JP2017130743A - Programmable gain amplifier circuit - Google Patents

Programmable gain amplifier circuit Download PDF

Info

Publication number
JP2017130743A
JP2017130743A JP2016007845A JP2016007845A JP2017130743A JP 2017130743 A JP2017130743 A JP 2017130743A JP 2016007845 A JP2016007845 A JP 2016007845A JP 2016007845 A JP2016007845 A JP 2016007845A JP 2017130743 A JP2017130743 A JP 2017130743A
Authority
JP
Japan
Prior art keywords
input
resistors
variable resistor
variable
amplifier circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016007845A
Other languages
Japanese (ja)
Other versions
JP6630575B2 (en
Inventor
努 涌井
Tsutomu Wakui
努 涌井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2016007845A priority Critical patent/JP6630575B2/en
Publication of JP2017130743A publication Critical patent/JP2017130743A/en
Application granted granted Critical
Publication of JP6630575B2 publication Critical patent/JP6630575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Amplification And Gain Control (AREA)
  • Amplifiers (AREA)

Abstract

PROBLEM TO BE SOLVED: To cancel the offset component included in two input voltages, without increasing the resolution of a DA converter outputting the offset component for cancellation, or spreading the dynamic range of the output voltage.SOLUTION: A programmable gain amplifier circuit includes first and second instrumentation amplifiers 21, 22 for amplifying two input signals Vinp, Vinn with the same gain, and a fully differential amplifier 23 outputting a two-phase output signal by amplifying the difference of the output signals from the first and second instrumentation amplifiers 21, 22. A bias voltage VCM is applied to the inverted input terminal of the fully differential amplifier 23 via a first variable resistor 25, and an adjustment voltage for cancelling the offset component, included in the difference of the two input signals, is applied to the non-inverted input terminal via a second variable resistor 26 having the same resistance value as that of the first variable resistor. The resistance values of the first and second variable resistors 25, 26 can be varied by the correction data D1 of external input.SELECTED DRAWING: Figure 1

Description

本発明は、入力信号に含まれるオフセット成分をキャンセルしたプログラマブルゲインアンプ回路(以下、PGA回路と称する。)に関する。   The present invention relates to a programmable gain amplifier circuit (hereinafter referred to as a PGA circuit) in which an offset component included in an input signal is canceled.

図5はブリッジ型のセンサ回路10の差動出力電圧Vinn,Vinp を入力して増幅し出力電圧Voutp_2,Voutn_2 として出力する従来の完全差動のPGA回路20Aを示すものである。このPGA回路20Aは、計装アンプ21,22、と完全差動アンプ23で構成されている(非特許文献1参照)。R1、R2,R3,R4,R5,R6,R7は抵抗である。   FIG. 5 shows a conventional fully differential PGA circuit 20A that receives and amplifies differential output voltages Vinn and Vinp of a bridge type sensor circuit 10 and outputs them as output voltages Voutp_2 and Voutn_2. The PGA circuit 20A includes instrumentation amplifiers 21 and 22 and a fully differential amplifier 23 (see Non-Patent Document 1). R1, R2, R3, R4, R5, R6, and R7 are resistors.

電圧Vinn を増幅する計装アンプ21の出力電圧をVon,電圧Vinp を増幅する計装アンプ22の出力電圧をVop とし、完全差動アンプ23のDCゲインAが非常に大きいと仮定すると、PGA回路20Aの出力電圧(Voutp_2−Voutn_2 )は次の式(1)となる。ただし、各抵抗の抵抗値は、R1=Ra,R2=R3=Rb,R4=R5=Rc,R6=R7=Rdである。

Figure 2017130743
Assuming that the output voltage of the instrumentation amplifier 21 that amplifies the voltage Vinn is Von, the output voltage of the instrumentation amplifier 22 that amplifies the voltage Vinp is Vop, and the DC gain A of the fully differential amplifier 23 is very large, the PGA circuit The output voltage (Voutp_2−Voutn_2) of 20A is expressed by the following equation (1). However, the resistance values of the resistors are R1 = Ra, R2 = R3 = Rb, R4 = R5 = Rc, and R6 = R7 = Rd.
Figure 2017130743

