtained by setting it as 250 dtex. More preferably, it is 40-150 dtex.

なお、本発明の海島型複合繊維の島成分の海成分除去後の繊維径は100〜7000nmであることが好ましい。繊維径が100nm以上であると、ナノファイバー単糸群のフィブリル化を抑制することができて好ましい。一方、島成分径を7000nm以下とすることで、布帛製品には既存の合成繊維では成し得なかった繊細な肌触りやソフト感が得られるので好ましい。さらに好ましくは200〜5000nm,最も好ましくは300〜1000nmである。   In addition, it is preferable that the fiber diameter after the sea component removal of the island component of the sea-island type composite fiber of the present invention is 100 to 7000 nm. When the fiber diameter is 100 nm or more, fibrillation of the nanofiber single yarn group can be suppressed, which is preferable. On the other hand, it is preferable that the island component diameter is 7000 nm or less because the fabric product has a delicate touch and soft feeling that cannot be achieved with existing synthetic fibers. More preferably, it is 200-5000 nm, Most preferably, it is 300-1000 nm.

海島型複合繊維の沸騰水収縮率は12%以上とすると、海成分溶出段階での布帛緻密性を高めるために重要である。さらに好ましくは15%以上、20%以上である。上限は特に設けないが製糸性、布帛の形態安定性、他の物性値との兼ね合いから30%以下である。   When the boiling water shrinkage of the sea-island type composite fiber is 12% or more, it is important for enhancing the fabric density at the sea component elution stage. More preferably, it is 15% or more and 20% or more. Although there is no particular upper limit, it is 30% or less in consideration of the yarn forming property, the form stability of the fabric, and other physical property values.

本発明の海島型複合繊維は、海成分溶出後繊維の150℃乾熱収縮率が18%以上であることが好ましい。18%以上とすることで、脱海時の繊維痩せにより生じた布帛の隙間を自己修復することができ、合理的なコストで布帛の緻密性を維持することが可能となるので好ましい。さらに好ましくは20%以上、より好ましくは25%以上である。上限は特に設けないが製糸性、布帛の形態安定性、他の物性値との兼ね合いから40%以下である。   In the sea-island type composite fiber of the present invention, it is preferable that the 150 ° C. dry heat shrinkage ratio of the fiber after elution of sea components is 18% or more. By setting the ratio to 18% or more, it is possible to self-repair the gaps between the fabrics caused by the fiber thinning at the time of sea removal, and it is possible to maintain the denseness of the fabrics at a reasonable cost. More preferably, it is 20% or more, more preferably 25% or more. Although there is no particular upper limit, it is 40% or less in consideration of the yarn-forming properties, the form stability of the fabric, and other physical property values.

次に、本発明の海島型複合繊維の好ましい製造方法について述べる。
本発明の複合繊維は、吐出されたポリマーを未延伸糸として一旦巻き取った後に延伸する二工程法のほか、紡糸および延伸工程を連続して行う直接紡糸延伸法や高速製糸法など、いずれのプロセスにおいても製造できる。また、高速製糸法における紡糸速度の範囲は特に規定しないため、半延伸糸として巻き取った後に延伸する工程でもよい。さらに、必要に応じて仮撚りなどの糸加工を行うこともできる。
Next, a preferred method for producing the sea-island type composite fiber of the present invention will be described.
The composite fiber of the present invention is not limited to the two-step method in which the discharged polymer is once wound as an undrawn yarn and then drawn, and any of the direct spinning drawing method and the high-speed spinning method in which spinning and drawing steps are continuously performed It can also be manufactured in the process. Moreover, since the range of the spinning speed in the high-speed spinning method is not particularly defined, it may be a step of drawing after winding as a semi-drawn yarn. Furthermore, yarn processing such as false twisting can be performed as necessary.

海島型複合繊維を二工程法で製糸する場合、ホットロール−ホットロール延伸や熱ピンを用いた延伸の他、あらゆる公知の延伸方法を用いることができる。また、用途に応じて交絡や仮撚りを加えながら延伸してもよい。毛羽発生や両成分の剥離などの複合異常を抑制するために、延伸糸の残留伸度は25〜50%となるように延伸することが好ましい。   When the sea-island type composite fiber is produced by a two-step method, any known drawing method can be used in addition to hot roll-hot roll drawing or drawing using a hot pin. Moreover, you may extend | stretch, adding a confounding and false twist according to a use. In order to suppress composite abnormality such as generation of fuzz and peeling of both components, it is preferable to draw the drawn yarn so that the residual elongation is 25 to 50%.

ストレッチ状態で熱セットを行い、緊張を保ったままガラス転移温度以下に冷却して分子鎖を構造固定すると、収縮応力を高くでき布帛の風合い向上に有効である。具体的には、0.3〜3.0%程度のストレッチ状態のまま冷ロールを通過させると、高い収縮応力が得られるので好ましい。   Heat setting in a stretched state and cooling to below the glass transition temperature while maintaining tension and structurally fixing the molecular chain can increase the shrinkage stress and is effective in improving the fabric texture. Specifically, it is preferable to pass a cold roll in a stretched state of about 0.3 to 3.0% because a high shrinkage stress is obtained.

