JP2017132650A - Highly heat-conductive anisotropic graphite material and production method thereof - Google Patents

Highly heat-conductive anisotropic graphite material and production method thereof Download PDF

Info

Publication number
JP2017132650A
JP2017132650A JP2016012983A JP2016012983A JP2017132650A JP 2017132650 A JP2017132650 A JP 2017132650A JP 2016012983 A JP2016012983 A JP 2016012983A JP 2016012983 A JP2016012983 A JP 2016012983A JP 2017132650 A JP2017132650 A JP 2017132650A
Authority
JP
Japan
Prior art keywords
graphite material
thermal conductivity
anisotropic graphite
highly heat
conductive anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016012983A
Other languages
Japanese (ja)
Inventor
恭寛 秋山
Yasuhiro Akiyama
恭寛 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akechi Ceramics Co Ltd
Original Assignee
Akechi Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akechi Ceramics Co Ltd filed Critical Akechi Ceramics Co Ltd
Priority to JP2016012983A priority Critical patent/JP2017132650A/en
Publication of JP2017132650A publication Critical patent/JP2017132650A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a highly heat-conductive anisotropic graphite material in which a difference between heat transfer coefficients in a surface direction and a thickness direction is smaller compared to that in a graphite sheet and which has a novel characteristic that specific electrical resistance is nearly constant irrespective of the change in thickness; and a production method thereof.SOLUTION: The highly heat-conductive anisotropic graphite material and the production method thereof comprises: a pulverized powder formation step where pulverized powder is formed by pulverizing graphite sheets; and a molding step where a molded article is molded by using the pulverized powder, where a calcination step can be omitted because no binder is needed. By this, there is provided a highly heat-conductive anisotropic graphite material in which a difference between heat transfer coefficients in a surface direction and a thickness direction is smaller than that in a graphite sheet and which has a novel characteristic that specific electrical resistance is nearly constant irrespective of the change in thickness.SELECTED DRAWING: Figure 1

Description

本発明は、優れた熱伝導率を有する高熱伝導異方性黒鉛材料およびその製造方法に関する。   The present invention relates to a highly heat-conductive anisotropic graphite material having excellent heat conductivity and a method for producing the same.

従来、優れた熱伝導率を有す材料としては、石炭ピッチ系モザイクコークスにバインダーを添加し混捏、再粉砕、成形、焼成、含浸、再焼成、黒鉛化を実施して製造されていた(例えば特開2009−78967号公報)。   Conventionally, as a material having excellent thermal conductivity, a binder is added to coal pitch mosaic coke and kneaded, reground, molded, fired, impregnated, refired, and graphitized (for example, JP 2009-78967 A).

他方、黒鉛をシート状に形成した黒鉛シートは、黒鉛が薄片状であるため、製造工程における圧延時に層状構造となり、面方向の熱伝導率が高くなる一方、厚さ方向の熱伝導率は相対的に著しく低くなる特性があった。また、黒鉛シートは厚みの変化により電気比抵抗が変化するものであった。   On the other hand, a graphite sheet in which graphite is formed into a sheet shape has a lamellar structure during rolling in the manufacturing process because the graphite is flaky, and the thermal conductivity in the surface direction is high, while the thermal conductivity in the thickness direction is relatively There was a characteristic that it was extremely low. In addition, the specific resistance of the graphite sheet was changed by changing the thickness.

特開2009−78967号公報JP 2009-78967 A

本願発明者は、上記のような性質を有する黒鉛シートを用いて異方性の高熱伝導黒鉛材料を製造することを想起したものであり、すなわち、本発明の課題は、黒鉛シートに比して面方向と厚さ方向の熱伝導率の差が小さく、厚みの変化によっても電気比抵抗が略一定の新規な特性を有する高熱伝導異方性黒鉛材料およびその製造方法を提供することにある。   The inventor of the present application has conceived that an anisotropic high thermal conductive graphite material is produced using a graphite sheet having the above-described properties, that is, the problem of the present invention is compared with the graphite sheet. An object of the present invention is to provide a highly heat-conductive anisotropic graphite material having a novel characteristic in which the difference in thermal conductivity between the surface direction and the thickness direction is small and the electrical resistivity is substantially constant even when the thickness changes, and a method for producing the same.

