JP2017127821A - Treatment method of reducing sulfur constituent-containing water - Google Patents

Treatment method of reducing sulfur constituent-containing water Download PDF

Info

Publication number
JP2017127821A
JP2017127821A JP2016009707A JP2016009707A JP2017127821A JP 2017127821 A JP2017127821 A JP 2017127821A JP 2016009707 A JP2016009707 A JP 2016009707A JP 2016009707 A JP2016009707 A JP 2016009707A JP 2017127821 A JP2017127821 A JP 2017127821A
Authority
JP
Japan
Prior art keywords
water
treated
divalent
hydrogen peroxide
iron compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016009707A
Other languages
Japanese (ja)
Other versions
JP6165898B1 (en
Inventor
清志 荒川
Kiyoshi Arakawa
清志 荒川
吉博 岡本
Yoshihiro Okamoto
吉博 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Eco Tech Corp
Original Assignee
Nippon Steel and Sumikin Eco Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Eco Tech Corp filed Critical Nippon Steel and Sumikin Eco Tech Corp
Priority to JP2016009707A priority Critical patent/JP6165898B1/en
Application granted granted Critical
Publication of JP6165898B1 publication Critical patent/JP6165898B1/en
Publication of JP2017127821A publication Critical patent/JP2017127821A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of treating more effectively a reducing sulfur constituent in water to be treated, to the water to be treated containing the reducing sulfur constituent.SOLUTION: A treatment method of a reducing sulfur constituent-containing water includes steps for: adding a divalent or trivalent iron compound into water to be treated containing the reducing sulfur constituent; and adding hydrogen peroxide to the water to be treated. In the treatment method, the divalent or trivalent iron compound can be added at the quantity of 0.10 time of a reaction equivalent, in terms of iron, to a concentration of the whole reducing sulfur in the water to be treated.SELECTED DRAWING: None

Description

本発明は、還元性硫黄成分を含有する水の処理方法に関する。   The present invention relates to a method for treating water containing a reducing sulfur component.

還元性硫黄成分を含有する廃水は、写真工業、石油精製工業、化学工業、及び金属工業などの各種工場、並びに鉱山などから発生するが、還元性硫黄成分自体のCOD(化学的酸素要求量)が高いため、下水への放流前に浄化処理が必要である。   Waste water containing reducing sulfur components is generated from various factories such as the photographic industry, petroleum refining industry, chemical industry, and metal industry, and mines. COD (chemical oxygen demand) of the reducing sulfur component itself Therefore, it is necessary to clean up before discharging into sewage.

還元性硫黄成分を含有する廃水の浄化処理方法としては、物理化学的処理と生物学的処理がある。物理化学的処理には、例えば、次亜塩素酸ソーダや過酸化水素などの酸化剤を用いて、還元性硫黄成分を化学的に処理する方法がある(例えば特許文献1)。また、生物学的処理には、例えば、硫黄酸化細菌などの微生物を用いた処理方法がある(例えば特許文献2、特許文献3)。   There are physicochemical treatment and biological treatment as a purification method of wastewater containing a reducing sulfur component. As the physicochemical treatment, for example, there is a method of chemically treating a reducing sulfur component using an oxidizing agent such as sodium hypochlorite or hydrogen peroxide (for example, Patent Document 1). Biological treatment includes, for example, treatment methods using microorganisms such as sulfur-oxidizing bacteria (for example, Patent Document 2 and Patent Document 3).

上述のような酸化剤を使用する物理化学的処理による方法は、生物学的処理に比べて、簡便であること、処理の安定性が良いこと、水質レベルの高い処理が可能であることなどの利点がある。また、上述のような微生物を用いた生物学的処理による方法は、物理化学的処理に比べて、環境に対する影響が少ないことや低コストでの処理が可能であることなどの利点がある。   The physicochemical treatment method using an oxidant as described above is simpler than biological treatment, has good treatment stability, and enables treatment with a high water quality level. There are advantages. In addition, the above-described biological treatment method using microorganisms has advantages such as less influence on the environment and low-cost treatment compared to physicochemical treatment.

特開平7−116675号公報Japanese Patent Laid-Open No. 7-116675 特開平7−251195号公報JP 7-251195 A 特開2014−171964号公報JP 2014-171964 A

還元性硫黄成分を含有する水(被処理水)に対して、低コストでの処理が可能であることなどから、生物学的処理を行うことに大いに利点があり、本発明者らも、そのような被処理水に対する生物学的処理の検討を行っていた。しかし、生物学的処理は、被処理水の水温の低下や毒性物質の混入による活性の低下により、生物学的処理が機能しなくなる可能性がある。特に、前述の硫黄酸化細菌は、水温の影響を受けやすいため、水温の低下により、処理能が低下する可能性がある。   The water containing the reducing sulfur component (treated water) can be treated at a low cost, and thus there is a great advantage in conducting biological treatment. The biological treatment for such treated water was being studied. However, in the biological treatment, the biological treatment may not function due to a decrease in the water temperature of the water to be treated or a decrease in activity due to contamination with toxic substances. In particular, since the sulfur-oxidizing bacteria described above are easily affected by the water temperature, there is a possibility that the processing ability may be reduced due to a decrease in the water temperature.

また、実際に処理対象となる被処理水が生じる現場においては、被処理水中の懸濁物質は一般的に単一ではなく、かつ、求められる水質レベルもより高まっているという実状がある。さらに、被処理水中の汚濁物質の質的又は量的状況、目標の処理水質レベル、経済性(処理コスト)、環境への影響などを考慮して、多種多様な水処理プロセスの中から適切な方法を組み合わせて、多段階で処理することが多いという実状もある。
これらの実情から、還元性硫黄成分を含有する被処理水を、物理化学的処理によっても有効に処理できる方法が望まれている。
Moreover, in the field where the to-be-processed water used as a process target actually arises, the suspended substance in to-be-processed water is generally not single, and there exists the actual condition that the required water quality level is also raising more. Furthermore, considering the qualitative or quantitative status of pollutants in the treated water, the target treated water quality level, economic efficiency (treatment cost), environmental impact, etc. There is also the actual situation that processing is often performed in multiple stages by combining methods.
From these circumstances, there is a demand for a method that can effectively treat water to be treated containing a reducing sulfur component by physicochemical treatment.

そこで、本発明は、還元性硫黄成分を含有する被処理水に対して、被処理水中の還元性硫黄成分をより有効に処理することが可能な方法を提供しようとするものである。   Then, this invention tends to provide the method which can process the reducing sulfur component in to-be-processed water more effectively with respect to the to-be-processed water containing a reducing sulfur component.

本発明者らは、還元性硫黄成分を含有する被処理水に対して、環境への影響を考慮して、酸化剤として過酸化水素を用いた処理を検討した。その結果、本発明者らは、過酸化水素のみによっては被処理水中の還元性硫黄成分を有効に処理することは困難であるという認識を得た。また、還元性硫黄成分を含有する被処理水に過酸化水素を添加し、適性pHまでpHを低下させると、被処理水中で生じる硫化水素に起因した臭気が発生する場合がある。本発明者らは、その臭気を低減するべく、鉄化合物を添加したところ、被処理水中の還元性硫黄成分を有効に処理することが可能な方法となり得ることを見出し、本発明を完成するに至った。   The inventors of the present invention have examined a treatment using hydrogen peroxide as an oxidant in consideration of the environmental impact of water to be treated containing a reducing sulfur component. As a result, the present inventors have recognized that it is difficult to effectively treat the reducing sulfur component in the water to be treated only with hydrogen peroxide. Moreover, when hydrogen peroxide is added to the water to be treated containing a reducing sulfur component and the pH is lowered to an appropriate pH, an odor due to hydrogen sulfide generated in the water to be treated may be generated. The present inventors have found that when an iron compound is added to reduce the odor, it can be a method capable of effectively treating the reducing sulfur component in the water to be treated, and the present invention is completed. It came.

本発明は、還元性硫黄成分を含有する被処理水に対して、2価又は3価の鉄化合物を添加する工程と、前記被処理水に対して、過酸化水素を添加する工程と、を含む、還元性硫黄成分含有水の処理方法を提供する。   The present invention includes a step of adding a divalent or trivalent iron compound to the water to be treated containing a reducing sulfur component, and a step of adding hydrogen peroxide to the water to be treated. A method for treating water containing a reducing sulfur component is provided.

本発明によれば、還元性硫黄成分を含有する被処理水に対して、被処理水中の還元性硫黄成分をより有効に処理することが可能な方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the method which can process the reducing sulfur component in to-be-processed water more effectively with respect to the to-be-processed water containing a reducing sulfur component can be provided.

以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。   Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments.