紡糸温度はポリマー融点よりも+20〜+50℃高い温度で設定するのが好ましい。ポリマー融点よりも+20℃以上高く設定することで、ポリマーが紡糸機配管内で固化して閉塞することを防ぐことができ、かつ高めに設定する温度を+50℃以下とすることでポリマーの過度な熱劣化を抑制することができるため好ましい。   The spinning temperature is preferably set at a temperature +20 to + 50 ° C. higher than the polymer melting point. By setting it higher than the polymer melting point by + 20 ° C. or more, it is possible to prevent the polymer from solidifying and clogging in the spinning pipe, and to set the temperature to be higher than + 50 ° C. It is preferable because thermal deterioration can be suppressed.

海島成分の溶解速度差が5倍以上となるポリマーを海成分に選択し、海島型複合繊維における海成分面積割合が10〜60%となるように計量する。島成分は面積割合が90〜40%となるように計量し溶融吐出する。   A polymer having a difference in dissolution rate of the sea-island component of 5 times or more is selected as the sea component, and weighed so that the sea component area ratio in the sea-island composite fiber is 10 to 60%. The island component is measured and melted and discharged so that the area ratio is 90 to 40%.

本発明の海島型複合繊維は溶融紡糸法によって好ましく得られるが、口金は、品質および操業安定的に紡糸することが可能であれば、公知のいずれの内部構造のものであっても良く、特に特開2011−174215号公報や特開2011−208313号公報、特開2012−136804号公報に例示される分配板方式口金が好適に用いることが出来る。このとき、紡糸ドラフトは300倍以下とするとフィラメント間での物性バラツキが抑制された均質な繊維が得られ好ましい。フィラメント数は、口金のサイズにより適宜設定できるが、フィラメントの吐出孔間隔を10mm以上に保つと、フィラメントの冷却固化がスムーズに行えて均質な繊維を得やすいので好ましい。   The sea-island type composite fiber of the present invention is preferably obtained by a melt spinning method, but the die may be of any known internal structure, as long as it can be stably spun in quality and operation, Distribution plate type bases exemplified in JP 2011-174215 A, JP 2011-208313 A, and JP 2012-136804 A can be suitably used. At this time, if the spinning draft is 300 times or less, it is preferable to obtain a homogeneous fiber in which variation in physical properties between filaments is suppressed. The number of filaments can be appropriately set depending on the size of the die, but it is preferable to maintain the filament discharge hole interval at 10 mm or more because the filament can be cooled and solidified smoothly and uniform fibers can be easily obtained.

ここで、島欠エリアの形成方法について述べる。前述に記載の分配板方式口金を用いることで、海島複合繊維の島成分を任意に配置することが出来、繊維断面において通常島成分を配置する箇所に海成分を配置し(島成分を配置しない)、海成分のみのエリアを形成させて島欠エリアを形成する。   Here, a method of forming the island missing area will be described. By using the above-described distribution plate type die, the island component of the sea-island composite fiber can be arbitrarily arranged, and the sea component is arranged at the place where the island component is usually arranged in the fiber cross section (the island component is not arranged). ), Form an island-only area by forming an area of sea components only.

本発明の海島型複合繊維の下記式で表される紡糸ドラフトは50〜300が好ましい。
紡糸ドラフト=Vs/V0
Vs:紡糸速度(m/分)
V0:吐出線速度(m/分)
紡糸ドラフトを50以上とすることで、口金孔から吐出されたポリマー流が長時間口金直下に留まることを防止し、口金面汚れを抑制することができることから、製糸性が安定する。また、紡糸ドラフトを300以下とすることで過度な紡糸張力による糸切れを抑制することが可能となり、海島型複合繊維を安定した製糸性で得ることができるので好ましい。より好ましくは80〜250である。
The spinning draft represented by the following formula of the sea-island type composite fiber of the present invention is preferably 50 to 300.
Spinning draft = Vs / V0
Vs: Spinning speed (m / min)
V0: discharge linear velocity (m / min)
By setting the spinning draft to 50 or more, it is possible to prevent the polymer flow discharged from the die hole from staying directly under the die for a long time and to suppress the contamination of the die surface. Further, it is preferable to set the spinning draft to 300 or less because it is possible to suppress yarn breakage due to excessive spinning tension, and sea-island composite fibers can be obtained with stable yarn-making properties. More preferably, it is 80-250.

本発明の海島型複合繊維の紡糸張力は0.02〜0.15cN/dtexにするのが好ましい。紡糸張力を0.02cN/dtex以上にすることで紡糸時の糸揺れによる単糸間での糸条干渉がなく、第1ローラーである引取りローラーに逆巻きすることもないため安定走行が可能となる。また、紡糸張力を0.15cN/dtex以下とすることで、製糸安定的に海島型複合繊維を得られるので好ましい。紡糸張力のより好ましい範囲は0.07〜0.1cN/dtexである。   The spinning tension of the sea-island composite fiber of the present invention is preferably 0.02 to 0.15 cN / dtex. By setting the spinning tension to 0.02 cN / dtex or more, there is no yarn interference between single yarns due to yarn swinging during spinning, and it is possible to achieve stable running because there is no reverse winding on the take-up roller as the first roller. Become. In addition, it is preferable to set the spinning tension to 0.15 cN / dtex or less because a sea-island type composite fiber can be obtained stably. A more preferable range of the spinning tension is 0.07 to 0.1 cN / dtex.

