JP2017128523A - Method for producing nitrogen-containing organoxysilane compound - Google Patents

Method for producing nitrogen-containing organoxysilane compound Download PDF

Info

Publication number
JP2017128523A
JP2017128523A JP2016008019A JP2016008019A JP2017128523A JP 2017128523 A JP2017128523 A JP 2017128523A JP 2016008019 A JP2016008019 A JP 2016008019A JP 2016008019 A JP2016008019 A JP 2016008019A JP 2017128523 A JP2017128523 A JP 2017128523A
Authority
JP
Japan
Prior art keywords
compound
nitrogen
formula
group
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016008019A
Other languages
Japanese (ja)
Other versions
JP6531656B2 (en
Inventor
殿村 洋一
Yoichi Tonomura
洋一 殿村
久保田 透
Toru Kubota
透 久保田
孝之 本間
Takayuki Honma
孝之 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2016008019A priority Critical patent/JP6531656B2/en
Publication of JP2017128523A publication Critical patent/JP2017128523A/en
Application granted granted Critical
Publication of JP6531656B2 publication Critical patent/JP6531656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a more efficient method for producing a high-quality nitrogen-containing organoxysilane compound.SOLUTION: There is provided a method for producing a nitrogen-containing organoxysilane compound represented by the formula (7) by reacting a nitrogen-containing halosilane compound, which is obtained by reacting a compound represented by the formula (1) and a compound represented by the formula (4), with a hydroxy group-containing compound (ROH), wherein the reaction between the nitrogen-containing halosilane compound and the hydroxy group-containing compound is carried out in the presence of at least one selected from a trihydrocarbylamine compound having total carbon atoms of 8 or more, a diamine compound and a polyamine compound having 3 or more nitrogen atoms. (Rrepresents a divalent hydrocarbon group having 1 to 18 carbon atoms or the like; A represents an amino-containing group; Rrepresents a monovalent hydrocarbon group or the like; X represents a halogen atom; and Rrepresents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms.)SELECTED DRAWING: None

Description

本発明は、含窒素オルガノキシシラン化合物の製造方法に関し、さらに詳述すると、所定の含窒素有機化合物の共存下で行う、効率的な含窒素オルガノキシシラン化合物の製造方法に関する。   The present invention relates to a method for producing a nitrogen-containing organoxysilane compound. More specifically, the present invention relates to an efficient method for producing a nitrogen-containing organoxysilane compound performed in the presence of a predetermined nitrogen-containing organic compound.

含窒素オルガノキシシラン化合物は、塗料添加剤、接着剤、シランカップリング剤、繊維処理剤、および表面処理剤などとして有用な化合物である。
この中でも、オルガノキシ基を一つ有する含窒素モノオルガノキシシラン化合物は、使用時にゲル化や高分子化を引き起こさないという特長を有するとともに、基板等の表面処理剤として用いた場合に処理後の表面に凹凸を生じさせにくいという特長等を有するため、上記用途において特に有用な化合物である。
The nitrogen-containing organoxysilane compound is a compound useful as a paint additive, an adhesive, a silane coupling agent, a fiber treatment agent, a surface treatment agent, and the like.
Among these, the nitrogen-containing monoorganoxysilane compound having one organoxy group has a feature that it does not cause gelation or polymerization when used, and the surface after treatment when used as a surface treatment agent for a substrate or the like. It is a particularly useful compound in the above-mentioned use because it has the feature that it is difficult to cause unevenness in the surface.

この含窒素オルガノキシシラン化合物の製造方法としては、不飽和結合含有窒素化合物とハイドロジェンオルガノキシシラン化合物とを白金触媒存在下反応させる方法(非特許文献1)、ハロアルキルオルガノキシシラン化合物とアンモニアやアミン化合物とを反応させる方法(特許文献1)、不飽和結合含有窒素化合物とハイドロジェンハロシラン化合物とを反応させて得られた含窒素ハロシラン化合物と、水酸基含有化合物とを反応させる方法(特許文献2)などが知られている。   As a method for producing this nitrogen-containing organoxysilane compound, a method in which an unsaturated bond-containing nitrogen compound and a hydrogenorganoxysilane compound are reacted in the presence of a platinum catalyst (Non-patent Document 1), a haloalkylorganoxysilane compound and ammonia, A method of reacting an amine compound (Patent Document 1), a method of reacting a nitrogen-containing halosilane compound obtained by reacting an unsaturated bond-containing nitrogen compound and a hydrogen halosilane compound with a hydroxyl group-containing compound (Patent Document) 2) is known.

しかし、非特許文献1の方法は、反応性が低いため、多量の白金触媒を使用する必要があり、工業的に有利でない。しかも、分岐構造を有する異性体が多く副生し、高品質なものが得られない場合がある。
また、特許文献1の方法は、分岐構造を有する異性体は副生しないものの、反応性が低いため高温で長時間の反応が必要となり、工業的に有利な方法ではない。
さらに、特許文献2の方法では、反応性が低いという問題は解決される。しかし、この方法では、水酸基含有化合物との反応の際に生じるハロゲン化水素を捕捉するためにトリエチルアミン等の含窒素有機化合物を添加する必要があるところ、その結果生じる含窒素有機化合物のハロゲン化水素塩は一般に固体であるため、反応系における撹拌の維持に多量の溶媒が必要となるうえ、反応後に固体を除去するためのろ過工程も必要となるため、工業的に有利な方法ではない。
However, since the method of Non-Patent Document 1 has low reactivity, it is necessary to use a large amount of platinum catalyst, which is not industrially advantageous. In addition, many isomers having a branched structure are by-produced, and a high-quality product may not be obtained.
Moreover, although the method of patent document 1 does not by-produce the isomer which has a branched structure, since the reactivity is low, a long time reaction is required at high temperature, and it is not an industrially advantageous method.
Furthermore, the method of Patent Document 2 solves the problem of low reactivity. However, in this method, it is necessary to add a nitrogen-containing organic compound such as triethylamine in order to capture the hydrogen halide generated during the reaction with the hydroxyl group-containing compound. As a result, the resulting hydrogen halide of the nitrogen-containing organic compound Since the salt is generally a solid, a large amount of solvent is required to maintain stirring in the reaction system, and a filtration step for removing the solid after the reaction is also required, which is not an industrially advantageous method.

特開2008−143855号公報JP 2008-143855 A 特開2004−352695号公報JP 2004-352695 A

Comprehensive Handbook on Hydrosilylation,p.122〜123Comprehensive Handbook on Hydrosilylation, p.122-123

本発明は、上記事情に鑑みなされたもので、高品質な含窒素オルガノキシシラン化合物のより効率的な製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a more efficient method for producing a high-quality nitrogen-containing organoxysilane compound.

本発明者らは上記目的を達成するため鋭意検討を重ねた結果、水酸基含有化合物との反応の際に、所定の含窒素有機化合物をハロゲン化水素捕捉剤として使用することで、生成するハロゲン化水素塩が0〜200℃で液状となって分離するため分液操作によりそれを容易に除去でき、高品質な含窒素オルガノキシシラン化合物を効率的に製造できることを見出し、本発明を完成した。   As a result of intensive investigations to achieve the above object, the inventors of the present invention have produced halogenated compounds by using a predetermined nitrogen-containing organic compound as a hydrogen halide scavenger in the reaction with a hydroxyl group-containing compound. Since the hydrogen salt is separated into a liquid form at 0 to 200 ° C., it can be easily removed by a liquid separation operation, and it has been found that a high-quality nitrogen-containing organoxysilane compound can be efficiently produced, and the present invention has been completed.

すなわち、本発明は、
1. 下記一般式(1)

