JP2002148169A - Output pressure measurement method and measurement device for fixed cross-sectional operation body - Google Patents

Output pressure measurement method and measurement device for fixed cross-sectional operation body

Info

Publication number
JP2002148169A
JP2002148169A JP2000343604A JP2000343604A JP2002148169A JP 2002148169 A JP2002148169 A JP 2002148169A JP 2000343604 A JP2000343604 A JP 2000343604A JP 2000343604 A JP2000343604 A JP 2000343604A JP 2002148169 A JP2002148169 A JP 2002148169A
Authority
JP
Japan
Prior art keywords
section
constant
operating body
max
elastic modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000343604A
Other languages
Japanese (ja)
Other versions
JP3374973B2 (en
Inventor
Takanori Hiraoka
孝則 平岡
Toshifumi Sakata
利文 坂田
Kinshi Azumi
欣志 安積
Naoko Fujiwara
直子 藤原
Keisuke Oguro
啓介 小黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Toyo Tire Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Toyo Tire and Rubber Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000343604A priority Critical patent/JP3374973B2/en
Publication of JP2002148169A publication Critical patent/JP2002148169A/en
Application granted granted Critical
Publication of JP3374973B2 publication Critical patent/JP3374973B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for measuring a longitudinal elastic modulus and an output pressure of a fixed cross-sectional operation body allowing non-contact and non-destructive measurement of the longitudinal elastic modulus in the same way as measurement of an output displacement quantity and allowing measurement of a minute output pressure caused in the fixed cross-sectional operation body with full load. SOLUTION: This measurement device is provided with a fixing means 2 for fixing the fixed cross-sectional operation body 1 in a cantilever form, an inputting means 3 applying alternating input from a fixed part 1b for oscillating the operation part, a displacement quantity measurement means 4 performing non-contact measurement of a displacement quantity due to oscillation in the operation part, and a computing means 5 performing a processing procedure for finding the full load. In the full load finding processing procedure in the computing means 5, after a resonance angular frequency ωmatching a primary oscillation form and an operation part tip displacement quantity δmax are found by using the information from the displacement quantity measuring means 4, the longitudinal elastic module E is computed from the resonance angular frequency ω and a known value according to an expression 1: E=ω2ρA/(a4I), and the full load is found from the longitudinal elastic modulus E and the displacement quantity δmax according to an expression 2: W=δmax.EI/(β.L3).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子アクチュエ
ータのような定断面作動体に対し、交番電圧等を入力し
て振動させ、その際の振動挙動から縦弾性率や定断面作
動体に生じる出力圧の指標となる全荷重を測定するため
の測定方法及び測定装置、並びにそれを利用した定断面
作動体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a constant section operating body such as a polymer actuator, which is caused to vibrate by inputting an alternating voltage or the like. The present invention relates to a measuring method and a measuring device for measuring a total load serving as an index of an output pressure, and a method of manufacturing a constant-section operating body using the same.

【0002】[0002]

【従来の技術】高分子アクチュエータのような定断面作
動体は、表面に設けられた電極間に電圧や電流(電力)
を入力(印加)することで、湾曲等の変形が生じるた
め、近年、小型アクチュエータの1つとして注目されて
いる。このような高分子アクチュエータ等は、レーザ変
位計などを用いて変位測定が行われており、入力に対す
る出力変位量が性能を表す指標となっている。
2. Description of the Related Art A constant-section actuator such as a polymer actuator has a voltage or current (electric power) between electrodes provided on the surface.
Is input (applied), deformation such as bending occurs, and has recently been attracting attention as one of small actuators. Such a polymer actuator or the like is subjected to displacement measurement using a laser displacement meter or the like, and an output displacement amount with respect to an input is an index indicating performance.

【0003】一方、アクチュエータとして定断面作動体
を使用する上で、上記の出力変位量に加えて、変形する
際の出力圧(面に生じる力)を知ることが重要である。
しかし、定断面作動体は一般に出力圧が小さいため、出
力圧の測定に関しては、有力な測定方法がないのが実情
である。
On the other hand, in using a constant-section operating body as an actuator, it is important to know an output pressure (force generated on a surface) at the time of deformation in addition to the above-described output displacement.
However, since the constant section operating body generally has a small output pressure, there is no effective measurement method for measuring the output pressure.

【0004】[0004]

【発明が解決しようとする課題】例えば、ロードセルを
用いて荷重測定を行う方法が考えられるが、測定する定
断面作動体が大きく変位するため、安定した測定結果が
得られにくい。また、圧縮力を加えて、その微小変位の
圧力を測定する方法もあるが、厚みが小さく出力圧が小
さい定断面作動体に適用するのは困難である。
For example, a method of measuring a load using a load cell is conceivable, but it is difficult to obtain a stable measurement result because the constant-section operating body to be measured is greatly displaced. There is also a method of measuring the pressure of the minute displacement by applying a compressive force, but it is difficult to apply the method to a constant-section operating body having a small thickness and a small output pressure.

【0005】一方、定断面作動体の縦弾性率を測定する
方法については、各種引張試験などにより測定すること
ができるが、高分子アクチュエータ等を破壊せずに縦弾
性率を測定する方法や、高分子アクチュエータ等を使用
状態で非接触に測定する方法は、これまで知られていな
かった。
On the other hand, the method of measuring the longitudinal elastic modulus of a constant-section operating body can be measured by various tensile tests and the like. However, the method of measuring the longitudinal elastic modulus without breaking a polymer actuator or the like, A method for non-contact measurement of a polymer actuator or the like in use has not been known.

【0006】そこで、本発明の目的は、出力変位量の測
定と同様の方法にて非接触・非破壊で縦弾性率を測定で
きる定断面作動体の縦弾性率の測定方法を提供すること
にある。また、出力変位量の測定と同様の方法で、定断
面作動体に生じる微小な出力圧を全荷重(出力圧に換算
可能)として測定することができる定断面作動体の出力
圧の測定方法、並びにその測定装置を提供することにあ
る。更に、当該測定方法を利用して定断面作動体を製造
する定断面作動体の製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a method of measuring the longitudinal elastic modulus of a constant-section operating body, which can measure the longitudinal elastic modulus in a non-contact and nondestructive manner by the same method as the measurement of the output displacement. is there. Also, a method for measuring the output pressure of a constant-section operating body, which can measure a minute output pressure generated in the constant-section operating body as a total load (convertible to output pressure) in the same manner as the measurement of the output displacement amount, Another object of the present invention is to provide a measuring device therefor. It is still another object of the present invention to provide a method for manufacturing a constant-section operating body that manufactures a constant-section operating body using the measurement method.