本発明の海島型複合繊維を操業・品質安定的に製糸するにあたり、吐出されたポリマーの冷却固化を厳密に制御することが好ましい。細繊度化に伴い吐出ポリマー量を抑制すると、ポリマーの細化および冷却固化が口金に近づく(上流へ移動する)ため、従来技術で想定される冷却方法では長手方向の糸斑の多い繊維しか得られない。また、固化した繊維による随伴気流が増大し、紡糸張力が大きくなるため、これらを低減する技術が必要となる。紡糸張力の増大を低減する方法として、冷却開始点を口金面から20〜120mmとすることが好ましい。冷却開始点が20mm以上であれば冷却風による口金の面温度低下を抑制でき、低温糸、口金孔詰まりや複合異常、吐出斑といった諸問題を回避できるので好ましい。また、冷却開始点は120mm以下とすることで、長手方向での糸斑の少ない高品質な海島型複合繊維を得ることができるので好ましい。冷却開始点のより好ましい範囲は25〜100mmである。   It is preferable to strictly control the cooling and solidification of the discharged polymer when the sea-island type composite fiber of the present invention is operated and quality is stably produced. When the amount of discharged polymer is reduced as the fineness is reduced, the thinning of the polymer and the cooling and solidification approach the base (move upstream). Therefore, the cooling method assumed in the prior art can only obtain fibers with a lot of yarn in the longitudinal direction. Absent. In addition, the accompanying airflow due to the solidified fibers increases and the spinning tension increases, so a technique for reducing these is required. As a method for reducing the increase in spinning tension, the cooling start point is preferably set to 20 to 120 mm from the die surface. A cooling start point of 20 mm or more is preferable because it can suppress a decrease in the surface temperature of the die due to cooling air and can avoid various problems such as low-temperature yarn, clogging of the die hole, complex abnormality, and ejection spots. Moreover, it is preferable to set the cooling start point to 120 mm or less because a high-quality sea-island type composite fiber with little yarn unevenness in the longitudinal direction can be obtained. A more preferable range of the cooling start point is 25 to 100 mm.

また、冷却風による口金面温度低下を抑制するため、必要に応じ、冷却風の温度管理や、口金周辺部に加熱装置を設置してもよい。   Moreover, in order to suppress the temperature reduction of the base surface due to the cooling air, a temperature control of the cooling air or a heating device may be installed in the periphery of the base as necessary.

口金吐出面から給油位置までの距離は1300mm以下であることが好ましい。口金吐出面から給油位置までの距離を1300mm以下とすることで冷却風による糸条揺れ幅を抑え、繊維長手方向での糸斑を改善できるほか、糸条の収束に至るまでの随伴気流を抑制できるため紡糸張力を低減でき、毛羽や糸切れの少ない安定した製糸性が得やすいので好ましい。海島型複合繊維の紡糸工程における給油位置のより好ましい範囲は1200mm以下である。   The distance from the die discharge surface to the oil supply position is preferably 1300 mm or less. By controlling the distance from the nozzle discharge surface to the oil supply position to 1300 mm or less, the width of yarn swaying by cooling air can be suppressed, the yarn unevenness in the longitudinal direction of the fiber can be improved, and the accompanying airflow until the yarn converges can be suppressed. Therefore, it is preferable because the spinning tension can be reduced and stable spinning with less fluff and yarn breakage is easily obtained. A more preferable range of the oil supply position in the spinning process of the sea-island type composite fiber is 1200 mm or less.

この素材は、極細繊維ゆえの軽量性に布帛の緻密性が加わったことにより、これまで敬遠されてきたスポーツ用途衣料やアウター素材として極細繊維の特徴である繊細な肌触りやソフト感を生かした新たな素材として、幅広く好適に用いることができ、アウトドア、水着のスポーツ衣料は勿論のこと、一般衣料用にも好適な素材である。   This material is a new product that takes advantage of the delicate touch and softness characteristic of ultrafine fibers as sporting clothing and outer materials that have been avoided so far, due to the addition of lightweight fabric due to ultrafine fibers and the fineness of the fabric. It can be suitably used as a wide range of materials, and is suitable for general clothing as well as outdoor and swimwear sports clothing.

以下実施例を挙げて、本発明の海島型複合繊維について具体的に説明する。実施例および比較例については、下記の評価を行った。   The sea-island type composite fiber of the present invention will be specifically described below with reference to examples. About the Example and the comparative example, the following evaluation was performed.

(1)固有粘度(IV)
定義式のηrは、純度98%以上のO−クロロフェノール(OCP)10mL中に試料ポリマーを0.8g溶かし、25℃の温度にてオストワルド粘度計を用いて相対粘度ηrを下記の式により求め、固有粘度(IV)を算出した。
(1) Intrinsic viscosity (IV)
Ηr of the definition formula is obtained by dissolving 0.8 g of a sample polymer in 10 mL of O-chlorophenol (OCP) having a purity of 98% or more, and obtaining the relative viscosity ηr by the following formula using an Ostwald viscometer at a temperature of 25 ° C. The intrinsic viscosity (IV) was calculated.

ηr=η/η0=(t×d)/(t0×d0)
固有粘度(IV)=0.0242ηr+0.2634
η:ポリマー溶液の粘度
η0:OCPの粘度
t:溶液の落下時間(秒)
d:溶液の密度(g/cm
t0:OCPの落下時間(秒)
d0:OCPの密度(g/cm) 。
ηr = η / η0 = (t × d) / (t0 × d0)
Intrinsic viscosity (IV) = 0.0242 ηr + 0.2634
η: viscosity of polymer solution η0: viscosity of OCP t: drop time of solution (second)
d: density of the solution (g / cm 3 )
t0: OCP fall time (seconds)
d0: OCP density (g / cm 3 ).