上記課題を解決するものは、厚み方向の熱伝導率をaW/mK、面方向の熱伝導率をbW/mKとすると、13≦b/a≦50であることを特徴とする高熱伝導異方性黒鉛材料である(請求項1)。
また、上記課題を解決するものは、黒鉛シートを粉砕して粉砕粉を形成する粉砕粉形成工程と、前記粉砕粉を用いて成形品を成形する成形工程とを有することを特徴とする高熱伝導異方性黒鉛材料の製造方法である(請求項2)。前記成形工程の後に前記成形物が焼成されていないことが好ましい(請求項3)。
What solves the above-mentioned problems is a high thermal conductivity anisotropic, wherein 13 ≦ b / a ≦ 50, where aW / mK in the thickness direction and bW / mK in the surface direction. (Claim 1).
Moreover, what solves the said subject has the pulverized powder formation process which grind | pulverizes a graphite sheet and forms pulverized powder, and the shaping | molding process which shape | molds a molded article using the said pulverized powder, The high heat conductivity characterized by the above-mentioned A method for producing an anisotropic graphite material (claim 2). It is preferable that the molded product is not fired after the molding step.

請求項1に記載した高熱伝導異方性黒鉛材料によれば、従来の黒鉛シートに比して面方向と厚さ方向の熱伝導率の差が小さく、厚みの変化によっても電気比抵抗が略一定の新規な特性を有する高熱伝導異方性黒鉛材料となる。
請求項2に記載した高熱伝導異方性黒鉛材料の製造方法によれば、従来の黒鉛シートに比して面方向と厚さ方向の熱伝導率の差が小さく、厚みの変化によっても電気比抵抗が略一定の新規な特性を有する高熱伝導異方性黒鉛材料を作製できる。
請求項3に記載した高熱伝導異方性黒鉛材料の製造方法によれば、成形品が焼成されていないため、より熱伝導率が高い高熱伝導異方性黒鉛材料を作製できることに加え、焼成工程がないため、より短時間で低廉に高熱伝導異方性黒鉛材料を作製できる。
According to the highly heat-conductive anisotropic graphite material according to claim 1, the difference in thermal conductivity between the surface direction and the thickness direction is small as compared with the conventional graphite sheet, and the electrical specific resistance is substantially reduced by the change in thickness. It becomes a highly heat-conductive anisotropic graphite material having certain novel characteristics.
According to the method for producing a highly heat-conductive anisotropic graphite material according to claim 2, the difference in thermal conductivity between the plane direction and the thickness direction is smaller than that of a conventional graphite sheet, and the electrical ratio is also affected by a change in thickness. A highly heat-conductive anisotropic graphite material having a novel characteristic with a substantially constant resistance can be produced.
According to the method for producing a highly heat-conductive anisotropic graphite material according to claim 3, since the molded product is not fired, in addition to being able to produce a highly heat-conductive anisotropic graphite material having higher heat conductivity, a firing step Therefore, a highly heat-conductive anisotropic graphite material can be produced in a shorter time and at a lower cost.

本発明の高熱伝導異方性黒鉛材料の一実施例の斜視図である。It is a perspective view of one Example of the high thermal conductivity anisotropic graphite material of the present invention.

本発明では、黒鉛シートを粉砕して粉砕粉を形成する粉砕粉形成工程と、粉砕粉にて成形品を成形する成形工程とを有することにより、黒鉛シートに比して面方向と厚さ方向の熱伝導率の差が小さく、厚みの変化によっても電気比抵抗が略一定の新規な特性を有する黒鉛シート粉砕成形品を作製できる高熱伝導異方性黒鉛材料およびその製造方法を実現した。   In the present invention, by having a pulverized powder forming step of pulverizing a graphite sheet to form a pulverized powder and a forming step of forming a molded product with the pulverized powder, the surface direction and the thickness direction are compared with those of the graphite sheet. Thus, a highly thermally conductive anisotropic graphite material capable of producing a graphite sheet pulverized molded article having a novel characteristic in which the difference in thermal conductivity is small and the electrical resistivity is substantially constant even when the thickness changes is realized.

本発明の高熱伝導異方性黒鉛材料の製造方法について説明する。
図1に示した高熱伝導異方性黒鉛材料1の製造方法は、黒鉛シートを粉砕して粉砕粉を形成する粉砕粉形成工程と、前記粉砕粉にて成形品を成形する成形工程とを有し、前記成形工程の後に前記成形物が焼成されていないことを特徴とする高熱伝導異方性黒鉛材料の製造方法である。以下、各工程について順次詳述する。
The manufacturing method of the highly heat-conductive anisotropic graphite material of this invention is demonstrated.
1 has a pulverized powder forming step of pulverizing a graphite sheet to form a pulverized powder, and a forming step of forming a molded product with the pulverized powder. And the said molded object is not baked after the said formation process, It is a manufacturing method of the highly heat conductive anisotropic graphite material characterized by the above-mentioned. Hereinafter, each step will be described in detail.

