JP2017129554A - Apparatus and method for measuring attenuation coefficient of long material - Google Patents

Apparatus and method for measuring attenuation coefficient of long material Download PDF

Info

Publication number
JP2017129554A
JP2017129554A JP2016011151A JP2016011151A JP2017129554A JP 2017129554 A JP2017129554 A JP 2017129554A JP 2016011151 A JP2016011151 A JP 2016011151A JP 2016011151 A JP2016011151 A JP 2016011151A JP 2017129554 A JP2017129554 A JP 2017129554A
Authority
JP
Japan
Prior art keywords
long material
tension
attenuation coefficient
measuring
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016011151A
Other languages
Japanese (ja)
Inventor
賢 真鍋
Masaru Manabe
賢 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2016011151A priority Critical patent/JP2017129554A/en
Publication of JP2017129554A publication Critical patent/JP2017129554A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an attenuation coefficient measuring apparatus for a long material that can measure the attenuation coefficient of a long material easily and simply.SOLUTION: The apparatus for measuring the attenuation coefficient of a long material includes: a tension addition mechanism for adding a specific tension to a long material in a longer direction while holding both edges of the long material; a tension measuring section for measuring a change in the tension of the long material when the long material, which has received the addition of the specific tension in the longer direction, makes damped oscillation; and an operation processing section for operating the attenuation coefficient of the long material based on the result of measurement by the tension measuring section.SELECTED DRAWING: Figure 1

Description

本発明は、長尺材の減衰係数測定装置、及び長尺材の減衰係数測定方法に関する。特に、簡易な構成で長尺材の減衰係数を簡便に測定できる長尺材の減衰係数測定装置、及び長尺材の減衰係数の測定が簡便な長尺材の減衰係数測定方法に関する。   The present invention relates to a long material attenuation coefficient measuring apparatus and a long material attenuation coefficient measuring method. In particular, the present invention relates to a long material attenuation coefficient measuring apparatus that can easily measure the attenuation coefficient of a long material with a simple configuration, and a long material attenuation coefficient measuring method that can easily measure the attenuation coefficient of a long material.

機械製品や構造物などは、外的要因により振動(減衰振動)することがあり、その振動に伴う挙動を把握することが品質向上や改善などの点から望まれている。振動に伴う挙動を把握するには、減衰係数を測定することが挙げられる。減衰係数の測定には、例えば、動的粘弾性測定装置(非特許文献1)などが利用されている。   Mechanical products and structures may vibrate (damped vibration) due to external factors, and it is desired from the viewpoint of quality improvement and improvement to understand the behavior associated with the vibration. In order to grasp the behavior associated with vibration, it is possible to measure the damping coefficient. For example, a dynamic viscoelasticity measuring apparatus (Non-Patent Document 1) is used for measuring the attenuation coefficient.

動的粘弾性測定装置を利用した減衰係数の測定は、以下の通りである。試験片の両端を把持部で把持し、試験片の長手方向に一定の張力を付加する。その状態で試験片に対してその長手方向に正弦波の振動を与える。このとき、試験片には振動によりその長手方向に沿った動的応力が付加され、それに応答して動的歪が生じる。この動的応力と動的歪とを測定する。この動的応力と動的歪とは、振動の減衰に合わせて大きさが減衰すると共に位相差が生じる。この大きさと位相差とを利用して減衰係数を求める。   The measurement of the damping coefficient using the dynamic viscoelasticity measuring apparatus is as follows. Both ends of the test piece are held by the holding portion, and a constant tension is applied in the longitudinal direction of the test piece. In this state, a sinusoidal vibration is applied to the test piece in the longitudinal direction. At this time, a dynamic stress along the longitudinal direction is applied to the test piece by vibration, and dynamic strain is generated in response thereto. The dynamic stress and dynamic strain are measured. The dynamic stress and the dynamic strain are attenuated in magnitude according to the vibration attenuation and have a phase difference. The attenuation coefficient is obtained using this magnitude and the phase difference.

“分析機器の手引き ラボ用分析機器 1.7専用測定装置 粘弾性測定装置”、p.105、[online]、[平成27年12月11日検索]、インターネット〈URL:http://www.jaima.or.jp/jp/tebiki/〉“Guidelines for analytical instruments Laboratory analytical instruments 1.7 Dedicated measuring device Viscoelasticity measuring device”, p. 105, [online], [Search on December 11, 2015], Internet <URL: http: // www. jaima. or. jp / jp / tebiki />

電線などの長尺材の振動の仕方や、振動時に長尺材にどういう負荷が作用するか、その振動の収束のし易さ、などをシミュレーションするために長尺材の減衰係数を求めることが望まれている。減衰係数の測定には、上述のように動的粘弾性測定装置などを利用することが挙げられるが、更に簡易な構成で測定が簡便な装置と方法の開発が望まれている。   In order to simulate how long materials such as electric wires vibrate, what kind of load is applied to the long material during vibration, and the ease of convergence of the vibration, it is necessary to determine the damping coefficient of the long material. It is desired. The attenuation coefficient can be measured by using a dynamic viscoelasticity measuring apparatus as described above, but the development of an apparatus and method that can be measured with a simpler configuration is desired.

本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、簡易な構成で長尺材の減衰係数を簡便に測定できる長尺材の減衰係数測定装置を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a long material attenuation coefficient measuring apparatus that can easily measure the attenuation coefficient of a long material with a simple configuration. is there.

本発明の別の目的は、長尺材の減衰係数の測定が簡便な長尺材の減衰係数測定方法を提供することにある。   Another object of the present invention is to provide a method for measuring the attenuation coefficient of a long material, in which the measurement of the attenuation coefficient of the long material is simple.