(2)溶解速度差
海成分ポリマーおよび島成分ポリマーで用いるポリマーを約2gそれぞれ用意して計量した後、95℃の3wt%水酸化ナトリウム水溶液にて5分間処理した時の減量率から以下の式にて溶解速度差を算出した。
(2) Difference in dissolution rate After preparing and weighing about 2g of each of the polymers used in the sea component polymer and the island component polymer, and weighing them with a 3 wt% sodium hydroxide aqueous solution at 95 ° C for 5 minutes, the following formula is obtained. The difference in dissolution rate was calculated.

海成分ポリマーの減量率(%:S)=((処理前重量)/(処理後重量))×100
島成分ポリマーの減量率(%:I)=((処理前重量)/(処理後重量))×100
溶解速度差=S/I 。
Weight loss rate of sea component polymer (%: S) = ((weight before treatment) / (weight after treatment)) × 100
Reduction rate of island component polymer (%: I) = ((weight before treatment) / (weight after treatment)) × 100
Dissolution rate difference = S / I.

(3)強伸度
JIS L1013(1999)に従い、TOYO BALDWIN社製TENSILON/UTM−III−100を使用し、試料長20cm、引張り速度20cm/分の測定条件でフィラメント破断点における強度(cN/dtex)、伸度(%)を測定した。
(3) High elongation In accordance with JIS L1013 (1999), using TENSILON / UTM-III-100 manufactured by TOYO BALDWIN, the strength (cN / dtex) at the filament breaking point under the measurement conditions of a sample length of 20 cm and a tensile speed of 20 cm / min. ), Elongation (%) was measured.

(4)複合繊維の繊度
枠周1.0mの検尺機を用いて100回分のカセを作製し、下記式に従って繊度を測定した。
(4) Fineness of composite fiber 100 pieces of casserole were prepared using a measuring machine having a frame circumference of 1.0 m, and the fineness was measured according to the following formula.

繊度(dtex)=100回分のカセ重量(g)×100 。   Fineness (dtex) = 100 weights of casserole (g) × 100

(5)海島型複合繊維の沸騰水収縮率
枠周1.0mの検尺機を用いて10回分のカセ取りした海島型複合繊維に2.0g/dtexの荷重を掛け、試料長L1(mm)を測定する。荷重を外し、沸騰水で15分間処理する。処理後のカセに再度2.0g/dtexの荷重を掛け、試料長L2(mm)を測定する。下記式に従って、乾熱収縮率を算出する。
(5) Boiling water shrinkage of sea-island type composite fiber A load of 2.0 g / dtex was applied to the sea-island type composite fiber that was crushed 10 times using a measuring machine with a frame circumference of 1.0 m, and the sample length L1 (mm ). Remove the load and treat with boiling water for 15 minutes. A load of 2.0 g / dtex is again applied to the treated cassette, and the sample length L2 (mm) is measured. The dry heat shrinkage is calculated according to the following formula.

沸騰水収縮率(%)=((試料長L1(mm)−試料長L2(mm))/試料長L1(mm))×100 。   Boiling water shrinkage rate (%) = ((sample length L1 (mm) −sample length L2 (mm)) / sample length L1 (mm)) × 100.

(6)島成分繊維の乾熱収縮率
枠周1.0mの検尺機を用いて10回分のカセ取りした海島型複合繊維に対し、98℃の水酸化ナトリウム1%水溶液を用いて海成分を溶解除去して島成分繊維(ナノファイバー単糸群)を得る。得られた島成分繊維のカセに4.0g/dtexの荷重を掛け、試料長A(mm)を測定する。荷重を外し、150℃の乾熱オーブンにて15分間処理する。処理後島成分繊維のカセに再度4.0g/dtexの荷重を掛け、試料長B(mm)を測定する。下記式に従って、乾熱収縮率を算出する。
(6) Dry heat shrinkage rate of island component fibers Sea component using sea hydroxide type 1% aqueous solution at 98 ° C for sea island type composite fiber that has been crushed 10 times using a measuring machine with a frame circumference of 1.0m. Is dissolved and removed to obtain island component fibers (nanofiber single yarn group). A load of 4.0 g / dtex is applied to the resulting island component fiber case, and the sample length A (mm) is measured. Remove the load and treat in a dry heat oven at 150 ° C. for 15 minutes. After the treatment, a load of 4.0 g / dtex is again applied to the fiss of the island component fibers, and the sample length B (mm) is measured. The dry heat shrinkage is calculated according to the following formula.

乾熱収縮率(%)=((試料長A(mm)−試料長B(mm))/試料長A(mm))×100 。   Dry heat shrinkage ratio (%) = ((sample length A (mm) −sample length B (mm)) / sample length A (mm)) × 100.

(7)海島型複合繊維の面積複合比
繊維をエポキシ樹脂で包埋し、Reichert社製FC・4E型クライオセクショニングシステムで凍結し、ダイヤモンドナイフを具備した「Reichert−Nissei ultracut N」(ウルトラミクロトーム)で切削した後、その切削面を日立製作所製H−7100FA型透過型電子顕微鏡(TEM)にて観察像を撮影した。この画像より、任意の10本の繊維を選び、画像処理ソフト(WINROOF)を用いて、海島型複合繊維の面積および島成分の面積合計を算出し、面積複合比を求めた。
(7) Area composite ratio of sea-island type composite fiber “Reichert-Nissei ultracut N” (ultra microtome) equipped with a diamond knife, embedded in epoxy resin, frozen with Reichert FC-4E cryosectioning system After cutting, an observation image of the cut surface was taken with an H-7100FA transmission electron microscope (TEM) manufactured by Hitachi. From this image, arbitrary 10 fibers were selected, and using the image processing software (WINROOF), the area of the sea-island type composite fiber and the total area of the island components were calculated to obtain the area composite ratio.