粉砕粉形成工程では、黒鉛シートを粉砕機にて粉砕し粉砕粉を形成する。
黒鉛シートは、酸処理した酸処理黒鉛原料に熱を加えて黒鉛結晶の層間を数百倍に膨張させた膨張黒鉛を形成し、この膨張黒鉛の黒鉛間に発生している分子間力を利用してロール圧延により分子間力で結合させたものである。この粉砕粉形成工程では、前記のように形成された黒鉛シートを粉砕して粉砕粉を形成する。
In the pulverized powder forming step, the graphite sheet is pulverized by a pulverizer to form pulverized powder.
The graphite sheet forms expanded graphite that is expanded several hundred times between the graphite crystal layers by applying heat to the acid-treated acid-treated graphite material, and uses the intermolecular force generated between the expanded graphite graphite. Then, they are bonded by intermolecular force by roll rolling. In this pulverized powder forming step, the graphite sheet formed as described above is pulverized to form pulverized powder.

成形工程では、黒鉛シートの粉砕粉を、例えばメカニカルプレス(油圧プレス、フリクションプレス、振動プレス、CIP=Cold Isostatic Press)にて加圧成形することにより成形品を成形する。図1に示した本発明の高熱伝導異方性黒鉛材料の製造方法にて作製した高熱伝導異方性黒鉛材料1は、長方体ブロック形状(板状体または平板)に成形されているが、これに限定されるものではなく、様々な用途に応じてどのような形態に成形されていてもよく、例えば、円筒形状、坩堝形状などに成形してもよい。   In the forming step, the pulverized powder of the graphite sheet is formed by pressure molding using, for example, a mechanical press (hydraulic press, friction press, vibration press, CIP = Cold Isostatic Press). The highly heat-conductive anisotropic graphite material 1 produced by the method for producing a highly heat-conductive anisotropic graphite material of the present invention shown in FIG. 1 is formed into a rectangular block shape (plate or plate). However, the present invention is not limited to this, and it may be formed in any shape according to various uses, for example, it may be formed in a cylindrical shape, a crucible shape, or the like.

なお、この高熱伝導異方性黒鉛材料の製造方法では、成形工程の後に成形物が焼成されていない。これは、黒鉛シートを形成した膨張黒鉛の黒鉛間に発生している分子間力にて成形工程のみで高熱伝導異方性黒鉛材料が作製できるからである。従って、焼成を行う必要がないことから、成形工程においてバインダーとして樹脂もしくはタール及びピッチが添加される必要もない。このように、この実施例の高熱伝導異方性黒鉛材料の製造方法にて作製された高熱伝導異方性黒鉛材料は、成形後の焼成がされていないことから、焼成によって熱伝導率が低下することもなく、より高い熱伝導率を有するものとなる。   In this method for producing a high thermal conductivity anisotropic graphite material, the molded product is not fired after the molding step. This is because a highly heat-conductive anisotropic graphite material can be produced only by a molding process by an intermolecular force generated between graphites of expanded graphite forming a graphite sheet. Therefore, since it is not necessary to perform firing, it is not necessary to add resin or tar and pitch as a binder in the molding step. Thus, since the high thermal conductivity anisotropic graphite material produced by the method for producing the high thermal conductivity anisotropic graphite material of this example is not fired after molding, the thermal conductivity is reduced by firing. Without having a higher thermal conductivity.

(物性値測定)
本発明の高熱伝導異方性黒鉛材料の製造方法にて作製した高熱伝導異方性黒鉛材料1の物性値(かさ比重、気孔率、曲げ強度、シェアー硬度、固有抵抗、熱伝導率)を測定し、以下の表1の結果を得た。
(Physical property measurement)
Measure physical properties (bulk specific gravity, porosity, bending strength, shear hardness, specific resistance, thermal conductivity) of the high thermal conductivity anisotropic graphite material 1 produced by the method for producing the high thermal conductivity anisotropic graphite material of the present invention. The results shown in Table 1 below were obtained.