このPGA回路10Aのゲインは、抵抗R2,R3の抵抗値Rbと、抵抗R4,R5の抵抗値Rdを固定値とし、抵抗R1の抵抗値Raや抵抗R4,R5の抵抗値Rcをプログラムによって可変することで、設定することができる。例えば、Ra=2Rb,Rc=Rdに設定すれば、ゲインは2倍となる。また、Ra=(2/3)Rb,Rc=Rdに設定すれば、ゲインは4倍となる。   The gain of the PGA circuit 10A is such that the resistance value Rb of the resistors R2 and R3 and the resistance value Rd of the resistors R4 and R5 are fixed values, and the resistance value Ra of the resistor R1 and the resistance value Rc of the resistors R4 and R5 are variable by a program. This can be set. For example, if Ra = 2Rb and Rc = Rd are set, the gain is doubled. If Ra = (2/3) Rb and Rc = Rd are set, the gain becomes four times.

式(1)では、入力源のセンサ回路10にオフセットが発生すると、このとき同一電圧値であるべき電圧VinpとVinn に差分が生じる。このため、PGA回路20Aのゲインが高い場合に、出力電圧(Voutp_2−Voutn_2 )が電源電圧の一方に張り付き、あるいはセンサ回路10のオフセット成分が出力電圧(Voutp_2−Voutn_2 )のダイナミックレンジの大半を占めてしまい、「入力電圧+オフセット成分」の信号を正確に処理できないという問題点がある。   In the equation (1), when an offset occurs in the sensor circuit 10 of the input source, a difference occurs between the voltages Vinp and Vinn that should be the same voltage value at this time. Therefore, when the gain of the PGA circuit 20A is high, the output voltage (Voutp_2−Voutn_2) sticks to one of the power supply voltages, or the offset component of the sensor circuit 10 occupies most of the dynamic range of the output voltage (Voutp_2−Voutn_2). Therefore, there is a problem that the signal of “input voltage + offset component” cannot be processed accurately.

そこで図6に示すように、センサ回路10に発生したオフセット成分をキャンセルする構成を含めたPGA回路20Bが提案されている(特許文献1、2参照)。このPGA回路20Bでは、完全差動アンプ23の反転入力端子に抵抗R8を介してバイアス電圧VCMを印加し、完全差動アンプ23の非反転入力端子に抵抗R9を介して電圧VDACをDA変換器24から印加する構成を採用している。   Therefore, as shown in FIG. 6, a PGA circuit 20B including a configuration for canceling an offset component generated in the sensor circuit 10 has been proposed (see Patent Documents 1 and 2). In the PGA circuit 20B, the bias voltage VCM is applied to the inverting input terminal of the fully differential amplifier 23 via the resistor R8, and the voltage VDAC is applied to the non-inverting input terminal of the fully differential amplifier 23 via the resistor R9. 24 is applied.

このPGA回路10Bにおいて得られる出力電圧(Voutp_3−Voutn_3 )は、次の式(2)となる。抵抗値はR8=R9=Reである。図7にこの内容を図示した。図7のVoffset =Vinp−Vinn である。

Figure 2017130743
The output voltage (Voutp_3−Voutn_3) obtained in the PGA circuit 10B is expressed by the following equation (2). The resistance value is R8 = R9 = Re. This is illustrated in FIG. In FIG. 7, Voffset = Vinp−Vinn.
Figure 2017130743