(8)島欠エリアのS/Rの計測
まず、島欠エリアとは、隣り合った島成分同士の微小な場所を除いた、島成分が存在しないエリアを島欠エリアと定義する。すなわち、図3の左下がり斜線部で示すとおり、当該エリアの外側に存在する島成分の島欠エリア側の頂点を結んで形成される多角形を島欠エリアという。
(8) Measurement of S / R of Island Missing Area First, an island missing area is defined as an island missing area excluding a minute place between neighboring island components. That is, as shown by the diagonally downward slanting portion in FIG. 3, the polygon formed by connecting the vertices on the island missing area side of the island component existing outside the area is called an island missing area.

上記(7)で用いた画像を基に画像処理ソフト(WINROOF)を用いて、海島複合繊維の任意の3箇所の直径を計測し、繊維直径(R)とした。   Based on the image used in (7) above, the image processing software (WINROOF) was used to measure the diameters at any three locations of the sea-island composite fiber, and the result was taken as the fiber diameter (R).

次に海島形複合繊維の中心と島欠エリアを通る直線で島欠エリアの繊維直径方向の長さが最大となる箇所を島欠エリアの繊維直径方向の厚み(S)としたとき、下記式よりS/Rを求める。   Next, when the point where the length in the fiber diameter direction of the island lacking area is the straight line passing through the center of the island-island composite fiber and the island missing area is defined as the thickness (S) in the fiber diameter direction of the island missing area, the following formula S / R is obtained from

S/R=(島欠エリアの繊維直径方向の厚み(S))/(繊維直径(R)) 。   S / R = (Thickness in the fiber diameter direction of the island lacking area (S)) / (Fiber diameter (R)).

(9)島欠エリアの角度(A)
図4のとおり、上記(8)の島欠エリアの繊維円周方向の両端の頂点と繊維中心を結んだ直線がなす角度を島欠アリアの角度(A)として計測した。
(9) Island missing area angle (A)
As shown in FIG. 4, the angle formed by the straight line connecting the vertices of both ends in the fiber circumferential direction of the island notch area (8) and the fiber center was measured as the angle (A) of the island notch area.

(10)捲縮ピッチ
試料長100mm(ループ状)にカセ取りした海島型複合繊維に対して、98℃の水酸化ナトリウム1%水溶液を用いて海成分を溶解除去して島成分繊維(ナノファイバー単糸群)を得る。得られた島成分繊維をA4サイズの透明フィルムで挟み込み、キーエンス社製マイクロスコープVHX−2000を用いて観察倍率500〜1000倍にて画像撮影し、その画像より任意の20本について捲縮の山と谷の繊維軸方向の長さ山谷間隔L(mm)を測定し、山と谷の高さH(mm)(繊維軸に垂直な方向)を測定し、下記式(1)より捲縮ピッチを算出する。また、任意の20本のうち、最大の捲縮ピッチを最大値(−)とし、最小の捲縮ピッチを最小値(−)として、下記式(2)により、最大/最小比をもとめる。
(10) Crimped pitch Sea-island composite fibers crushed to a sample length of 100 mm (loop) are dissolved and removed using a 1% aqueous solution of sodium hydroxide at 98 ° C to remove island components (nanofibers). Single yarn group). The obtained island component fibers were sandwiched between A4 size transparent films, and images were taken at an observation magnification of 500 to 1000 times using a KEYENCE microscope VHX-2000. The length in the fiber axis direction of the ridge and valley L (mm) is measured, the height H (mm) of the ridge and valley (direction perpendicular to the fiber axis) is measured, and the crimp pitch is calculated from the following formula (1) Is calculated. Further, among the arbitrary 20 lines, the maximum crimp pitch is set to the maximum value (−), the minimum crimp pitch is set to the minimum value (−), and the maximum / minimum ratio is obtained by the following equation (2).

捲縮ピッチ(−)=山谷間隔L(mm)/高さH(mm)・・・(1)
最大/最小比(−)=最大値(−)/最小値(−)・・・(2) 。
Crimp pitch (-) = Valley interval L (mm) / Height H (mm) (1)
Maximum / minimum ratio (−) = maximum value (−) / minimum value (−) (2)

(11)開繊性
上記(10)で用いた観察画像にて開繊性の評価を行い、極細繊維同士が単独で存在し、バラけた状態にある場合を開繊性が良いとしたとき、画像あたりバンドル(束)が3本未満の場合は、開繊性良「◎」、6本未満の場合は開繊性可「○」、バンドルが6本以上の場合は開繊性不可「×」とした。
(11) Opening property When the opening property is evaluated in the observation image used in (10) above, the ultrafine fibers are present alone, and the case where the fibers are in a loose state is considered to have good opening property. When the number of bundles per image is less than 3, the spreadability is “「 ”. When the number is less than 6, the spreadability is“ good ”. When the number of bundles is 6 or more, the spreadability is not possible. "