Figure 2017128523
[{式中、R1′は、2価の単結合またはヘテロ原子を含んでいてもよい炭素数1〜18の2価炭化水素基を表し、Aは、下記一般式(2)または(3)
Figure 2017128523
(式(2)中、R2およびR3は、互いに独立して、水素原子、ヘテロ原子を含んでいてもよい置換もしくは非置換の炭素数1〜20の1価炭化水素基、またはトリオルガノシリル基を表すが、これらが互いに結合して窒素原子とともに炭素数2〜20の環を形成してもよい。式(3)中、R4は、水素原子、ヘテロ原子を含んでいてもよい置換もしくは非置換の炭素数1〜20の1価炭化水素基、またはトリオルガノシリル基を表し、R5およびR6は、互いに独立して炭素数1〜20の2価炭化水素基を表し、R7は、CHまたは窒素原子を表す。)
で示される基を表す。}]
で示される不飽和結合含有含窒素化合物と、下記一般式(4)
Figure 2017128523
(式中、R8は、置換または非置換の炭素数1〜20の1価炭化水素基を表し、Xは、ハロゲン原子を表す。)
で示されるハイドロジェンハロシラン化合物とを反応させ、得られた下記一般式(5)
Figure 2017128523
(式中、R1は、ヘテロ原子を含んでもよい炭素数2〜20の2価炭化水素基を表し、A、R8、およびXは前記と同じ。)
で示される含窒素ハロシラン化合物と、下記一般式(6)
Figure 2017128523
(式中、R9は、置換または非置換の炭素数1〜20の1価炭化水素基を表す。)
で示される水酸基含有化合物とを反応させる、下記一般式(7)
Figure 2017128523
(式中、A、R1、R8およびR9は、前記と同じ。)
で示される含窒素オルガノキシシラン化合物の製造方法であって、前記含窒素ハロシラン化合物と前記水酸基含有化合物との反応を、総炭素数8以上のトリヒドロカルビルアミン化合物、ジアミン化合物、および窒素数3以上のポリアミン化合物からなる群から選ばれる少なくとも1種の含窒素有機化合物の存在下で行うことを特徴とする含窒素オルガノキシシラン化合物の製造方法、
2. 前記含窒素ハロシラン化合物と前記水酸基含有化合物との反応で生じた含窒素有機化合物のハロゲン化水素塩を含む液状物を、0〜200℃にて分離し、除去する工程を含む1の含窒素オルガノキシシラン化合物の製造方法、
3. 前記含窒素有機化合物が、エチレンジアミン、ジエチレントリアミン、およびトリエチレンテトラミンから選ばれる少なくとも1種である1または2の含窒素オルガノキシシラン化合物の製造方法
を提供する。 That is, the present invention
1. The following general formula (1)
Figure 2017128523
[In the formula, R 1 ′ represents a divalent hydrocarbon group having 1 to 18 carbon atoms which may contain a divalent single bond or a hetero atom, and A represents the following general formula (2) or (3 )
Figure 2017128523
(In Formula (2), R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms which may contain a hetero atom, or triorgano). Although it represents a silyl group, these may be bonded to each other to form a ring having 2 to 20 carbon atoms together with a nitrogen atom, and in formula (3), R 4 may contain a hydrogen atom or a hetero atom. A substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms or a triorganosilyl group, R 5 and R 6 each independently represent a divalent hydrocarbon group having 1 to 20 carbon atoms, R 7 represents CH or a nitrogen atom.)
Represents a group represented by }]
And a nitrogen-containing compound containing an unsaturated bond represented by the following general formula (4):
Figure 2017128523
(In the formula, R 8 represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and X represents a halogen atom.)
The following general formula (5) obtained by reacting with a hydrogenhalosilane compound represented by
Figure 2017128523
(In the formula, R 1 represents a C 2-20 divalent hydrocarbon group which may contain a hetero atom, and A, R 8 and X are the same as above.)
And a nitrogen-containing halosilane compound represented by the following general formula (6)
Figure 2017128523
(In the formula, R 9 represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms.)
The following general formula (7) is reacted with a hydroxyl group-containing compound represented by
Figure 2017128523
(In the formula, A, R 1 , R 8 and R 9 are the same as described above.)
A reaction of the nitrogen-containing halosilane compound and the hydroxyl group-containing compound, comprising a trihydrocarbylamine compound having a total carbon number of 8 or more, a diamine compound, and a nitrogen number of 3 or more. A method for producing a nitrogen-containing organoxysilane compound, which is carried out in the presence of at least one nitrogen-containing organic compound selected from the group consisting of:
2. 1 nitrogen-containing organo comprising a step of separating and removing a liquid material containing a hydrogen halide salt of a nitrogen-containing organic compound produced by the reaction of the nitrogen-containing halosilane compound and the hydroxyl group-containing compound at 0 to 200 ° C. A method for producing a xylsilane compound,
3. Provided is a method for producing one or two nitrogen-containing organoxysilane compounds, wherein the nitrogen-containing organic compound is at least one selected from ethylenediamine, diethylenetriamine, and triethylenetetramine.

本発明の含窒素オルガノキシシラン化合物の製造方法では、所定の含窒素有機化合物をハロゲン化水素捕捉剤として使用しているため、含窒素ハロシラン化合物と水酸基含有化合物との反応で生成するハロゲン化水素塩が液状となって、これを容易に除去でき、高品質な含窒素オルガノキシシラン化合物を効率的に製造できる。
このような高品質の含窒素オルガノキシシラン化合物は、塗料添加剤、接着剤、シランカップリング剤、繊維処理剤、表面処理剤として特に有用である。
In the method for producing a nitrogen-containing organoxysilane compound of the present invention, since a predetermined nitrogen-containing organic compound is used as a hydrogen halide scavenger, hydrogen halide produced by the reaction of a nitrogen-containing halosilane compound and a hydroxyl group-containing compound The salt becomes liquid and can be easily removed, and a high-quality nitrogen-containing organoxysilane compound can be efficiently produced.
Such high-quality nitrogen-containing organoxysilane compounds are particularly useful as paint additives, adhesives, silane coupling agents, fiber treatment agents, and surface treatment agents.

以下、本発明について具体的に説明する。
本発明に係る含窒素オルガノキシシラン化合物の製造方法は、下記のスキームに示されるように、一般式(1)の不飽和結合含有含窒素化合物と、一般式(4)のハイドロジェンハロシラン化合物とを反応させて一般式(5)の含窒素ハロシラン化合物を製造し、これを一般式(6)の水酸基含有化合物とを反応させて一般式(7)の含窒素オルガノキシシラン化合物を製造する際に、一般式(5)の含窒素ハロシラン化合物と一般式(6)の水酸基含有化合物との反応を、総炭素数8以上のトリヒドロカルビルアミン化合物、ジアミン化合物、および窒素数3以上のポリアミン化合物からなる群から選ばれる少なくとも1種の含窒素有機化合物の存在下で行うことを特徴とする。
Hereinafter, the present invention will be specifically described.
The method for producing a nitrogen-containing organoxysilane compound according to the present invention includes an unsaturated bond-containing nitrogen-containing compound of general formula (1) and a hydrogenhalosilane compound of general formula (4) as shown in the following scheme. To produce a nitrogen-containing halosilane compound of the general formula (5), which is reacted with a hydroxyl group-containing compound of the general formula (6) to produce a nitrogen-containing organoxysilane compound of the general formula (7). In this case, the reaction between the nitrogen-containing halosilane compound of the general formula (5) and the hydroxyl group-containing compound of the general formula (6) is carried out by a trihydrocarbylamine compound having a total carbon number of 8 or more, a diamine compound, and a polyamine compound having a nitrogen number of 3 or more. It is performed in the presence of at least one nitrogen-containing organic compound selected from the group consisting of

Figure 2017128523
Figure 2017128523

式(1)において、R1′は、2価の単結合またはヘテロ原子を含んでいてもよい炭素数1〜18の2価炭化水素基を表すが、ヘテロ原子を含んでもよい炭素数1〜18の2価炭化水素基が好ましく、ヘテロ原子を含んでいてもよい炭素数1〜8の2価炭化水素基がより好ましい。
炭素数1〜18のヘテロ原子を含んでもよい2価炭化水素の具体例としては、メチレン、エチレン、メチルエチレン、トリメチレン、プロピレン、メチルプロピレン、テトラメチレン、ペンタメチレン、ヘキサメチレン、ヘプタメチレン、オクタメチレン、デカメチレン、イソブチレン基等のアルキレン基;フェニレン基等のアリーレン基;メチレンフェニレン、メチレンフェニレンメチレン基等のアラルキレン基;1−オキサメチレン、1−アザメチレン基等のヘテロ原子含有アルキレン基などが挙げられる。
In the formula (1), R 1 ′ represents a divalent hydrocarbon group having 1 to 18 carbon atoms which may contain a divalent single bond or a hetero atom, but 1 to 1 carbon atoms which may contain a hetero atom. The bivalent hydrocarbon group of 18 is preferable, and the C1-C8 bivalent hydrocarbon group which may contain the hetero atom is more preferable.
Specific examples of the divalent hydrocarbon which may contain a hetero atom having 1 to 18 carbon atoms include methylene, ethylene, methylethylene, trimethylene, propylene, methylpropylene, tetramethylene, pentamethylene, hexamethylene, heptamethylene, octamethylene And alkylene groups such as decamethylene and isobutylene groups; arylene groups such as phenylene groups; aralkylene groups such as methylenephenylene and methylenephenylenemethylene groups; and heteroatom-containing alkylene groups such as 1-oxamethylene and 1-azamethylene groups.

式(1)において、Aは、下記一般式(2)または(3)で表される1価の窒素原子含有基を表す。   In the formula (1), A represents a monovalent nitrogen atom-containing group represented by the following general formula (2) or (3).

Figure 2017128523
Figure 2017128523

式(2)中、R2およびR3は、互いに独立して、水素原子、ヘテロ原子を含んでいてもよい置換もしくは非置換の炭素数1〜20の1価炭化水素基、またはトリオルガノシリル基を表すが、これらが互いに結合して窒素原子とともに炭素数2〜20の環を形成してもよい。
ヘテロ原子を含んでいてもよい置換もしくは非置換の炭素数1〜20の1価炭化水素基の具体例としては、メチル、エチル、n−プロピル、n−ブチル、n−ペンチル、n−ヘキシル、n−ヘプチル、n−オクチル、n−ノニル、n−デシル、n−ドデシル、n−テトラデシル、n−ヘキサデシル、n−オクタデシル、n−イコシル基等の直鎖状アルキル基;イソプロピル、イソブチル、sec−ブチル、t−ブチル、テキシル、2−エチルヘキシル基等の分岐鎖状アルキル基;シクロペンチル、シクロヘキシル基等の環状アルキル基;ビニル、アリル、1−プロペニル基等のアルケニル基;フェニル、トリル基等のアリール基;ベンジル基等のアラルキル基などが挙げられる。
これらの中でも、特に原料の入手容易性の点から、メチル、エチル、イソプロピル、sec−ブチル、t−ブチル基が好ましい。
なお、上記1価炭化水素基の水素原子の一部または全部がその他の置換基で置換されていてもよく、その他の置換基の具体例としては、メトキシ、エトキシ、(イソ)プロポキシ基等のアルコキシ基;フッ素、塩素、臭素、ヨウ素原子等のハロゲン原子;シアノ基;アミノ基;炭素数2〜10のアシル基;トリクロロシリル基;各アルキル基、各アルコキシ基が炭素数1〜5である、トリアルキルシリル、ジアルキルモノクロロシリル、モノアルキルジクロロシリル、トリアルコキシシリル、ジアルキルモノアルコキシシリル、モノアルキルジアルコキシシリル基などが挙げられる。
In the formula (2), R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms which may contain a hetero atom, or triorganosilyl. Represents a group, these may be bonded to each other to form a ring having 2 to 20 carbon atoms together with the nitrogen atom.
Specific examples of the substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms which may contain a hetero atom include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, linear alkyl groups such as n-heptyl, n-octyl, n-nonyl, n-decyl, n-dodecyl, n-tetradecyl, n-hexadecyl, n-octadecyl, n-icosyl group; isopropyl, isobutyl, sec- Branched alkyl groups such as butyl, t-butyl, texyl and 2-ethylhexyl groups; cyclic alkyl groups such as cyclopentyl and cyclohexyl groups; alkenyl groups such as vinyl, allyl and 1-propenyl groups; aryls such as phenyl and tolyl groups A group; an aralkyl group such as a benzyl group;
Among these, methyl, ethyl, isopropyl, sec-butyl, and t-butyl groups are particularly preferable from the viewpoint of easy availability of raw materials.
In addition, some or all of the hydrogen atoms of the monovalent hydrocarbon group may be substituted with other substituents. Specific examples of the other substituents include methoxy, ethoxy, (iso) propoxy group, and the like. Alkoxy group; halogen atom such as fluorine, chlorine, bromine, iodine atom; cyano group; amino group; acyl group having 2 to 10 carbon atoms; trichlorosilyl group; each alkyl group and each alkoxy group having 1 to 5 carbon atoms , Trialkylsilyl, dialkylmonochlorosilyl, monoalkyldichlorosilyl, trialkoxysilyl, dialkylmonoalkoxysilyl, monoalkyldialkoxysilyl groups and the like.