Figure 2017132650
Figure 2017132650

(考察1)熱伝導率について
本発明の高熱伝導異方性黒鉛材料の製造方法で、成形工程をCIP成形で行い、バインダーの添加無し、焼成無しの高熱伝導異方性黒鉛材料1の熱伝導率は、面方向(図1のb方向)で200W/mKであった(表1の実施例1参照)。
本発明の高熱伝導異方性黒鉛材料の製造方法で、成形工程を油圧成形で行い、バインダーの添加無し、焼成無しの高熱伝導異方性黒鉛材料の熱伝導率は、面方向(図1のb方向)で252W/mKであった(表1の実施例2参照)。
他方、黒鉛方向性が等方性で、コークス、人造黒鉛などを使用原料とし、成形工程をCIP成形で行い、バインダーを添加し、焼成工程を行った市販品1の熱伝導率は80W/mKであった。
さらに、黒鉛方向性が等方性で、コークス、人造黒鉛などを使用原料とし、成形工程を押し出し成形で行い、バインダーを添加し、焼成工程を行った市販品2の熱伝導率は120W/mKであった。
なお、熱伝導率の測定はレーザーフラッシュ法にて行い、得られた値からそれぞれの熱伝導率をそれぞれ算出した。
上記結果から、バインダーの添加無し、焼成無しの高熱伝導異方性黒鉛材料(実施例1または実施例2)の方が、バインダーを添加し焼成工程を行った市販品1または市販品2に比して、高い熱伝導率を示すことが確認された。
(Consideration 1) Thermal conductivity In the method for producing a high thermal conductivity anisotropic graphite material of the present invention, the molding step is performed by CIP molding, and the thermal conductivity of the high thermal conductivity anisotropic graphite material 1 without addition of a binder and without firing. The rate was 200 W / mK in the plane direction (the b direction in FIG. 1) (see Example 1 in Table 1).
In the method for producing a high thermal conductivity anisotropic graphite material of the present invention, the molding step is performed by hydraulic molding, and the thermal conductivity of the high thermal conductivity anisotropic graphite material without addition of binder and without firing is in the plane direction (of FIG. 1). b direction) was 252 W / mK (see Example 2 in Table 1).
On the other hand, the thermal conductivity of the commercial product 1 having an isotropic graphite directionality, using coke, artificial graphite and the like as raw materials, performing the molding process by CIP molding, adding a binder, and performing the firing process is 80 W / mK. Met.
Furthermore, the thermal conductivity of the commercial product 2 which has isotropic graphite orientation, uses coke, artificial graphite and the like as raw materials, performs the molding process by extrusion molding, adds a binder, and performs the firing process is 120 W / mK. Met.
The thermal conductivity was measured by a laser flash method, and each thermal conductivity was calculated from the obtained value.
From the above results, the highly heat-conductive anisotropic graphite material (Example 1 or Example 2) without addition of a binder and without firing is compared to the commercial product 1 or the commercial product 2 in which a binder is added and the firing process is performed. As a result, it was confirmed that high thermal conductivity was exhibited.