本発明の一態様に係る長尺材の減衰係数測定装置は、張力付加機構と、張力測定部と、演算処理部とを備える。張力付加機構は、長尺材の両端を把持して長尺材の長手方向に一定の張力を付加する。張力測定部は、長手方向に一定の張力が付与された長尺材が減衰振動したときの長尺材の張力の変移を測定する。演算処理部は、張力測定部の測定結果に基づき、長尺材の減衰係数を演算する。   A long material attenuation coefficient measuring apparatus according to an aspect of the present invention includes a tension applying mechanism, a tension measuring unit, and an arithmetic processing unit. The tension applying mechanism grips both ends of the long material and applies a constant tension in the longitudinal direction of the long material. The tension measuring unit measures a change in tension of the long material when the long material to which a constant tension is applied in the longitudinal direction undergoes damped vibration. The arithmetic processing unit calculates the attenuation coefficient of the long material based on the measurement result of the tension measuring unit.

本発明の一態様に係る長尺材の減衰係数測定方法は、引張工程と、振動付与工程と、測定工程と、演算工程とを備える。引張工程は、長尺材の長手方向に一定の張力を付加する。振動付与工程は、長手方向に一定の張力が付与された長尺材を減衰振動させる。測定工程は、減衰振動する長尺材の張力の変移を測定する。演算工程は、測定工程での測定結果に基づき、長尺材の減衰係数を演算する。   The long material damping coefficient measuring method according to one aspect of the present invention includes a tensioning step, a vibration applying step, a measuring step, and a calculating step. In the tensioning step, a constant tension is applied in the longitudinal direction of the long material. In the vibration applying step, the long material to which a constant tension is applied in the longitudinal direction is damped and vibrated. In the measurement step, a change in tension of the long material that undergoes damped vibration is measured. In the calculation step, the attenuation coefficient of the long material is calculated based on the measurement result in the measurement step.

上記長尺材の減衰係数測定装置は、簡易な構成で長尺材の減衰係数を簡便に測定できる。   The long material attenuation coefficient measuring apparatus can easily measure the attenuation coefficient of a long material with a simple configuration.

上記長尺材の減衰係数測定方法は、長尺材の減衰係数の測定が簡便である。   The method for measuring the attenuation coefficient of the long material is simple in measuring the attenuation coefficient of the long material.

実施形態1に係る長尺材の減衰係数測定装置の概略構成、及び長尺材の減衰係数測定方法の手順を説明する工程説明図である。It is process explanatory drawing explaining the schematic structure of the attenuation coefficient measuring apparatus of the long material which concerns on Embodiment 1, and the procedure of the attenuation coefficient measuring method of a long material. 実施形態2に係る長尺材の減衰係数測定装置に備わる振動付与機構の概略構成、及び振動付与機構の動作を説明する動作説明図である。It is operation | movement explanatory drawing explaining the schematic structure of the vibration provision mechanism with which the damping coefficient measuring apparatus of the long material which concerns on Embodiment 2 is equipped, and operation | movement of a vibration provision mechanism. 試験例1の試料No.1における張力の変移の波形を示すグラフである。Sample No. 1 of Test Example 1 2 is a graph showing a waveform of tension transition in 1. FIG. 試験例1における試料No.100のシミュレーション結果を示すグラフである。Sample No. 1 in Test Example 1 It is a graph which shows the simulation result of 100.

《本発明の実施形態の説明》
最初に本発明の実施態様を列記して説明する。
<< Description of Embodiments of the Present Invention >>
First, embodiments of the present invention will be listed and described.

(1)本発明の一態様に係る長尺材の減衰係数測定装置は、張力付加機構と、張力測定部と、演算処理部とを備える。張力付加機構は、長尺材の両端を把持して長尺材の長手方向に一定の張力を付加する。張力測定部は、長手方向に一定の張力が付与された長尺材が減衰振動したときの長尺材の張力の変移を測定する。演算処理部は、張力測定部の測定結果に基づき、長尺材の減衰係数を演算する。   (1) A long material attenuation coefficient measuring apparatus according to an aspect of the present invention includes a tension applying mechanism, a tension measuring unit, and an arithmetic processing unit. The tension applying mechanism grips both ends of the long material and applies a constant tension in the longitudinal direction of the long material. The tension measuring unit measures a change in tension of the long material when the long material to which a constant tension is applied in the longitudinal direction undergoes damped vibration. The arithmetic processing unit calculates the attenuation coefficient of the long material based on the measurement result of the tension measuring unit.

上記の構成によれば、簡易な構成で長尺材の減衰係数を簡便に測定できる。張力付加機構と張力測定部と演算処理部とを備えるだけで、長尺材に一定の張力を付加した状態で長尺材を減衰振動させた際の張力の変移から減衰係数を演算できるからである。これに対して、上述した動的粘弾性測定装置の場合、種々の周波数の正弦波の振動を試験片に付与するモータ機構が必要である。また、上記の構成によれば、動的粘弾性測定装置に比較して、減衰係数を測定できる長尺材の材質の選択肢が多い。上述した動的粘弾性測定装置は、上述のように歪を検出する必要があるため、歪を検出し難い金属材料などでは減衰係数を測定することが難しいからである。   According to said structure, the attenuation coefficient of a long material can be measured simply with a simple structure. Because it is possible to calculate the damping coefficient from the transition of tension when a long material is damped and vibrated with a constant tension applied to the long material, simply by providing a tension adding mechanism, a tension measuring unit, and an arithmetic processing unit. is there. On the other hand, in the case of the above-described dynamic viscoelasticity measuring apparatus, a motor mechanism that applies sinusoidal vibrations of various frequencies to the test piece is necessary. Moreover, according to said structure, there are many choices of the material of the elongate material which can measure a damping coefficient compared with a dynamic viscoelasticity measuring apparatus. This is because the above-described dynamic viscoelasticity measuring apparatus needs to detect strain as described above, and thus it is difficult to measure the damping coefficient with a metal material or the like that is difficult to detect strain.