トリオルガノシリル基の具体例としては、トリメチルシリル、エチルジメチルシリル、ジエチルメチルシリル、トリエチルシリル、トリn−プロピルシリル、トリイソプロピルシリル、トリn−ブチルシリル、トリイソブチルシリル、トリsec−ブチルシリル、t−ブチルジメチルシリル、トリシクロペンチルシリル、トリシクロヘキシルシリル、トリフェニルシリル、t−ブチルジフェニルシリル基等が挙げられる。   Specific examples of the triorganosilyl group include trimethylsilyl, ethyldimethylsilyl, diethylmethylsilyl, triethylsilyl, trin-propylsilyl, triisopropylsilyl, trin-butylsilyl, triisobutylsilyl, trisec-butylsilyl, t-butyl. Examples thereof include dimethylsilyl, tricyclopentylsilyl, tricyclohexylsilyl, triphenylsilyl, t-butyldiphenylsilyl group and the like.

一方、式(2)におけるR2およびR3が互いに結合して窒素原子とともに形成する炭素数2〜20の環状構造を有する基の具体例としては、ピロリジノ、ピペリジノ、モルホリノ、2,2,6,6−テトラメチルピペリジン−4−イル、1,2,2,6,6−ペンタメチルピペリジン−4−イル基等が挙げられる。 On the other hand, specific examples of the group having a cyclic structure having 2 to 20 carbon atoms which R 2 and R 3 in Formula (2) are bonded to each other and formed together with a nitrogen atom include pyrrolidino, piperidino, morpholino, 2, 2, 6 , 6-tetramethylpiperidin-4-yl, 1,2,2,6,6-pentamethylpiperidin-4-yl group and the like.

式(3)において、R4は、水素原子、ヘテロ原子を含んでいてもよい置換もしくは非置換の炭素数1〜20の1価炭化水素基、またはトリオルガノシリル基を表し、R5およびR6は、互いに独立して炭素数1〜20の2価炭化水素基を表し、R7は、CHまたは窒素原子を表す。ヘテロ原子を含んでいてもよい置換もしくは非置換の炭素数1〜20の1価炭化水素基としては、上記式(2)で例示した基と同様のものが挙げられる。
炭素数1〜20の2価炭化水素基の具体例としては、上記式(1)で例示した基と同様のものが挙げられるが、中でも、メチレン、エチレン、メチルエチレン、ジメチルエチレン、プロピレン、メチルプロピレン、テトラメチレン、ヘキサメチレン、オクタメチレン、デカメチレン、イソブチレン基等のアルキレン基が好ましい。
In the formula (3), R 4 represents a hydrogen atom, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms which may contain a hetero atom, or a triorganosilyl group, and R 5 and R 6 independently represents a divalent hydrocarbon group having 1 to 20 carbon atoms, and R 7 represents CH or a nitrogen atom. Examples of the substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms which may contain a hetero atom include the same groups as those exemplified in the above formula (2).
Specific examples of the divalent hydrocarbon group having 1 to 20 carbon atoms include the same groups as those exemplified in the above formula (1). Among them, methylene, ethylene, methylethylene, dimethylethylene, propylene, methyl Alkylene groups such as propylene, tetramethylene, hexamethylene, octamethylene, decamethylene and isobutylene groups are preferred.

式(1)で示される不飽和結合含有含窒素化合物の具体例としては、ジメチルアリルアミン、ジエチルアリルアミン、ジブチルアリルアミン、N,N−ビス(トリメチルシリル)アリルアミン、N−トリエチルシリルアリルアミン、N−t−ブチルジメチルシリルアリルアミン、N−トリイソプロピルシリルアリルアミン、1−アリル−4−メチルピペラジン、4−アリロキシ−2,2,6,6−テトラメチルピペリジン、4−アリロキシ−1,2,2,6,6−ペンタメチルピペラジン、1−アリルモルホリン等が挙げられる。   Specific examples of the unsaturated bond-containing nitrogen-containing compound represented by the formula (1) include dimethylallylamine, diethylallylamine, dibutylallylamine, N, N-bis (trimethylsilyl) allylamine, N-triethylsilylallylamine, Nt-butyl. Dimethylsilylallylamine, N-triisopropylsilylallylamine, 1-allyl-4-methylpiperazine, 4-allyloxy-2,2,6,6-tetramethylpiperidine, 4-allyloxy-1,2,2,6,6- Examples include pentamethylpiperazine and 1-allylmorpholine.

式(4)において、R8は、置換または非置換の炭素数1〜20の1価炭化水素基を表し、Xは、ハロゲン原子を表す。
置換または非置換の炭素数1〜20の1価炭化水素基としては、上記式(2)で例示した基と同様のものが挙げられるが、中でも、炭素数1〜10の置換または非置換の1価炭化水素基が好ましく、この場合も、特に原料の入手容易性の点から、メチル、エチル、イソプロピル、sec−ブチル、t−ブチル基が好ましい。
なお、この場合も炭化水素基の水素原子の一部または全部がその他の置換基で置換されていてもよく、その他の置換基としては、上記式(2)で例示したものと同様のものが挙げられる。
ハロゲン原子の具体例としても上記式(2)で例示した基と同様の基が挙げられる。
In the formula (4), R 8 represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and X represents a halogen atom.
Examples of the substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms include the same groups as those exemplified in the above formula (2), and among them, a substituted or unsubstituted group having 1 to 10 carbon atoms. A monovalent hydrocarbon group is preferable, and in this case, methyl, ethyl, isopropyl, sec-butyl, and t-butyl groups are particularly preferable from the viewpoint of easy availability of raw materials.
In this case as well, some or all of the hydrogen atoms of the hydrocarbon group may be substituted with other substituents, and the other substituents are the same as those exemplified in the above formula (2). Can be mentioned.
Specific examples of the halogen atom include the same groups as those exemplified in the above formula (2).

式(4)で示されるハイドロジェンハロシラン化合物の具体例としては、ジメチルフルオロシラン、ジメチルクロロシラン、ジメチルブロモシラン、ジメチルヨードシラン、ジエチルフルオロシラン、ジエチルクロロシラン、ジエチルブロモシラン、ジエチルヨードシラン等が挙げられる。   Specific examples of the hydrogenhalosilane compound represented by the formula (4) include dimethylfluorosilane, dimethylchlorosilane, dimethylbromosilane, dimethyliodosilane, diethylfluorosilane, diethylchlorosilane, diethylbromosilane, diethyliodosilane and the like. It is done.

式(1)の不飽和結合含有含窒素化合物と、式(4)のハイドロジェンハロシラン化合物とを反応させて得られる式(5)の含窒素ハロシラン化合物におけるR1は、反応により上記R1′が二炭素増加する結果、ヘテロ原子を含んでもよい炭素数2〜20の2価炭化水素基となるが、炭素数2〜10の2価炭化水素基が好ましい。
これらの具体例としては、上記式(1)で例示した基と同様のものが挙げられる。
R 1 in the nitrogen-containing halosilane compound represented by the formula (5) obtained by reacting the unsaturated bond-containing nitrogen-containing compound represented by the formula (1) with the hydrogen halosilane compound represented by the formula (4) is converted into the above R 1 by reaction. 'result is increased two carbon becomes a divalent hydrocarbon group which may C2-20 contain a hetero atom, preferably a divalent hydrocarbon group having 2 to 10 carbon atoms.
Specific examples thereof include the same groups as those exemplified in the above formula (1).

式(6)において、R9は、置換または非置換の炭素数1〜20の1価炭化水素基を表し、この1価炭化水素基の具体例としては、上記式(2)で例示した基と同様のものが挙げられる。
式(6)で示される水酸基含有化合物の具体例としては、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、2−メチル−2−プロパノール、1−ヘキサノール、2−エチル−1−ヘキサノール、シクロペンタノール、シクロヘキサノール、フェノール、クレゾール、ベンジルアルコール、フェネチルアルコール等が挙げられる。
In the formula (6), R 9 represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms. Specific examples of the monovalent hydrocarbon group include the groups exemplified in the above formula (2). The same thing is mentioned.
Specific examples of the hydroxyl group-containing compound represented by the formula (6) include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2- Examples include propanol, 1-hexanol, 2-ethyl-1-hexanol, cyclopentanol, cyclohexanol, phenol, cresol, benzyl alcohol, and phenethyl alcohol.

式(1)の不飽和結合含有含窒素化合物と、式(4)のハイドロジェンハロシラン化合物との反応させる工程において、式(4)のハイドロジェンハロシラン化合物の使用量は特に限定されるものではないが、反応性および生産性の点から、式(1)の不飽和結合含有窒素化合物1molに対し、0.5〜2.0molが好ましく、0.8〜1.5molがより好ましい。   In the step of reacting the unsaturated bond-containing nitrogen-containing compound of formula (1) with the hydrogenhalosilane compound of formula (4), the amount of the hydrogenhalosilane compound of formula (4) used is particularly limited However, from the viewpoint of reactivity and productivity, 0.5 to 2.0 mol is preferable and 0.8 to 1.5 mol is more preferable with respect to 1 mol of the unsaturated bond-containing nitrogen compound of formula (1).