本発明の一実施形態の還元性硫黄成分含有水の処理方法(以下、単に「処理方法」と記載することがある。)は、還元性硫黄成分を含有する被処理水に対して、2価又は3価の鉄化合物を添加する工程と、前記被処理水に対して、過酸化水素を添加する工程とを含む。まず、本方法の採用に好適な被処理水について詳述する。   The treatment method for reducing sulfur component-containing water according to an embodiment of the present invention (hereinafter sometimes simply referred to as “treatment method”) is bivalent with respect to the water to be treated containing the reducing sulfur component. Alternatively, the method includes a step of adding a trivalent iron compound and a step of adding hydrogen peroxide to the water to be treated. First, water to be treated that is suitable for adopting this method will be described in detail.

(被処理水)
本発明の一実施形態の処理方法では、処理対象となる被処理水(原水)は、還元性硫黄成分を含有する水(本明細書において、「還元性硫黄成分含有水」と記載することがある。)であれば特に限定されない。被処理水には、例えば、各種の廃水及び排水が含まれ、以下では、廃水及び排水を特に区別することなく、廃水と記載することとする。好適な被処理水としては、例えば、スラグの浸透水、並びに写真工業、石油精製工業、化学工業、繊維工業、製紙・パルプ工業、及び金属工業などの各種の工場廃水を挙げることができる。本発明の一実施形態の処理方法は、上述の廃水が生じるような現場において、水処理を行うことが可能である。
(Treated water)
In the treatment method of one embodiment of the present invention, water to be treated (raw water) to be treated is water containing a reducible sulfur component (in this specification, “reducible sulfur component-containing water” may be described). If it is), it will not be specifically limited. The treated water includes, for example, various types of wastewater and wastewater, and hereinafter, wastewater and wastewater are described as wastewater without particularly distinguishing them. Suitable water to be treated includes, for example, slag infiltrated water and various factory wastewaters such as the photographic industry, petroleum refining industry, chemical industry, textile industry, paper and pulp industry, and metal industry. The treatment method of one embodiment of the present invention can perform water treatment at a site where the above-described wastewater is generated.

被処理水中に含有される還元性硫黄成分は、硫黄原子を有するイオン及び/又は化合物である。還元性硫黄成分としては、例えば、硫化物イオン(S2-)、チオ硫酸イオン(S23 2-)、亜ジチオン酸イオン(S24 2-)、亜硫酸イオン(SO3 2-)、重亜硫酸イオン(HSO3 -)、ポリチオン酸イオン(S36 2-)、及びこれらの塩(化合物)、並びに単体硫黄(S)、及び硫化水素(H2S)などが挙げられる。上述の塩としては、カリウム及びナトリウムなどのアルカリ金属塩、カルシウムなどのアルカリ土類金属塩、並びにアンモニウム塩などが挙げられる。被処理水中には、1種の還元性硫黄成分が単独で含有されていてもよく、2種以上の還元性硫黄成分が含有されていてもよい。 The reducing sulfur component contained in the water to be treated is an ion and / or compound having a sulfur atom. Examples of the reducing sulfur component include sulfide ions (S 2− ), thiosulfate ions (S 2 O 3 2− ), dithionite ions (S 2 O 4 2− ), sulfite ions (SO 3 2−). ), Bisulfite ion (HSO 3 ), polythionate ion (S 3 O 6 2− ), and their salts (compounds), and elemental sulfur (S) and hydrogen sulfide (H 2 S). . Examples of the salt include alkali metal salts such as potassium and sodium, alkaline earth metal salts such as calcium, and ammonium salts. In the for-treatment water, one kind of reducing sulfur component may be contained alone, or two or more kinds of reducing sulfur components may be contained.

本発明の一実施形態の方法は、還元性硫黄成分として、硫化物イオン(S2-)、チオ硫酸イオン(S23 2-)、亜硫酸イオン(SO3 2-)、及びこれらの塩からなる群より選ばれる少なくとも1種を含有する被処理水に対して好適である。このような被処理水に対して、2価又は3価の鉄化合物の添加、及び過酸化水素の添加によるそれぞれの効果が発揮されやすいと考えられる。 The method according to an embodiment of the present invention includes sulfide ions (S 2− ), thiosulfate ions (S 2 O 3 2− ), sulfite ions (SO 3 2− ), and salts thereof as the reducing sulfur component. Suitable for water to be treated containing at least one selected from the group consisting of: It is considered that the effects of the addition of a divalent or trivalent iron compound and the addition of hydrogen peroxide are easily exerted on such water to be treated.

上述のような被処理水は、通常、アルカリ性のpH領域にある。本発明の一実施形態の処理方法による処理対象に好適な被処理水としては、pHが8〜14である被処理水が好適であり、pHが9〜13である被処理水がより好適である。また、白金電極法により測定される酸化還元電位(ORP)が、0mV以下の範囲にある被処理水も好適である。さらに、JIS K0102:2013で規定される化学的酸素要求量(CODMn;100℃における過マンガン酸カリウムによる酸素消費量)が、50〜500mg/Lの範囲にある被処理水も好適である。なお、本明細書において、被処理水(原水)、及び処理水のpH、及びORPは、特に断りのない限り、25℃での値である。 The treated water as described above is usually in an alkaline pH region. As the water to be treated suitable for the treatment target by the treatment method of one embodiment of the present invention, water to be treated having a pH of 8 to 14 is suitable, and water to be treated having a pH of 9 to 13 is more suitable. is there. Moreover, the to-be-processed water whose oxidation-reduction potential (ORP) measured by a platinum electrode method exists in the range of 0 mV or less is also suitable. Furthermore, water to be treated having a chemical oxygen demand (COD Mn ; oxygen consumption by potassium permanganate at 100 ° C.) defined by JIS K0102: 2013 is also in the range of 50 to 500 mg / L. In addition, in this specification, to-be-processed water (raw water), pH of treated water, and ORP are values in 25 degreeC unless there is particular notice.

還元性硫黄成分を含有する被処理水に、2価又は3価の鉄化合物が添加されると、鉄化合物による鉄イオン(Fe2+、Fe3+)と被処理水中の還元性硫黄成分とが反応し、硫化鉄(FeS、Fe23)が生成されると考えられる(下記反応式(1)及び(2)参照)。
Fe2+ + S2- → FeS ・・・(1)
2Fe3+ + 3S2- → Fe23 ・・・(2)
When a divalent or trivalent iron compound is added to the treated water containing a reducing sulfur component, iron ions (Fe 2+ , Fe 3+ ) by the iron compound and the reducing sulfur component in the treated water Is reacted to produce iron sulfide (FeS, Fe 2 S 3 ) (see the following reaction formulas (1) and (2)).
Fe 2+ + S 2- → FeS (1)
2Fe 3+ + 3S 2- → Fe 2 S 3 (2)

また、還元性硫黄成分を含有する被処理水に、過酸化水素(H22)が添加されると、過酸化水素と被処理水中の還元性硫黄成分との酸化反応が起こり、被処理水中の還元性硫黄成分は最終的に硫酸イオン(SO4 2-)にまで酸化されると考えられる(下記反応式(3)参照)。
4H22 + S2- → SO4 2- + 4H2O ・・・(3)
Further, when hydrogen peroxide (H 2 O 2 ) is added to the water to be treated containing a reducing sulfur component, an oxidation reaction between hydrogen peroxide and the reducing sulfur component in the water to be treated occurs, and the water to be treated is treated. It is considered that the reducing sulfur component in water is finally oxidized to sulfate ions (SO 4 2− ) (see the following reaction formula (3)).
4H 2 O 2 + S 2− → SO 4 2− + 4H 2 O (3)

ここで、酸性のpH領域下で、過酸化水素に2価の鉄化合物が触媒的に反応して、酸化力の強いヒドロキシラジカル(・OH)を発生させるフェントン反応がある(下記反応式(4)参照)。フェントン反応は、2価の鉄化合物が触媒として作用し、酸性のpH領域下で起こる反応であることが知られている。
Fe2+ + H22 → Fe3+ + OH- + ・OH ・・・(4)
Here, under an acidic pH region, there is a Fenton reaction in which a divalent iron compound reacts catalytically with hydrogen peroxide to generate a highly oxidizing hydroxy radical (.OH) (the following reaction formula (4) )reference). It is known that the Fenton reaction is a reaction that takes place in an acidic pH region with a divalent iron compound acting as a catalyst.
Fe 2+ + H 2 O 2 → Fe 3+ + OH + OH (4)