(2)上記長尺材の減衰係数測定装置の一形態として、長手方向に一定の張力が付与された長尺材の一部に、長手方向と直交する方向に外力を付与して長尺材の一部を変位させ、外力を解除することで長尺材を減衰振動させる振動付与機構を備えることが挙げられる。   (2) As one form of the above-described long material attenuation coefficient measuring apparatus, an external force is applied in a direction orthogonal to the longitudinal direction to a part of the long material to which a constant tension is applied in the longitudinal direction. It is possible to include a vibration applying mechanism that dampens and vibrates the long material by displacing a part of the material and releasing the external force.

上記の構成によれば、長尺材を減衰振動させる振動付与機構を備えることで、長尺材へ付与する外力の調整が容易である。   According to said structure, adjustment of the external force given to a long material is easy by providing the vibration provision mechanism which carries out a damping vibration of a long material.

(3)本発明の一態様に係る長尺材の減衰係数測定方法は、引張工程と、振動付与工程と、測定工程と、演算工程とを備える。引張工程は、長尺材の長手方向に一定の張力を付加する。振動付与工程は、長手方向に一定の張力が付与された長尺材を減衰振動させる。測定工程は、減衰振動する長尺材の張力の変移を測定する。演算工程は、測定工程での測定結果に基づき、長尺材の減衰係数を演算する。   (3) The long material damping coefficient measuring method according to one aspect of the present invention includes a tensioning step, a vibration applying step, a measuring step, and a calculating step. In the tensioning step, a constant tension is applied in the longitudinal direction of the long material. In the vibration applying step, the long material to which a constant tension is applied in the longitudinal direction is damped and vibrated. In the measurement step, a change in tension of the long material that undergoes damped vibration is measured. In the calculation step, the attenuation coefficient of the long material is calculated based on the measurement result in the measurement step.

上記の構成によれば、長尺材の減衰係数の測定が簡便である。長尺材に一定の張力を付加した状態で、長尺材を減衰振動させるだけで、張力の変移から減衰係数を演算できるからである。   According to said structure, the measurement of the attenuation coefficient of a elongate material is simple. This is because the damping coefficient can be calculated from the change in tension by simply damping the long material with a certain tension applied to the long material.

《本発明の実施形態の詳細》
本発明の実施形態1,2の詳細を、以下に図面を参照しつつ説明する。図中の同一符号は同一名称物を示す。各実施形態での説明は、長尺材の減衰係数測定装置、長尺材の減衰係数測定方法の順に行う。本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
<< Details of Embodiment of the Present Invention >>
Details of Embodiments 1 and 2 of the present invention will be described below with reference to the drawings. The same reference numerals in the figure indicate the same names. The description of each embodiment will be made in the order of a long material attenuation coefficient measuring device and a long material attenuation coefficient measuring method. The present invention is not limited to these exemplifications, but is defined by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.

《実施形態1》
〔長尺材の減衰係数測定装置〕
図1を参照して、実施形態1に係る長尺材の減衰係数測定装置1を説明する。長尺材の減衰係数測定装置1は、長尺材10の減衰係数を測定する。この長尺材の減衰係数測定装置1の主たる特徴とするところは、長尺材10の減衰係数を、長尺材10の張力の変移に基づいて求める点にある。長尺材の減衰係数測定装置1は、張力付加機構2と、張力測定部3と、演算処理部4とを備える。以下、各構成の詳細を説明する。
Embodiment 1
[Attenuation coefficient measuring device for long materials]
With reference to FIG. 1, the elongate material attenuation coefficient measuring apparatus 1 according to the first embodiment will be described. The long material attenuation coefficient measuring apparatus 1 measures the attenuation coefficient of the long material 10. The main characteristic of the long material attenuation coefficient measuring apparatus 1 is that the attenuation coefficient of the long material 10 is obtained based on a change in tension of the long material 10. The long material attenuation coefficient measuring apparatus 1 includes a tension applying mechanism 2, a tension measuring unit 3, and an arithmetic processing unit 4. Details of each component will be described below.

[張力付加機構]
張力付加機構2は、長尺材10の長手方向に一定の張力を付加する(図1左図)。張力付加機構2は、図示しない本体部と、一対の把持部21a,21bと、移動機構22と、台座部23とを備える。一対の把持部21a,21bは、それぞれ長尺材10の両端を把持する。一対の把持部21a,21bのうち一方の把持部21aは、移動機構22に取り付けられ、他方の把持部21bは、台座部23に固定される。移動機構22は、一方の把持部21aを他方の把持部21bとの対向方向に沿ってスライド移動させる。移動機構22は、張力付加機構2の本体部(図示略)にスライド自在に固定されている。移動機構22は、サーボ機構などを用いることができる。台座部23は、他方の把持部21bを上記対向方向にスライド移動しないように固定する。即ち、張力付加機構2による長尺材10への張力の付加は、移動機構22により一方の把持部21aを他方の把持部21bから離れる方向にスライド移動させることで行う。測定対象である長尺材10の種類は、特に限定されず、適宜選択できる。この長尺材10は、例えば、電線や、電線の端部に接続部が連結された接続部付き電線などを用いることができる。
[Tensioning mechanism]
The tension applying mechanism 2 applies a constant tension in the longitudinal direction of the long material 10 (left figure in FIG. 1). The tension applying mechanism 2 includes a main body (not shown), a pair of gripping portions 21a and 21b, a moving mechanism 22, and a pedestal portion 23. The pair of grip portions 21 a and 21 b grip both ends of the long material 10. Of the pair of gripping portions 21 a and 21 b, one gripping portion 21 a is attached to the moving mechanism 22, and the other gripping portion 21 b is fixed to the pedestal portion 23. The moving mechanism 22 slides one grip part 21a along the direction facing the other grip part 21b. The moving mechanism 22 is slidably fixed to the main body (not shown) of the tension applying mechanism 2. As the moving mechanism 22, a servo mechanism or the like can be used. The pedestal portion 23 fixes the other gripping portion 21b so as not to slide in the facing direction. That is, the tension is applied to the long material 10 by the tension applying mechanism 2 by sliding the one gripping portion 21 a away from the other gripping portion 21 b by the moving mechanism 22. The type of the long material 10 to be measured is not particularly limited and can be selected as appropriate. As this long material 10, for example, an electric wire, an electric wire with a connecting portion in which a connecting portion is connected to an end portion of the electric wire, or the like can be used.