(考察2)強度について
本発明の高熱伝導異方性黒鉛材料の製造方法で、成形工程をCIP成形で行い、バインダーの添加無し、焼成無しの高熱伝導異方性黒鉛材料の曲げ強度は10Mpa、ショアー硬度は33であった(表1の実施例1参照)。
本発明の高熱伝導異方性黒鉛材料の製造方法で、成形工程を油圧成形で行い、バインダーの添加無し、焼成無しの高熱伝導異方性黒鉛材料の曲げ強度は16Mpa、ショアー硬度は34であった(表1の実施例2参照)。
他方、黒鉛方向性が等方性で、コークス、人造黒鉛などを使用原料とし、成形工程をCIP成形で行い、バインダーを添加し、焼成工程を行った市販品1の曲げ強度は40Mpa、ショアー硬度は50であった。
さらに、他方、黒鉛方向性が等方性で、コークス、人造黒鉛などを使用原料とし、成形工程を押し出し成形で行い、バインダーを添加し、焼成工程を行った市販品2の曲げ強度は25Mpa、ショアー硬度は37であった。
上記結果から、バインダーの添加無し、焼成無しの高熱伝導異方性黒鉛材料の方(実施例1または実施例2)が、バインダーを添加し焼成工程を行った市販品1または2に比して、強度は低いが、本発明により、焼成工程を行わない場合でも十分な強度を有する高熱伝導異方性黒鉛材料を作製できることが確認された。
(Consideration 2) Strength In the method for producing a high thermal conductivity anisotropic graphite material of the present invention, the molding step is performed by CIP molding, and the bending strength of the high thermal conductivity anisotropic graphite material without addition of binder and without firing is 10 Mpa, The Shore hardness was 33 (see Example 1 in Table 1).
In the method for producing a highly heat-conductive anisotropic graphite material of the present invention, the forming step is performed by hydraulic forming. The bending strength of the high heat-conductive anisotropic graphite material without addition of a binder and without firing is 16 Mpa and the Shore hardness is 34. (See Example 2 in Table 1).
On the other hand, the graphite product is isotropic, coke, artificial graphite, etc. are used as raw materials, the molding process is performed by CIP molding, the binder is added, and the firing process is performed. The bending strength of the commercial product 1 is 40 Mpa, Shore hardness Was 50.
On the other hand, the graphite directionality is isotropic, coke, artificial graphite and the like are used as raw materials, the molding process is performed by extrusion molding, the binder is added, and the bending strength of the commercial product 2 subjected to the firing process is 25 Mpa, The Shore hardness was 37.
From the above results, the high thermal conductivity anisotropic graphite material without addition of binder and without firing (Example 1 or Example 2) is compared to the commercial product 1 or 2 in which the binder was added and the firing process was performed. Although the strength is low, it was confirmed by the present invention that a highly heat-conductive anisotropic graphite material having sufficient strength can be produced even when the firing step is not performed.

(試験1)
本発明の高熱伝導異方性黒鉛材料の製造方法にて作製された高熱伝導異方性黒鉛材料と黒鉛シートとの熱伝導率の対比試験を行った。
本発明の高熱伝導異方性黒鉛材料の製造方法にて作製された高熱伝導異方性黒鉛材料として、油圧成形にてブロック形状に成形し、バインダーの添加無し、焼成工程無しで厚みが3.9,5.6,18.8,20.8mmの高熱伝導異方性黒鉛材料をそれぞれ作製した(表2参照)。
他方、比較例として、高熱拡散タイプの黒鉛シートで厚みが、0.08、0.12、0.25mmのもの、汎用タイプの黒鉛シートで厚みが、0.12、0.3mmのものを用いた。
なお、高熱拡散タイプの黒鉛シートは、ロール圧延でかさ比重を1.4〜1.8g/cm3に調整された黒鉛シートであり、汎用タイプの黒鉛シートはロール圧延でかさ比重を1.0〜1.4g/cm3に調整された黒鉛シートである。
また、熱伝導率の測定はレーザーフラッシュ法にて行い、得られた値から厚み方向の熱伝導率aと、面方向の熱伝導率b(図1参照)をそれぞれ算出し、以下の表2の結果を得た。
(Test 1)
A comparative test of the thermal conductivity of the high thermal conductivity anisotropic graphite material produced by the method for producing the high thermal conductivity anisotropic graphite material of the present invention and the graphite sheet was performed.
As the highly heat-conductive anisotropic graphite material produced by the method for producing a highly heat-conductive anisotropic graphite material of the present invention, it is formed into a block shape by hydraulic forming and has a thickness of 3 without the addition of a binder and without a firing step. High thermal conductivity anisotropic graphite materials of 9, 5.6, 18.8, and 20.8 mm were respectively produced (see Table 2).
On the other hand, as a comparative example, a high thermal diffusion type graphite sheet having a thickness of 0.08, 0.12, 0.25 mm and a general-purpose type graphite sheet having a thickness of 0.12, 0.3 mm are used. It was.
The high thermal diffusion type graphite sheet is a graphite sheet having a bulk specific gravity adjusted to 1.4 to 1.8 g / cm 3 by roll rolling, and the general-purpose type graphite sheet has a bulk specific gravity of 1.0 to 1 by roll rolling. A graphite sheet adjusted to 4 g / cm 3 .
Further, the thermal conductivity is measured by a laser flash method, and the thermal conductivity a in the thickness direction and the thermal conductivity b in the plane direction (see FIG. 1) are calculated from the obtained values. The result was obtained.