【0007】[0007]

【課題を解決するための手段】上記目的は、下記の如き
本発明により達成できる。即ち、本発明の定断面作動体
の縦弾性率の測定方法は、定断面作動体を片持ち固定し
た固定部から交番する入力を付与して定断面作動体の作
動部を振動させ、その挙動から一次の振動形に対応する
共振角周波数ωを求める工程と、その共振角周波数ωと
既知の値から下記の式(1) E=ω2 ρA/(a4 I) (1) 〔ここで、Eは縦弾性率、ωは共振角周波数、ρは定断
面作動体の密度、Aは作動部の断面積、aはλ/L(λ
は片持梁の1次の無次元振動数、Lは作動部の長さ)、
Iは作動部の断面2次モーメントを表す〕にて縦弾性率
Eを算出する工程とを含むものである。
The above object can be achieved by the present invention as described below. That is, the method for measuring the longitudinal elastic modulus of the constant-section operating body according to the present invention includes the steps of: applying an alternating input from a fixed portion in which the constant-section operating body is cantilevered to vibrate the operating section of the constant-section operating body; And obtaining the resonance angular frequency ω corresponding to the primary vibration form from the following equation, and using the resonance angular frequency ω and a known value, the following equation (1) E = ω 2 ρA / (a 4 I) (1) [where , E is the longitudinal elastic modulus, ω is the resonance angular frequency, ρ is the density of the constant-section operating body, A is the cross-sectional area of the working section, and a is λ / L (λ
Is the first dimensionless frequency of the cantilever, L is the length of the working part),
I represents the second moment of area of the operating portion] to calculate the longitudinal elastic modulus E.

【0008】また、本発明の定断面作動体の出力圧の測
定方法は、定断面作動体を片持ち固定した固定部から交
番する入力を付与して定断面作動体の作動部を振動さ
せ、その挙動から一次の振動形に対応する共振角周波数
ωと作動部先端の変位量δmaxとを求める工程と、その
共振角周波数ωと既知の値から上記の式(1)にて縦弾
性率Eを算出する工程と、その縦弾性率Eと前記変位量
δmax から、下記の式(2) W=δmax ・EI/(β・L3 ) (2) 〔ここで、Wは全荷重、Iは作動部の断面2次モーメン
ト、βは1/8、Lは作動部の長さを表す〕にて、全荷
重を求める工程とを含むものである。
Further, according to the method for measuring the output pressure of a constant-section operating body according to the present invention, an alternating input is applied from a fixed portion in which the constant-section operating body is cantilevered to vibrate the operating section of the constant-section operating body, A step of obtaining a resonance angular frequency ω corresponding to the primary vibration form and a displacement amount δ max of the tip of the operating portion from the behavior, and a longitudinal elastic modulus from the resonance angular frequency ω and a known value by the above equation (1). calculating a E, from the longitudinal elastic modulus E and the displacement [delta] max, the following equation (2) W = δ max · EI / (β · L 3) (2) [wherein, W is the total load , I is the moment of inertia of the working section, β is 1/8, and L is the length of the working section].

【0009】上記において、前記作動部先端の変位量δ
max を求める際に、測定点での変位量δxと支点から測
定点までの長さxとから、下記の式(3) δmax =δx・wX /wL (3) 〔ここで、wX /wL は片持梁の1次の規準振動形を表
す式から算出される、測定点と作動部先端との変位量の
比を表す〕にて変位量δmax を求めることが好ましい。
In the above, the displacement δ of the tip of the operating portion
When max is obtained, the following equation (3) is used from the displacement amount δx at the measurement point and the length x from the fulcrum to the measurement point, where δ max = δx · w x / w L (3) X / w L is the ratio of the displacement between the measurement point and the tip of the working unit, which is calculated from the equation representing the first-order reference vibration form of the cantilever, and the displacement δ max is preferably obtained.

【0010】一方、本発明の測定装置は、定断面作動体
を片持ち固定する固定手段と、固定された固定部から交
番する入力を付与して前記定断面作動体の作動部を振動
させる入力手段と、その作動部の振動による変位量を非
接触で計測する変位量計測手段と、その変位量計測手段
からの情報を利用して、一次の振動形に対応する共振角
周波数ωと作動部先端の変位量δmax とを求めた後、そ
の共振角周波数ωと既知の値から上記の式(1)にて縦
弾性率Eを算出し、その縦弾性率Eと前記変位量δmax
から、上記の式(2)にて全荷重を求める処理手順を実
行する演算手段とを備えるものである。
On the other hand, the measuring device of the present invention comprises a fixing means for cantileverly fixing the constant-section operating body, and an input for giving an alternating input from the fixed fixing portion to vibrate the operating section of the constant-section operating body. Means, a displacement amount measuring means for non-contactly measuring a displacement amount due to vibration of the operating portion, and a resonance angular frequency ω corresponding to a primary vibration type and an operating portion using information from the displacement amount measuring means. After obtaining the displacement δ max of the tip, the longitudinal elastic modulus E is calculated from the resonance angular frequency ω and the known value by the above equation (1), and the longitudinal elastic modulus E and the displacement δ max are calculated.
Therefore, there is provided an arithmetic means for executing a processing procedure for obtaining the total load by the above equation (2).

【0011】上記において、前記演算手段が、前記作動
部先端の変位量δmax を求める際に、測定点での変位量
δxと支点から測定点までの長さxとから、上記の式
(3)にて変位量δmax を求める処理手順を実行するこ
とが好ましい。
In the above, when the calculating means obtains the displacement δ max of the tip of the operating part, the above formula (3) is obtained from the displacement δx at the measuring point and the length x from the fulcrum to the measuring point. ), It is preferable to execute a processing procedure for obtaining the displacement amount δ max .

【0012】他方、本発明の定断面作動体の製造方法
は、作製した定断面作動体を用いて、上記の出力圧の測
定方法によって全荷重を求め、その全荷重から換算され
る出力圧を予め設定した目標出力圧の範囲と比較して、
その範囲を外れる場合には、出力圧を制御する因子を変
えて別の定断面作動体を作製し、これを繰り返すこと
で、目標出力圧の範囲を有する定断面作動体を製造する
ものである。
On the other hand, in the method of manufacturing a constant-section operating body of the present invention, a total load is obtained by the above-described method of measuring an output pressure using the manufactured constant-section operating body, and the output pressure converted from the total load is determined. Compare with the preset target output pressure range,
If it is out of the range, another constant-section operating body is manufactured by changing a factor for controlling the output pressure, and by repeating this, a constant-section operating body having a target output pressure range is manufactured. .

【0013】[作用効果]以下、請求項1〜6に係わる
本発明の作用効果について説明するが、具体的な実施形
態に伴う作用効果については、後述の発明の実施の形態
の項で詳述する。なお、本発明は、定断面作動体の振動
挙動の仮定条件として、曲げのみの非減衰運動であるこ
と、一次の振動形の共振ピークが把握できること、作動
部の質量と曲げ剛性とが長さ方向に沿って変化しないこ
と、が前提となる。
[Operation and Effect] The operation and effect of the present invention according to claims 1 to 6 will be described below. The operation and effect according to the specific embodiment will be described in detail in the following embodiments of the invention. I do. In addition, the present invention is based on the assumption that the vibration behavior of the constant-section operating body is a non-attenuating motion of only bending, that a primary vibration type resonance peak can be grasped, and that the mass and bending rigidity of the operating section are long. It is assumed that it does not change along the direction.