[張力測定部]
張力測定部3は、長尺材10の張力の変移を測定する。それにより、減衰振動した長尺材10が一定の張力に収束する時間なども求められる。張力測定部3には、長尺材10の張力を電気信号に変換して出力するロードセルを用いることができる。ロードセルの応答速度(応答周波数)は、早い(高い)ほど張力の変移を緻密に測定できる。ロードセルの応答速度(応答周波数)は、100ms(ミリ秒)以下(10Hz以上)が好ましく、更には10ms以下(100Hz以上)が好ましく、特に1ms以下(1000Hz以上)が好ましい。張力測定部3は、一方の把持部21aに取り付けられている。張力測定部3による測定結果は、演算処理部4に出力する。この張力付加機構2と張力測定部3とは、市販の引張試験機を用いることができる。
[Tension measuring section]
The tension measuring unit 3 measures a change in tension of the long material 10. Thereby, the time for which the long material 10 damped and vibrated converges to a constant tension is also obtained. The tension measuring unit 3 may be a load cell that converts the tension of the long material 10 into an electrical signal and outputs the electrical signal. As the response speed (response frequency) of the load cell becomes faster (higher), the change in tension can be measured more precisely. The response speed (response frequency) of the load cell is preferably 100 ms (milliseconds) or less (10 Hz or more), more preferably 10 ms or less (100 Hz or more), and particularly preferably 1 ms or less (1000 Hz or more). The tension measuring unit 3 is attached to one gripping part 21a. The measurement result by the tension measuring unit 3 is output to the arithmetic processing unit 4. A commercially available tensile testing machine can be used for the tension applying mechanism 2 and the tension measuring unit 3.

[演算処理部]
演算処理部4は、張力測定部3の測定結果に基づき、長尺材10の減衰係数を演算する。それにより、張力測定部3の測定により得られる張力の変移から、長尺材10における張力の変移の収束時間を求めることができる。即ち、長尺材10の振動の仕方や長尺材10における振動の収束のし易さが分かる。演算処理部4は、コンピュータを利用できる。コンピュータは、モニタ40を備え、モニタ40に波形として表示するようにしてもよい。そうすれば、張力の変移や張力の変移の収束時間など目視にて確認することができる。
[Operation processing unit]
The arithmetic processing unit 4 calculates the attenuation coefficient of the long material 10 based on the measurement result of the tension measuring unit 3. Thereby, the convergence time of the transition of the tension in the long material 10 can be obtained from the transition of the tension obtained by the measurement of the tension measuring unit 3. That is, it can be understood how the long material 10 vibrates and how easily the long material 10 converges. The arithmetic processing unit 4 can use a computer. The computer may be provided with a monitor 40 and displayed on the monitor 40 as a waveform. By doing so, it is possible to visually confirm the transition of the tension and the convergence time of the transition of the tension.

〔長尺材の減衰係数測定装置の作用効果〕
実施形態1の長尺材の減衰係数測定装置1によれば、張力付加機構2と張力測定部3と演算処理部4とを備えるだけで、長尺材10に一定の張力を付加した状態で長尺材10を減衰振動させた際の張力の変移から減衰係数を演算できる。そのため、簡易な構成で長尺材の減衰係数を簡便に測定できる。
[Effects of long material damping coefficient measuring device]
According to the long material attenuation coefficient measuring apparatus 1 of the first embodiment, the long material 10 is applied with a constant tension only by including the tension applying mechanism 2, the tension measuring unit 3, and the arithmetic processing unit 4. The damping coefficient can be calculated from the change in tension when the long material 10 is damped and vibrated. Therefore, the attenuation coefficient of the long material can be easily measured with a simple configuration.

〔長尺材の減衰係数測定方法〕
長尺材の減衰係数測定方法は、長尺材の減衰係数を測定する。この長尺材の減衰係数測定方法は、引張工程と、振動付与工程と、測定工程と、演算工程とを備える。この測定方法には、上述の長尺材の減衰係数測定装置1を用いることができる。
[Measurement method of long material damping coefficient]
The long material attenuation coefficient measurement method measures the attenuation coefficient of a long material. This method for measuring the attenuation coefficient of a long material includes a tensioning step, a vibration applying step, a measuring step, and a calculating step. In this measurement method, the above-described long material attenuation coefficient measuring apparatus 1 can be used.

[引張工程]
引張工程は、長尺材10の長手方向に一定の張力を付加する。ここでは、図1左図に示すように長尺材10の両端を把持部21a,21bで把持し、図1左から2番目の図に示すように把持部21a,21bで把持した長尺材10の両端のうち一方の端部を引っ張る。即ち、一方の把持部21aを他方の把持部21bから離れる方向に移動させる。一方の把持部21aの移動量が所定量に達したら、一方の把持部21aの移動を止めてその位置で保持する。この移動量の大きさにより付加する張力の大きさを適宜変更できる。この付加する張力の大きさ(この移動量の大きさ)は、長尺材10が塑性変形しない範囲で適宜選択できる。
[Tensing process]
In the tensioning step, a constant tension is applied in the longitudinal direction of the long material 10. Here, as shown in the left diagram of FIG. 1, both ends of the long material 10 are gripped by the gripping portions 21a and 21b, and the long material gripped by the gripping portions 21a and 21b as shown in the second diagram from the left in FIG. Pull one end of the two ends. That is, one gripping part 21a is moved in a direction away from the other gripping part 21b. When the movement amount of one gripping portion 21a reaches a predetermined amount, the movement of one gripping portion 21a is stopped and held at that position. The magnitude of the tension to be applied can be appropriately changed depending on the magnitude of the movement amount. The magnitude of the tension to be applied (the magnitude of the amount of movement) can be appropriately selected within a range in which the long material 10 is not plastically deformed.