式(1)と比較して式(2)では、DA変換器24の出力電圧VDACを調整して右項の第1項と第2項を逆極性で一致させることで、センサ回路10のオフセット成分をキャンセルし、出力電圧(Voutp_3−Voutn_3 )のダイナミックレンジを確保できる。しかし、抵抗R6,R7の抵抗値Rdと、抵抗R8,R9の抵抗値Reのマッチングによってその割合が決まるという問題点がある。つまり、Rd=Reにマッチングしなければならない。Rd>Reのときは、Rd/Reの値が1を超えるため、精度よくオフセット成分をキャンセルするために、電圧VDACの分解能を高くしなければならない。また、Rd<Reのときは、Rd/Reの値が1を下回るため、電圧VDACの可変範囲を広くする必要がある。   Compared with Equation (1), in Equation (2), the output voltage VDAC of the DA converter 24 is adjusted so that the first term and the second term of the right term are matched with opposite polarity, thereby offsetting the sensor circuit 10. By canceling the components, the dynamic range of the output voltage (Voutp_3−Voutn_3) can be secured. However, there is a problem that the ratio is determined by matching the resistance value Rd of the resistors R6 and R7 and the resistance value Re of the resistors R8 and R9. That is, it must match Rd = Re. When Rd> Re, since the value of Rd / Re exceeds 1, the resolution of the voltage VDAC must be increased in order to cancel the offset component with high accuracy. When Rd <Re, the value of Rd / Re is less than 1, so the variable range of the voltage VDAC needs to be widened.

“Fully-Differential Amplifiers,Application Report JAJA122”,TEXAS INSTRUMENTS,Dec.13.2007“Fully-Differential Amplifiers, Application Report JAJA122”, TEXAS INSTRUMENTS, Dec.13.2007 特開2008−294772号公報JP 2008-294772 A 特開2007−049285号公報JP 2007-049285 A

以上のように、図5の従来回路では、センサ回路10のオフセット成分をキャンセルすることができず、PGA回路20Aのゲインが高い場合に、出力電圧が電源電圧の一方に張り付いたり、そのオフセット成分が出力電圧のダイナミックレンジの大半を占めるという問題点があった。   As described above, in the conventional circuit of FIG. 5, when the offset component of the sensor circuit 10 cannot be canceled and the gain of the PGA circuit 20A is high, the output voltage sticks to one of the power supply voltages or the offset thereof. There is a problem that the component occupies most of the dynamic range of the output voltage.

また、図6の従来回路では、センサ回路10のオフセット成分をキャンセルすることはできるが、抵抗R6,R7の抵抗値Rdと、抵抗R8,R9の抵抗値Reとのマッチング如何により、キャンセルの割合が決まるという問題点があった。精度良くオフセット成分をキャンセルするためには、DA変換器24の分解能を高くするか、あるいは出力電圧のダイナミックレンジを広げる必要がある。   Further, in the conventional circuit of FIG. 6, the offset component of the sensor circuit 10 can be canceled, but the cancellation ratio depends on the matching between the resistance value Rd of the resistors R6 and R7 and the resistance value Re of the resistors R8 and R9. There was a problem that was decided. In order to cancel the offset component with high accuracy, it is necessary to increase the resolution of the DA converter 24 or widen the dynamic range of the output voltage.

本発明の目的は、キャンセル用のオフセット成分を出力するDA変換器の分解能を高くしたり、出力電圧のダイナミックレンジを広げることなく、入力電圧に含まれるオフセット成分を効果的にキャンセルすることができるようにしたPGA回路を提供することである。   An object of the present invention is to effectively cancel an offset component included in an input voltage without increasing the resolution of a DA converter that outputs an offset component for cancellation or expanding the dynamic range of the output voltage. An object of the present invention is to provide a PGA circuit.