【0014】本発明の縦弾性率の測定方法によると、出
力変位量の測定と同様にして、固定部からの入力により
定断面作動体の作動部を振動させることができ、その振
動挙動から一次の振動形に対応する共振角周波数ω(共
振ピークの周波数に対応する角周波数)を求めることが
できる。
According to the method of measuring the longitudinal elastic modulus of the present invention, similarly to the measurement of the output displacement, the operating portion of the constant-section operating body can be vibrated by the input from the fixed portion, and the primary Resonance frequency ω (angular frequency corresponding to the frequency of the resonance peak) corresponding to the above vibration type can be obtained.

【0015】上記前提の下では、下記のベルヌーイ・オ
イラーの方程式:
Under the above assumptions, the following Bernoulli-Euler equation:

【数1】 〔ここでE、I、ρ、A、xは前記と同義であり、tは
時間、ζ(x,t)はx位置・t時間のたわみ量、p
(x,t)はx位置・t時間の上下方向に作用する動荷
重となる〕が成立し、本発明における定断面作動体の振
動は、片持梁の非減衰自由振動に相当するため、p
(x,t)=0とおくことができる。その式を、形状関
数w(x)と時間関数Z(t)とにより変数を分離し
て、下記の2つの常微分方程式を得ることができる。
(Equation 1) [Where E, I, ρ, A, and x have the same meanings as above, t is time, ζ (x, t) is the amount of deflection at x position / time, p
(X, t) is a dynamic load acting in the vertical direction at the x position / t time], and the vibration of the constant-section operating body in the present invention corresponds to the non-damped free vibration of the cantilever. p
(X, t) = 0 can be set. By separating the variables from the equation by the shape function w (x) and the time function Z (t), the following two ordinary differential equations can be obtained.

【0016】[0016]

【数2】 ここで、a4 =ω2 ρA/(EI) (式1’)であ
る。一方、上記後者の常微分方程式を解くと、形状関数
w(x)をaとxの関数(定数C1 〜C4 を含む)とし
て表すことができ、片持梁の支点条件(自由端(x=
0)および固定端(x=L))から連立方程式を解く
と、定数C1 〜C4 が消去でき、1+cosλcosh
λ=0となる。この式は片持梁の振動数方程式であり、
その解λを一次の振動形について求めるとλ=1.87
5となる。従って、このλとLから求めたaを代入し
て、(式1’)を変形した式(1):E=ω2 ρA/
(a4 I)によって、測定した共振角周波数ωと既知の
値から、縦弾性率Eを求めることができる。
(Equation 2) Here, a 4 = ω 2 ρA / (EI) (Equation 1 ′). On the other hand, when the latter ordinary differential equation is solved, the shape function w (x) can be represented as a function of a and x (including constants C 1 to C 4 ), and the fulcrum condition (free end ( x =
0) and the fixed end (x = L)), the constants C 1 to C 4 can be eliminated by solving the simultaneous equations, and 1 + cosλcosh
λ = 0. This is the cantilever frequency equation,
When the solution λ is obtained for the primary vibration form, λ = 1.87
It becomes 5. Therefore, by substituting a obtained from λ and L, equation (1) is obtained by modifying equation (1 ′): E = ω 2 ρA /
By (a 4 I), the longitudinal elastic modulus E can be obtained from the measured resonance angular frequency ω and a known value.

【0017】つまり、片持梁の非減衰自由振動では縦弾
性率Eのみで一次の共振角周波数ωが定まるため、この
性質を利用することにより、定断面作動体についても、
出力変位量の測定と同様の方法にて非接触・非破壊で縦
弾性率を測定できる。
In other words, in the non-damped free vibration of the cantilever, the primary resonance angular frequency ω is determined only by the longitudinal elastic modulus E.
The longitudinal elastic modulus can be measured in a non-contact and non-destructive manner in the same manner as the measurement of the output displacement.

【0018】また、本発明の出力圧の測定方法による
と、上記と同様にして共振角周波数ωから縦弾性率Eを
求めることができ、また、共振角周波数ωを求める際に
作動部先端の変位量δmax を求めることができる。
According to the output pressure measuring method of the present invention, the longitudinal elastic modulus E can be obtained from the resonance angular frequency ω in the same manner as described above. The displacement amount δ max can be obtained.

【0019】そして、式(2):W=δmax ・EI/
(β・L3 )は、片持梁に均一分散荷重が静的に生じた
時の全荷重Wと変位量δmax と曲げ剛性EIとの関係を
表す式であり、縦弾性率Eと前記変位量δmax から全荷
重Wを求めることができる。つまり、片持梁に均一分散
荷重が静的に生じた場合を定断面作動体の振動に適用す
ることにより、出力変位量の測定と同様の方法で、定断
面作動体に生じる微小な出力圧を全荷重(出力圧に換算
可能)として測定することができる。
Then, equation (2): W = δ max · EI /
(Β · L 3 ) is an equation representing the relationship among the total load W, the displacement δ max and the bending stiffness EI when a uniform distributed load is statically generated on the cantilever. The total load W can be obtained from the displacement amount δ max . In other words, by applying the case where a uniform distributed load is statically generated on the cantilever to the vibration of the constant-section operating body, the minute output pressure generated in the constant-section operating body can be measured in the same manner as the measurement of the output displacement. Can be measured as a total load (which can be converted to an output pressure).

【0020】また、前記作動部先端の変位量δmax を求
める際に、測定点での変位量δxと支点から測定点まで
の長さxとから、上記の式(3)にて変位量δmax を求
める場合、作動部先端の変位量δmax を直接測定する必
要がないためレーザ変位計などを用いて変位測定するこ
とができ、しかも、片持梁の1次の規準振動形を表す式
から算出される、測定点と作動部先端との変位量の比に
基づいて計算するため、より正確な変位量δmax を得る
ことができ、測定精度をより向上させることができる。
When calculating the displacement δ max of the tip of the operating portion, the displacement δx at the measuring point and the length x from the fulcrum to the measuring point are calculated by the above equation (3). When obtaining max , it is not necessary to directly measure the displacement amount δ max of the tip of the operating part, so that displacement can be measured using a laser displacement meter or the like, and moreover, an equation representing the primary reference vibration form of the cantilever Since the calculation is performed based on the ratio of the displacement between the measurement point and the tip of the operating section, the displacement δ max can be obtained more accurately, and the measurement accuracy can be further improved.

【0021】一方、本発明の測定装置によると、上記の
如き作用効果を奏する本発明の測定方法が実施できるよ
うに構成されているため、出力変位量の測定と同様の方
法で、定断面作動体に生じる微小な出力圧を全荷重(出
力圧に換算可能)として測定することができる。
On the other hand, according to the measuring apparatus of the present invention, since the measuring method of the present invention having the above-mentioned effects and effects is implemented, the constant section operation can be performed in the same manner as the measurement of the output displacement. The minute output pressure generated in the body can be measured as the total load (which can be converted to the output pressure).