フェントン反応は、一般的に、酸性域の反応であることが知られており、アルカリ性域では適用しない。また、アルカリ性のpH領域にある被処理水に鉄化合物を添加すると、鉄化合物が硫化物(上記反応式(1)及び(2)参照)及び水酸化物として析出し、スラッジが生じる。還元性硫黄成分の全てが鉄化合物との化合物を生成しないため、処理できない被酸化物質が残存してしまう。そのため、従来は、硫黄酸化細菌を用いた生物処理や次亜塩素酸ソーダなどの酸化剤を用いた処理を行っていた。
しかし、本発明の一実施形態の処理方法では、処理対象の被処理水は、前述の通り、通常、アルカリ性のpH領域で還元雰囲気であるため、3価の鉄化合物はその被処理水に添加されると2価の鉄化合物に還元され、また、2価の鉄化合物は安定に存在すると考えられる(下記反応式(5)参照)。
Fe3+ +e- → Fe2+ ・・・(5)
ここに過酸化水素を添加することで、アルカリ性域でもフェントン反応(上記反応式(4)参照)が起こり、ヒドロキシラジカルが生じ、被処理水中の還元性硫黄成分が酸化されるものと考えられる。また、本方法では、2価又は3価の鉄化合物を触媒としての使用に限らず、被処理水中の還元性硫黄成分の処理剤としても利用することができる。
The Fenton reaction is generally known to be a reaction in the acidic range, and is not applied in the alkaline range. In addition, when an iron compound is added to water to be treated in an alkaline pH region, the iron compound is precipitated as a sulfide (see the above reaction formulas (1) and (2)) and a hydroxide, and sludge is generated. Since all of the reducing sulfur component does not form a compound with an iron compound, an oxidizable substance that cannot be treated remains. Therefore, conventionally, biological treatment using sulfur-oxidizing bacteria and treatment using an oxidizing agent such as sodium hypochlorite have been performed.
However, in the treatment method according to an embodiment of the present invention, the water to be treated is usually a reducing atmosphere in an alkaline pH region as described above, and therefore a trivalent iron compound is added to the water to be treated. Then, it is reduced to a divalent iron compound, and the divalent iron compound is considered to exist stably (see the following reaction formula (5)).
Fe 3+ + e → Fe 2+ (5)
By adding hydrogen peroxide here, it is considered that the Fenton reaction (see the above reaction formula (4)) occurs even in an alkaline region, a hydroxy radical is generated, and the reducing sulfur component in the water to be treated is oxidized. Moreover, in this method, not only the use of a divalent or trivalent iron compound as a catalyst but also a treating agent for a reducing sulfur component in water to be treated can be used.

本発明の一実施形態の処理方法では、上述のように、被処理水中で2価又は3価の鉄化合物と還元性硫黄成分との反応による硫化鉄が生成されることで、後処理としての固液分離によって、被処理水を浄化しやすくなる。このように、本方法では、被処理水中の還元性硫黄成分を固定化し、除去することが可能となる。また、本方法では、上述のような、被処理水中での過酸化水素と還元性硫黄成分との酸化反応によって、被処理水の化学的酸素要求量(COD)の値を低下させることができる。さらに、前記酸化反応によって、被処理水中の還元性硫黄成分を酸化させて最終的に硫酸イオン(SO4 2-)を生成することが可能であり、無害な硫酸イオンとして放流したり、また、硫酸イオンに水酸化カルシウム(Ca(OH)2)を反応させて石膏(CaSO4)として回収することができる。このように、本方法では、被処理水中の還元性硫黄成分を酸化させ、除去することが可能となる。 In the treatment method according to one embodiment of the present invention, as described above, iron sulfide is generated by the reaction of a divalent or trivalent iron compound and a reducing sulfur component in the water to be treated. Solid water separation makes it easy to purify the water to be treated. Thus, in this method, it becomes possible to fix and remove the reducing sulfur component in the water to be treated. Further, in this method, the chemical oxygen demand (COD) value of the water to be treated can be reduced by the oxidation reaction between hydrogen peroxide and the reducing sulfur component in the water to be treated as described above. . Furthermore, by the oxidation reaction, it is possible to oxidize the reducing sulfur component in the water to be treated to finally generate sulfate ions (SO 4 2− ), which can be discharged as harmless sulfate ions, It can be recovered as gypsum (CaSO 4 ) by reacting sulfate ions with calcium hydroxide (Ca (OH) 2 ). Thus, in this method, it becomes possible to oxidize and remove the reducing sulfur component in the water to be treated.

なお、被処理水への2価又は3価の鉄化合物の添加によって、上述の通り、還元性硫黄成分を固定化するため、硫化水素の発生を抑制することができる。そのため、被処理水中に含有し得る硫化水素や、被処理水への過酸化水素の添加により生成し得る硫化水素に起因した臭気を低減することも可能である。   In addition, since a reducible sulfur component is fixed as above-mentioned by addition of the bivalent or trivalent iron compound to to-be-processed water, generation | occurrence | production of hydrogen sulfide can be suppressed. Therefore, it is possible to reduce odor caused by hydrogen sulfide that can be contained in the water to be treated and hydrogen sulfide that can be generated by adding hydrogen peroxide to the water to be treated.

(2価又は3価の鉄化合物)
被処理水に添加される2価又は3価の鉄化合物としては、鉄のハロゲン化物、鉄の有機酸塩、及び鉄の無機酸塩などを用いることができる。これらの鉄化合物は、無水物の形態で用いられてもよく、水和物の形態で用いられてもよい。
(Divalent or trivalent iron compound)
Examples of the divalent or trivalent iron compound added to the water to be treated include iron halides, iron organic acid salts, and iron inorganic acid salts. These iron compounds may be used in the form of an anhydride or may be used in the form of a hydrate.

鉄のハロゲン化物の具体例としては、2価及び3価の区別なく、フッ化鉄、塩化鉄、臭化鉄、及びヨウ化鉄などを挙げることができる。鉄の有機酸塩の具体例としては、酢酸鉄、クエン酸鉄、グルコン酸鉄、シュウ酸鉄、及び乳酸鉄などを挙げることができる。鉄の無機酸塩の具体例としては、硝酸鉄、硫酸鉄、及びリン酸鉄などを挙げることができる。   Specific examples of iron halides include iron fluoride, iron chloride, iron bromide, iron iodide, and the like, regardless of whether they are divalent or trivalent. Specific examples of the organic acid salt of iron include iron acetate, iron citrate, iron gluconate, iron oxalate, and iron lactate. Specific examples of the inorganic acid salt of iron include iron nitrate, iron sulfate, and iron phosphate.

本発明の一実施形態の処理方法では、1種又は2種以上の2価又は3価の鉄化合物を用いることができる。上述の鉄化合物のなかでも、塩化鉄(II)、塩化鉄(III)、硫酸鉄(II)、及び硫酸鉄(III)からなる群より選ばれる1種以上を用いることが好ましい。また、2価の鉄化合物と3価の鉄化合物とでは、還元が不要であるという観点からいえば、2価の鉄化合物が好ましい。   In the treatment method of one embodiment of the present invention, one or more divalent or trivalent iron compounds can be used. Among the iron compounds described above, it is preferable to use one or more selected from the group consisting of iron chloride (II), iron chloride (III), iron sulfate (II), and iron sulfate (III). In addition, a divalent iron compound and a trivalent iron compound are preferably divalent iron compounds from the viewpoint that reduction is unnecessary.

本発明の一実施形態の処理方法では、2価又は3価の鉄化合物は、液状媒体(好適には水)に分散されたスラリー(懸濁液)の形態で被処理水に添加されることが、作業性の観点から好ましい。2価又は3価の鉄化合物を含有するスラリー(以下、「鉄含有スラリー」と記載することがある。)としては、市販品を用いることもできる。そのような市販品の好適なものとしては、例えば、日鉄住金環境社製の商品名「フェロカットFI」及び「フェロカットFII」を挙げることができる。   In the treatment method of one embodiment of the present invention, the divalent or trivalent iron compound is added to the water to be treated in the form of a slurry (suspension) dispersed in a liquid medium (preferably water). Is preferable from the viewpoint of workability. As a slurry containing a divalent or trivalent iron compound (hereinafter sometimes referred to as “iron-containing slurry”), a commercially available product may be used. As a suitable thing of such a commercial item, the brand names "Ferocut FI" and "Ferocut FII" by Nippon Steel & Sumikin Environment Co., Ltd. can be mentioned, for example.

前記鉄含有スラリーを用いる場合、その鉄含有スラリー中の2価又は3価の鉄化合物の含有量は、特に限定されないが、例えば、その鉄化合物(例えばFeCl2又はFeCl3)として、好ましくは3〜70質量%、より好ましくは10〜60質量%、さらに好ましくは20〜50質量%とすることができる。また、例えば、鉄含有スラリー中の2価又は3価の鉄化合物の含有量は、2価の鉄イオン(Fe2+)又は3価の鉄イオン(Fe3+)として、好ましくは1〜25質量%、より好ましくは3〜20質量%、さらに好ましくは7〜17質量%とすることができる。 When the iron-containing slurry is used, the content of the divalent or trivalent iron compound in the iron-containing slurry is not particularly limited. For example, the iron compound (for example, FeCl 2 or FeCl 3 ) is preferably 3 -70 mass%, More preferably, it is 10-60 mass%, More preferably, it can be 20-50 mass%. For example, the content of the divalent or trivalent iron compound in the iron-containing slurry is preferably 1 to 25 as divalent iron ions (Fe 2+ ) or trivalent iron ions (Fe 3+ ). % By mass, more preferably 3 to 20% by mass, and even more preferably 7 to 17% by mass.