(12)製糸安定性
各実施例についての製糸を行い、1千万m当たりの糸切れ回数から海島型複合繊維の製糸安定性を3段階評価した。
極めて良好 ◎ :0.8回/千万m未満
良好 ○ :0.8回/千万m以上、2.0回/千万m未満
不良 × :2.0回/千万m以上 。
(12) Yarn Stability Stabilization was performed for each example, and the yarn stability of the sea-island type composite fiber was evaluated in three stages from the number of yarn breaks per 10 million meters.
Very good ◎: Less than 0.8 times / 10,000,000 m ◯: 0.8 times / 10,000,000 m or more, 2.0 times / less than 10,000,000 m Defect x: 2.0 times / 10,000,000 m or more

(13)通気性と緻密性
経密度5280本/m、緯密度3580本/m、生機幅1.30mのゾッキ織物を作成し、95℃にて精錬後、3wt%の水酸化ナトリウム水溶液にて海成分を95wt%以上アルカリ減量除去した。更に130℃にて一旦乾燥させたのち、160℃、110cm幅にて仕上げ熱セットした。こうして得られた布帛をJIS L1096(1999)A法に従い、通気性を測定した。それを基に緻密性を以下の3段階にて評価し、○以上を合格とした。
(13) Breathability and denseness Create a Zokki fabric with a warp density of 5280 / m, a weft density of 3580 / m, and a raw machine width of 1.30m, refining at 95 ° C, and using a 3wt% aqueous sodium hydroxide solution Sea components were removed by alkali weight reduction of 95 wt% or more. Furthermore, after drying once at 130 ° C., finish heat setting was performed at 160 ° C. and a width of 110 cm. The fabric thus obtained was measured for air permeability according to JIS L1096 (1999) A method. Based on this, the denseness was evaluated in the following three stages, and a value of ○ or higher was regarded as acceptable.

◎ :1cc/cm・sec未満
○ :1〜3cc/cm・sec
× :3cc/cm2.sec以上を超 。
◎: Less than 1 cc / cm 2 · sec ○: 1 to 3 cc / cm 2 · sec
X: 3 cc / cm2. Over sec.

(14)布帛評価
前記(13)で製作した布地を98℃のテラシールネイビーブルーSGL(0.4%owf)で染色したものを試験布として、熟練した検査者(5人)の触感によって布帛の風合い、緻密性、表面均一性、染色均一性を相対評価した。各項目について、総合的に非常に良い(4点)、良い(3点)、あまり良くない(2点)、悪い(1点)の4段階で官能評価してその合計値(最高点は16点)を算出し、各検査者の合計値の平均値にて下記の通り評価をした。
極めて良好 ◎ :14点以上
良好 ○ :14点未満9点以上
不良 × :9点未満 。
(14) Fabric Evaluation The fabric produced in (13) above was dyed with 98 ° C. Terraseal Navy Blue SGL (0.4% owf) as a test fabric, and the fabric was touched by a skilled inspector (5 persons). The texture, density, surface uniformity, and dyeing uniformity were evaluated relative to each other. For each item, the sensory evaluation was performed in four stages: very good (4 points), good (3 points), not very good (2 points), and bad (1 point). Point) was calculated and evaluated as follows by the average value of the total value of each inspector.
Very good ◎: 14 points or better ◯: Less than 14 points, 9 points or more defective ×: Less than 9 points

実施例1
難溶解性の島成分としてイソフタル酸およびビスフェノールAエチレンオキサイド付加物を全酸成分に対してそれぞれ7.1モル%、4.4モル%共重合したIV=0.67の共重合ポリエチレンテレフタレートを準備した。易溶解性の海成分ポリマーとして5−ナトリウムスルホイソフタル酸7.3wt%を共重合成分として含むIV=0.55のアルカリ易溶解性ポリエチレンテレフタレートをそれぞれ準備した。アルカリ水溶液に対する海成分と島成分の溶解速度の差は25倍であった。
Example 1
Preparation of copolymerized polyethylene terephthalate with IV = 0.67 obtained by copolymerizing 7.1 mol% and 4.4 mol% of isophthalic acid and bisphenol A ethylene oxide adduct as a hardly soluble island component, respectively, with respect to the total acid component did. As an easily soluble sea component polymer, an alkali easily soluble polyethylene terephthalate having IV = 0.55 containing 7.3 wt% of 5-sodium sulfoisophthalic acid as a copolymerization component was prepared. The difference in dissolution rate between the sea component and the island component in the alkaline aqueous solution was 25 times.

島成分ポリマーと海成分ポリマーをいずれもエクストルーダーを用いてそれぞれ270℃、280℃で溶融後、ポンプによる計量を行い、それぞれのポリマーで最も融点の高い、海成分の融点よりも30℃高い290℃を紡糸温度として、温度を保持したまま口金に流入させた。海成分と島成分の重量複合比は30/70とし、島数84島、吐出孔数112の海島型複合用紡糸口金に流入させた。各ポリマーは、口金内部で合流し、海成分ポリマー中に島成分ポリマーが包含された複合形態を形成し、口金から吐出した。なお、
図1に示す島欠エリアが得られるようにし、その島欠エリアの外側には島欠エリアが露出しないように島成分を配置した、分配板方式の口金を用いた。
Both the island component polymer and the sea component polymer were melted at 270 ° C. and 280 ° C. using an extruder, respectively, and weighed with a pump. Each polymer has the highest melting point, which is 30 ° C. higher than the melting point of the sea component 290 The spinning temperature was set at 0 ° C., and the temperature was kept flowing into the die. The weight composite ratio of the sea component and the island component was 30/70, and was flown into the sea-island type composite spinneret having 84 islands and 112 discharge holes. Each polymer merged inside the base, formed a composite form in which the island component polymer was included in the sea component polymer, and was discharged from the base. In addition,
A distribution plate type base in which island components are arranged so that the island missing area shown in FIG. 1 is obtained and the island missing area is not exposed outside the island missing area is used.