【0022】他方、本発明の定断面作動体の製造方法に
よると、作製した定断面作動体を用いて、上記の如き出
力圧の測定方法によって全荷重を求めるため、非接触・
非破壊で定断面作動体に生じる微小な全荷重を測定する
ことができる。また、その全荷重から換算される出力圧
を予め設定した目標出力圧の範囲と比較して、その範囲
を外れる場合には、出力圧を制御する因子を変えて別の
定断面作動体を作製し、これを繰り返すため、目標出力
圧の範囲を有する定断面作動体を確実に製造することが
できる。そして、上記一連の工程を経た製品は、非接触
・非破壊であるため、測定を経た製品を全品評価して出
荷することも可能になる。
On the other hand, according to the method for producing a constant-section operating body of the present invention, the total load is determined by the above-described method for measuring the output pressure using the constant-section operating body thus produced.
It is possible to measure a small total load generated on the constant-section operating body in a non-destructive manner. In addition, the output pressure converted from the total load is compared with a preset target output pressure range, and when the output pressure is out of the range, another constant-section operating body is manufactured by changing a factor for controlling the output pressure. However, since this operation is repeated, it is possible to reliably manufacture a constant-section operating body having a target output pressure range. Since the products that have gone through the above series of steps are non-contact and non-destructive, it is also possible to evaluate and ship all the products that have undergone the measurement.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0024】本発明の測定対象となる定断面作動体とし
ては、固定部から交番する入力を付与することで、作動
部に振動が生じ得る定断面作動体であればよく、共振周
波数等との関係から応答性がある程度高いものが好まし
い。具体的には、電圧や電流(電力)を入力(印加)す
ることで、湾曲等の変形が生じる、高分子アクチュエー
タ等が好ましい。高分子アクチュエータとしては、特開
平4−275078号公報、特開平11−235064
号公報、特開平11−280639号公報等に記載のも
のが挙げられ、例えば矩形平板状のイオン交換樹脂の裏
表両面に、薄い電極層を設けたものが代表的である。本
実施形態では、電力等の印可で作動する矩形断面の平板
状の高分子アクチュエータを定断面作動体として用いる
例を示す。
The constant-section operating body to be measured in the present invention may be any constant-section operating body that can generate vibrations in the operating section by applying an alternating input from the fixed section. From the relation, those having high responsiveness to some extent are preferable. Specifically, a polymer actuator or the like in which deformation such as bending occurs by inputting (applying) a voltage or a current (power) is preferable. As polymer actuators, JP-A-4-275078, JP-A-11-235064
And Japanese Patent Application Laid-Open No. 11-280639, for example, a typical example is a rectangular plate-shaped ion exchange resin having thin electrode layers on both front and back surfaces. In the present embodiment, an example is shown in which a flat-plate-shaped polymer actuator having a rectangular cross section that operates by applying electric power or the like is used as a constant-section operating body.

【0025】本発明では、図1に示すように、定断面作
動体1の固定部1bを固定用電極2で片持ち固定し、固
定部1bから交番する入力を付与して定断面作動体1の
作動部aを上下に振動させる。本実施形態ではその際、
電圧や電流(電力)が印加されるが、ランダム波の入力
や周波数掃引が行われる。
In the present invention, as shown in FIG. 1, the fixed section 1b of the constant section operating body 1 is cantilevered by the fixing electrode 2, and an alternating input is applied from the fixed section 1b to provide the constant section operating body 1 Is vibrated up and down. In this embodiment,
Voltage or current (power) is applied, and random wave input and frequency sweep are performed.

【0026】その際の振動の挙動から、直接的に又は高
速フーリエ変換(FFT)等により、各次数の共振角周
波数ωを得ることができ、最も周波数の低い共振ピーク
に対応する一次の振動形に対応する共振角周波数ωを求
めることができる。また振動の挙動から、作動部先端の
変位量δmax を、直接又は近似により、求めることがで
きる。変位量δmax を直接測定する方法としては、CC
Dカメラで撮影した動画像を画像解析する方法なども挙
げられるが、レーザ変位計を用いた測定値から、近似に
より変位量δmax を求める方法が簡便である。近似によ
り変位量δmaxを求める場合、たわみ変形を無視して測
定点MPでの変位量δxから、δmax =δx・L/xに
より算出することも可能であるが、下記の方法で算出す
る方法が精度の面から好ましい。
From the vibration behavior at that time, the resonance angular frequency ω of each order can be obtained directly or by Fast Fourier Transform (FFT) or the like, and the primary vibration form corresponding to the resonance peak having the lowest frequency can be obtained. Can be obtained. Further, from the behavior of the vibration, the displacement amount δ max of the distal end of the operating portion can be obtained directly or by approximation. As a method of directly measuring the displacement δ max , CC
A method of performing image analysis of a moving image captured by a D camera is also available, but a method of easily obtaining a displacement amount δ max by approximation from a measured value using a laser displacement meter is simple. When the displacement amount δ max is obtained by approximation, it is possible to calculate from the displacement amount δx at the measurement point MP by ignoring flexural deformation by δ max = δx · L / x, but it is calculated by the following method. The method is preferred in terms of accuracy.

【0027】即ち、測定点での変位量δxと支点から測
定点までの長さxとから、下記の式(3) δmax =δx・wX /wL (3) 〔ここで、wX /wL は片持梁の1次の規準振動形を表
す式から算出される、測定点と作動部先端との変位量の
比を表す〕にて変位量δmax を求めることができる。w
X /wL は、下記の式(4)
That is, from the displacement amount δx at the measurement point and the length x from the fulcrum to the measurement point, the following equation (3) δ max = δx · w x / w L (3) [where w x / W L is the ratio of the displacement between the measurement point and the tip of the working unit, which is calculated from the equation representing the first-order reference vibration form of the cantilever, and the displacement δ max can be obtained. w
X / w L is calculated by the following equation (4).

【数3】 のξにx/LとL/Lとを代入して、wX とwL とを計
算して比を求めることで得ることができる。
(Equation 3) Can be obtained by substituting x / L and L / L for ξ, calculating w X and w L and obtaining the ratio.

【0028】上記の式(4)は、片持梁の非減衰自由振
動における一次の規準振動形を示す式であり、振動時の
定断面作動体の各部の変位量、即ち定断面作動体の形状
を示しているため、これから精度良く作動部先端の変位
量δmax を算出することができる。
The above equation (4) is an equation showing the primary reference vibration form in the non-damped free vibration of the cantilever, and the displacement amount of each part of the constant-section operating body during vibration, that is, of the constant-section operating body Since the shape is shown, the displacement amount δ max of the distal end of the operating portion can be calculated with high accuracy from this.

【0029】次に上記で求めた共振角周波数ωと既知の
値から下記の式(1) E=ω2 ρA/(a4 I) (1) 〔ここで、Eは縦弾性率、ωは共振角周波数、ρは定断
面作動体の密度、Aは作動部の断面積、aはλ/L(λ
は片持梁の1次の無次元振動数、Lは作動部の長さ)、
Iは作動部の断面2次モーメントを表す〕にて縦弾性率
Eを算出する。
Next, from the resonance angular frequency ω obtained above and a known value, the following equation (1) E = ω 2 ρA / (a 4 I) (1) [where E is the longitudinal elastic modulus and ω is The resonance angular frequency, ρ is the density of the constant-section operating body, A is the cross-sectional area of the operating section, and a is λ / L (λ
Is the first dimensionless frequency of the cantilever, L is the length of the working part),
I represents the second moment of area of the operating portion] to calculate the longitudinal elastic modulus E.