被処理水に対する2価又は3価の鉄化合物の鉄としての添加量は、被処理水中の総還元性硫黄(総還元性S)の濃度に対して、反応当量の0.10倍以上であることが好ましく、より好ましくは0.15倍以上、さらに好ましくは0.20倍以上である。一方、この場合の2価又は3価の鉄化合物の添加量の上限は特に限定されないが、鉄化合物を添加することによるpH低下の観点から、当該鉄化合物の鉄としての添加量は、被処理水中の総還元性硫黄の濃度に対して、反応当量の2倍以下であることが好ましい。本明細書において、2価の鉄化合物と被処理水中の総還元性硫黄(又は後述する硫化物イオン)との反応当量は、上記反応式(1)に基づいて計算される値である。本明細書において、3価の鉄化合物と被処理水中の総還元性硫黄(又は後述する硫化物イオン)との反応当量は、上記反応式(2)に基づいて計算される値である。   The amount of divalent or trivalent iron compound added to the treated water as iron is 0.10 times or more the reaction equivalent with respect to the concentration of the total reducing sulfur (total reducing S) in the treated water. It is preferably 0.15 times or more, more preferably 0.20 times or more. On the other hand, although the upper limit of the addition amount of the divalent or trivalent iron compound in this case is not particularly limited, the addition amount of the iron compound as iron from the viewpoint of lowering the pH due to the addition of the iron compound is subject to treatment. It is preferable that it is 2 times or less of the reaction equivalent with respect to the density | concentration of the total reducing sulfur in water. In this specification, the reaction equivalent of the divalent iron compound and the total reducing sulfur (or sulfide ion described later) in the water to be treated is a value calculated based on the above reaction formula (1). In this specification, the reaction equivalent of the trivalent iron compound and the total reducing sulfur (or sulfide ion described below) in the water to be treated is a value calculated based on the above reaction formula (2).

硫化物イオン(S2-)を含有する被処理水に対して処理を行う場合には、その被処理水に対する2価又は3価の鉄化合物の鉄としての添加量は、被処理水中のS2-の濃度に対して、反応当量の0.35倍以上であることが好ましく、より好ましくは0.50倍以上、さらに好ましくは0.70倍以上である。一方、この場合の2価又は3価の鉄化合物の添加量の上限は特に限定されないが、鉄化合物を添加することによるpH低下の観点から、当該鉄化合物の鉄としての添加量は、被処理水中のS2-の濃度に対して、反応当量の3倍以下であることが好ましい。 When the treatment water containing sulfide ions (S 2− ) is treated, the amount of divalent or trivalent iron compound added to the treatment water as iron is the amount of S in the treatment water. The concentration of 2- is preferably 0.35 times or more of the reaction equivalent, more preferably 0.50 times or more, and still more preferably 0.70 times or more. On the other hand, although the upper limit of the addition amount of the divalent or trivalent iron compound in this case is not particularly limited, the addition amount of the iron compound as iron from the viewpoint of lowering the pH due to the addition of the iron compound is subject to treatment. It is preferably 3 times or less of the reaction equivalent with respect to the concentration of S 2− in water.

(過酸化水素)
被処理水に添加される過酸化水素は、上述の通り、酸化剤としての役割を有する。また、過酸化水素は、後述する通り、ORPの管理のために被処理水に添加され、所定のORPの範囲になるように添加される。具体的には、2価又は3価の鉄化合物、及び過酸化水素を添加した後の被処理水のpH11のときの酸化還元電位(ORP)が−150〜50mVとなるように、過酸化水素を添加することが好ましい。過酸化水素は、作業性の観点から、水溶液(過酸化水素水)の形態で用いられることが好ましい。
(hydrogen peroxide)
As described above, hydrogen peroxide added to the water to be treated has a role as an oxidizing agent. Further, as described later, hydrogen peroxide is added to the water to be treated for the management of ORP, and is added so as to fall within a predetermined ORP range. Specifically, hydrogen peroxide so that the oxidation-reduction potential (ORP) at the pH 11 of the water to be treated after addition of the divalent or trivalent iron compound and hydrogen peroxide is −150 to 50 mV. Is preferably added. Hydrogen peroxide is preferably used in the form of an aqueous solution (hydrogen peroxide solution) from the viewpoint of workability.

なお、本発明の一実施形態の処理方法は、被処理水に対して、過酸化水素に加えて、過酸化水素以外の他の酸化剤を添加してもよい。他の酸化剤としては、例えば、酸素、オゾン、次亜塩素酸及びその塩、並びに過マンガン酸及びその塩などが挙げられる。   In the treatment method of one embodiment of the present invention, an oxidizing agent other than hydrogen peroxide may be added to the water to be treated in addition to hydrogen peroxide. Examples of the other oxidizing agent include oxygen, ozone, hypochlorous acid and its salt, and permanganic acid and its salt.

本発明の一実施形態の処理方法では、被処理水への2価又は3価の鉄化合物及び過酸化水素の添加順序は特に限定されない。本方法では、被処理水に2価又は3価の鉄化合物を添加した後、過酸化水素を添加してもよく、被処理水に過酸化水素を添加した後、2価又は3価の鉄化合物を添加してもよく、被処理水に2価又は3価の鉄化合物及び過酸化水素を同時期に添加してもよい。また、被処理水に2価又は3価の鉄化合物及び過酸化水素を同時期に添加する場合、その鉄化合物と過酸化水素とを別々に添加してもよく、それらを混合して添加してもよい。さらに、被処理水への2価又は3価の鉄化合物の添加、及び過酸化水素の添加は、それぞれ、一度に行ってもよく、複数回に分けて行ってもよい。   In the treatment method of one embodiment of the present invention, the order of adding the divalent or trivalent iron compound and hydrogen peroxide to the water to be treated is not particularly limited. In this method, after adding a divalent or trivalent iron compound to the water to be treated, hydrogen peroxide may be added, or after adding hydrogen peroxide to the water to be treated, divalent or trivalent iron. A compound may be added, and a divalent or trivalent iron compound and hydrogen peroxide may be added to the water to be treated at the same time. In addition, when a divalent or trivalent iron compound and hydrogen peroxide are added to the water to be treated at the same time, the iron compound and hydrogen peroxide may be added separately, or they may be mixed and added. May be. Furthermore, the addition of the divalent or trivalent iron compound and the addition of hydrogen peroxide to the water to be treated may be performed at once, or may be performed in a plurality of times.

本発明の一実施形態の処理方法では、被処理水に2価又は3価の鉄化合物を添加した後、過酸化水素を添加することが、反応性が良いことから好ましい。特に、3価の鉄化合物を用いる場合、一度、2価の鉄化合物に還元される反応があるため、鉄化合物の添加後に、過酸化水素を添加することが好ましい。被処理水に鉄化合物を添加した後、過酸化水素を添加することにより、目標とする処理水質に応じて、過酸化水素の添加量を調整することも可能である。具体的には、上述の通り、鉄化合物及び過酸化水素添加後の被処理水のpH11のときのORPが−150〜50mVとなるように、過酸化水素を添加することが好ましい。   In the treatment method of one embodiment of the present invention, it is preferable to add hydrogen peroxide after adding a divalent or trivalent iron compound to the water to be treated because of its good reactivity. In particular, when a trivalent iron compound is used, since there is a reaction once reduced to a divalent iron compound, it is preferable to add hydrogen peroxide after the addition of the iron compound. It is also possible to adjust the amount of hydrogen peroxide added according to the target treated water quality by adding hydrogen peroxide after adding the iron compound to the water to be treated. Specifically, as described above, it is preferable to add hydrogen peroxide so that the ORP at the pH 11 of the water to be treated after addition of the iron compound and hydrogen peroxide is −150 to 50 mV.