また、この反応では、触媒として白金化合物を用いてもよい。
白金化合物の具体例としては、塩化白金酸、塩化白金酸のアルコール溶液、白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体のトルエンまたはキシレン溶液、テトラキストリフェニルホスフィン白金、ジクロロビストリフェニルホスフィン白金、ジクロロビスアセトニトリル白金、ジクロロビスベンゾニトリル白金、ジクロロシクロオクタジエン白金、白金−活性炭等が挙げられる。
白金化合物の使用量も特に限定されるものではないが、反応性および生産性の点から、式(1)で示される含窒素不飽和結合含有化合物1molに対し、0.000001〜0.01molが好ましく、0.00001〜0.001molがより好ましい。
In this reaction, a platinum compound may be used as a catalyst.
Specific examples of the platinum compound include chloroplatinic acid, an alcohol solution of chloroplatinic acid, a toluene-1, xylene solution of platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex, and tetrakistriphenylphosphine. Examples include platinum, dichlorobistriphenylphosphine platinum, dichlorobisacetonitrile platinum, dichlorobisbenzonitrile platinum, dichlorocyclooctadiene platinum, platinum-activated carbon, and the like.
The amount of platinum compound used is not particularly limited, but from the viewpoint of reactivity and productivity, 0.000001 to 0.01 mol is contained per 1 mol of the nitrogen-containing unsaturated bond-containing compound represented by the formula (1). Preferably, 0.00001 to 0.001 mol is more preferable.

上記反応の反応温度は特に限定されないが、0〜200℃が好ましく、10〜180℃がより好ましい。   Although the reaction temperature of the said reaction is not specifically limited, 0-200 degreeC is preferable and 10-180 degreeC is more preferable.

なお、上記反応は溶媒の存在下で行うこともできる。
溶媒としては、この種の反応に汎用されるものから適宜選択して用いることができ、その具体例としては、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、イソオクタン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;アセトニトリル、N,N−ジメチルホルムアミド等の非プロトン性極性溶媒;ジクロロメタン、クロロホルム等の塩素化炭化水素系溶媒などが挙げられ、これらの溶媒は単独で用いても、2種以上を混合して用いてもよい。
なお、反応に用いる各成分の配合順序は任意であるが、式(1)の不飽和結合含有含窒素化合物と必要に応じて用いられる触媒との混合物に、式(4)のハイドロジェンハロシラン化合物を添加することが好ましい。
In addition, the said reaction can also be performed in presence of a solvent.
The solvent can be appropriately selected from those commonly used for this type of reaction, and specific examples thereof include hydrocarbon solvents such as pentane, hexane, cyclohexane, heptane, isooctane, benzene, toluene, xylene and the like. Ether solvents such as diethyl ether, tetrahydrofuran and dioxane; ester solvents such as ethyl acetate and butyl acetate; aprotic polar solvents such as acetonitrile and N, N-dimethylformamide; chlorinated hydrocarbons such as dichloromethane and chloroform; A solvent etc. are mentioned, These solvents may be used independently or may be used in mixture of 2 or more types.
In addition, although the mixing | blending order of each component used for reaction is arbitrary, hydrogen halosilane of Formula (4) is added to the mixture of the unsaturated bond containing nitrogen-containing compound of Formula (1) and the catalyst used as needed. It is preferable to add a compound.

上記反応により得られた式(5)の含窒素ハロシラン化合物と式(6)の水酸基含有化合物とを反応させる工程において、水酸基含有化合物の使用量は特に限定されないが、反応性および生産性等の点から、原料として用いた式(4)の不飽和結合含有窒素化合物1molに対し、0.5〜2.0molが好ましく、0.8〜1.5molがより好ましい。   In the step of reacting the nitrogen-containing halosilane compound of formula (5) obtained by the above reaction with the hydroxyl group-containing compound of formula (6), the amount of the hydroxyl group-containing compound used is not particularly limited. From the point, 0.5 to 2.0 mol is preferable and 0.8 to 1.5 mol is more preferable with respect to 1 mol of the unsaturated bond-containing nitrogen compound of the formula (4) used as a raw material.

上述したとおり、本発明では、この反応を、ハロゲン化水素捕捉剤である、総炭素数8以上のトリヒドロカルビルアミン化合物、ジアミン化合物、および窒素数3以上のポリアミン化合物からなる群から選ばれる少なくとも1種の含窒素有機化合物の存在下で行う。
すなわち、これらの含窒素有機化合物をハロゲン化水素捕捉剤として用いることで、副生する含窒素有機化合物のハロゲン化水素塩が液状となって分離し易くなり、分液操作によって容易に除去できるようになる。
As described above, in the present invention, this reaction is performed at least one selected from the group consisting of a trihalocarbylamine compound having a total carbon number of 8 or more, a diamine compound, and a polyamine compound having a nitrogen number of 3 or more, which is a hydrogen halide scavenger. It is carried out in the presence of a seed nitrogen-containing organic compound.
That is, by using these nitrogen-containing organic compounds as a hydrogen halide scavenger, the by-produced hydrogen halide salt of the nitrogen-containing organic compound becomes liquid and easily separated and can be easily removed by a liquid separation operation. become.

総炭素数8以上のトリヒドロカルビルアミン化合物の具体例としては、特に限定されるものではないが、トリn−ブチルアミン、トリn−オクチルアミン、N,N−ジメチルアニリン等の総炭素数8〜30のトリヒドロカルビルアミン化合物が好ましい。
ジアミン化合物の具体例としては、特に限定されるものではないが、エチレンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジエチルエチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N−メチルピペラジン、N,N’−ジメチルピペラジン、ヘキサメチレンジアミン、1,8−ジアザビシクロ[5.4.0]ウンデセン−7等の総炭素数2以上、好ましくは、総炭素数2〜20のジアミン化合物が好適である。
窒素数3以上のポリアミン化合物の具体例としては、特に限定されるものではないが、ジエチレントリアミン、N,N,N’,N”,N”−ジエチレントリアミン、トリエチレンテトラミン、アミノエチルピペラジン等の窒素数3〜10のポリアミン化合物が好ましい。
これらの中でも、原料の入手容易性等を考慮すると、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミンがより好ましい。
なお、上記各含窒素有機化合物は、単独で用いても、2種以上組み合わせて用いてもよい。
Although it does not specifically limit as a specific example of a trihydrocarbyl amine compound with a total carbon number of 8 or more, Total carbon number 8-30, such as a tri n-butylamine, a tri n-octylamine, N, N- dimethylaniline, etc. The trihydrocarbylamine compound is preferred.
Specific examples of the diamine compound include, but are not limited to, ethylenediamine, N, N-dimethylethylenediamine, N, N-diethylethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, and N-methyl. A diamine compound having a total carbon number of 2 or more, preferably 2 to 20 carbon atoms, such as piperazine, N, N′-dimethylpiperazine, hexamethylenediamine, and 1,8-diazabicyclo [5.4.0] undecene-7. Is preferred.
Specific examples of the polyamine compound having 3 or more nitrogen atoms are not particularly limited, but include nitrogen numbers such as diethylenetriamine, N, N, N ′, N ″, N ″ -diethylenetriamine, triethylenetetramine, and aminoethylpiperazine. 3-10 polyamine compounds are preferred.
Among these, ethylenediamine, diethylenetriamine, and triethylenetetramine are more preferable in consideration of availability of raw materials.
In addition, each said nitrogen-containing organic compound may be used independently, or may be used in combination of 2 or more type.

含窒素有機化合物の使用量は特に限定されないが、反応性および生産性、並びに副生したハロゲン化水素塩を液状として効率的に除去することを考慮すると、原料として用いる式(4)で示される不飽和結合含有窒素化合物1molに対し、1.0〜5.0molが好ましく、1.0〜3.0molがより好ましく、1.0〜2.0molがより一層好ましい。   Although the amount of nitrogen-containing organic compound used is not particularly limited, it is represented by the formula (4) used as a raw material in consideration of reactivity and productivity, and efficient removal of by-produced hydrogen halide salt as a liquid. 1.0-5.0 mol is preferable with respect to 1 mol of unsaturated bond-containing nitrogen compounds, 1.0-3.0 mol is more preferable, and 1.0-2.0 mol is even more preferable.

上記反応において、含窒素ハロシラン化合物、含窒素化合物、水酸基含有化合物の添加順序は任意であるが、通常、不飽和結合含有含窒素化合物とハイドロジェンハロシラン化合物とを反応させて得られた含窒素ハロシラン化合物を単離することなく、次工程の反応が行われるため、ハイドロジェンシラン化合物中に、含窒素有機化合物および水酸基含有化合物を添加することが好ましい。
これら両化合物の添加順序も任意であり、含窒素有機化合物を添加後、水酸基含有化合物を添加する方法、水酸基含有化合物を添加後、含窒素有機化合物を添加する方法、含窒素有機化合物および水酸基含有化合物を同時に添加する方法のいずれを採用してもよい。
なお、R2およびR3がトリオルガノシリル基であり、窒素原子に水素原子が結合している含窒素有機化合物、いわゆる1級または2級アミン化合物をハロゲン化水素捕捉剤として用いる場合は、含窒素有機化合物を先に添加することが好ましい。これにより、まず含窒素ハロシラン化合物と含窒素有機化合物が反応してケイ素−窒素結合を形成され、その後に水酸基含有化合物によってケイ素−窒素結合が切断されてオルガノキシ化する反応形式となり、フリーのハロゲン化水素が生成せず副反応が少なくなるという利点がある。
In the above reaction, the addition order of the nitrogen-containing halosilane compound, the nitrogen-containing compound and the hydroxyl group-containing compound is arbitrary, but usually the nitrogen-containing compound obtained by reacting the unsaturated bond-containing nitrogen-containing compound with the hydrogen halosilane compound. Since the reaction in the next step is performed without isolating the halosilane compound, it is preferable to add a nitrogen-containing organic compound and a hydroxyl group-containing compound in the hydrogensilane compound.
The order of addition of these two compounds is also arbitrary, a method of adding a hydroxyl group-containing compound after adding a nitrogen-containing organic compound, a method of adding a nitrogen-containing organic compound after adding a hydroxyl group-containing compound, a nitrogen-containing organic compound and a hydroxyl group-containing Any method of simultaneously adding the compounds may be employed.
When R 2 and R 3 are triorganosilyl groups and a nitrogen-containing organic compound in which a hydrogen atom is bonded to a nitrogen atom, so-called primary or secondary amine compound is used as a hydrogen halide scavenger. It is preferable to add the nitrogen organic compound first. As a result, the nitrogen-containing halosilane compound and the nitrogen-containing organic compound react to form a silicon-nitrogen bond, and then the silicon-nitrogen bond is cleaved by the hydroxyl-containing compound to form an organoxylation, which is a free halogenation. There is an advantage that hydrogen is not generated and side reactions are reduced.