【0030】ρは定断面作動体の密度であるため、既知
の密度を使用してもよいが、定断面作動体の厚みh、幅
b、長さを乗じて定断面作動体の体積を求めてから、そ
の体積と定断面作動体の重さから算出した密度を使用し
てもよい。Aは作動部の断面積であるため、定断面作動
体の厚みhと幅bを乗じて求めることができる。aはλ
/Lであり、λは片持梁の1次の無次元振動数であるた
め、a=1.875/Lとなる。なお、このλの値とし
ては、有効数字の桁数を考慮して上記の数値と実質的に
同一の数値を採用してもよく、これは後述のβについて
も同様である。
Since ρ is the density of the constant-section operating body, a known density may be used. However, the volume of the constant-section operating body is obtained by multiplying the thickness h, width b, and length of the constant-section operating body. Thereafter, the density calculated from the volume and the weight of the constant-section operating body may be used. Since A is the cross-sectional area of the operating portion, it can be obtained by multiplying the thickness h and the width b of the constant-section operating body. a is λ
/ L and λ is the first dimensionless frequency of the cantilever, so a = 1.875 / L. The value of λ may be substantially the same as the above value in consideration of the number of significant figures, and the same applies to β described later.

【0031】Iは作動部の断面2次モーメントであるた
め、断面矩形の平板ではbh3 /12である。その他、
断面H形、断面コの字形、断面円形、断面台形、断面半
円形などの各種断面形状に応じた断面2次モーメントが
周知であり、本発明は前述の仮定条件を満たす限り、何
れの形状に対しても適用できる。
[0031] I is because it is the second moment of the working portion, the rectangular cross section of the flat plate is bh 3/12. Others
The second moment of area according to various cross-sectional shapes such as the H-shaped cross section, the U-shaped cross section, the circular cross section, the trapezoidal cross section, and the semicircular cross section are well known. Also applicable to:

【0032】次に、この縦弾性率Eと、別途求めた変位
量δmax から、下記の式(2) W=δmax ・EI/(β・L3 ) (2) 〔ここで、Wは全荷重、Iは作動部の断面2次モーメン
ト、βは1/8、Lは作動部の長さを表す〕にて、全荷
重を求める。本発明では、更に全荷重Wを面積L×bで
除して単位面積当たりの荷重を求めてもよく、また、そ
の荷重を入力した電圧等で除して、入力あたりの圧力、
即ち出力圧を求めてもよい。
Next, from the longitudinal elastic modulus E and the separately obtained displacement amount δ max , the following equation (2) W = δ max · EI / (β · L 3 ) (2) [where W is Total load, I is the moment of inertia of the working section, β is 1/8, and L is the length of the working section]. In the present invention, the total load W may be further divided by the area L × b to determine the load per unit area, or the load may be divided by the input voltage or the like to obtain the pressure per input,
That is, the output pressure may be obtained.

【0033】式(2)における変位量δmax は、共振角
周波数ωの1/2より低い周波数における変位量を採用
することが好ましく、特に、入力の周波数に対して変位
量が変化しない周波数領域における変位量を採用するこ
とが、より好ましい。
As the displacement δ max in the equation (2), it is preferable to adopt a displacement at a frequency lower than of the resonance angular frequency ω. In particular, in a frequency region where the displacement does not change with respect to the input frequency. It is more preferable to adopt the amount of displacement in.

【0034】一方、本発明の測定装置は、上述のような
測定方法を好適に実施することができる装置である。本
発明の測定装置は、図2に示すように、定断面作動体1
を片持ち固定する固定用電極2等の固定手段と、固定さ
れた固定部1bから交番する入力を付与して定断面作動
体1の作動部1aを振動させる入力手段3と、その作動
部1aの振動による変位量を非接触で計測する変位量計
測手段4と、その変位量計測手段4からの情報を利用し
て、一次の振動形に対応する共振角周波数ωと作動部先
端の変位量δmax とを求めた後、その共振角周波数ωと
既知の値から上記の式(1)にて縦弾性率Eを算出し、
その縦弾性率Eと前記変位量δmax から、上記の式
(2)にて全荷重を求める処理手順を実行する演算手段
5とを備えるものである。
On the other hand, the measuring apparatus of the present invention is an apparatus capable of suitably implementing the above-described measuring method. As shown in FIG. 2, the measuring device of the present invention has a constant-section operating body 1.
A fixing means such as a fixing electrode 2 for cantilevering and fixing, an input means 3 for applying an alternating input from the fixed fixing portion 1b to vibrate the operating portion 1a of the constant-section operating body 1, and the operating portion 1a Displacement measuring means 4 for non-contactly measuring the displacement due to vibration of the object, and using the information from the displacement measuring means 4, the resonance angular frequency ω corresponding to the primary vibration type and the displacement of the tip of the operating portion After obtaining δ max , the longitudinal elastic modulus E is calculated from the resonance angular frequency ω and the known value by the above equation (1),
An arithmetic means 5 for executing a processing procedure for obtaining a total load from the longitudinal elastic modulus E and the displacement amount δ max by the above equation (2).

【0035】固定手段としては、定断面作動体1の振動
に影響を与えにくい程度に定断面作動体1を固定できる
ものであればよく、各種の把持装置、締結装置、挟持装
置などが採用できる。
The fixing means may be any as long as it can fix the constant-section operating body 1 to such an extent that it does not affect the vibration of the constant-section operating body 1, and various gripping devices, fastening devices, clamping devices and the like can be employed. .

【0036】入力手段3としては、定断面作動体1の種
類に応じて交番する入力を付与して、作動部1aを振動
させられるものであればよく、ランダム波発振器、周波
数掃引型発振器、正弦波発振器等が採用できる。
The input means 3 may be any as long as it can apply an alternating input according to the type of the constant-section operating body 1 and vibrate the operating section 1a. A random wave oscillator, a frequency sweep type oscillator, a sine A wave oscillator or the like can be adopted.

【0037】変位量計測手段4としては、作動部1aの
振動による変位量を非接触で計測できるものであればよ
く、レーザ変位計の他、前記の動画撮影装置等の光学的
計測装置、超音波変位計などが採用できる。
As the displacement measuring means 4, any means capable of measuring the displacement due to the vibration of the operating portion 1a in a non-contact manner can be used. An acoustic displacement meter or the like can be used.