本発明の一実施形態の処理方法は、2価又は3価の鉄化合物、及び過酸化水素が添加された被処理水のpHを9〜12に調整する工程をさらに含むことが好ましい。2価又は3価の鉄化合物及び過酸化水素が添加された後の被処理水のpHが9〜12の領域において、被処理水中の還元性硫黄成分と2価又は3価の鉄化合物との反応、並びに還元性硫黄成分と過酸化水素との酸化反応を効率よく進めることが可能である。2価又は3価の鉄化合物、及び過酸化水素が添加された被処理水は、pH10〜11の範囲に調整されることがより好ましい。   It is preferable that the processing method of one Embodiment of this invention further includes the process of adjusting the pH of the to-be-processed water to which the bivalent or trivalent iron compound and hydrogen peroxide were added to 9-12. In the region where the pH of the water to be treated after the addition of the divalent or trivalent iron compound and hydrogen peroxide is 9 to 12, the reducing sulfur component in the water to be treated and the divalent or trivalent iron compound It is possible to efficiently proceed the reaction and the oxidation reaction between the reducing sulfur component and hydrogen peroxide. The treated water to which the divalent or trivalent iron compound and hydrogen peroxide have been added is more preferably adjusted to a pH range of 10-11.

被処理水に2価又は3価の鉄化合物及び過酸化水素を添加した後、それらが添加された被処理水のpHが9〜12(好ましくは10〜11)の領域下で数十分(例えば10分)〜数時間(例えば2時間)程度置くことが好ましい。これにより、被処理水(原水)中の還元性硫黄成分と2価又は3価の鉄化合物、並びに還元性硫黄成分と過酸化水素との反応を十分に生じさせることが可能となる。これらの反応の進行の観点及び経済性の観点から、上記時間は、10〜120分であることが好ましく、15〜60分であることがより好ましい。   After adding a divalent or trivalent iron compound and hydrogen peroxide to the water to be treated, the pH of the water to be treated to which they are added is several tens of minutes under the region where the pH is 9 to 12 (preferably 10 to 11) ( For example, it is preferable to leave for about 10 minutes to several hours (eg, 2 hours). Thereby, it becomes possible to sufficiently cause the reaction between the reducing sulfur component in the water to be treated (raw water) and the divalent or trivalent iron compound, and the reducing sulfur component and hydrogen peroxide. From the viewpoint of progress of these reactions and from the viewpoint of economic efficiency, the above time is preferably 10 to 120 minutes, and more preferably 15 to 60 minutes.

被処理水のpHの調整には、pH調整剤を用いることができる。使用するpH調整剤は特に限定されず、例えば、塩酸、硫酸、クエン酸、及び乳酸などの酸、並びに水酸化ナトリウム、炭酸カリウム、及び炭酸水素ナトリウムなどのアルカリを用いることができる。   A pH adjuster can be used to adjust the pH of the water to be treated. The pH adjuster to be used is not specifically limited, For example, acids, such as hydrochloric acid, a sulfuric acid, a citric acid, and lactic acid, and alkalis, such as sodium hydroxide, potassium carbonate, and sodium hydrogencarbonate, can be used.

なお、被処理水に2価又は3価の鉄化合物及び過酸化水素を添加した後や、pH調整剤を添加した後は、被処理水を撹拌することが好ましく、撹拌下で上述の時間置いて反応を進行させることが好ましい。撹拌には公知の撹拌装置を用いることができる。また、本発明の一実施形態の処理方法では、処理温度は特に限定されず、例えば、常温(5〜35℃)にて処理を行うことが可能である。   In addition, after adding a divalent or trivalent iron compound and hydrogen peroxide to the water to be treated, or after adding a pH adjuster, it is preferable to stir the water to be treated. The reaction is preferably allowed to proceed. A known stirring device can be used for stirring. Moreover, in the processing method of one Embodiment of this invention, processing temperature is not specifically limited, For example, it can process at normal temperature (5-35 degreeC).

本発明の一実施形態の処理方法では、還元性硫黄成分を含有する被処理水に対して、2価又は3価の鉄化合物及び過酸化水素をそれぞれ添加した後、最終的には、固形分離を行い、処理水を得ることが好ましい。固液分離のための処理(固液分離処理)としては、凝集処理、沈殿処理、膜分離処理、ろ過処理、及び浮上処理などの公知の処理手法をとることができ、これらの処理の1種を単独で又は2種以上を組み合わせて固液分離処理を行うことができる。   In the treatment method of one embodiment of the present invention, after adding a divalent or trivalent iron compound and hydrogen peroxide to water to be treated containing a reducing sulfur component, finally, solid separation is performed. To obtain treated water. As the treatment for solid-liquid separation (solid-liquid separation treatment), known treatment techniques such as agglomeration treatment, precipitation treatment, membrane separation treatment, filtration treatment, and flotation treatment can be taken, and one kind of these treatments The solid-liquid separation treatment can be performed alone or in combination of two or more.

(凝集剤)
本発明の一実施形態の処理方法は、2価又は3価の鉄化合物、及び過酸化水素が添加された被処理水に対し、凝集剤を添加する工程(凝集処理工程)をさらに含むことが好ましい。凝集剤の添加により、被処理水中で、還元性硫黄成分と鉄化合物の反応によって生じた硫化鉄などの浮遊物質(SS)を凝集させることが可能となり、SSを除去しやすくすることが可能となる。
(Flocculant)
The treatment method of one embodiment of the present invention may further include a step of adding a flocculant to the water to be treated to which the divalent or trivalent iron compound and hydrogen peroxide are added (aggregation treatment step). preferable. By adding a flocculant, it becomes possible to agglomerate suspended solids (SS) such as iron sulfide generated by the reaction between the reducing sulfur component and the iron compound in the water to be treated, making it easier to remove SS. Become.

使用する凝集剤は特に限定されず、公知の無機凝集剤及び有機凝集剤(高分子凝集剤)をいずれも用いることができる。無機凝集剤としては、例えば、ポリ塩化アルミニウム(PAC)、塩化第二鉄、ポリ硫酸第二鉄、及び硫酸アルミニウムなどを挙げることができる。   The flocculant to be used is not particularly limited, and any of known inorganic flocculants and organic flocculants (polymer flocculants) can be used. Examples of the inorganic flocculant include polyaluminum chloride (PAC), ferric chloride, polyferric sulfate, and aluminum sulfate.

高分子凝集剤としては、ポリ(メタ)アクリルアミドなどのノニオン性高分子凝集剤;(メタ)アクリル酸又はその塩の重合物、(メタ)アクリル酸又はその塩と(メタ)アクリルアミドとの共重合物、アクリルアミドと2−アクリルアミド−2−メチルプロパンスルホン酸塩との共重合物、(メタ)アクリル酸又はその塩とアクリルアミドと2−アクリルアミド−2−メチルプロパンスルホン酸塩との3元共重合物、及びポリアクリルアミドの部分加水分解物などのアニオン性高分子凝集剤;ジメチルアミノエチル(メタ)アクリレートの3級塩及び4級塩(塩化メチル塩等)などの少なくとも1種のアニオン性単量体と、アクリル酸及びその塩(ナトリウム、カルシウム等の塩類)、並びに2−アクリルアミド−2−メチルプロパンスルホン酸塩(ナトリウム、カルシウム等の塩類)などの少なくとも1種のカチオン性単量体との共重合物などの両性高分子凝集剤;などを挙げることができる。なお、本明細書において、「(メタ)アクリル」の文言には、アクリル及びメタクリルの両方が含まれ、また、「(メタ)アクリレート」の文言には、アクリレート及びメタクリレートの両方が含まれることを意味する。   Examples of the polymer flocculant include nonionic polymer flocculants such as poly (meth) acrylamide; a polymer of (meth) acrylic acid or a salt thereof, and a copolymer of (meth) acrylic acid or a salt thereof and (meth) acrylamide. , A copolymer of acrylamide and 2-acrylamido-2-methylpropane sulfonate, a terpolymer of (meth) acrylic acid or a salt thereof, acrylamide and 2-acrylamido-2-methylpropane sulfonate And anionic polymer flocculants such as partial hydrolysates of polyacrylamide; at least one anionic monomer such as dimethylaminoethyl (meth) acrylate tertiary salt and quaternary salt (such as methyl chloride salt) Acrylic acid and its salts (salts such as sodium and calcium), and 2-acrylamido-2-methylpropanesulfur Amphoteric polymer flocculant, such as a copolymer of at least one cationic monomer, such as emissions salt (sodium, salts such as calcium); and the like. In this specification, the term “(meth) acryl” includes both acryl and methacryl, and the term “(meth) acrylate” includes both acrylate and methacrylate. means.

本発明の一実施形態の処理方法では、2価又は3価の鉄化合物、及び過酸化水素が添加された被処理水に対し、SSを除去するために、無機凝集剤を添加することが好ましく、ポリ塩化アルミニウムを添加することがより好ましい。そして、無機凝集剤の添加後の被処理水を前述のpH調整剤の添加などによって中性(pH7)に調整し、そこに高分子凝集剤を添加することがさらに好ましい。凝集剤の添加量は、被処理水中のSSの量などに応じて、適宜調整することができる。   In the treatment method according to an embodiment of the present invention, it is preferable to add an inorganic flocculant to the treated water to which a divalent or trivalent iron compound and hydrogen peroxide are added in order to remove SS. More preferably, polyaluminum chloride is added. Further, it is more preferable to adjust the water to be treated after the addition of the inorganic flocculant to neutrality (pH 7) by adding the above-mentioned pH adjuster and to add the polymer flocculant thereto. The addition amount of the flocculant can be appropriately adjusted according to the amount of SS in the water to be treated.