上記反応の反応温度は特に限定されないが、0〜200℃が好ましく、10〜150℃がより好ましく、30〜80℃がより一層好ましい。
なお、この反応も第1工程の反応と同様、溶媒の存在下で行うこともできる。使用可能な溶媒の具体例としては、上述したものと同様のものが挙げられる。
Although reaction temperature of the said reaction is not specifically limited, 0-200 degreeC is preferable, 10-150 degreeC is more preferable, and 30-80 degreeC is much more preferable.
In addition, this reaction can also be performed in presence of a solvent similarly to reaction of a 1st process. Specific examples of the solvent that can be used include the same solvents as described above.

反応終了後は生じた含窒素有機化合物のハロゲン化水素塩を、0〜200℃の含窒素有機化合物のハロゲン化水素塩が液状となる温度にて分液操作等により分離、除去できる。
含窒素有機化合物のハロゲン化水素塩を除去した反応液を、蒸留等の通常の方法で精製し、目的物を得ることができる。
After completion of the reaction, the produced hydrogen halide salt of the nitrogen-containing organic compound can be separated and removed by a liquid separation operation or the like at a temperature at which the nitrogen-containing organic compound hydrogen halide salt at 0 to 200 ° C. becomes liquid.
The reaction solution from which the hydrogen halide salt of the nitrogen-containing organic compound has been removed can be purified by an ordinary method such as distillation to obtain the desired product.

上記一連の反応で得られる式(7)で示される含窒素オルガノキシシラン化合物の具体例としては、3−ジメチルアミノプロピルジメチルメトキシシラン、3−ジメチルアミノプロピルジメチルエトキシシラン、3−ジメチルアミノプロピルジメチルプロポキシシラン、3−ジメチルアミノプロピルジメチルブトキシシラン、3−ジメチルアミノプロピルジメチルフェノキシシラン、3−ジメチルアミノプロピルジメチルベンジロキシシラン、3−ジエチルアミノプロピルジメチルメトキシシラン、3−ジエチルアミノプロピルジメチルエトキシシラン、3−ジエチルアミノプロピルジメチルプロポキシシラン、3−ジエチルアミノプロピルジメチルブトキシシラン、3−ジエチルアミノプロピルジメチルフェノキシシラン、3−ジエチルアミノプロピルジメチルベンジロキシシラン、3−ジブチルアミノプロピルジメチルメトキシシラン、3−ジブチルアミノプロピルジメチルエトキシシラン、3−ジブチルアミノプロピルジメチルプロポキシシラン、3−ジブチルアミノプロピルジメチルブトキシシラン、3−ジブチルアミノプロピルジメチルフェノキシシラン、3−ジブチルアミノプロピルジメチルベンジロキシシラン、3−[N,N−ビス(トリメチルシリル)アミノ]プロピルジメチルメトキシシラン、3−[N,N−ビス(トリメチルシリル)アミノ]プロピルジメチルエトキシシラン、3−[N,N−ビス(トリメチルシリル)アミノ]プロピルジメチルプロポキシシラン、3−[N,N−ビス(トリメチルシリル)アミノ]プロピルジメチルブトキシシラン、3−[N,N−ビス(トリメチルシリル)アミノ]プロピルジメチルフェノキシシラン、3−[N,N−ビス(トリメチルシリル)アミノ]プロピルジメチルベンジロキシシラン、3−(N−トリエチルシリルアミノ)プロピルジメチルメトキシシラン、3−(N−トリエチルシリルアミノ)プロピルジメチルエトキシシラン、3−(N−トリエチルシリルアミノ)プロピルジメチルプロポキシシラン、3−(N−トリエチルシリルアミノ)プロピルジメチルブトキシシラン、3−(N−トリエチルシリルアミノ)プロピルジメチルフェノキシシラン、3−(N−トリエチルシリルアミノ)プロピルジメチルベンジロキシシラン、3−(N−t−ブチルジメチルシリルアミノ)プロピルジメチルメトキシシラン、3−(N−t−ブチルジメチルシリルアミノ)プロピルジメチルエトキシシラン、3−(N−t−ブチルジメチルシリルアミノ)プロピルジメチルプロポキシシラン、3−(N−t−ブチルジメチルシリルアミノ)プロピルジメチルブトキシシラン、3−(N−t−ブチルジメチルシリルアミノ)プロピルジメチルフェノキシシラン、3−(N−t−ブチルジメチルシリルアミノ)プロピルジメチルベンジロキシシラン、3−(N−トリイソプロピルシリルアミノ)プロピルジメチルメトキシシラン、3−(N−トリイソプロピルシリルアミノ)プロピルジメチルエトキシシラン、3−(N−トリイソプロピルシリルアミノ)プロピルジメチルプロポキシシラン、3−(N−トリイソプロピルシリルアミノ)プロピルジメチルブトキシシラン、3−(N−トリイソプロピルシリルアミノ)プロピルジメチルフェノキシシラン、3−(N−トリイソプロピルシリルアミノ)プロピルジメチルベンジロキシシラン、3−(4−メチルピペラジン−1−イル)プロピルジメチルメトキシシラン、3−(4−メチルピペラジン−1−イル)プロピルジメチルエトキシシラン、3−(4−メチルピペラジン−1−イル)プロピルジメチルプロポキシシラン、3−(4−メチルピペラジン−1−イル)プロピルジメチルブトキシシラン、3−(4−メチルピペラジン−1−イル)プロピルジメチルフェノキシシラン、3−(4−メチルピペラジン−1−イル)プロピルジメチルベンジロキシシラン、3−(2,2,6,6−テトラメチルピペリジン−4−イルオキシ)プロピルプロピルジメチルメトキシシラン、3−(2,2,6,6−テトラメチルピペリジン−4−イルオキシ)プロピルプロピルジメチルエトキシシラン、3−(2,2,6,6−テトラメチルピペリジン−4−イルオキシ)プロピルプロピルジメチルプロポキシシラン、3−(2,2,6,6−テトラメチルピペリジン−4−イルオキシ)プロピルプロピルジメチルブトキシシラン、3−(2,2,6,6−テトラメチルピペリジン−4−イルオキシ)プロピルプロピルジメチルフェノキシシラン、3−(2,2,6,6−テトラメチルピペリジン−4−イルオキシ)プロピルプロピルジメチルベンジロキシシラン、3−(1,2,2,6,6−ペンタメチルピペリジン−4−イルオキシ)プロピルプロピルジメチルメトキシシラン、3−(1,2,2,6,6−ペンタメチルピペリジン−4−イルオキシ)プロピルプロピルジメチルエトキシシラン、3−(1,2,2,6,6−ペンタメチルピペリジン−4−イルオキシ)プロピルプロピルジメチルプロポキシシラン、3−(1,2,2,6,6−ペンタメチルピペリジン−4−イルオキシ)プロピルプロピルジメチルブトキシシラン、3−(1,2,2,6,6−ペンタメチルピペリジン−4−イルオキシ)プロピルプロピルジメチルフェノキシシラン、3−(1,2,2,6,6−ペンタメチルピペリジン−4−イルオキシ)プロピルプロピルジメチルベンジロキシシラン、3−モルホリノプロピルジメチルメトキシシラン、3−モルホリノプロピルジメチルエトキシシラン、3−モルホリノプロピルジメチルプロポキシシラン、3−モルホリノプロピルジメチルブトキシシラン、3−モルホリノプロピルジメチルフェノキシシラン、3−モルホリノプロピルジメチルベンジロキシシラン等が挙げられる。   Specific examples of the nitrogen-containing organoxysilane compound represented by the formula (7) obtained by the above series of reactions include 3-dimethylaminopropyldimethylmethoxysilane, 3-dimethylaminopropyldimethylethoxysilane, and 3-dimethylaminopropyldimethyl. Propoxysilane, 3-dimethylaminopropyldimethylbutoxysilane, 3-dimethylaminopropyldimethylphenoxysilane, 3-dimethylaminopropyldimethylbenzyloxysilane, 3-diethylaminopropyldimethylmethoxysilane, 3-diethylaminopropyldimethylethoxysilane, 3-diethylamino Propyldimethylpropoxysilane, 3-diethylaminopropyldimethylbutoxysilane, 3-diethylaminopropyldimethylphenoxysilane, 3-diethyla Nopropyldimethylbenzyloxysilane, 3-dibutylaminopropyldimethylmethoxysilane, 3-dibutylaminopropyldimethylethoxysilane, 3-dibutylaminopropyldimethylpropoxysilane, 3-dibutylaminopropyldimethylbutoxysilane, 3-dibutylaminopropyldimethylphenoxy Silane, 3-dibutylaminopropyldimethylbenzyloxysilane, 3- [N, N-bis (trimethylsilyl) amino] propyldimethylmethoxysilane, 3- [N, N-bis (trimethylsilyl) amino] propyldimethylethoxysilane, 3- [N, N-bis (trimethylsilyl) amino] propyldimethylpropoxysilane, 3- [N, N-bis (trimethylsilyl) amino] propyldimethylbutoxysilane, 3- N, N-bis (trimethylsilyl) amino] propyldimethylphenoxysilane, 3- [N, N-bis (trimethylsilyl) amino] propyldimethylbenzyloxysilane, 3- (N-triethylsilylamino) propyldimethylmethoxysilane, 3- (N-triethylsilylamino) propyldimethylethoxysilane, 3- (N-triethylsilylamino) propyldimethylpropoxysilane, 3- (N-triethylsilylamino) propyldimethylbutoxysilane, 3- (N-triethylsilylamino) propyl Dimethylphenoxysilane, 3- (N-triethylsilylamino) propyldimethylbenzyloxysilane, 3- (Nt-butyldimethylsilylamino) propyldimethylmethoxysilane, 3- (Nt-butyldimethylsilyl) Ruamino) propyldimethylethoxysilane, 3- (Nt-butyldimethylsilylamino) propyldimethylpropoxysilane, 3- (Nt-butyldimethylsilylamino) propyldimethylbutoxysilane, 3- (Nt-butyldimethyl) Silylamino) propyldimethylphenoxysilane, 3- (Nt-butyldimethylsilylamino) propyldimethylbenzyloxysilane, 3- (N-triisopropylsilylamino) propyldimethylmethoxysilane, 3- (N-triisopropylsilylamino) ) Propyldimethylethoxysilane, 3- (N-triisopropylsilylamino) propyldimethylpropoxysilane, 3- (N-triisopropylsilylamino) propyldimethylbutoxysilane, 3- (N-triisopropylsilyl) Amino) propyldimethylphenoxysilane, 3- (N-triisopropylsilylamino) propyldimethylbenzyloxysilane, 3- (4-methylpiperazin-1-yl) propyldimethylmethoxysilane, 3- (4-methylpiperazine-1- Yl) propyldimethylethoxysilane, 3- (4-methylpiperazin-1-yl) propyldimethylpropoxysilane, 3- (4-methylpiperazin-1-yl) propyldimethylbutoxysilane, 3- (4-methylpiperazine-1) -Yl) propyldimethylphenoxysilane, 3- (4-methylpiperazin-1-yl) propyldimethylbenzyloxysilane, 3- (2,2,6,6-tetramethylpiperidin-4-yloxy) propylpropyldimethylmethoxysilane , 3- (2,2,6 6-tetramethylpiperidin-4-yloxy) propylpropyldimethylethoxysilane, 3- (2,2,6,6-tetramethylpiperidin-4-yloxy) propylpropyldimethylpropoxysilane, 3- (2,2,6, 6-tetramethylpiperidin-4-yloxy) propylpropyldimethylbutoxysilane, 3- (2,2,6,6-tetramethylpiperidin-4-yloxy) propylpropyldimethylphenoxysilane, 3- (2,2,6, 6-tetramethylpiperidin-4-yloxy) propylpropyldimethylbenzyloxysilane, 3- (1,2,2,6,6-pentamethylpiperidin-4-yloxy) propylpropyldimethylmethoxysilane, 3- (1,2 , 2,6,6-Pentamethylpiperidin-4-ylo Xyl) propylpropyldimethylethoxysilane, 3- (1,2,2,6,6-pentamethylpiperidin-4-yloxy) propylpropyldimethylpropoxysilane, 3- (1,2,2,6,6-pentamethyl) Piperidin-4-yloxy) propylpropyldimethylbutoxysilane, 3- (1,2,2,6,6-pentamethylpiperidin-4-yloxy) propylpropyldimethylphenoxysilane, 3- (1,2,2,6, 6-pentamethylpiperidin-4-yloxy) propylpropyldimethylbenzyloxysilane, 3-morpholinopropyldimethylmethoxysilane, 3-morpholinopropyldimethylethoxysilane, 3-morpholinopropyldimethylpropoxysilane, 3-morpholinopropyldimethylbutoxysilane, 3 Morpholinopropyl dimethylphenoxy silane, 3-morpholinopropyl dimethyl benzyloxycarbonyl silane, and the like.