[振動付与工程]
振動付与工程は、長手方向に一定の張力が付与された長尺材10を減衰振動させる。まず、長尺材10の一部(ここでは略中央)に外力を付与する。この外力の作用する方向は、黒塗り矢印に示すように、長尺材10の長手方向に直交する方向とする。この外力は、長尺材10を引っ張る引張力でもよいし、長尺材10を押圧する押圧力でもよい。この外力の付与により、図1左から3番目の図に示すように、長尺材10の一部を長手方向に直交する方向に変位させる。次に、長尺材10の一部の変移量が所定量に達したら、付与している外力を解除する。そうすることで、図1右図に示すように、長尺材10は振動し、徐々にその振動が減衰して収束する。
[Vibration applying process]
In the vibration applying step, the long material 10 to which a constant tension is applied in the longitudinal direction is damped and vibrated. First, an external force is applied to a part of the long material 10 (here, approximately the center). The direction in which the external force acts is a direction orthogonal to the longitudinal direction of the long material 10 as indicated by the black arrow. This external force may be a tensile force that pulls the long material 10 or a pressing force that presses the long material 10. By applying this external force, as shown in the third diagram from the left in FIG. 1, a part of the long material 10 is displaced in a direction perpendicular to the longitudinal direction. Next, when the amount of displacement of a part of the long material 10 reaches a predetermined amount, the applied external force is released. By doing so, as shown in the right diagram of FIG. 1, the long material 10 vibrates, and the vibration gradually attenuates and converges.

[測定工程]
測定工程は、減衰振動する長尺材10の張力の変移を測定する。振動付与工程で測定される長尺材10の張力は、外力が付与されて所定の変位量(変位量が最大)のときに最大となる。この張力は、長尺材10の振動の減衰に伴って徐々に小さくなり、長尺材10の振動が収束したとき引張工程で付与された一定の張力に相当する。長尺材10の振幅の変位を測定する一般的な測定方法の場合は、長尺材10を減衰振動させたとき、振動前の位置(変位ゼロ)を跨いで変位+(プラス)側と変位−(マイナス)側とを繰り返し行き来して、振動が収束したときに変位0となる。これに対して、本実施形態の長尺材の減衰係数測定方法では、長尺材10の張力は、最大の張力と振動前の一定の張力との間で推移し、一定の張力以下(振動前の張力以下)には実質的にならない。
[Measurement process]
In the measurement step, a change in tension of the long material 10 that undergoes damped vibration is measured. The tension of the long material 10 measured in the vibration applying step becomes maximum when an external force is applied and a predetermined displacement amount (displacement amount is maximum). This tension gradually decreases as the vibration of the long material 10 is attenuated, and corresponds to a certain tension applied in the tensioning process when the vibration of the long material 10 converges. In the case of a general measuring method for measuring the displacement of the amplitude of the long material 10, when the long material 10 is damped and vibrated, the displacement + (plus) side and the displacement across the position before the vibration (displacement zero) The displacement is zero when the vibration converges repeatedly on the minus (minus) side. In contrast, in the method for measuring the attenuation coefficient of the long material according to the present embodiment, the tension of the long material 10 changes between the maximum tension and a constant tension before vibration, and is equal to or less than the constant tension (vibration). Less than the previous tension).

[演算工程]
演算工程は、測定工程での張力の変移の測定結果に基づいて、長尺材の減衰係数を演算する。それにより、測定工程により得られた張力の変移から、長尺材10における張力の変移の収束時間を求めることができる。そのため、長尺材10の振動の仕方や長尺材における振動の収束のし易さが分かる。
[Calculation process]
The calculation step calculates the attenuation coefficient of the long material based on the measurement result of the tension transition in the measurement step. Thereby, the convergence time of the tension transition in the long material 10 can be obtained from the tension transition obtained by the measurement process. Therefore, it can be seen how the long material 10 vibrates and how easily the vibration of the long material converges.

〔長尺材の減衰係数測定方法の作用効果〕
実施形態1の長尺材の減衰係数測定方法によれば、長尺材に一定の張力を付加した状態で、長尺材を減衰振動させるだけで、張力の変移から減衰係数を演算できる。そのため、長尺材の減衰係数の測定が簡便である。
[Effects of the method for measuring the damping coefficient of long materials]
According to the method for measuring the attenuation coefficient of the long material according to the first embodiment, the attenuation coefficient can be calculated from the change in tension by simply causing the long material to dampen and vibrate in a state where a certain tension is applied to the long material. Therefore, it is easy to measure the attenuation coefficient of a long material.

《実施形態2》
図2を参照して、変形例1に係る長尺材の減衰係数測定装置を説明する。変形例1の長尺材の減衰係数測定装置は、長手方向に一定の張力が付与された長尺材10を減衰振動させる振動付与機構5を備える点が、実施形態1の長尺材の減衰係数測定装置1と相違し、その他の点は実施形態1の長尺材の減衰係数測定装置1と同様である。以下、相違点を中心に説明し、同様の構成及び同様の効果については説明を省略する。図2では、説明の便宜上、振動付与機構5の一部と長尺材10とのみを示している。
<< Embodiment 2 >>
With reference to FIG. 2, the elongate material attenuation coefficient measuring apparatus according to Modification 1 will be described. The long material attenuation coefficient measuring apparatus according to the first modification is provided with a vibration applying mechanism 5 that attenuates and vibrates the long material 10 to which a constant tension is applied in the longitudinal direction. The difference from the coefficient measuring device 1 is the same as that of the long material attenuation coefficient measuring device 1 of the first embodiment except for the points. Hereinafter, the description will focus on the differences, and the description of the same configuration and the same effect will be omitted. In FIG. 2, for convenience of explanation, only a part of the vibration applying mechanism 5 and the long material 10 are shown.