本発明の一実施形態の処理方法では、上述の凝集剤(無機凝集剤及び/又は高分子凝集剤)の添加による凝集処理工程の後、膜分離処理やろ過処理などによって、SSを除去することができ、SSを除去した処理水を得ることができる。また、得られた処理水については、pH、ORP、及びCODMnなどの水質指標の分析を行い、目標とする処理水質が得られたかを確認することが好ましい。 In the treatment method according to an embodiment of the present invention, SS is removed by a membrane separation process, a filtration process, or the like after the aggregation process step by adding the above-described flocculant (inorganic flocculant and / or polymer flocculant). The treated water from which SS has been removed can be obtained. Moreover, about the obtained treated water, it is preferable to analyze whether water quality indicators, such as pH, ORP, and COD Mn , are obtained, and to confirm whether the target treated water quality was obtained.

以上詳述した通り、本発明の一実施形態の還元性硫黄成分含有水の処理方法は、次の構成をとることが可能である。
[1]還元性硫黄成分を含有する被処理水に対して、2価又は3価の鉄化合物を添加する工程と、前記被処理水に対して、過酸化水素を添加する工程と、を含む、還元性硫黄成分含有水の処理方法。
[2]前記被処理水に対する前記2価又は3価の鉄化合物の鉄(Fe)としての添加量が、前記被処理水中の総還元性硫黄の濃度に対して、反応当量の0.10倍以上である前記[1]に記載の処理方法。
[3]前記2価又は3価の鉄化合物、及び前記過酸化水素を添加した後の前記被処理水のpH11のときの酸化還元電位(ORP)が−150〜50mVとなるように、前記過酸化水素を添加する前記[1]又は[2]に記載の処理方法。
[4]前記2価又は3価の鉄化合物、及び前記過酸化水素が添加された前記被処理水のpHを9〜12に調整する工程をさらに含む前記[1]〜[3]のいずれかに記載の処理方法。
[5]前記2価又は3価の鉄化合物、及び前記過酸化水素が添加された前記被処理水に対し、凝集剤を添加する工程をさらに含む前記[1]〜[4]のいずれかに記載の処理方法。
[6]前記2価又は3価の鉄化合物が、塩化鉄(II)、塩化鉄(III)、硫酸鉄(II)、及び硫酸鉄(III)からなる群より選ばれる1種以上を含む前記[1]〜[5]のいずれかに記載の還元性硫黄成分含有水の処理方法。
As described above in detail, the method for treating reducing sulfur component-containing water according to an embodiment of the present invention can have the following configuration.
[1] A step of adding a divalent or trivalent iron compound to the water to be treated containing a reducing sulfur component, and a step of adding hydrogen peroxide to the water to be treated are included. The processing method of water containing a reducing sulfur component.
[2] The amount of the divalent or trivalent iron compound added to the treated water as iron (Fe) is 0.10 times the reaction equivalent with respect to the concentration of the total reducing sulfur in the treated water. The processing method according to the above [1].
[3] The excess reduction is performed so that an oxidation-reduction potential (ORP) at a pH of 11 of the water to be treated after adding the divalent or trivalent iron compound and the hydrogen peroxide is −150 to 50 mV. The processing method according to [1] or [2], wherein hydrogen oxide is added.
[4] Any of [1] to [3], further including a step of adjusting the pH of the water to be treated to which the divalent or trivalent iron compound and the hydrogen peroxide are added to 9 to 12. The processing method as described in.
[5] The method according to any one of [1] to [4], further including a step of adding a flocculant to the water to be treated to which the divalent or trivalent iron compound and the hydrogen peroxide are added. The processing method described.
[6] The divalent or trivalent iron compound includes one or more selected from the group consisting of iron (II) chloride, iron (III) chloride, iron (II) sulfate, and iron (III) sulfate. [1] The processing method for reducing sulfur component-containing water according to any one of [5].

以下、試験例を挙げて、本発明をさらに具体的に説明するが、本発明は以下の試験例に限定されるものではない。なお、以下の説明において、「部」及び「%」は、特に断らない限り質量基準である。   Hereinafter, although a test example is given and this invention is demonstrated further more concretely, this invention is not limited to the following test examples. In the following description, “parts” and “%” are based on mass unless otherwise specified.

本試験例においては、以下に述べる分析方法によって各分析を行った。
(pH)
被処理水(原水)及び処理過程にある被処理水について、東亜ディーケーケー社製のpHメータ「HM−7J」を用いて、25℃下のpHを測定した。
(酸化還元電位;ORP)
被処理水(原水)、処理過程にある被処理水、及び処理水について、東亜ディーケーケー社製のポータブル水質計RM−20Pを用いて、白金電極法による25℃下のORPを測定した。
(化学的酸素要求量;CODMn
被処理水(原水)、及び処理水について、JIS K0102:2013における「100℃における過マンガン酸カリウムによる酸素消費量(CODMn)」の規定に準拠して、CODMnを測定した。
(原水中の硫化物イオンの定量)
JIS K0102:2013の項目39.2の「よう素滴定法」の規定に準拠して、被処理水(原水)中の硫化物イオン(S2-)の定量分析を行った。
(原水中の亜硫酸イオンの定量)
JIS K0102:2013の項目40.1の「よう素滴定法」の規定に準拠して、被処理水(原水)中の亜硫酸イオン(SO3 2-)の定量分析を行った。
(原水中のチオ硫酸イオンの定量)
イオンクロマトグラフ法により、被処理水(原水)中のチオ硫酸イオン(S23 2-)の定量分析を行った。
(原水中の総還元性硫黄量の算出)
被処理水(原水)中の総還元性硫黄(総還元性S)の量は、定量分析したS2-、SO3 2-中のS、及びS23 2-中のSの和から算出した。
(過酸化水素の定量)
よう素滴定法により、処理過程にある被処理水中の過酸化水素(H22)の定量分析を行った。
In this test example, each analysis was performed by the analysis method described below.
(PH)
About the to-be-processed water (raw water) and the to-be-processed water in a process, pH under 25 degreeC was measured using the pH meter "HM-7J" by the Toa DKK company.
(Redox potential; ORP)
About the to-be-processed water (raw water), the to-be-processed water in a process, and the treated water, ORP under 25 degreeC by a platinum electrode method was measured using the portable water quality meter RM-20P by Toa DKK Corporation.
(Chemical oxygen demand; COD Mn )
Regarding treated water (raw water) and treated water, COD Mn was measured in accordance with the provisions of “Oxygen consumption by potassium permanganate at 100 ° C. (COD Mn )” in JIS K0102: 2013.
(Quantification of sulfide ions in raw water)
Quantitative analysis of sulfide ions (S 2− ) in the water to be treated (raw water) was performed in accordance with the provisions of “Iodine titration method” in Item 39.2 of JIS K0102: 2013.
(Quantification of sulfite ion in raw water)
Quantitative analysis of sulfite ions (SO 3 2− ) in water to be treated (raw water) was performed in accordance with the provisions of “iodine titration method” in item 40.1 of JIS K0102: 2013.
(Quantification of thiosulfate ion in raw water)
Quantitative analysis of thiosulfate ion (S 2 O 3 2− ) in treated water (raw water) was performed by ion chromatography.
(Calculation of total reducible sulfur content in raw water)
The amount of total reducible sulfur (total reducible S) in the water to be treated (raw water) is determined from the sum of S 2- , S in SO 3 2- and S in S 2 O 3 2- , which were quantitatively analyzed. Calculated.
(Quantification of hydrogen peroxide)
Quantitative analysis of hydrogen peroxide (H 2 O 2 ) in the water to be treated during the treatment process was performed by the iodine titration method.

本試験例では、3価の鉄化合物として塩化鉄(III)を用い、2価の鉄化合物として塩化鉄(II)を用いた。なお、塩化鉄(III)としては塩化鉄(III)及び水を含有するスラリー(塩化鉄(III)含有量:38%)を用い、塩化鉄(II)としては塩化鉄(II)及び水を含有するスラリー(塩化鉄(II)含有量:31%)を用いた。また、過酸化水素としては過酸化水素水(H22含有量:35%)を用いた。 In this test example, iron (III) chloride was used as the trivalent iron compound, and iron (II) chloride was used as the divalent iron compound. As iron (III) chloride, a slurry containing iron (III) chloride and water (iron (III) chloride content: 38%) is used. As iron (II) chloride, iron (II) chloride and water are used. The contained slurry (iron (II) chloride content: 31%) was used. As hydrogen peroxide, hydrogen peroxide water (H 2 O 2 content: 35%) was used.