口金から吐出された糸条は、空冷装置により冷却、油剤付与後、ワインダーにより紡糸ドラフトが220となるように1500m/分の速度で巻き取り、182dtex−112フィラメントの未延伸糸として安定的に巻き取った。このとき、冷却開始点は口金吐出面から97mmに設定し、さらに給油位置を口金吐出面から1130mmとすることで、紡糸応力は0.10cN/dtexとなり、長手糸斑の抑制と製糸性の安定を図った。このプロセスで得られた未延伸糸について、観察倍率500倍での顕微鏡観察では、島成分の融着は見られなかった。   The yarn discharged from the base is cooled by an air-cooling device, applied with an oil agent, wound by a winder at a speed of 1500 m / min so that the spinning draft becomes 220, and stably wound as an undrawn yarn of 182 dtex-112 filament. I took it. At this time, the cooling start point is set to 97 mm from the nozzle discharge surface, and the oil supply position is set to 1130 mm from the nozzle discharge surface, so that the spinning stress becomes 0.10 cN / dtex, and the suppression of the longitudinal yarn unevenness and the stability of the yarn forming property are achieved. planned. With respect to the undrawn yarn obtained by this process, no fusion of island components was observed by microscopic observation at an observation magnification of 500 times.

続いて、得られた未延伸糸を300m/分の速度で延伸装置に送糸し、延伸温度90℃、伸度20〜40%程度となるように延伸倍率2.56倍で延伸した後、130℃で熱セットし、紡糸、延伸工程を通じて安定的に強度2.6cN/dtex、伸度31%の66dtex−112フィラメントの延伸糸を得た。   Subsequently, the obtained undrawn yarn was fed to a drawing device at a speed of 300 m / min, and drawn at a drawing temperature of 90 ° C. and a draw ratio of 2.56 times so that the elongation was about 20 to 40%. Heat setting was performed at 130 ° C., and a drawn yarn of 66 dtex-112 filament having a strength of 2.6 cN / dtex and an elongation of 31% was stably obtained through the spinning and drawing processes.

得られた海島型複合繊維を用いて行った評価結果を表1に示す。該海島型複合繊維の沸騰水収縮率は18%であり、緻密性の高い開繊性の優れた布帛に用いる原糸として有用な原糸であった。   Table 1 shows the results of evaluation performed using the obtained sea-island type composite fibers. The sea-island composite fiber had a boiling water shrinkage of 18%, and was a useful yarn as a yarn used for a fabric having high density and excellent spreadability.

また、島成分の海成分溶出後の繊維は、乾熱収縮率は29%であった。繊維形態は嵩高く、一部の繊維が仮撚り加工を施したごとくの捲縮となっており、その捲縮ピッチの最小値が4であり、ランダムな糸長差により、開繊性が良い状態となっている。この繊維から得られた布帛は緻密性が高く、なおかつソフトで嵩高性のある、良好な風合いの布帛が得られた。   Further, the fiber after elution of the sea component of the island component had a dry heat shrinkage of 29%. The fiber form is bulky, and it is crimped as if some fibers have been false twisted. The minimum value of the crimped pitch is 4, and the openability is good due to random yarn length differences. It is in a state. The fabric obtained from this fiber had a high density and a soft and bulky fabric with a good texture.

実施例2〜9
実施例2〜4は、難溶解性成分および易溶解性成分の組み合わせ、実施例5〜8は島欠エリアの大きさ、実施例9は複合比率を、それぞれ表1のとおり変更した以外は、実施例1と同様にして海島型複合繊維を得て、表2の評価のとおり緻密性の高い開繊性の優れた布帛に用いる原糸として有用な原糸を得ることができた。
Examples 2-9
Examples 2 to 4 are combinations of a hardly soluble component and a readily soluble component, Examples 5 to 8 are the size of the island lacking area, and Example 9 is a composite ratio, except that the composite ratio is changed as shown in Table 1, respectively. A sea-island type composite fiber was obtained in the same manner as in Example 1, and as shown in Table 2, it was possible to obtain a raw yarn useful as a raw yarn for use in a fabric having high density and excellent spreadability.

比較例1〜3
表1のとおり、比較例1、2は、海島複合比率を、比較例3は難溶解性成分をホモポリエチレンテレフタレートとした。いずれの原糸から得られた布帛は、表2のとおり、緻密性が低く、開繊性に劣った布帛であり、満足できる原糸では無かった。
Comparative Examples 1-3
As shown in Table 1, Comparative Examples 1 and 2 used sea-island composite ratios and Comparative Example 3 used homopolyethylene terephthalate as a hardly soluble component. As shown in Table 2, the fabric obtained from any of the raw yarns was a fabric having low denseness and inferior opening properties, and was not a satisfactory raw yarn.