上記目的を達成するため、請求項1の発明は、2個の入力信号を同一ゲインでそれぞれ増幅する第1及び第2の計装アンプと、該第1及び第2の計装アンプの出力信号の差分を増幅して2相の出力信号を出力する完全差動アンプとを備え、前記完全差動アンプの2個の入力端子の一方の入力端子に固定のバイアス電圧を第1の可変抵抗を介して印加し、他方の入力端子に前記2個の入力信号の差分に含まれるオフセット成分をキャンセルするためにDA変換器から出力する調整電圧を前記第1の可変抵抗と同一抵抗値の第2の可変抵抗を介して印加するプログラマブルゲインアンプ回路であって、前記第1及び第2の可変抵抗の抵抗値は、外部入力の補正データによって可変されることを特徴とする。   In order to achieve the above object, the invention of claim 1 is directed to first and second instrumentation amplifiers respectively amplifying two input signals with the same gain, and output signals of the first and second instrumentation amplifiers. And a fully differential amplifier that outputs a two-phase output signal by amplifying the difference between the two differential input terminals, a fixed bias voltage is applied to one input terminal of the two fully differential amplifiers, and a first variable resistor is provided. And an adjustment voltage output from the DA converter to cancel the offset component included in the difference between the two input signals at the other input terminal is applied to the second variable terminal having the same resistance value as that of the first variable resistor. This is a programmable gain amplifier circuit applied through a variable resistor, wherein the resistance values of the first and second variable resistors are varied by correction data of an external input.

請求項2にかかる発明は、請求項1に記載のプログラマブルゲインアンプ回路において、前記第1及び第2の可変抵抗は、抵抗値Reの20 倍、21 倍、22 倍、・・・、2N-1 倍の抵抗値を有するN(Nは1以上の整数)個の抵抗の内から前記補正データに応じて選ばれた1又は2以上を並列接続することで構成され、前記補正データがNビットのD1のとき、前記第1及び第2の可変抵抗の抵抗値Re_var は

Figure 2017130743
に設定されることを特徴とする。 Such invention in claim 2, in a programmable gain amplifier circuit according to claim 1, wherein the first and second variable resistors, 2 0 times the resistance Re, 2 1-fold, 2 doubles, ... 1 or 2 or more selected according to the correction data from N (N is an integer of 1 or more) resistors having a resistance value of 2 N-1 times, and the correction When the data is N-bit D1, the resistance value Re_var of the first and second variable resistors is
Figure 2017130743
It is characterized by being set to.

本発明によれば、補正データで抵抗値を調整できる可変抵抗を追加するのみで、抵抗比のマッチングを行うことができるので、DA変換器の分解能を高くしたり、出力電圧のダイナミックレンジを広げることなく、入力電圧に含まれるオフセット成分をキャンセルすることができる。このため、回路規模や消費電流の増加を少なくできるという利点がある。   According to the present invention, resistance ratio matching can be performed only by adding a variable resistor whose resistance value can be adjusted by correction data. Therefore, the resolution of the DA converter can be increased and the dynamic range of the output voltage can be expanded. Without offsetting, the offset component included in the input voltage can be canceled. For this reason, there is an advantage that an increase in circuit scale and current consumption can be reduced.

本発明のPGA回路の実施例の回路図である。It is a circuit diagram of the Example of the PGA circuit of this invention. 図1のPGA回路の可変抵抗の回路図である。It is a circuit diagram of the variable resistance of the PGA circuit of FIG. 図1のPGA回路の動作説明図である。It is operation | movement explanatory drawing of the PGA circuit of FIG. D1が3ビットのときの図1のPGA回路の可変抵抗の調整の説明図である。It is explanatory drawing of adjustment of the variable resistance of the PGA circuit of FIG. 1 when D1 is 3 bits. 従来のPGA回路の回路図である。It is a circuit diagram of a conventional PGA circuit. 従来の別のPGA回路の回路図である。It is a circuit diagram of another conventional PGA circuit. 図6のPGA回路の動作説明図である。It is operation | movement explanatory drawing of the PGA circuit of FIG.

以下、本発明の1つの実施例のPGA回路20について詳細に説明する。PGA回路20はセンサ回路10の差動出力電圧Vinp,Vinn を入力して、差動の出力電圧Voutp_1、Voutn_1 を出力する。   Hereinafter, the PGA circuit 20 according to one embodiment of the present invention will be described in detail. The PGA circuit 20 receives the differential output voltages Vinp and Vinn of the sensor circuit 10 and outputs differential output voltages Voutp_1 and Voutn_1.