【0038】入力手段3と変位量計測手段4とは、入力
手段3の動作状態に対応する信号が変位量計測手段4の
測定値と関連付けられるように構成されているのが好ま
しい。例えば、入力手段3としてランダム波発振器を採
用する場合、ランダム波で電圧(電流)を印加し、この
ときの各周波数での入力電圧(電流)と、変位量計測手
段4からの変位量を電圧換算した値を、別途設けたFF
Tアナライザに入力して伝達率を求め、そのグラフより
共振角周波数を求めることができる。また、ランダム波
を用いなくても、各周波数での入力電圧(電流)と変位
量を測定し、各周波数での変位量の最大値をプロットし
ていき、共振角周波数を求めることも可能である。
It is preferable that the input means 3 and the displacement measuring means 4 are configured such that a signal corresponding to the operating state of the input means 3 is associated with the measured value of the displacement measuring means 4. For example, when a random wave oscillator is adopted as the input means 3, a voltage (current) is applied by a random wave, and the input voltage (current) at each frequency at this time and the displacement from the displacement measuring means 4 are expressed as a voltage. Convert the converted value to FF provided separately
The transmissivity is obtained by inputting to the T analyzer, and the resonance angular frequency can be obtained from the graph. Also, without using random waves, it is also possible to measure the input voltage (current) and displacement at each frequency and plot the maximum value of the displacement at each frequency to determine the resonance angular frequency. is there.

【0039】演算手段5としては、上記処理手順を実行
するためのプログラム等を内蔵又はロードできるマイコ
ン、パソコン等が採用できる。演算手段5はプリンタ
ー、ディスプレー等の出力・表示手段6を備えるのが好
ましい。
As the arithmetic means 5, a microcomputer, a personal computer, or the like capable of incorporating or loading a program or the like for executing the above processing procedure can be employed. The calculation means 5 preferably includes output / display means 6 such as a printer and a display.

【0040】他方、本発明の定断面作動体の製造方法
は、作製した定断面作動体を用いて、前述のような出力
圧の測定方法によって全荷重を求め、その全荷重から換
算される出力圧を予め設定した目標出力圧の範囲と比較
して、その範囲を外れる場合には、出力圧を制御する因
子を変えて別の定断面作動体を作製し、これを繰り返す
ことで、目標出力圧の範囲を有する定断面作動体を製造
するものである。
On the other hand, in the method of manufacturing a constant-section operating body according to the present invention, the total load is determined by the above-described method of measuring the output pressure using the constant-section operating body thus produced, and the output converted from the total load is obtained. The pressure is compared with a preset target output pressure range, and when the pressure is out of the range, another constant-section operating body is produced by changing a factor for controlling the output pressure, and this is repeated to obtain a target output pressure. A constant section working body having a pressure range is manufactured.

【0041】目標出力圧の範囲は、例えば設定中央値に
対して±5%以内というように設定してもよく、下限値
以上又は上限値以下というように設定してもよい。
The range of the target output pressure may be set, for example, to within ± 5% of the set central value, or may be set to be not less than the lower limit value or not more than the upper limit value.

【0042】出力圧を制御する因子としては、いわゆる
高分子アクチュエータでは、厚みh、表面電極の種類や
形成の仕方、イオン交換樹脂の種類、イオン交換物質の
種類などが挙げられる。
The factors controlling the output pressure include the thickness h, the type and formation method of the surface electrode, the type of ion-exchange resin, and the type of ion-exchange substance in a so-called polymer actuator.

【0043】[0043]

【実施例】以下、本発明の構成と効果を具体的に示す実
施例等について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and the like specifically showing the configuration and effects of the present invention will be described below.

【0044】実施例1 NAFION−117(Du Pont社製)に金メッ
キを行った高分子アクチュエータ(特開平8−2259
78、ρ=2.4949×107 〔kgs2 /cm
3 〕、h=0.200〔mm〕、b=50〔mm〕、L
=200〔mm〕)をサンプルとした。レーザ変位計
(キーエンス社製,LC−2400)を用いて、支点か
ら測定点までの長さがx=170〔mm〕となるよう
に、サンプルを片持ち固定し、固定部からランダム波を
入力して作動部を振動させ、その挙動から一次の振動形
に対応する共振角周波数ωを求めた。その結果、ωは1
94.8〔rad/s〕となった。この値と既知の値か
ら前述のようにして式(1)にて縦弾性率Eを算出する
と、368〔kgf/cm2 〕となった。
Example 1 A polymer actuator obtained by plating NAFION-117 (manufactured by Du Pont) with gold (Japanese Patent Laid-Open No. Hei 8-2259)
78, ρ = 2.4949 × 10 7 [kgs 2 / cm
3 ], h = 0.200 [mm], b = 50 [mm], L
= 200 [mm]) was used as a sample. Using a laser displacement meter (manufactured by Keyence Corporation, LC-2400), the sample was cantilevered so that the length from the fulcrum to the measurement point was x = 170 [mm], and random waves were input from the fixed part. Then, the operating part was vibrated, and the resonance angular frequency ω corresponding to the primary vibration type was obtained from the behavior. As a result, ω is 1
94.8 [rad / s]. When the longitudinal elastic modulus E was calculated from this value and the known value according to the equation (1) as described above, it was 368 [kgf / cm 2 ].

【0045】一方、引張試験機により、同じサンプルを
用いて、測定長さ20mm、引張速度50mm/min
にて10%伸長時の縦弾性率Eを測定すると328〔k
gf/cm2 〕であった。このように、本発明では実測
値と近い算出値を得ることができる。
On the other hand, using a tensile tester, using the same sample, a measuring length of 20 mm and a tensile speed of 50 mm / min.
When the longitudinal elastic modulus E at 10% elongation is measured at 328 [k
gf / cm 2 ]. As described above, in the present invention, it is possible to obtain a calculated value close to the actually measured value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の作用を説明するための斜視図FIG. 1 is a perspective view for explaining the operation of the present invention.

【図2】本発明の定断面作動体の出力圧の測定装置の一
例を示す概略構成図
FIG. 2 is a schematic configuration diagram showing an example of an apparatus for measuring the output pressure of a constant-section operating body according to the present invention.

【符号の説明】[Explanation of symbols]

1 定断面作動体 1a 作動部 1b 固定部 2 固定用電極(固定手段) 3 入力手段 4 変位量計測手段 5 演算手段 MP 測定点 DESCRIPTION OF SYMBOLS 1 Constant cross section working body 1a Working part 1b Fixed part 2 Fixing electrode (fixing means) 3 Input means 4 Displacement measuring means 5 Computing means MP Measurement point