〔長尺材の減衰係数測定装置〕
[振動付与機構]
振動付与機構5は、長尺材10の長手方向と直交する方向に外力を付与して長尺材10の一部を変位させ、外力を解除することで、長尺材10を減衰振動させる。ここでは、振動付与機構5は、長尺材10を押圧する押圧力を付与可能な構成、具体的には、回転軸部51と押圧部52とを備える。
[Attenuation coefficient measuring device for long materials]
[Vibration imparting mechanism]
The vibration applying mechanism 5 dampens and vibrates the long material 10 by applying an external force in a direction perpendicular to the longitudinal direction of the long material 10 to displace a part of the long material 10 and releasing the external force. Here, the vibration applying mechanism 5 includes a configuration capable of applying a pressing force that presses the long material 10, specifically, a rotating shaft portion 51 and a pressing portion 52.

(回転軸部)
回転軸部51は、回転することで、後述の押圧部52を回転させる。回転軸部51の一端は、図示しない回転機構に一体に固定される固定端(基端)である。回転軸部51の他端は自由端であり、この他端側には押圧部52が一体に固定されている。回転軸部51の軸方向は、長尺材10の長手方向に平行である。回転機構は、例えばサーボモータなどが利用できる。回転機構のモータや、モータの動力が伝達される回転軸部51の固定端側は、台座部23(図1)に取り付けられる。
(Rotating shaft)
The rotating shaft portion 51 rotates a later-described pressing portion 52 by rotating. One end of the rotation shaft portion 51 is a fixed end (base end) fixed integrally to a rotation mechanism (not shown). The other end of the rotating shaft portion 51 is a free end, and a pressing portion 52 is integrally fixed to the other end side. The axial direction of the rotating shaft portion 51 is parallel to the longitudinal direction of the long material 10. For example, a servo motor can be used as the rotation mechanism. The fixed end side of the rotating shaft 51 to which the motor of the rotating mechanism and the power of the motor are transmitted is attached to the pedestal 23 (FIG. 1).

(押圧部)
押圧部52は、長尺材10の一部を長尺材10の長手方向と直交する方向に押圧する。それにより、長尺材10の一部をその長手方向と直交する方向に変位させる。ここでは、押圧部52の押圧箇所は、長尺材10の略中央としている。押圧部52の一端は、回転軸部51の回転軸に直交するように回転軸部51に一体に固定されている。即ち、押圧部52は、回転機構による回転軸部51の回転に連動して回転する。押圧部52の他端側は、自由端であり、回転軸部51の回転量に応じて長尺材10へ外力を付与したり外力を解除したりする。
(Pressing part)
The pressing unit 52 presses a part of the long material 10 in a direction orthogonal to the longitudinal direction of the long material 10. Thereby, a part of the long material 10 is displaced in a direction orthogonal to the longitudinal direction. Here, the pressing location of the pressing portion 52 is set at the approximate center of the long material 10. One end of the pressing portion 52 is integrally fixed to the rotation shaft portion 51 so as to be orthogonal to the rotation shaft of the rotation shaft portion 51. That is, the pressing part 52 rotates in conjunction with the rotation of the rotating shaft part 51 by the rotating mechanism. The other end side of the pressing portion 52 is a free end, and applies an external force to the long material 10 or releases the external force according to the amount of rotation of the rotating shaft portion 51.

具体的には、押圧部52の他端側は、実線で示す初期位置(長尺材10にその長手方向と直交する方向の外力が作用していない状態)の長尺材10に対して、その回転により長尺材10を押圧する。押圧部52の他端側は、回転軸部51により更に回転すると、長尺材10を更に押圧して長尺材10の変位量を多くする。押圧部52の他端側が、回転軸部51により二点鎖線で示すように所定範囲まで回転したら、長尺材10の変位を最大にする。このとき、長尺材10の張力は最大になる。押圧部52の他端側は、右側破線で示すように回転軸部51により所定範囲超回転したら、長尺材10との接触が外れて長尺材10に付加していた外力を解除する。この外力が解除された直後には、長尺材10は、左側破線で示すように上記初期位置を超えて最大変位の位置から反対側へ移動する。その後、長尺材10は、その反動で振動し、徐々に減衰して初期位置に収束する。押圧部52の他端側における長尺材10との接触からその接触が外れるまでの回転範囲は、押圧部52の長さや長尺材10の所望の変位量に応じて適宜選択できる。その回転範囲に応じて、押圧部52の長さや回転軸部51の位置などを適宜選択すればよい。   Specifically, the other end side of the pressing portion 52 is in the initial position indicated by the solid line (the long material 10 is in a state where an external force in a direction orthogonal to the longitudinal direction is not acting) on the long material 10. The long material 10 is pressed by the rotation. When the other end side of the pressing portion 52 is further rotated by the rotating shaft portion 51, the long material 10 is further pressed to increase the displacement amount of the long material 10. When the other end side of the pressing portion 52 is rotated to a predetermined range as indicated by a two-dot chain line by the rotating shaft portion 51, the displacement of the long material 10 is maximized. At this time, the tension of the long material 10 is maximized. When the other end side of the pressing part 52 is rotated beyond a predetermined range by the rotating shaft part 51 as shown by the right broken line, the contact with the long material 10 is released and the external force applied to the long material 10 is released. Immediately after the external force is released, the long member 10 moves from the position of the maximum displacement to the opposite side beyond the initial position as shown by the broken line on the left side. Thereafter, the long material 10 vibrates by the reaction, gradually attenuates and converges to the initial position. The rotation range from the contact with the long material 10 on the other end side of the pressing portion 52 to the release of the contact can be appropriately selected according to the length of the pressing portion 52 and the desired displacement amount of the long material 10. What is necessary is just to select suitably the length of the press part 52, the position of the rotating shaft part 51, etc. according to the rotation range.