PGA回路20は、入力電圧Vinn を増幅する計装アンプ21、入力電圧Vinp を増幅する計装アンプ22、計装アンプ21の出力電圧Von と計装アンプ22の出力電圧Vop を差動増幅する完全差動アンプ23、外部入力するデータ(図示せず)によってオフセット調整電圧VDACを生成するDA変換器24を備える。計装アンプ21,22の反転入力端子間には抵抗R1が接続されている。また、計装アンプ21の出力端子と反転入力端子との間には抵抗R2が接続され、計装アンプ22の出力端子と反転入力端子の間には抵抗R3が接続されている。そして、計装アンプ21の出力端子と完全差動アンプ23の反転入力端子の間には抵抗R4が接続され、計装アンプ22の出力端子と完全差動アンプ23の非反転入力端子との間には抵抗R5が接続されている。また、完全差動アンプの非反転出力端子と反転入力端子の間には抵抗R6が接続され、反転出力端子と非反転入力端子の間には抵抗R7が接続されている。さらに、完全差動アンプ23の反転入力端子には可変抵抗24を介してバイアス電圧VCMが印加し、非反転入力端子には可変抵抗26を介してDA変換器24の出力電圧VDACが印加している。ここで、各抵抗R1〜R7の抵抗値は、R1=Ra,R2=R3=Rb,R4=R5=Rc,R6=R7=Rdである。可変抵抗25,26の抵抗値は、外部入力する補正データD1で設定されるRe_varで共通ある。   The PGA circuit 20 includes an instrumentation amplifier 21 that amplifies the input voltage Vinn, an instrumentation amplifier 22 that amplifies the input voltage Vinp, and a complete amplification that differentially amplifies the output voltage Von of the instrumentation amplifier 21 and the output voltage Vop of the instrumentation amplifier 22. The differential amplifier 23 includes a DA converter 24 that generates an offset adjustment voltage VDAC by data (not shown) input from the outside. A resistor R1 is connected between the inverting input terminals of the instrumentation amplifiers 21 and 22. A resistor R2 is connected between the output terminal of the instrumentation amplifier 21 and the inverting input terminal, and a resistor R3 is connected between the output terminal of the instrumentation amplifier 22 and the inverting input terminal. A resistor R4 is connected between the output terminal of the instrumentation amplifier 21 and the inverting input terminal of the fully differential amplifier 23, and between the output terminal of the instrumentation amplifier 22 and the non-inverting input terminal of the fully differential amplifier 23. Is connected to a resistor R5. A resistor R6 is connected between the non-inverting output terminal and the inverting input terminal of the fully differential amplifier, and a resistor R7 is connected between the inverting output terminal and the non-inverting input terminal. Further, the bias voltage VCM is applied to the inverting input terminal of the fully differential amplifier 23 via the variable resistor 24, and the output voltage VDAC of the DA converter 24 is applied to the non-inverting input terminal via the variable resistor 26. Yes. Here, the resistance values of the resistors R1 to R7 are R1 = Ra, R2 = R3 = Rb, R4 = R5 = Rc, and R6 = R7 = Rd. The resistance values of the variable resistors 25 and 26 are common to Re_var set by correction data D1 input from the outside.