Figure 2017132650
Figure 2017132650

上記表2から、本発明の高熱伝導異方性黒鉛材料の製造方法にて作製された本発明の高熱伝導異方性黒鉛材料のb/aは13〜50であるのに対して、比較例のb/aは154〜418の値を示した。
これらの結果より、本発明の高熱伝導異方性黒鉛材料の製造方法にて作製された高熱伝導異方性黒鉛材料は、黒鉛シート(他の異方性黒鉛材料)に比して面方向と厚さ方向の熱伝導率の差が著しく小さいことが確認された。
From Table 2 above, the b / a of the highly heat-conductive anisotropic graphite material of the present invention produced by the method for manufacturing the highly heat-conductive anisotropic graphite material of the present invention is 13 to 50, whereas the comparative example is B / a of 154 to 418 was shown.
From these results, the highly heat-conductive anisotropic graphite material produced by the method for producing a highly heat-conductive anisotropic graphite material of the present invention has a plane direction as compared with the graphite sheet (other anisotropic graphite material). It was confirmed that the difference in thermal conductivity in the thickness direction was extremely small.

このように、本発明の製造方法にて作製された高熱伝導異方性黒鉛材料は、従来の異方性黒鉛材料である黒鉛シートに比して厚さ方向の熱伝導率が高く、厚さ方向への熱拡散性が高いものである。
携帯電話やノートパソコンの小型化に伴い、熱対策及び電磁波対策が非常に重要になってきているところ、現在は設計技術や電子部品の低電力化技術により抑えられているが、今後も小型化及び高性能化を進むにあたり、面方向だけでなく厚み方向にも熱伝導率が高い材料が求められると考えられる。
本発明の高熱伝導異方性黒鉛材料は色々な形状や厚みに成形できることから、現在の熱対策及び電磁波対策品より優れた代替品として、例えばヒートシンク(放熱板)、ヒートスプレッダ(緩衝板)として好適に使用できるものと考えられる。
Thus, the high thermal conductivity anisotropic graphite material produced by the production method of the present invention has a higher thermal conductivity in the thickness direction than the conventional anisotropic graphite material, ie, the thickness direction. High thermal diffusivity in the direction.
With the downsizing of mobile phones and notebook computers, countermeasures against heat and electromagnetic waves have become very important, but now they are being suppressed by design technologies and low-power technologies for electronic components. As the performance increases, it is considered that a material having high thermal conductivity is required not only in the plane direction but also in the thickness direction.
Since the highly heat-conductive anisotropic graphite material of the present invention can be formed into various shapes and thicknesses, it is suitable as a heat sink (heat radiating plate), heat spreader (buffer plate), for example, as an alternative superior to current heat countermeasure and electromagnetic wave countermeasure products. It is thought that it can be used for.

(試験2)
本発明の高熱伝導異方性黒鉛材料の製造方法にて作製された高熱伝導異方性黒鉛材料と黒鉛シートとの電気比抵抗の対比試験を行った。
本発明の高熱伝導異方性黒鉛材料の製造方法にて作製された高熱伝導異方性黒鉛材料として、厚みが3.9、5.6、20.81mmのものを作製した。他方、比較例として、高熱拡散タイプの黒鉛シートで、厚みが0.08、0.12、0.25mmのもの、汎用タイプの黒鉛シートで、厚みが0.12、0.3mmのものを用いた。
各実施例および各比較例に対して、それぞれ室温にて四端子法を行い、電気比抵抗として以下の表3の試験結果を得た。
(Test 2)
A comparison test of the electrical resistivity between the high thermal conductivity anisotropic graphite material produced by the method for producing the high thermal conductivity anisotropic graphite material of the present invention and the graphite sheet was performed.
Thicknesses of 3.9, 5.6, and 20.81 mm were produced as the high thermal conductivity anisotropic graphite material produced by the method for producing the high thermal conductivity anisotropic graphite material of the present invention. On the other hand, as a comparative example, a high thermal diffusion type graphite sheet having a thickness of 0.08, 0.12, and 0.25 mm and a general-purpose type graphite sheet having a thickness of 0.12 and 0.3 mm are used. It was.
For each example and each comparative example, the four-terminal method was performed at room temperature, and the test results shown in Table 3 below were obtained as electrical specific resistance.

Figure 2017132650
Figure 2017132650

上記表3から、比較例のものは、厚みが増加するにつれて電気比抵抗も増加するのに対して、実施例2のものは、厚みが増加しても電気比抵抗も略一定であることが確認された。   From Table 3 above, the electrical resistivity of the comparative example increases as the thickness increases, whereas the electrical resistivity of Example 2 is substantially constant as the thickness increases. confirmed.