振動付与機構5は、更に、回転軸部51の長さを変える伸縮機構を備えることが好ましい。そうすれば、長尺材10の長さに応じて押圧部52の位置を可変させられる。   It is preferable that the vibration applying mechanism 5 further includes an expansion / contraction mechanism that changes the length of the rotation shaft portion 51. Then, the position of the pressing part 52 can be varied according to the length of the long material 10.

〔作用効果〕
実施形態2の長尺材の減衰係数測定装置によれば、振動付与機構5により長尺材10を減衰振動させられるため、長尺材へ付与する外力の調整が容易である。
[Function and effect]
According to the long material damping coefficient measuring apparatus of the second embodiment, the long material 10 can be damped and vibrated by the vibration applying mechanism 5, so that adjustment of the external force applied to the long material is easy.

《試験例1》
図1を用いて説明した長尺材の減衰係数測定装置1を用いて、上述の長尺材の減衰係数測定方法により長尺材10の減衰係数を測定した試料No.1と、その測定した減衰係数を用いて長尺材10の減衰振動をシミュレーションした試料No.100との結果を比較した。各試料における張力の変移の波形を図3、図4に示す。図3,4に示すグラフの横軸は、時間(s)を示し、縦軸は張力(N)を示す。図3,4では、長尺材10への外力が解除された時点からの時間と張力を示している。
<< Test Example 1 >>
Using the long material attenuation coefficient measuring apparatus 1 described with reference to FIG. 1, the sample No. 1 in which the attenuation coefficient of the long material 10 was measured by the above-described long material attenuation coefficient measurement method. 1 and the sample No. 1 in which the damping vibration of the long material 10 was simulated using the measured damping coefficient. The result with 100 was compared. Waveforms of tension transition in each sample are shown in FIGS. 3 and 4, the horizontal axis represents time (s), and the vertical axis represents tension (N). 3 and 4, the time and tension from the time point when the external force to the long material 10 is released are shown.

試料No.1は、図3に示すように、19.82sの時点で長尺材10の張力が最大値を示している。そして、19.82sの時点で長尺材10への外力が解除されてその時点から張力が変移し、凡そ19.97sの時点で一定の張力に収束したことがわかる。即ち、長尺材10の振動は、19.82sの時点で開始され、その時点から徐々に減衰して、凡そ19.97sの時点で振動が収束して停止したことがわかる。試料No.1の長尺材10の一定の張力に収束(振動が停止)した時間は、0.15sであった。   Sample No. As shown in FIG. 3, No. 1 shows the maximum value of the tension of the long material 10 at 19.82 s. Then, it can be seen that the external force to the long material 10 was released at the time of 19.82 s, the tension changed from that time, and converged to a constant tension at the time of about 19.97 s. That is, it can be seen that the vibration of the long material 10 starts at the time of 19.82 s, gradually attenuates from that time, and converges and stops at the time of about 19.97 s. Sample No. The time when the long material 10 of 1 converged to a constant tension (vibration stopped) was 0.15 s.

試料No.100は、シミュレーションソフト上で、長尺材の形状・サイズ、長尺材に付与する一定の張力、及び長尺材を変位させる際の最大張力を試料No.1と同一とし、試料No.1の張力の変移から求めた減衰係数を設定してシミュレーションを行った。減衰係数は、試料No.1の測定結果から、最大張力から一定の張力に収束する時間が0.15sとなるように設定した。その結果、試料No.100の張力は、図4に示すように、1sの時点で最大値となっていて、経過するにつれて徐々に減衰し、凡そ1.15sの時点で一定の張力に収束した。即ち、試料No.100の一定の張力に収束した時間は、試料No.1と同じ、0.15sであった。図3と図4の波形を比較すると、図4に示す試料No.100の張力の変移の波形は、図3に示す試料No.1の波形に略一致していることがわかる。   Sample No. 100 shows the shape and size of the long material, the constant tension applied to the long material, and the maximum tension when the long material is displaced on the simulation software. 1 and sample no. The simulation was performed by setting the damping coefficient obtained from the change in tension of 1. The attenuation coefficient is the sample No. From the measurement result of 1, the time for convergence from the maximum tension to a constant tension was set to be 0.15 s. As a result, sample no. As shown in FIG. 4, the tension of 100 reached the maximum value at the time of 1 s, gradually decreased as time passed, and converged to a constant tension at the time of about 1.15 s. That is, sample no. The time to converge to a constant tension of 100 is the sample No. 1 and 0.15 s. When the waveforms of FIG. 3 and FIG. 4 are compared, the sample No. shown in FIG. The waveform of the change in tension of 100 is the sample No. shown in FIG. It can be seen that it substantially matches the waveform of 1.

この結果から、図1を用いて説明した長尺材の減衰係数測定装置1を用いて、上述の長尺材の減衰係数測定方法により長尺材の減衰係数を測定すれば、実際の長尺材の振動の仕方や、振動時に長尺材に作用する張力、振動の収束のし易さなどをシミュレーションにより把握できることがわかった。   From this result, if the attenuation coefficient of the long material is measured by the above-described long material attenuation coefficient measuring method using the long material attenuation coefficient measuring apparatus 1 described with reference to FIG. It was found that the method of vibration of the material, the tension acting on the long material during vibration, the ease of convergence of the vibration, etc. can be grasped by simulation.

本発明の長尺材の減衰係数測定装置及び長尺材の減衰係数測定方法は、長尺材の減衰係数の測定に好適に利用できる。   The long material attenuation coefficient measuring apparatus and the long material attenuation coefficient measuring method of the present invention can be suitably used for measuring the attenuation coefficient of a long material.