図2に、可変抵抗25の構成を示す。ここでは、N個(Nは1以上の整数)の抵抗Re(0),Re(1),Re(2),・・・,Re(N-1) が、個々にN個のスイッチSW(0),SW(1),SW(2),・・・,SW(N-1)と直列接続され、そのN個の直列回路が並列接続されることで、可変抵抗25が構成されている。可変抵抗26も同様である。抵抗Re(0)〜Re(N-1) の抵抗値は、抵抗Re(0) =2×Re、抵抗Re(1) =2×Re、抵抗Re(2) =22×Re、・・・、抵抗Re(N-1) =2N-1×Reである。スイッチSW(0) 〜SW(N-1) は、デジタルの補正データD1をデコーダ27によりデコードした値に応じて、全部がオフ又は1以上がオンされる。これにより、抵抗Re(0) 〜Re(N-1) の内の1又は2以上が選択されて、抵抗Re_ver が決まる。 FIG. 2 shows the configuration of the variable resistor 25. Here, N resistors (N is an integer of 1 or more) resistors Re (0), Re (1), Re (2),..., Re (N−1) are individually connected to N switches SW ( 0), SW (1), SW (2),..., SW (N-1) are connected in series, and the N series circuits are connected in parallel to form the variable resistor 25. . The same applies to the variable resistor 26. The resistance values of the resistors Re (0) to Re (N-1) are as follows: resistor Re (0) = 2 0 × Re, resistor Re (1) = 2 1 × Re, resistor Re (2) = 2 2 × Re, ... Resistance Re (N-1) = 2N-1 * Re. The switches SW (0) to SW (N-1) are all turned off or turned on by one or more depending on the value obtained by decoding the digital correction data D1 by the decoder 27. Thereby, one or more of the resistors Re (0) to Re (N-1) are selected, and the resistor Re_ver is determined.

そして、補正データD1がNビットの場合、可変抵抗25,26の抵抗値Re_var は、

Figure 2017130743
で表すことができる。Reは固定の抵抗値である。 When the correction data D1 is N bits, the resistance value Re_var of the variable resistors 25 and 26 is
Figure 2017130743
Can be expressed as Re is a fixed resistance value.

PGA回路20において、出力電圧(Voutp_1−Voutn_1 )は、式(2)において、Re=Re_var に置き換えた次の式(4)のように表すことができる。

Figure 2017130743
In the PGA circuit 20, the output voltage (Voutp_1−Voutn_1) can be expressed as the following equation (4) in which the equation (2) is replaced with Re = Re_var.
Figure 2017130743

この式(4)に式(3)を代入すると、PGA回路20の出力電圧(Voutp_1−Voutn_1 )は、式(5)のように表すことができる。図3にこの内容を図示した。図3のVoffset =Vinp−Vinn である。

Figure 2017130743
By substituting Equation (3) into Equation (4), the output voltage (Voutp_1−Voutn_1) of the PGA circuit 20 can be expressed as Equation (5). This is illustrated in FIG. In FIG. 3, Voffset = Vinp−Vinn.
Figure 2017130743

式(2)と式(5)を比較すると、式(2)の抵抗値Reについて、係数分「(1/2N-1)×D1」だけ、補正データD1の分解能で精度高く調整することができることが分かる。このため、DA変換器24の分解能を高くしたり、出力電圧(Voutp_1−Voutn_1 )のダイナミックレンジを広げることなく、入力電圧(Vinn−Vinp )に含まれるオフセット成分をキャンセルすることができ、回路規模や消費電流の増加を少なくできるという利点がある。 Comparing Expression (2) and Expression (5), the resistance value Re of Expression (2) is adjusted with high accuracy by the resolution of the correction data D1 by the coefficient “(1/2 N−1 ) × D1”. You can see that For this reason, the offset component included in the input voltage (Vinn−Vinp) can be canceled without increasing the resolution of the DA converter 24 or expanding the dynamic range of the output voltage (Voutp_1−Voutn_1), and the circuit scale There is an advantage that increase in current consumption can be reduced.

図4に補正データD1が3ビット(N=3)の場合の抵抗値を示した。D1のデコード値は0〜7である。この場合、3個のスイッチSW(0)〜SW(2)のうちのオンするスイッチの組み合わせによって、可変抵抗25,26の抵抗値Re_var を8通り実現することができる。   FIG. 4 shows the resistance value when the correction data D1 is 3 bits (N = 3). The decode value of D1 is 0-7. In this case, eight resistance values Re_var of the variable resistors 25 and 26 can be realized by a combination of the switches that are turned on among the three switches SW (0) to SW (2).