上記試験(1)および(2)より、本発明の高熱伝導異方性黒鉛材料の製造方法によれば、黒鉛シートに比して面方向と厚さ方向の熱伝導率の差が小さく、厚みの変化によっても電気比抵抗が略一定の新規な特性を有する高熱伝導異方性黒鉛材料を作製できることが確認された。   From the above tests (1) and (2), according to the method for producing a highly heat-conductive anisotropic graphite material of the present invention, the difference in the thermal conductivity between the plane direction and the thickness direction is smaller than that of the graphite sheet. It was confirmed that a highly heat-conductive anisotropic graphite material having novel characteristics with a substantially constant electrical specific resistance can be produced even by the change in.

本発明の高熱伝導異方性黒鉛材料の製造方法にて作製された高熱伝導異方性黒鉛材料が、厚みが増加しても電気比抵抗も略一定となる原因は明確ではないが、黒鉛シートが薄片の層状体であるため厚みが増加すると電気比抵抗も増加するのに対して、本発明の高熱伝導異方性黒鉛材料は薄片が粉砕されているため電気比抵抗が略一定となるものと推測される。厚さにより電気比抵抗が増加する黒鉛シートに比して、厚みが増加しても電気比抵抗は略一定の本発明の高熱伝導異方性黒鉛材料の方が一般的には有用であり、また、面方向と厚さ方向の熱伝導率の差が小さい本発明の高熱伝導異方性黒鉛材料の方が、それが大きい黒鉛シートより一般的には有用であり、例えば従来の黒鉛シートの代替品等として、伝熱材、電池部品の他、携帯電話、ノートパソコン、レーザー機器、車載機器などのヒートシンク(放熱板)、ヒートスプレッダ(緩衝板)等として好適に使用できる。   The reason why the high thermal conductivity anisotropic graphite material produced by the method for producing the high thermal conductivity anisotropic graphite material of the present invention is substantially constant even when the thickness is increased is not clear, but the graphite sheet Is a layered body of flakes, the electrical resistivity increases as the thickness increases, whereas the highly heat-conductive anisotropic graphite material of the present invention has a substantially constant electrical resistivity because the flakes are crushed It is guessed. Compared to a graphite sheet whose electrical resistivity increases with thickness, the highly thermally conductive anisotropic graphite material of the present invention in which the electrical resistivity is substantially constant even when the thickness is increased is generally more useful, Further, the high thermal conductivity anisotropic graphite material of the present invention having a small difference in thermal conductivity between the plane direction and the thickness direction is generally more useful than a graphite sheet having a large thermal conductivity. As an alternative, in addition to heat transfer materials and battery parts, it can be suitably used as a heat sink (heat radiating plate), heat spreader (buffer plate), etc. for mobile phones, notebook computers, laser devices, in-vehicle devices and the like.

1 高熱伝導異方性黒鉛材料 1 High thermal conductivity anisotropic graphite material

Claims (3)

厚み方向の熱伝導率をaW/mK、面方向の熱伝導率をbW/mKとすると、13≦b/a≦50であることを特徴とする高熱伝導異方性黒鉛材料。   A highly thermally conductive anisotropic graphite material, wherein 13 ≦ b / a ≦ 50, where aW is the thermal conductivity in the thickness direction and aW / mK is the thermal conductivity in the plane direction. 黒鉛シートを粉砕して粉砕粉を形成する粉砕粉形成工程と、前記粉砕粉を用いて成形品を成形する成形工程とを有することを特徴とする高熱伝導異方性黒鉛材料の製造方法。   A method for producing a highly heat-conductive anisotropic graphite material, comprising: a pulverized powder forming step of pulverizing a graphite sheet to form a pulverized powder; and a molding step of forming a molded product using the pulverized powder. 前記成形工程の後に前記成形物が焼成されていない請求項2に記載の高熱伝導異方性黒鉛材料の製造方法。   The method for producing a high thermal conductivity anisotropic graphite material according to claim 2, wherein the molded product is not fired after the molding step.
JP2016012983A 2016-01-27 2016-01-27 Highly heat-conductive anisotropic graphite material and production method thereof Pending JP2017132650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016012983A JP2017132650A (en) 2016-01-27 2016-01-27 Highly heat-conductive anisotropic graphite material and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016012983A JP2017132650A (en) 2016-01-27 2016-01-27 Highly heat-conductive anisotropic graphite material and production method thereof