Claims (4)

易溶解性ポリマーを海成分、難溶解性ポリマーを島成分とする海島型複合繊維であって、繊維断面における海:島の面積比が10:90〜60:40であり、沸騰水収縮率が12%以上であることを特徴とする極細繊維用海島型複合繊維。   A sea-island composite fiber having an easily soluble polymer as a sea component and a hardly soluble polymer as an island component, and the sea: island area ratio in the fiber cross section is 10:90 to 60:40, and the boiling water shrinkage is A sea-island type composite fiber for ultrafine fibers, characterized by being 12% or more. 繊維断面において、以下の(1)〜(4)の要件を満足する、島成分が偏芯配置されていることを特徴とする請求項1に記載の海極細繊維用島型複合繊維。
(1)繊維中心と外周部を結ぶ半径線上に島成分が存在しない島欠エリアが存在すること。
(2)島欠エリアの周囲は島成分で被覆され、繊維表面に該エリアが露出しないこと。
(3)島欠エリアの円周方向の両端と、繊維中心とがなす角度(A)が、60°≦A≦270°であること。
(4)島欠エリアの繊維直径方向の厚み(S)と、繊維直径(R)との比、S/Rが、0.18≦S/R≦0.45であること。
2. The island-shaped composite fiber for marine ultrafine fibers according to claim 1, wherein island components that satisfy the following requirements (1) to (4) are arranged eccentrically in the fiber cross section.
(1) There is an island missing area where no island component exists on the radial line connecting the fiber center and the outer periphery.
(2) The area around the island missing area is covered with an island component and the area is not exposed on the fiber surface.
(3) The angle (A) formed by both ends in the circumferential direction of the island missing area and the fiber center is 60 ° ≦ A ≦ 270 °.
(4) The ratio of the thickness (S) in the fiber diameter direction of the island missing area to the fiber diameter (R), S / R, is 0.18 ≦ S / R ≦ 0.45.
海成分溶出後の島成分繊維の150℃における乾熱収縮率が18.0%以上であることを特徴とする請求項1または2に記載の極細繊維用海島型複合繊維。   The sea-island composite fiber for ultrafine fibers according to claim 1 or 2, wherein the island component fiber after elution of sea component has a dry heat shrinkage at 150 ° C of 18.0% or more. 海成分溶解後の繊維に捲縮ピッチ10以下の捲縮コイルが発現する、潜在捲縮性を有することを特徴とする請求項1から3のいずれか1項に記載の極細繊維用海島型複合繊維。   The sea-island type composite for ultrafine fibers according to any one of claims 1 to 3, which has a latent crimp property in which a crimped coil having a crimp pitch of 10 or less appears in the fiber after the sea component is dissolved. fiber.
JP2016013429A 2016-01-27 2016-01-27 Sea-island type composite fiber for ultra fine fiber Pending JP2017133122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016013429A JP2017133122A (en) 2016-01-27 2016-01-27 Sea-island type composite fiber for ultra fine fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016013429A JP2017133122A (en) 2016-01-27 2016-01-27 Sea-island type composite fiber for ultra fine fiber

Publications (1)

Publication Number Publication Date
JP2017133122A true JP2017133122A (en) 2017-08-03

Family

ID=59502143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016013429A Pending JP2017133122A (en) 2016-01-27 2016-01-27 Sea-island type composite fiber for ultra fine fiber

Country Status (1)

Country Link
JP (1) JP2017133122A (en)

Similar Documents

Publication Publication Date Title
TWI541399B (en) Composite fiber
JP2007262610A (en) Combined filament yarn
TW567257B (en) Polytrimethyleneterephthalate modified cross section yarn
TWI746672B (en) Polymer blend fiber and fiber structure containing it
JP2007308821A (en) Woven fabric for polishing fabric, method for producing the same, and magnetic disk-polishing fabric
JP6672641B2 (en) Extra fine polyester fiber with uneven surface
JP5718045B2 (en) Polyester fibers and fiber aggregates with excellent dyeability
JP5671828B2 (en) Sea-island type composite multifilament and its manufacturing method
JP2007009339A (en) Method for producing sea-island type conjugated fiber, sea-island type conjugated fiber obtained by the same and micro-fiber prepared from the sea-island type conjugated fiber
JP4639889B2 (en) Polytrimethylene terephthalate extra fine yarn
JP2008274446A (en) Latently crimpable conjugate fiber
JP2017133122A (en) Sea-island type composite fiber for ultra fine fiber
JP2015183343A (en) sea-island type multi-component composite fiber
JPH0813244A (en) Polyester flat cross-section yarn having turning part and its production
JP5012646B2 (en) Split-type polyamide / polyester composite fibers, woven and knitted fabrics, and textile products
JP7476619B2 (en) Polyester composite fiber
JP5661400B2 (en) Archipelago-exposed composite fiber, fiber structure obtained from the fiber, and wiping tape comprising the fiber structure
JP2609009B2 (en) Method for producing polyester ultrafine fiber
JP4021794B2 (en) Composite fiber for textile and its manufacturing method
JP5644587B2 (en) Nanofiber mixed yarn
JP3874529B2 (en) Pre-oriented polyester fiber and processed yarn therefrom
TW200530446A (en) Polyester differential shrinkage blended woven yarn and process for producing the same
JP2006274501A (en) Splittable conjugate fiber
JP3763948B2 (en) Polyester fiber and fabric containing the same
JP2001214335A (en) Low-shrinkage polyester slub yarn and combined polyester filament yarn composed thereof