以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example.

[実施例1]
撹拌機、還流器、滴下ロートおよび温度計を備えたフラスコに、ジエチルアリルアミン90.6g(0.8mol)、20質量%塩化白金酸−2−プロパノール溶液0.16gを仕込み、60℃に加熱した。内温が安定した後、ジメチルクロロシラン75.7g(0.8mol)を3時間かけて滴下し、さらにその温度で1時間撹拌した。内温を50〜60℃とした後、エチレンジアミン72.1g(1.2mol)を30分かけて滴下し、続いてメタノール28.2g(0.88mol)を30分かけて滴下後、その温度で1時間撹拌した。この段階で反応液は2層に分離していた。50〜60℃で下層を除去し、上層を蒸留した。3−ジエチルアミノプロピルジメチルメトキシシランを沸点80℃/1.0kPaの留分として121.8g得た(収率75%)。
[Example 1]
A flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer was charged with 90.6 g (0.8 mol) of diethylallylamine and 0.16 g of a 20% by mass chloroplatinic acid-2-propanol solution and heated to 60 ° C. . After the internal temperature was stabilized, 75.7 g (0.8 mol) of dimethylchlorosilane was added dropwise over 3 hours, and the mixture was further stirred at that temperature for 1 hour. After the internal temperature was adjusted to 50 to 60 ° C., 72.1 g (1.2 mol) of ethylenediamine was added dropwise over 30 minutes, followed by dropwise addition of 28.2 g (0.88 mol) of methanol over 30 minutes. Stir for 1 hour. At this stage, the reaction solution was separated into two layers. The lower layer was removed at 50-60 ° C. and the upper layer was distilled. 121.8 g of 3-diethylaminopropyldimethylmethoxysilane was obtained as a fraction having a boiling point of 80 ° C./1.0 kPa (yield: 75%).

[実施例2]
エチレンジアミンをジエチレントリアミン123.8g(1.2mol)に変更した以外は、実施例1と同様に反応を行った。メタノール添加後1時間撹拌した段階で反応液は2層に分離していた。50〜60℃で下層を除去し、有機層である上層を蒸留した。3−ジエチルアミノプロピルジメチルメトキシシランを沸点80℃/1.0kPaの留分として120.1g得た(収率74%)。
[Example 2]
The reaction was performed in the same manner as in Example 1 except that ethylenediamine was changed to 123.8 g (1.2 mol) of diethylenetriamine. The reaction liquid was separated into two layers at the stage of stirring for 1 hour after the addition of methanol. The lower layer was removed at 50 to 60 ° C., and the upper layer which was an organic layer was distilled. As a fraction having a boiling point of 80 ° C./1.0 kPa, 120.1 g of 3-diethylaminopropyldimethylmethoxysilane was obtained (yield 74%).

[比較例1]
エチレンジアミンをトリエチルアミン121.4g(1.2mol)に変更した以外は、実施例1と同様に反応を行った。メタノール滴下中に生じた固体のトリエチルアミン塩酸塩により撹拌不能となったため、溶媒としてトルエン200gを追加した。生成した塩をろ過により除去後、蒸留した。3−ジエチルアミノプロピルジメチルメトキシシランを沸点80℃/1.0kPaの留分として115.5g得た(収率71%)。
[Comparative Example 1]
The reaction was performed in the same manner as in Example 1 except that ethylenediamine was changed to 121.4 g (1.2 mol) of triethylamine. Since stirring became impossible due to solid triethylamine hydrochloride formed during the dropwise addition of methanol, 200 g of toluene was added as a solvent. The produced salt was removed by filtration and distilled. 115.5 g of 3-diethylaminopropyldimethylmethoxysilane was obtained as a fraction having a boiling point of 80 ° C./1.0 kPa (yield 71%).

[実施例3]
撹拌機、還流器、滴下ロートおよび温度計を備えたフラスコに、1−アリル−4−メチルピペラジン112.2g(0.8mol)、20質量%塩化白金酸−2−プロパノール溶液0.16gを仕込み、60℃に加熱した。内温が安定した後、ジメチルクロロシラン75.7g(0.8mol)を3時間かけて滴下し、さらにその温度で1時間撹拌した。内温を50〜60℃とした後、エチレンジアミン72.1g(1.2mol)を30分かけて滴下し、続いてメタノール28.2g(0.88mol)を30分かけて滴下後、その温度で1時間撹拌した。この段階で反応液は2層に分離していた。50〜60℃で下層を除去し、有機層である上層を蒸留した。3−(4−メチルピペラジン−1−イル)プロピルジメチルメトキシシランを沸点103℃/0.4kPaの留分として133.7g得た(収率73%)。
[Example 3]
A flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer was charged with 112.2 g (0.8 mol) of 1-allyl-4-methylpiperazine and 0.16 g of a 20 mass% chloroplatinic acid-2-propanol solution. And heated to 60 ° C. After the internal temperature was stabilized, 75.7 g (0.8 mol) of dimethylchlorosilane was added dropwise over 3 hours, and the mixture was further stirred at that temperature for 1 hour. After the internal temperature was adjusted to 50 to 60 ° C., 72.1 g (1.2 mol) of ethylenediamine was added dropwise over 30 minutes, followed by dropwise addition of 28.2 g (0.88 mol) of methanol over 30 minutes. Stir for 1 hour. At this stage, the reaction solution was separated into two layers. The lower layer was removed at 50 to 60 ° C., and the upper layer which was an organic layer was distilled. 133.7 g of 3- (4-methylpiperazin-1-yl) propyldimethylmethoxysilane was obtained as a fraction having a boiling point of 103 ° C./0.4 kPa (yield 73%).