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂田 利文 大阪府大阪市西区江戸堀1丁目17番18号 東洋ゴム工業株式会社内 (72)発明者 安積 欣志 大阪府池田市緑丘1丁目8番31号 工業技 術院 大阪工業技術研究所内 (72)発明者 藤原 直子 大阪府池田市緑丘1丁目8番31号 工業技 術院 大阪工業技術研究所内 (72)発明者 小黒 啓介 大阪府池田市緑丘1丁目8番31号 工業技 術院 大阪工業技術研究所内 Fターム(参考) 2G061 AB06 BA07 CA16 CB02 CC01 EA02 EC02  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshifumi Sakata 1-17-18 Edobori, Nishi-ku, Osaka-shi, Osaka Toyo Tire & Rubber Co., Ltd. (72) Inventor Kinshi Azumi 1-81-31 Midorioka, Ikeda-shi, Osaka Inside the Osaka Institute of Technology (72) Inventor Naoko Fujiwara 1-31-3 Midorigaoka, Ikeda-shi, Osaka Prefecture Inside the Institute of Industrial Technology Osaka Osaka (72) Keisuke Oguro 1-chome Midorigaoka, Ikeda-shi, Osaka No.8-31 FIT in Osaka Institute of Technology (reference) 2G061 AB06 BA07 CA16 CB02 CC01 EA02 EC02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 定断面作動体を片持ち固定した固定部か
ら交番する入力を付与して定断面作動体の作動部を振動
させ、その挙動から一次の振動形に対応する共振角周波
数ωを求める工程と、その共振角周波数ωと既知の値か
ら下記の式(1) E=ω2 ρA/(a4 I) (1) 〔ここで、Eは縦弾性率、ωは共振角周波数、ρは定断
面作動体の密度、Aは作動部の断面積、aはλ/L(λ
は片持梁の1次の無次元振動数、Lは作動部の長さ)、
Iは作動部の断面2次モーメントを表す〕にて縦弾性率
Eを算出する工程とを含む定断面作動体の縦弾性率の測
定方法。
1. An alternating input is applied from a fixed section in which a constant-section operating body is cantilevered to vibrate an operating section of the constant-section operating body, and a resonance angular frequency ω corresponding to a primary vibration form is determined from the behavior. The following equation (1) E = ω 2 ρA / (a 4 I) (1) [where E is the longitudinal elastic modulus, ω is the resonance angular frequency, ρ is the density of the constant-section operating body, A is the cross-sectional area of the working section, and a is λ / L (λ
Is the first dimensionless frequency of the cantilever, L is the length of the working part),
I represents the second moment of area of the operating section], and calculating the longitudinal elastic modulus E in the following manner.
【請求項2】 定断面作動体を片持ち固定した固定部か
ら交番する入力を付与して定断面作動体の作動部を振動
させ、その挙動から一次の振動形に対応する共振角周波
数ωと作動部先端の変位量δmax とを求める工程と、そ
の共振角周波数ωと既知の値から下記の式(1) E=ω2 ρA/(a4 I) (1) 〔ここで、Eは縦弾性率、ωは共振角周波数、ρは定断
面作動体の密度、Aは作動部の断面積、aはλ/L(λ
は片持梁の1次の無次元振動数、Lは作動部の長さ)、
Iは作動部の断面2次モーメントを表す〕にて縦弾性率
Eを算出する工程と、その縦弾性率Eと前記変位量δ
max から、下記の式(2) W=δmax ・EI/(β・L3 ) (2) 〔ここで、Wは全荷重、Iは作動部の断面2次モーメン
ト、βは1/8、Lは作動部の長さを表す〕にて、全荷
重を求める工程とを含む定断面作動体の出力圧の測定方
法。
2. An alternate input is applied from a fixed portion in which the constant-section operating body is cantilevered to vibrate the operating section of the constant-section operating body. From the behavior of the constant-section operating body, the resonance angular frequency ω corresponding to the primary vibration form is obtained. The step of obtaining the displacement amount δ max of the tip of the operating portion, and the following equation (1) E = ω 2 ρA / (a 4 I) (1) from the resonance angular frequency ω and a known value [where E is The longitudinal elastic modulus, ω is the resonance angular frequency, ρ is the density of the constant-section operating body, A is the cross-sectional area of the operating section, and a is λ / L (λ
Is the first dimensionless frequency of the cantilever, L is the length of the working part),
I represents the second moment of area of the operating portion], the longitudinal elastic modulus E is calculated, and the longitudinal elastic modulus E and the displacement amount δ are calculated.
From the max , the following equation (2) W = δ max · EI / (β · L 3 ) (2) [where W is the total load, I is the second moment of area of the working part, β is 1/8, L represents the length of the operating portion], and obtaining the total load.
【請求項3】 前記作動部先端の変位量δmax を求める
際に、測定点での変位量δxと支点から測定点までの長
さxとから、下記の式(3) δmax =δx・wX /wL (3) 〔ここで、wX /wL は片持梁の1次の規準振動形を表
す式から算出される、測定点と作動部先端との変位量の
比を表す〕にて変位量δmax を求める請求項2に記載の
定断面作動体の出力圧の測定方法。
3. When calculating the displacement δ max of the tip of the operating portion, the following equation (3) δ max = δx · is obtained from the displacement δx at the measurement point and the length x from the fulcrum to the measurement point. w x / w L (3) [where w x / w L represents the ratio of the amount of displacement between the measurement point and the tip of the working part, calculated from the expression representing the primary reference vibration form of the cantilever. 3. The method for measuring the output pressure of a constant-section operating body according to claim 2, wherein the displacement amount δ max is obtained by the following formula:
【請求項4】 定断面作動体を片持ち固定する固定手段
と、固定された固定部から交番する入力を付与して前記
定断面作動体の作動部を振動させる入力手段と、その作
動部の振動による変位量を非接触で計測する変位量計測
手段と、その変位量計測手段からの情報を利用して、一
次の振動形に対応する共振角周波数ωと作動部先端の変
位量δmax とを求めた後、その共振角周波数ωと既知の
値から下記の式(1) E=ω2 ρA/(a4 I)
(1) 〔ここで、Eは縦弾性率、ωは共振角周波数、ρは定断
面作動体の密度、Aは作動部の断面積、aはλ/L(λ
は片持梁の1次の無次元振動数、Lは作動部の長さ)、
Iは作動部の断面2次モーメントを表す〕にて縦弾性率
Eを算出し、その縦弾性率Eと前記変位量δmax から、
下記の式(2) W=δmax ・EI/(β・L3 ) (2) 〔ここで、Wは全荷重、Iは作動部の断面2次モーメン
ト、βは1/8、Lは作動部の長さを表す〕にて全荷重
を求める処理手順を実行する演算手段とを備える定断面
作動体の出力圧の測定装置。
4. A fixing means for cantileverly fixing the constant-section operating body, an input means for applying an alternating input from the fixed fixing section to vibrate the operating section of the constant-section operating body, and A displacement amount measuring means for measuring a displacement amount due to vibration in a non-contact manner, and utilizing information from the displacement amount measuring means, a resonance angular frequency ω corresponding to the primary vibration type and a displacement amount δ max of the tip of the operating portion. Then, from the resonance angular frequency ω and a known value, the following equation (1) E = ω 2 ρA / (a 4 I)
(1) [where E is the longitudinal elastic modulus, ω is the resonance angular frequency, ρ is the density of the constant-section operating body, A is the cross-sectional area of the operating section, and a is λ / L (λ
Is the first dimensionless frequency of the cantilever, L is the length of the working part),
I represents the moment of inertia of the working section], and the longitudinal elastic modulus E is calculated from the longitudinal elastic modulus E and the displacement amount δ max .
The following equation (2) W = δ max · EI / (β · L 3 ) (2) [where W is the total load, I is the second moment of area of the working part, β is 8, L is the working And a calculating means for executing a processing procedure for obtaining the total load by the following formula:
【請求項5】 前記演算手段が、前記作動部先端の変位
量δmax を求める際に、測定点での変位量δxと支点か
ら測定点までの長さxとから、下記の式(3) δmax
=δx・wX /wL (3) 〔ここで、wX /wL は片持梁の1次の規準振動形を表
す式から算出される、測定点と作動部先端との変位量の
比を表す〕にて変位量δmax を求める処理手順を実行す
る請求項4に記載の定断面作動体の出力圧の測定装置。
5. When calculating the displacement amount δ max of the tip of the operating part, the calculating means calculates the following expression (3) from the displacement amount δx at the measurement point and the length x from the fulcrum to the measurement point. δ max
= Δx · w X / w L (3) [where w X / w L is the displacement amount between the measurement point and the tip of the working part, calculated from the equation representing the primary reference vibration form of the cantilever. 5. The apparatus for measuring the output pressure of a constant-section operating body according to claim 4, wherein a processing procedure for obtaining the displacement amount δ max is performed by the following formula:
【請求項6】 作製した定断面作動体を用いて、請求項
2又は3に記載の出力圧の測定方法によって全荷重を求
め、その全荷重から換算される出力圧を予め設定した目
標出力圧の範囲と比較して、その範囲を外れる場合に
は、出力圧を制御する因子を変えて別の定断面作動体を
作製し、これを繰り返すことで、目標出力圧の範囲を有
する定断面作動体を製造する定断面作動体の製造方法。
6. A target output pressure obtained by obtaining a total load by the method for measuring an output pressure according to claim 2 using the manufactured constant-section operating body, and calculating an output pressure converted from the total load in advance. If it is out of the range, another factor for controlling the output pressure is changed to produce another constant-section operating body, and by repeating this, the constant-section operation having the target output pressure range is performed. A method for manufacturing a constant-section operating body for manufacturing a body.
JP2000343604A 2000-11-10 2000-11-10 Measuring method and measuring device for output pressure of constant section working body Expired - Lifetime JP3374973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000343604A JP3374973B2 (en) 2000-11-10 2000-11-10 Measuring method and measuring device for output pressure of constant section working body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000343604A JP3374973B2 (en) 2000-11-10 2000-11-10 Measuring method and measuring device for output pressure of constant section working body