このときのビットの重み付けとして、ここでは、最上位ビット(MSB)をSW(0) に、最下位ビット(LSB)をSW(N-1) に割り当てている。これにより、可変抵抗25,26の式(3)における抵抗値Re_var の逆数1/Re_var を可変でき、その値を(1/4)×(1/Re)の分解能で調整することができる。   In this case, as the bit weighting, the most significant bit (MSB) is assigned to SW (0) and the least significant bit (LSB) is assigned to SW (N-1). Thereby, the reciprocal 1 / Re_var of the resistance value Re_var in the equation (3) of the variable resistors 25 and 26 can be varied, and the value can be adjusted with a resolution of (1/4) × (1 / Re).

10:ブリッジ型のセンサ回路
20,20A,20B:PGA回路、21,22:計装アンプ、23:完全差動アンプ、24:DA変換器、25,26:可変抵抗、27:デコーダ
Vinp,Vinn:入力電圧
Vop,Von:計装アンプの出力電圧
Voutp_1,Voutn_1,Voutp_2,Voutn_2,Voutp_3,Voutn_3:PGA回路の出力電圧
VDAC:DA変換器の出力電圧
VCM:バイアス電圧
10: Bridge type sensor circuit 20, 20A, 20B: PGA circuit, 21, 22: Instrumentation amplifier, 23: Fully differential amplifier, 24: DA converter, 25, 26: Variable resistor, 27: Decoder Vinp, Vinn : Input voltage Vop, Von: Output voltage of instrumentation amplifier Voutp_1, Voutn_1, Voutp_2, Voutn_2, Voutp_3, Voutn_3: Output voltage of PGA circuit VDAC: Output voltage of DA converter VCM: Bias voltage

Claims (2)

2個の入力信号を同一ゲインでそれぞれ増幅する第1及び第2の計装アンプと、該第1及び第2の計装アンプの出力信号の差分を増幅して2相の出力信号を出力する完全差動アンプとを備え、前記完全差動アンプの2個の入力端子の一方の入力端子に固定のバイアス電圧を第1の可変抵抗を介して印加し、他方の入力端子に前記2個の入力信号の差分に含まれるオフセット成分をキャンセルするためにDA変換器から出力する調整電圧を前記第1の可変抵抗と同一抵抗値の第2の可変抵抗を介して印加するプログラマブルゲインアンプ回路であって、
前記第1及び第2の可変抵抗の抵抗値は、外部入力の補正データによって可変されることを特徴とするプログラマブルゲインアンプ回路。
First and second instrumentation amplifiers that amplify two input signals with the same gain, respectively, and amplify the difference between the output signals of the first and second instrumentation amplifiers to output a two-phase output signal A fully differential amplifier, a fixed bias voltage is applied to one input terminal of the two input terminals of the fully differential amplifier via a first variable resistor, and the two input terminals are applied to the other input terminal. A programmable gain amplifier circuit that applies an adjustment voltage output from a DA converter to cancel an offset component included in a difference between input signals via a second variable resistor having the same resistance value as that of the first variable resistor. And
The programmable gain amplifier circuit characterized in that the resistance values of the first and second variable resistors are varied by correction data of an external input.
請求項1に記載のプログラマブルゲインアンプ回路において、
前記第1及び第2の可変抵抗は、抵抗値Reの20 倍、21 倍、22 倍、・・・、2N-1 倍の抵抗値を有するN(Nは1以上の整数)個の抵抗の内から前記補正データに応じて選ばれた1又は2以上を並列接続することで構成され、前記補正データがNビットのD1のとき、前記第1及び第2の可変抵抗の抵抗値Re_var は
Figure 2017130743
に設定されることを特徴とするプログラマブルゲインアンプ回路。
The programmable gain amplifier circuit according to claim 1,
Said first and second variable resistors, 2 0 times the resistance Re, 2 1-fold, 2 doubles, · · ·, N with 2 N-1 times the resistance (N is an integer of 1 or more) One or two or more selected from the resistors in accordance with the correction data are connected in parallel, and when the correction data is N bits D1, the resistances of the first and second variable resistors The value Re_var is
Figure 2017130743
Programmable gain amplifier circuit characterized by being set to.
JP2016007845A 2016-01-19 2016-01-19 Programmable gain amplifier circuit Active JP6630575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016007845A JP6630575B2 (en) 2016-01-19 2016-01-19 Programmable gain amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016007845A JP6630575B2 (en) 2016-01-19 2016-01-19 Programmable gain amplifier circuit