[実施例4]
エチレンジアミンをトリエチレンテトラミン175.4g(1.2mol)に変更した以外は、実施例3と同様に反応を行った。メタノール添加後1時間撹拌した段階で反応液は2層に分離していた。50〜60℃で下層を除去し、有機層である上層を蒸留した。3−(4−メチルピペラジン−1−イル)プロピルジメチルメトキシシランを沸点103℃/0.4kPaの留分として131.4g得た(収率71%)。
[Example 4]
The reaction was performed in the same manner as in Example 3 except that ethylenediamine was changed to 175.4 g (1.2 mol) of triethylenetetramine. The reaction liquid was separated into two layers at the stage of stirring for 1 hour after the addition of methanol. The lower layer was removed at 50 to 60 ° C., and the upper layer which was an organic layer was distilled. 131.4 g of 3- (4-methylpiperazin-1-yl) propyldimethylmethoxysilane was obtained as a fraction having a boiling point of 103 ° C./0.4 kPa (yield 71%).

[実施例5]
撹拌機、還流器、滴下ロートおよび温度計を備えたフラスコに、4−アリロキシ−2,2,6,6−テトラメチルピペリジン98.7g(0.5mol)、20質量%塩化白金酸−2−プロパノール溶液0.10gを仕込み、60℃に加熱した。内温が安定した後、ジメチルクロロシラン47.3g(0.5mol)を2時間かけて滴下し、さらにその温度で1時間撹拌した。内温を50〜60℃とした後、エチレンジアミン45.1g(0.75mol)を30分かけて滴下し、続いてメタノール17.6g(0.55mol)を30分かけて滴下後、その温度で1時間撹拌した。この段階で反応液は2層に分離していた。50〜60℃で下層を除去し、有機層である上層を蒸留した。3−(2,2,6,6−テトラメチルピペリジン−4−イルオキシプロピルジメチルメトキシシランを沸点132℃/0.4kPaの留分として103.7g得た(収率72%)。
[Example 5]
In a flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 98.7 g (0.5 mol) of 4-allyloxy-2,2,6,6-tetramethylpiperidine, 20 mass% chloroplatinic acid-2- A propanol solution of 0.10 g was charged and heated to 60 ° C. After the internal temperature was stabilized, 47.3 g (0.5 mol) of dimethylchlorosilane was added dropwise over 2 hours, and the mixture was further stirred at that temperature for 1 hour. After the internal temperature was adjusted to 50 to 60 ° C., 45.1 g (0.75 mol) of ethylenediamine was added dropwise over 30 minutes, and then 17.6 g (0.55 mol) of methanol was added dropwise over 30 minutes, and then at that temperature. Stir for 1 hour. At this stage, the reaction solution was separated into two layers. The lower layer was removed at 50 to 60 ° C., and the upper layer which was an organic layer was distilled. 103.7 g of 3- (2,2,6,6-tetramethylpiperidin-4-yloxypropyldimethylmethoxysilane was obtained as a fraction having a boiling point of 132 ° C./0.4 kPa (yield 72%).

[実施例6]
撹拌機、還流器、滴下ロートおよび温度計を備えたフラスコに、4−アリロキシ−1,2,2,6,6−ペンタメチルピペリジン169.0g(0.8mol)、20質量%塩化白金酸−2−プロパノール溶液0.16gを仕込み、60℃に加熱した。内温が安定した後、ジメチルクロロシラン75.7g(0.8mol)を3時間かけて滴下し、さらにその温度で1時間撹拌した。内温を50〜60℃とした後、エチレンジアミン72.1g(1.2mol)を30分かけて滴下し、続いてメタノール28.2g(0.88mol)を30分かけて滴下後、その温度で1時間撹拌した。この段階で反応液は2層に分離していた。50〜60℃で下層を除去し、有機層である上層を蒸留した。3−(1,2,2,6,6−ペンタメチルピペリジン−4−イルオキシプロピルジメチルメトキシシランを沸点145℃/0.4kPaの留分として187.4g得た(収率78%)。
[Example 6]
In a flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 169.0 g (0.8 mol) of 4-allyloxy-1,2,2,6,6-pentamethylpiperidine, 20 mass% chloroplatinic acid- A 0.16 g 2-propanol solution was charged and heated to 60 ° C. After the internal temperature was stabilized, 75.7 g (0.8 mol) of dimethylchlorosilane was added dropwise over 3 hours, and the mixture was further stirred at that temperature for 1 hour. After the internal temperature was adjusted to 50 to 60 ° C., 72.1 g (1.2 mol) of ethylenediamine was added dropwise over 30 minutes, followed by dropwise addition of 28.2 g (0.88 mol) of methanol over 30 minutes. Stir for 1 hour. At this stage, the reaction solution was separated into two layers. The lower layer was removed at 50 to 60 ° C., and the upper layer which was an organic layer was distilled. 187.4 g of 3- (1,2,2,6,6-pentamethylpiperidin-4-yloxypropyldimethylmethoxysilane was obtained as a fraction having a boiling point of 145 ° C./0.4 kPa (yield 78%).

[実施例7]
撹拌機、還流器、滴下ロートおよび温度計を備えたフラスコに、N,N−ビス(トリメチルシリル)アリルアミン403.0g(2.0mol)、20質量%塩化白金酸−2−プロパノール溶液0.40gを仕込み、60℃に加熱した。内温が安定した後、ジメチルクロロシラン189.2g(2.0mol)を3時間かけて滴下し、さらにその温度で1時間撹拌した。内温を50〜60℃とした後、エチレンジアミン180.3g(3.0mol)を1時間かけて滴下し、続いてメタノール70.4g(2.2mol)を1時間かけて滴下後、その温度で1時間撹拌した。この段階で反応液は2層に分離していた。50〜60℃で下層を除去し、有機層である上層を蒸留した。3−[N,N−ビス(トリメチルシリル)アミノ]プロピルジメチルメトキシシランを沸点98℃/0.4kPaの留分として476.7g得た(収率82%)。
[Example 7]
In a flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 403.0 g (2.0 mol) of N, N-bis (trimethylsilyl) allylamine and 0.40 g of a 20 mass% chloroplatinic acid-2-propanol solution were added. Charged and heated to 60 ° C. After the internal temperature was stabilized, 189.2 g (2.0 mol) of dimethylchlorosilane was added dropwise over 3 hours, and the mixture was further stirred at that temperature for 1 hour. After the internal temperature was adjusted to 50 to 60 ° C., 180.3 g (3.0 mol) of ethylenediamine was added dropwise over 1 hour, followed by dropwise addition of 70.4 g (2.2 mol) of methanol over 1 hour. Stir for 1 hour. At this stage, the reaction solution was separated into two layers. The lower layer was removed at 50 to 60 ° C., and the upper layer which was an organic layer was distilled. 476.7 g of 3- [N, N-bis (trimethylsilyl) amino] propyldimethylmethoxysilane was obtained as a fraction having a boiling point of 98 ° C./0.4 kPa (yield 82%).

[実施例8]
撹拌機、還流器、滴下ロートおよび温度計を備えたフラスコに、N,N−ビス(トリメチルシリル)アリルアミン403.0g(2.0mol)、20質量%塩化白金酸−2−プロパノール溶液0.40gを仕込み、60℃に加熱した。内温が安定した後、ジメチルクロロシラン189.2g(2.0mol)を3時間かけて滴下し、さらにその温度で1時間撹拌した。内温を50〜60℃とした後、エチレンジアミン180.3g(3.0mol)を1時間かけて滴下し、続いてエタノール101.4g(2.2mol)を1時間かけて滴下後、その温度で1時間撹拌した。この段階で反応液は2層に分離していた。50〜60℃で下層を除去し、有機層である上層を蒸留した。3−[N,N−ビス(トリメチルシリル)アミノ]プロピルジメチルエトキシシランを沸点105℃/0.4kPaの留分として529.4g得た(収率87%)。
[Example 8]
In a flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 403.0 g (2.0 mol) of N, N-bis (trimethylsilyl) allylamine and 0.40 g of a 20 mass% chloroplatinic acid-2-propanol solution were added. Charged and heated to 60 ° C. After the internal temperature was stabilized, 189.2 g (2.0 mol) of dimethylchlorosilane was added dropwise over 3 hours, and the mixture was further stirred at that temperature for 1 hour. After setting the internal temperature to 50 to 60 ° C., 180.3 g (3.0 mol) of ethylenediamine was added dropwise over 1 hour, followed by dropwise addition of 101.4 g (2.2 mol) of ethanol over 1 hour, and at that temperature. Stir for 1 hour. At this stage, the reaction solution was separated into two layers. The lower layer was removed at 50 to 60 ° C., and the upper layer which was an organic layer was distilled. 529.4 g of 3- [N, N-bis (trimethylsilyl) amino] propyldimethylethoxysilane was obtained as a fraction having a boiling point of 105 ° C./0.4 kPa (yield 87%).

[実施例9]
撹拌機、還流器、滴下ロートおよび温度計を備えたフラスコに、1−アリルモルホリン101.8g(0.8mol)、20質量%塩化白金酸−2−プロパノール溶液0.16gを仕込み、60℃に加熱した。内温が安定した後、ジメチルクロロシラン75.7g(0.8mol)を3時間かけて滴下し、さらにその温度で1時間撹拌した。内温を50〜60℃とした後、エチレンジアミン72.1g(1.2mol)を30分かけて滴下し、続いてメタノール28.2g(0.88mol)を30分かけて滴下後、その温度で1時間撹拌した。この段階で反応液は2層に分離していた。50〜60℃で下層を除去し、有機層である上層を蒸留した。3−モルホリノプロピルジメチルメトキシシランを沸点108℃/0.4kPaの留分として130.0g得た(収率75%)。
[Example 9]
A flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer was charged with 101.8 g (0.8 mol) of 1-allylmorpholine and 0.16 g of a 20% by mass chloroplatinic acid-2-propanol solution, and heated to 60 ° C. Heated. After the internal temperature was stabilized, 75.7 g (0.8 mol) of dimethylchlorosilane was added dropwise over 3 hours, and the mixture was further stirred at that temperature for 1 hour. After the internal temperature was adjusted to 50 to 60 ° C., 72.1 g (1.2 mol) of ethylenediamine was added dropwise over 30 minutes, followed by dropwise addition of 28.2 g (0.88 mol) of methanol over 30 minutes. Stir for 1 hour. At this stage, the reaction solution was separated into two layers. The lower layer was removed at 50 to 60 ° C., and the upper layer which was an organic layer was distilled. 130.0 g of 3-morpholinopropyldimethylmethoxysilane was obtained as a fraction having a boiling point of 108 ° C./0.4 kPa (yield 75%).