Publications (2)

Publication Number Publication Date
JP2002148169A true JP2002148169A (en) 2002-05-22
JP3374973B2 JP3374973B2 (en) 2003-02-10

Family

ID=18817944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000343604A Expired - Lifetime JP3374973B2 (en) 2000-11-10 2000-11-10 Measuring method and measuring device for output pressure of constant section working body

Country Status (1)

Country Link
JP (1) JP3374973B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081273A (en) * 2011-10-03 2013-05-02 Seiko Epson Corp Power generating device, method for controlling power generating device, electronic device, and transportation means
JP2013081278A (en) * 2011-10-03 2013-05-02 Seiko Epson Corp Power generating device, method for controlling power generating device, electronic device, and transportation means
JP2013081286A (en) * 2011-10-03 2013-05-02 Seiko Epson Corp Power generating device, electronic device, transportation means, and method for controlling power generating device
JP2014193037A (en) * 2013-03-27 2014-10-06 Univ Of Fukui Method of evaluating driving force generated in actuator
JP2020510837A (en) * 2017-03-16 2020-04-09 東北大学Northeastern University Method and apparatus for fiber reinforced composite parameter identification by non-destructive laser scanning
CN111272569A (en) * 2020-03-03 2020-06-12 华北电力大学 Experimental device for measuring Young modulus and shear modulus of metal based on combined deformation method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081273A (en) * 2011-10-03 2013-05-02 Seiko Epson Corp Power generating device, method for controlling power generating device, electronic device, and transportation means
JP2013081278A (en) * 2011-10-03 2013-05-02 Seiko Epson Corp Power generating device, method for controlling power generating device, electronic device, and transportation means
JP2013081286A (en) * 2011-10-03 2013-05-02 Seiko Epson Corp Power generating device, electronic device, transportation means, and method for controlling power generating device
JP2014193037A (en) * 2013-03-27 2014-10-06 Univ Of Fukui Method of evaluating driving force generated in actuator
JP2020510837A (en) * 2017-03-16 2020-04-09 東北大学Northeastern University Method and apparatus for fiber reinforced composite parameter identification by non-destructive laser scanning
JP7109798B2 (en) 2017-03-16 2022-08-01 東北大学 Method and Apparatus for Nondestructive Laser Scanning Fiber Reinforced Composite Parameter Identification
CN111272569A (en) * 2020-03-03 2020-06-12 华北电力大学 Experimental device for measuring Young modulus and shear modulus of metal based on combined deformation method

Also Published As

Publication number Publication date
JP3374973B2 (en) 2003-02-10

Similar Documents

Publication Publication Date Title
JP2010019694A (en) Viscosity or/and elasticity measuring method of liquid
WO2013111608A1 (en) Viscoelasticity measurement method and viscoelasticity measurement device
CN107192857A (en) A kind of nano film thickness detection means and its method based on ultrasonic AFM
KR20050045728A (en) Apparatus and method for detecting biomolecular mass with an oscillating circuit
TWI477775B (en) Device and method for optical nano tensile test
JP2002148169A (en) Output pressure measurement method and measurement device for fixed cross-sectional operation body
JP4287200B2 (en) Hardness measurement device using ultrasonic vibration
Grutzik et al. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers
JP2001318040A (en) Method for measuring viscosity of liquid, and method and instrument for measuring visco-elasticity of liquid
WO2006073068A1 (en) Surface position measuring method and surface position measuring device
KR101039328B1 (en) Self-vibration type measuring instrument and method for real time measurement rheological properties of newtonian/non-newtonian fluids
JPH10185787A (en) Fatigue test device
JP5831904B2 (en) Viscoelasticity measuring method and viscoelasticity measuring device
CN110308061A (en) The measurement method and system of elasticity modulus of materials and density based on three-dimensional structure
Lin et al. Static force measurement for automation assembly systems
JP5225284B2 (en) Electromechanical property inspection method for electromechanical transducer
Itoh et al. Proposal of novel method to measure Young's modulus of materials using change in motional capacitance of the electrical equivalent circuit of quartz-crystal tuning-fork tactile sensor at resonance
JP7049465B2 (en) Two-dimensional nanoindentation device and method
Weber et al. Sensor for ambient pressure and material strains using a thin film bulk acoustic resonator
RU2245543C2 (en) Product flow control method
RU2425356C1 (en) Device for measuring physical and mechanical properties of materials
JP3595849B1 (en) Fatigue test equipment for micro / nano materials
JP2011033614A (en) Method for using tuning fork type crystal tactile sensor
CN104950142A (en) Method for measuring vibration characteristic of cantilever and device for measuring vibration characteristic of cantilever
JP2006255847A (en) Nano-tweezer, micro force measuring device having it and method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021112

R150 Certificate of patent or registration of utility model

Ref document number: 3374973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term