Publications (2)

Publication Number Publication Date
JP2017130743A true JP2017130743A (en) 2017-07-27
JP6630575B2 JP6630575B2 (en) 2020-01-15

Family

ID=59395091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016007845A Active JP6630575B2 (en) 2016-01-19 2016-01-19 Programmable gain amplifier circuit

Country Status (1)

Country Link
JP (1) JP6630575B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049285A (en) * 2005-08-08 2007-02-22 Seiko Instruments Inc Chopper amplifier circuit and semiconductor device
US20120044006A1 (en) * 2010-08-19 2012-02-23 Industrial Technology Research Institute Dc offset calibration apparatus, dc offset calibration system, and method thereof
JP2014120840A (en) * 2012-12-14 2014-06-30 Renesas Electronics Corp Semiconductor device, and method for correcting offset voltage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049285A (en) * 2005-08-08 2007-02-22 Seiko Instruments Inc Chopper amplifier circuit and semiconductor device
US20120044006A1 (en) * 2010-08-19 2012-02-23 Industrial Technology Research Institute Dc offset calibration apparatus, dc offset calibration system, and method thereof
JP2014120840A (en) * 2012-12-14 2014-06-30 Renesas Electronics Corp Semiconductor device, and method for correcting offset voltage

Also Published As

Publication number Publication date
JP6630575B2 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
JP4702066B2 (en) Analog / digital conversion circuit
US8791845B2 (en) Circuitry and method for reducing area and power of a pipelince ADC
KR102105619B1 (en) Differential amplifier based on sampling of input common mode voltage, and comparator using that
JP4515241B2 (en) Output amplifier circuit and sensor device using the same
JP4349445B2 (en) Flash AD converter
JP2008306504A (en) Differential amplification circuit, and a/d converter
US10797720B2 (en) Apparatus and method for measuring current source mismatches in current-steering DAC by re-using R2R network
US10840866B2 (en) Amplifier circuit arrangement and method to calibrate the same
JP3340280B2 (en) Pipeline type A / D converter
JP2008104142A (en) Analog-to-digital converter
KR100459086B1 (en) Pseudo-differential amplifier and analog-to-digital converter using the same
JP2012147361A (en) Operational amplification circuit
WO2011021260A1 (en) Pipeline a/d converter and output correction method for same
JP2011151705A (en) Differential amplifier circuit
JP6630575B2 (en) Programmable gain amplifier circuit
JP6257019B2 (en) Magnetic sensor
JP2011166278A (en) Differential amplifying circuit, two-stage amplifying circuit and a/d conversion circuit using them
WO2014167879A1 (en) Instrumentation amplifier
JP6696285B2 (en) Analog front-end circuit
JP5238856B2 (en) Differential amplifier circuit and A / D converter
US20120044103A1 (en) Parallel interpolation a/d converter and digital equalizer
JP2019092103A (en) Instrumentation amplifier
KR20180027678A (en) Variable gain amplifier and operating method of variable gain amplifier
JP4985972B2 (en) amplifier
WO2014038138A1 (en) Sample and hold circuit, a/d converter, and sample and hold circuit calibration method and circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R150 Certificate of patent or registration of utility model

Ref document number: 6630575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250