<試験例A>
試験例Aでは、被処理水として表1に示す水質の原水(被処理水)を用い、この原水に対する3価の鉄化合物及び過酸化水素の添加による処理効果を確認する試験を行った。
<Test Example A>
In Test Example A, raw water (treated water) shown in Table 1 was used as water to be treated, and a test was conducted to confirm the treatment effect of the trivalent iron compound and hydrogen peroxide added to the raw water.

Figure 2017127821
Figure 2017127821

具体的には、表1に示す原水に対して、表2における試験例A1〜15の各条件に示す通りの添加量にて、上記の塩化鉄(III)を添加し、次いで過酸化水素を添加した。ただし、試験例A1及びA2は、参考として、被処理水に対して、3価の鉄化合物を添加せずに試験を行った。過酸化水素の添加後、被処理水に対して、適量の塩酸を加え、被処理水のpH(反応pH)を11.0に調整し、30分間撹拌した。この30分後の被処理水(処理過程にある被処理水)について、pH、及びORPを測定した。これらの値をそれぞれ、表2中の「30分後」欄に示す。   Specifically, the above iron (III) chloride is added to the raw water shown in Table 1 at the addition amount shown in each condition of Test Examples A1 to 15 in Table 2, and then hydrogen peroxide is added. Added. However, Test Examples A1 and A2 were tested without adding a trivalent iron compound to the water to be treated as a reference. After the addition of hydrogen peroxide, an appropriate amount of hydrochloric acid was added to the water to be treated, the pH of the water to be treated (reaction pH) was adjusted to 11.0, and the mixture was stirred for 30 minutes. About the to-be-treated water (treated water in the process of treatment) after 30 minutes, pH and ORP were measured. These values are shown in the column “After 30 minutes” in Table 2.

次に、上記30分撹拌後の被処理水に対して、無機凝集剤としてポリ塩化アルミニウム(PAC)を200mg/L添加した。PAC添加後の被処理水(処理過程にある被処理水)に塩酸を加えて、その被処理水のpHを7.0に調整した。   Next, 200 mg / L of polyaluminum chloride (PAC) was added as an inorganic flocculant to the water to be treated after stirring for 30 minutes. Hydrochloric acid was added to the treated water after PAC addition (treated water in the process of treatment) to adjust the pH of the treated water to 7.0.

無機凝集剤を添加して、pHを7.0に調整した後、高分子凝集剤として日鉄住金環境社製の商品名「ケーイーフロックKEA−520」を所定量添加した後、急速撹拌(120rpm)を30秒、緩速撹拌(60rpm)を2分行い、フロックを形成させた。フロック形成後、3分静置させ、固液分離を行ってSSを除去し、処理水を得た。この処理水について、CODMnを測定した。その結果を表2の「処理水」欄に示す。 After adding an inorganic flocculant and adjusting the pH to 7.0, as a polymer flocculant, a trade name “KE Flock KEA-520” manufactured by Nippon Steel & Sumikin Environment Co., Ltd. was added in a predetermined amount, followed by rapid stirring ( 120 rpm) for 30 seconds and slow stirring (60 rpm) for 2 minutes to form a flock. After forming the floc, the mixture was allowed to stand for 3 minutes, solid-liquid separation was performed to remove SS, and treated water was obtained. For this treated water, COD Mn was measured. The results are shown in the “treated water” column of Table 2.

なお、表2において、「Fe添加量」は、塩化鉄含有スラリーの添加によるFeとしての添加量(mg−Fe/L)を表す。「Fe当量(:S2-)」は、Fe添加量と、原水中のS2-濃度に対するFeの反応当量との比(当量比)を表す。「Fe当量(:総S)」は、Fe添加量と、原水中の総還元性S濃度に対するFeの反応当量との比(当量比)を表す。「H22添加量」は、過酸化水素水の添加によるH22としての添加量(mg/L)を表す。「H22当量(:S2-)」は、H22添加量と、原水中のS2-濃度に対するH22の反応当量との比(当量比)を表す。「H22当量(:総S)」は、H22添加量と、原水中の総還元性S濃度に対するH22の反応当量との比(当量比)を表す。これらの意味は、後記表3、表5、及び表7においても同様である。 In Table 2, “Fe addition amount” represents the addition amount (mg-Fe / L) as Fe by the addition of the iron chloride-containing slurry. “Fe equivalent (: S 2− )” represents the ratio (equivalent ratio) of the Fe addition amount and the reaction equivalent of Fe to the S 2− concentration in the raw water. “Fe equivalent (: total S)” represents the ratio (equivalent ratio) of the Fe addition amount and the reaction equivalent of Fe to the total reducing S concentration in the raw water. “H 2 O 2 addition amount” represents the addition amount (mg / L) as H 2 O 2 by addition of hydrogen peroxide. “H 2 O 2 equivalent (: S 2− )” represents the ratio (equivalent ratio) between the amount of H 2 O 2 added and the reaction equivalent of H 2 O 2 with respect to the S 2− concentration in the raw water. “H 2 O 2 equivalent (: total S)” represents the ratio (equivalent ratio) of the amount of H 2 O 2 added and the reaction equivalent of H 2 O 2 to the total reducing S concentration in the raw water. These meanings are the same in Table 3, Table 5, and Table 7 below.

Figure 2017127821
Figure 2017127821

<試験例B>
試験例Bでは、試験例Aと同様、被処理水として表1に示す水質の原水(被処理水)を用い、この原水に対する2価の鉄化合物及び過酸化水素の添加による処理効果を確認する試験を行った。試験例Bでは、試験例Aで用いた塩化鉄(III)の代わりに上記の塩化鉄(II)を用い、表3に示す条件にて、その塩化鉄(II)及び過酸化水素を添加した以外は、試験例Aと同様にして試験を行った(試験例B1〜4)。表3にその結果もあわせて示す。
<Test Example B>
In Test Example B, as in Test Example A, raw water having the water quality shown in Table 1 (treated water) is used as the treated water, and the treatment effect by adding a divalent iron compound and hydrogen peroxide to the raw water is confirmed. A test was conducted. In Test Example B, iron chloride (II) was used in place of the iron chloride (III) used in Test Example A, and the iron chloride (II) and hydrogen peroxide were added under the conditions shown in Table 3. The test was conducted in the same manner as in Test Example A (Test Examples B1 to B4). Table 3 also shows the results.

Figure 2017127821
Figure 2017127821

<試験例C>
試験例Cでは、被処理水として表4に示す水質の原水(被処理水)を用い、この原水に対する3価の鉄化合物及び過酸化水素の添加による処理効果を確認する試験を行った。試験例Cでは、表4に示す原水に対し、表5に示す条件にて、上記の塩化鉄(III)及び過酸化水素を添加した以外は、試験例Aと同様にして試験を行った(試験例C1〜4)。表5にその結果もあわせて示す。
<Test Example C>
In Test Example C, water quality raw water (treated water) shown in Table 4 was used as the treated water, and a test for confirming the treatment effect of the trivalent iron compound and hydrogen peroxide added to the raw water was performed. In Test Example C, a test was performed in the same manner as in Test Example A except that the above-described iron (III) chloride and hydrogen peroxide were added to the raw water shown in Table 4 under the conditions shown in Table 5 ( Test Examples C1-4). Table 5 also shows the results.

Figure 2017127821
Figure 2017127821

Figure 2017127821
Figure 2017127821

<試験例D>
試験例Dでは、被処理水として表6に示す水質の原水(被処理水)を用い、この原水に対する3価の鉄化合物及び過酸化水素の添加による処理効果を確認する試験を行った。試験例Dでは、表6に示す原水に対し、表7に示す条件にて、上記の塩化鉄(III)及び過酸化水素を添加した以外は、試験例Aと同様にして試験を行った(試験例D1〜6)。表7にその結果もあわせて示す。
<Test Example D>
In Test Example D, water quality raw water (treated water) shown in Table 6 was used as water to be treated, and a test for confirming the treatment effect by adding a trivalent iron compound and hydrogen peroxide to the raw water was conducted. In Test Example D, a test was performed in the same manner as in Test Example A, except that the above-described iron (III) chloride and hydrogen peroxide were added to the raw water shown in Table 6 under the conditions shown in Table 7 ( Test examples D1 to 6). Table 7 also shows the results.