Publications (1)

Publication Number Publication Date
JP2017132650A true JP2017132650A (en) 2017-08-03

Family

ID=59502225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016012983A Pending JP2017132650A (en) 2016-01-27 2016-01-27 Highly heat-conductive anisotropic graphite material and production method thereof

Country Status (1)

Country Link
JP (1) JP2017132650A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083913A (en) * 2000-09-07 2002-03-22 Nippon Leakless Corp Expanded graphite heat sink
JP2003060141A (en) * 2001-08-20 2003-02-28 Otsuka Denki Kk Super heat conductor and cooling unit using the same
JP2006100379A (en) * 2004-09-28 2006-04-13 Kaneka Corp Heat sink
JP3122382U (en) * 2006-03-31 2006-06-08 大塚電機株式会社 Thermal conduction member, heat dissipation structure, and electronic equipment
JP2007012912A (en) * 2005-06-30 2007-01-18 Polymatech Co Ltd Thermal conductive member and cooling structure using the same
JP2007217206A (en) * 2006-02-15 2007-08-30 Kaneka Corp Graphite film, thermal diffusion film using the same and thermal diffusion method using the same
JP2010171030A (en) * 2008-12-22 2010-08-05 Kaneka Corp Heat radiating structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083913A (en) * 2000-09-07 2002-03-22 Nippon Leakless Corp Expanded graphite heat sink
JP2003060141A (en) * 2001-08-20 2003-02-28 Otsuka Denki Kk Super heat conductor and cooling unit using the same
JP2006100379A (en) * 2004-09-28 2006-04-13 Kaneka Corp Heat sink
JP2007012912A (en) * 2005-06-30 2007-01-18 Polymatech Co Ltd Thermal conductive member and cooling structure using the same
JP2007217206A (en) * 2006-02-15 2007-08-30 Kaneka Corp Graphite film, thermal diffusion film using the same and thermal diffusion method using the same
JP3122382U (en) * 2006-03-31 2006-06-08 大塚電機株式会社 Thermal conduction member, heat dissipation structure, and electronic equipment
JP2010171030A (en) * 2008-12-22 2010-08-05 Kaneka Corp Heat radiating structure

Similar Documents

Publication Publication Date Title
Feng et al. Superior thermal interface materials for thermal management
Duan et al. Effect of sintering pressure on the texture of hot-press sintered hexagonal boron nitride composite ceramics
CN106810877B (en) Heat-conducting interface material and application thereof
JP5541401B2 (en) Manufacturing method of heat conductive sheet
CN103833370B (en) Near shape preparation method of multiphase ceramic Si3N4-SiC
CN107043538B (en) Thermal conductive sheet
JP7145315B2 (en) Agglomerated boron nitride particles, thermally conductive resin composition, and heat dissipation member
Bi et al. Microscopic bimetallic actuator based on a bilayer of graphene and graphene oxide
US9574125B2 (en) Composite graphite heat insulating material containing high-density compressed and expanded graphite particles and method for manufacturing same
CN106810876B (en) Composite material with directionally arranged fillers and preparation method thereof
CN102933519A (en) Max-phase oriented ceramic and production method therefor
Yin et al. Fabrication of graphene network in alumina ceramics with adjustable negative permittivity by spark plasma sintering
WO2018074493A1 (en) Graphite/graphene complex material, heat-collecting body, heat-transfer body, thermal radiation body and thermal radiation system
JP7333914B2 (en) Thermally conductive resin molding and its manufacturing method
JP2016115659A (en) Thermal interface material and method for manufacturing thermal interface material
Goyal et al. Electrical properties of novel three-phase polymer nanocomposites with a high dielectric constant
Amini et al. Synthesis and elastic and mechanical properties of Cr 2 GeC
KR101745034B1 (en) Carbon material and process for production thereof
CN110072926B (en) Porous foam and method for producing same
Liang et al. From brittle to ductile: A scalable and tailorable all-inorganic semiconductor foil through a rolling process toward flexible thermoelectric modules
JP2017034219A (en) Heat radiating material comprising mixed graphite
TWI528014B (en) Graphite paper and its manufacturing method
CN107201216A (en) Controllable heat-conducting interface material of a kind of viscosity and preparation method and application
JP2017132650A (en) Highly heat-conductive anisotropic graphite material and production method thereof
KR101467353B1 (en) Sheet-type hybrid heating composite

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180621