Claims (3)

下記一般式(1)
Figure 2017128523
[{式中、R1′は、2価の単結合またはヘテロ原子を含んでいてもよい炭素数1〜18の2価炭化水素基を表し、Aは、下記一般式(2)または(3)
Figure 2017128523
(式(2)中、R2およびR3は、互いに独立して、水素原子、ヘテロ原子を含んでいてもよい置換もしくは非置換の炭素数1〜20の1価炭化水素基、またはトリオルガノシリル基を表すが、これらが互いに結合して窒素原子とともに炭素数2〜20の環を形成してもよい。式(3)中、R4は、水素原子、ヘテロ原子を含んでいてもよい置換もしくは非置換の炭素数1〜20の1価炭化水素基、またはトリオルガノシリル基を表し、R5およびR6は、互いに独立して炭素数1〜20の2価炭化水素基を表し、R7は、CHまたは窒素原子を表す。)
で示される基を表す。}]
で示される不飽和結合含有含窒素化合物と、下記一般式(4)
Figure 2017128523
(式中、R8は、置換または非置換の炭素数1〜20の1価炭化水素基を表し、Xは、ハロゲン原子を表す。)
で示されるハイドロジェンハロシラン化合物とを反応させ、得られた下記一般式(5)
Figure 2017128523
(式中、R1は、ヘテロ原子を含んでもよい炭素数2〜20の2価炭化水素基を表し、A、R8、およびXは前記と同じ。)
で示される含窒素ハロシラン化合物と、下記一般式(6)
Figure 2017128523
(式中、R9は、置換または非置換の炭素数1〜20の1価炭化水素基を表す。)
で示される水酸基含有化合物とを反応させる、下記一般式(7)
Figure 2017128523
(式中、A、R1、R8およびR9は、前記と同じ。)
で示される含窒素オルガノキシシラン化合物の製造方法であって、
前記含窒素ハロシラン化合物と前記水酸基含有化合物との反応を、総炭素数8以上のトリヒドロカルビルアミン化合物、ジアミン化合物、および窒素数3以上のポリアミン化合物からなる群から選ばれる少なくとも1種の含窒素有機化合物の存在下で行うことを特徴とする含窒素オルガノキシシラン化合物の製造方法。
The following general formula (1)
Figure 2017128523
[In the formula, R 1 ′ represents a divalent hydrocarbon group having 1 to 18 carbon atoms which may contain a divalent single bond or a hetero atom, and A represents the following general formula (2) or (3 )
Figure 2017128523
(In Formula (2), R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms which may contain a hetero atom, or triorgano). Although it represents a silyl group, these may be bonded to each other to form a ring having 2 to 20 carbon atoms together with a nitrogen atom, and in formula (3), R 4 may contain a hydrogen atom or a hetero atom. A substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms or a triorganosilyl group, R 5 and R 6 each independently represent a divalent hydrocarbon group having 1 to 20 carbon atoms, R 7 represents CH or a nitrogen atom.)
Represents a group represented by }]
And a nitrogen-containing compound containing an unsaturated bond represented by the following general formula (4):
Figure 2017128523
(In the formula, R 8 represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and X represents a halogen atom.)
The following general formula (5) obtained by reacting with a hydrogenhalosilane compound represented by
Figure 2017128523
(In the formula, R 1 represents a C 2-20 divalent hydrocarbon group which may contain a hetero atom, and A, R 8 and X are the same as above.)
And a nitrogen-containing halosilane compound represented by the following general formula (6)
Figure 2017128523
(In the formula, R 9 represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms.)
The following general formula (7) is reacted with a hydroxyl group-containing compound represented by
Figure 2017128523
(In the formula, A, R 1 , R 8 and R 9 are the same as described above.)
A method for producing a nitrogen-containing organoxysilane compound represented by
The reaction between the nitrogen-containing halosilane compound and the hydroxyl group-containing compound is carried out using at least one nitrogen-containing organic compound selected from the group consisting of a trihydrocarbylamine compound having a total carbon number of 8 or more, a diamine compound, and a polyamine compound having a nitrogen number of 3 or more. The manufacturing method of the nitrogen-containing organoxysilane compound characterized by performing in presence of a compound.
前記含窒素ハロシラン化合物と前記水酸基含有化合物との反応で生じた含窒素有機化合物のハロゲン化水素塩を含む液状物を、0〜200℃にて分離し、除去する工程を含む請求項1記載の含窒素オルガノキシシラン化合物の製造方法。   The liquid substance containing the halogenated salt of the nitrogen-containing organic compound produced by the reaction of the nitrogen-containing halosilane compound and the hydroxyl group-containing compound is separated at 0 to 200 ° C. and removed. A method for producing a nitrogen-containing organoxysilane compound. 前記含窒素有機化合物が、エチレンジアミン、ジエチレントリアミン、およびトリエチレンテトラミンから選ばれる少なくとも1種である請求項1または2記載の含窒素オルガノキシシラン化合物の製造方法。   The method for producing a nitrogen-containing organoxysilane compound according to claim 1 or 2, wherein the nitrogen-containing organic compound is at least one selected from ethylenediamine, diethylenetriamine, and triethylenetetramine.
JP2016008019A 2016-01-19 2016-01-19 Process for producing nitrogen-containing organoxysilane compound Active JP6531656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016008019A JP6531656B2 (en) 2016-01-19 2016-01-19 Process for producing nitrogen-containing organoxysilane compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016008019A JP6531656B2 (en) 2016-01-19 2016-01-19 Process for producing nitrogen-containing organoxysilane compound

Publications (2)

Publication Number Publication Date
JP2017128523A true JP2017128523A (en) 2017-07-27
JP6531656B2 JP6531656B2 (en) 2019-06-19

Family

ID=59394355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016008019A Active JP6531656B2 (en) 2016-01-19 2016-01-19 Process for producing nitrogen-containing organoxysilane compound

Country Status (1)

Country Link
JP (1) JP6531656B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374392A (en) * 1989-08-15 1991-03-28 Shin Etsu Chem Co Ltd Silane compound and production thereof
JP2004352695A (en) * 2003-05-30 2004-12-16 Shin Etsu Chem Co Ltd Chlorosilane bearing bissilylamino group, method for producing the same and method for producing organooxysilane bearing bissilylamino group
JP2005112820A (en) * 2003-10-10 2005-04-28 Shin Etsu Chem Co Ltd Method for producing 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane
JP2010105918A (en) * 2008-10-28 2010-05-13 Jsr Corp Method for producing alkoxysilane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374392A (en) * 1989-08-15 1991-03-28 Shin Etsu Chem Co Ltd Silane compound and production thereof
JP2004352695A (en) * 2003-05-30 2004-12-16 Shin Etsu Chem Co Ltd Chlorosilane bearing bissilylamino group, method for producing the same and method for producing organooxysilane bearing bissilylamino group
JP2005112820A (en) * 2003-10-10 2005-04-28 Shin Etsu Chem Co Ltd Method for producing 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane
JP2010105918A (en) * 2008-10-28 2010-05-13 Jsr Corp Method for producing alkoxysilane

Also Published As

Publication number Publication date
JP6531656B2 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
JP4803381B2 (en) Method for producing aminoalkylsilane compound
JP2015196674A (en) Method for producing silazane compound
JP5652360B2 (en) Method for producing organoxysilane compound
CA2405195C (en) Preparation of secondary aminoisobutylalkoxysilanes
JP5664277B2 (en) Method for producing bis (organoxysilyl) alkane compound
JP6702136B2 (en) Method for producing silane compound having bissilylamino group
JP4771075B2 (en) Organoxysilane compound having protected piperazino group and method for producing the same
JP6531656B2 (en) Process for producing nitrogen-containing organoxysilane compound
EP3015471B1 (en) Novel bisalkoxysilane compound and its production method
JP2000103859A (en) Production of epoxy-group-containing organopolysiloxane or epoxy-group-containing organosilane
JP4344936B2 (en) Method for producing organosilicon compound containing amino groups at both ends
JP5170834B2 (en) Storage stability imparting agent for dealcohol-free room temperature curable silicone rubber composition
JP3915875B2 (en) Process for producing N-substituted-3-silylpropylamines and derivatives thereof
JP3137439B2 (en) 1-aza-2-silacyclobutane compound and method for producing the same
TW201533113A (en) Nitrogen-containing organoxysilane compound composition and making method
JP3972162B2 (en) Process for producing isocyanato group-containing organosilicon compounds
JP4275417B2 (en) Method for producing alkoxysilane compound
KR20100114886A (en) Silahydrocarbyl esters of 3-chloro-2-trifluoromethylpropionic acid, their preparation and preparation of the corresponding acrylic acid esters
JP5644515B2 (en) Unsaturated bond-containing silyl group-protected amino acid compound and method for producing the same
TWI724294B (en) Dimethylsilyl compound containing unsaturated bond and its manufacturing method
JPH06107671A (en) Organosilicon compound and its production
JP2644160B2 (en) Method for producing isocyanate group-containing organopolysiloxane
JP3815535B2 (en) Method for silylation of alcohols
EP3660025A1 (en) Nitrogen-containing cyclic organoxysilane compound and method for producing the same
JP3124910B2 (en) Cyclotrisiloxane and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190506

R150 Certificate of patent or registration of utility model

Ref document number: 6531656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150