Figure 2017127821
Figure 2017127821

Figure 2017127821
Figure 2017127821

以上の試験例A〜Dの結果から、還元性硫黄成分を含有する被処理水に対して、2価又は3価の塩化鉄、及び過酸化水素を添加する処理によって、凝集剤を使用して容易にSSを除去することが可能であるとともに、CODMnを低下させることが可能であることが分かった。したがって、還元性硫黄成分を含有する被処理水に対して、2価又は3価の鉄化合物を添加する工程と、過酸化水素を添加する工程とを含む処理方法によって、当該被処理水中の還元性硫黄性成分をより有効に処理することが可能であることが確認された。 From the results of the above test examples A to D, the flocculant was used by the treatment of adding divalent or trivalent iron chloride and hydrogen peroxide to the water to be treated containing the reducing sulfur component. It was found that SS can be easily removed and COD Mn can be reduced. Therefore, reduction in the water to be treated by a treatment method including a step of adding a divalent or trivalent iron compound to a water to be treated containing a reducing sulfur component and a step of adding hydrogen peroxide. It has been confirmed that the active sulfur component can be treated more effectively.

Claims (6)

還元性硫黄成分を含有する被処理水に対して、2価又は3価の鉄化合物を添加する工程と、
前記被処理水に対して、過酸化水素を添加する工程と、
を含む、還元性硫黄成分含有水の処理方法。
A step of adding a divalent or trivalent iron compound to the water to be treated containing a reducing sulfur component;
Adding hydrogen peroxide to the water to be treated;
A method for treating reductive sulfur component-containing water.
前記被処理水に対する前記2価又は3価の鉄化合物の鉄としての添加量が、前記被処理水中の総還元性硫黄の濃度に対して、反応当量の0.10倍以上である請求項1に記載の還元性硫黄成分含有水の処理方法。   2. The addition amount of the divalent or trivalent iron compound as iron to the water to be treated is 0.10 times or more the reaction equivalent with respect to the concentration of total reducing sulfur in the water to be treated. The processing method of the reducing sulfur component containing water as described in any one of Claims 1-3. 前記2価又は3価の鉄化合物、及び前記過酸化水素を添加した後の前記被処理水のpH11のときの酸化還元電位(ORP)が−150〜50mVとなるように、前記過酸化水素を添加する請求項1又は2に記載の還元性硫黄成分含有水の処理方法。   The hydrogen peroxide is adjusted so that the redox potential (ORP) at the pH 11 of the water to be treated after adding the divalent or trivalent iron compound and the hydrogen peroxide is −150 to 50 mV. The processing method of the reducing sulfur component containing water of Claim 1 or 2 to add. 前記2価又は3価の鉄化合物、及び前記過酸化水素が添加された前記被処理水のpHを9〜12に調整する工程をさらに含む請求項1〜3のいずれか1項に記載の還元性硫黄成分含有水の処理方法。   The reduction according to any one of claims 1 to 3, further comprising a step of adjusting the pH of the water to be treated to which the divalent or trivalent iron compound and the hydrogen peroxide are added to 9 to 12. For treatment of water containing functional sulfur component. 前記2価又は3価の鉄化合物、及び前記過酸化水素が添加された前記被処理水に対し、凝集剤を添加する工程をさらに含む請求項1〜4のいずれか1項に記載の還元性硫黄成分含有水の処理方法。   The reducing property according to any one of claims 1 to 4, further comprising a step of adding a flocculant to the water to be treated to which the divalent or trivalent iron compound and the hydrogen peroxide have been added. A method for treating sulfur-containing water. 前記2価又は3価の鉄化合物が、塩化鉄(II)、塩化鉄(III)、硫酸鉄(II)、及び硫酸鉄(III)からなる群より選ばれる1種以上を含む請求項1〜5のいずれか1項に記載の還元性硫黄成分含有水の処理方法。   The divalent or trivalent iron compound contains one or more selected from the group consisting of iron (II) chloride, iron (III) chloride, iron (II) sulfate, and iron (III) sulfate. The method for treating water containing reducible sulfur component according to any one of 5.
JP2016009707A 2016-01-21 2016-01-21 Method for treating water containing reducing sulfur component Active JP6165898B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016009707A JP6165898B1 (en) 2016-01-21 2016-01-21 Method for treating water containing reducing sulfur component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016009707A JP6165898B1 (en) 2016-01-21 2016-01-21 Method for treating water containing reducing sulfur component

Publications (2)

Publication Number Publication Date
JP6165898B1 JP6165898B1 (en) 2017-07-19
JP2017127821A true JP2017127821A (en) 2017-07-27

Family

ID=59351441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016009707A Active JP6165898B1 (en) 2016-01-21 2016-01-21 Method for treating water containing reducing sulfur component

Country Status (1)

Country Link
JP (1) JP6165898B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454092B1 (en) 2023-08-08 2024-03-21 日鉄環境株式会社 How to treat collected dust water

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386299A (en) * 1989-08-31 1991-04-11 Mitsubishi Heavy Ind Ltd Treatment of waste chemical cleaning solution
JPH0994583A (en) * 1995-07-25 1997-04-08 Mitsubishi Gas Chem Co Inc Removal of hydrogen sulfide in sewage
JP2001187703A (en) * 1999-12-28 2001-07-10 Kawasaki Kasei Chem Ltd Method for inhibiting production of sulfide with sulfate- reducing fungus
JP2006051468A (en) * 2004-08-16 2006-02-23 Japan Organo Co Ltd Method for treating persulfate-containing waste water
JP2008221119A (en) * 2007-03-12 2008-09-25 Nippon Sheet Glass Co Ltd Treatment method for selenium in liquid containing sulfur oxide
JP2011072940A (en) * 2009-09-30 2011-04-14 Chiyoda Kako Kensetsu Kk Treatment method of reducing selenium-containing waste water
JP2014155912A (en) * 2013-02-18 2014-08-28 Chiyoda Corp System and method for treating selenium-containing drainage

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386299A (en) * 1989-08-31 1991-04-11 Mitsubishi Heavy Ind Ltd Treatment of waste chemical cleaning solution
JPH0994583A (en) * 1995-07-25 1997-04-08 Mitsubishi Gas Chem Co Inc Removal of hydrogen sulfide in sewage
JP2001187703A (en) * 1999-12-28 2001-07-10 Kawasaki Kasei Chem Ltd Method for inhibiting production of sulfide with sulfate- reducing fungus
JP2006051468A (en) * 2004-08-16 2006-02-23 Japan Organo Co Ltd Method for treating persulfate-containing waste water
JP2008221119A (en) * 2007-03-12 2008-09-25 Nippon Sheet Glass Co Ltd Treatment method for selenium in liquid containing sulfur oxide
JP2011072940A (en) * 2009-09-30 2011-04-14 Chiyoda Kako Kensetsu Kk Treatment method of reducing selenium-containing waste water
JP2014155912A (en) * 2013-02-18 2014-08-28 Chiyoda Corp System and method for treating selenium-containing drainage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454092B1 (en) 2023-08-08 2024-03-21 日鉄環境株式会社 How to treat collected dust water

Also Published As

Publication number Publication date
JP6165898B1 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
EP0068458B1 (en) Process for treating continuous waste water streams containing variable contents of oxidizable compounds with hydrogen peroxide
JP5637713B2 (en) Wastewater treatment method and treatment apparatus
JP7398021B2 (en) Treatment method and treatment equipment for cyanide-containing water
JP2020104115A (en) Method for treating cyanogen-containing waste water
JP4894403B2 (en) Cyanide-containing wastewater treatment method and apparatus
JP2011072940A (en) Treatment method of reducing selenium-containing waste water
JP4382556B2 (en) Treatment method of wastewater containing cyanide
JP5945682B2 (en) Treatment method of wastewater containing cyanide
WO2017073177A1 (en) Method for treating cyanide complex-containing wastewater and treating agent for use therein
Bedner et al. Making chlorine greener: investigation of alternatives to sulfite for dechlorination
Henderson et al. The impact of ferrous ion reduction of chlorite ion on drinking water process performance
JP6165898B1 (en) Method for treating water containing reducing sulfur component
JP2022515438A (en) A method for obtaining scordite having a high arsenic content from an acidic solution having a high sulfuric acid content.
JP2014008461A (en) Wastewater treatment method
JP2018083172A (en) Wastewater treatment method, wastewater treatment apparatus and coal gasification power generation equipment with the same
JP2021053620A (en) Treatment method for cyanide-containing wastewater
JP4670004B2 (en) Method for treating selenium-containing water
JP4678599B2 (en) Treatment method for wastewater containing phosphoric acid
JP7157192B2 (en) water treatment method
JP2575886B2 (en) Chemical cleaning waste liquid treatment method
JP2010075849A (en) Treatment method for chlorine-containing fine powder waste
JP7454092B1 (en) How to treat collected dust water
JP4639309B2 (en) Treatment method of wastewater containing cyanide
JP5871270B2 (en) Selenium-containing liquid treatment system, wet desulfurization apparatus, and selenium-containing liquid treatment method
RU2517507C2 (en) Method of treating cyanide-containing pulp with &#34;active&#34; chlorine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170621

R150 Certificate of patent or registration of utility model

Ref document number: 6165898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250