1 長尺材の減衰係数測定装置
10 長尺材
2 張力付加機構
21a,21b 把持部 22 移動機構 23 台座部
3 張力測定部
4 演算処理部
40 モニタ
5 振動付与機構
51 回転軸部 52 押圧部
DESCRIPTION OF SYMBOLS 1 Long material damping coefficient measuring device 10 Long material 2 Tension applying mechanism 21a, 21b Gripping part 22 Moving mechanism 23 Base part 3 Tension measuring part 4 Arithmetic processing part 40 Monitor 5 Vibration applying mechanism 51 Rotating shaft part 52 Pressing part

Claims (3)

長尺材の両端を把持して前記長尺材の長手方向に一定の張力を付加する張力付加機構と、
長手方向に一定の張力が付与された前記長尺材が減衰振動したときの前記長尺材の張力の変移を測定する張力測定部と、
前記張力測定部の測定結果に基づき、前記長尺材の減衰係数を演算する演算処理部とを備える長尺材の減衰係数測定装置。
A tension applying mechanism that holds both ends of the long material and applies a constant tension in the longitudinal direction of the long material;
A tension measuring unit that measures a change in tension of the long material when the long material to which a constant tension is applied in the longitudinal direction vibrates and oscillates;
A long material attenuation coefficient measuring apparatus comprising: an arithmetic processing unit that calculates an attenuation coefficient of the long material based on a measurement result of the tension measuring unit.
長手方向に一定の張力が付与された前記長尺材の一部に、前記長手方向と直交する方向に外力を付与して前記長尺材の一部を変位させ、前記外力を解除することで、前記長尺材を減衰振動させる振動付与機構を備える請求項1に記載の長尺材の減衰係数測定装置。   By applying an external force in a direction perpendicular to the longitudinal direction to a part of the long material to which a constant tension is applied in the longitudinal direction, displacing a part of the long material, and releasing the external force The long-material attenuation coefficient measuring apparatus according to claim 1, further comprising a vibration applying mechanism that attenuates and vibrates the long material. 長尺材の長手方向に一定の張力を付加する引張工程と、
長手方向に一定の張力が付与された前記長尺材を減衰振動させる振動付与工程と、
減衰振動する前記長尺材の張力の変移を測定する測定工程と、
前記測定工程での測定結果に基づき、前記長尺材の減衰係数を演算する演算工程とを備える長尺材の減衰係数測定方法。
A tensioning step for applying a constant tension in the longitudinal direction of the long material;
A vibration applying step of damping and vibrating the long material to which a constant tension is applied in the longitudinal direction;
A measurement process for measuring a change in tension of the long material that oscillates damped;
A long material attenuation coefficient measurement method comprising: a calculation step of calculating an attenuation coefficient of the long material based on a measurement result in the measurement step.
JP2016011151A 2016-01-22 2016-01-22 Apparatus and method for measuring attenuation coefficient of long material Pending JP2017129554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016011151A JP2017129554A (en) 2016-01-22 2016-01-22 Apparatus and method for measuring attenuation coefficient of long material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016011151A JP2017129554A (en) 2016-01-22 2016-01-22 Apparatus and method for measuring attenuation coefficient of long material

Publications (1)

Publication Number Publication Date
JP2017129554A true JP2017129554A (en) 2017-07-27

Family

ID=59394683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016011151A Pending JP2017129554A (en) 2016-01-22 2016-01-22 Apparatus and method for measuring attenuation coefficient of long material

Country Status (1)

Country Link
JP (1) JP2017129554A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190123897A (en) * 2018-04-25 2019-11-04 부경대학교 산학협력단 Device for measuring modal damping coefficient and measuring method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190123897A (en) * 2018-04-25 2019-11-04 부경대학교 산학협력단 Device for measuring modal damping coefficient and measuring method using the same
KR102051746B1 (en) 2018-04-25 2019-12-03 부경대학교 산학협력단 Device for measuring modal damping coefficient and measuring method using the same

Similar Documents

Publication Publication Date Title
Ismail et al. An investigation into the vibration analysis of a plate with a surface crack of variable angular orientation
Smith et al. The effects of boundary conditions, measurement techniques, and excitation type on measurements of the properties of mechanical joints
EP3489652B1 (en) Material testing machine and gripping force detecting method
JP6275859B2 (en) Ultrasonic machining device with force sensor
Yun et al. Development of a closed-loop high-cycle resonant fatigue testing system
WO2013111608A1 (en) Viscoelasticity measurement method and viscoelasticity measurement device
KR101030325B1 (en) Apparatus for measuring natural frequency of dynamic damper
JP2015190874A (en) Method and device for testing fretting fatigue
JP2017129554A (en) Apparatus and method for measuring attenuation coefficient of long material
Khodaei et al. Theoretical and experimental analysis of coupled flexural-torsional vibrations of rotating beams
García-Barruetabeña et al. Experimental analysis of the vibrational response of an adhesively bonded beam
Wilmshurst et al. Nonlinear vibrations of a stroke-saturated inertial actuator
Zhang et al. Fretting corrosion in electric connectors induced by axial vibration
JP3940540B2 (en) Residual stress measurement method and apparatus
Kalombo et al. Bending stress of stockbridge damper messenger cable: Experimental data and modelling
JP5297735B2 (en) Contact displacement sensor
Jalili et al. Flexural free vibration as a non-destructive test for evaluation of viscoelastic properties of polymeric composites in bending direction
JP2013156092A (en) Viscoelasticity measuring method and viscoelasticity measuring apparatus
JP2002148169A (en) Output pressure measurement method and measurement device for fixed cross-sectional operation body
CN105548528B (en) A kind of erasure effect method of testing of noise reduction leather
Duan et al. Pulse shaping techniques for a high-g shock tester based on collision principle
Zahari et al. Investigation on Impact Hammer Testing with Different Types of Hammer Tip for Welded Thin Plate
Yang et al. Threshold of axial vibration induced fretting in electrical connectors
Foong et al. A low-cost vibration analyser for analogue electromagnetic shaker
JP2013156091A (en) Method for measuring linear elastic modulus, and linear elastic modulus measuring apparatus