JP2017124359A - Processing method and processing system of contaminated muddy water - Google Patents
Processing method and processing system of contaminated muddy water Download PDFInfo
- Publication number
- JP2017124359A JP2017124359A JP2016004271A JP2016004271A JP2017124359A JP 2017124359 A JP2017124359 A JP 2017124359A JP 2016004271 A JP2016004271 A JP 2016004271A JP 2016004271 A JP2016004271 A JP 2016004271A JP 2017124359 A JP2017124359 A JP 2017124359A
- Authority
- JP
- Japan
- Prior art keywords
- iron powder
- specific gravity
- gravity separation
- water
- mud
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
Abstract
Description
本発明は、汚染泥水等の処理方法および処理システムに関する。 The present invention relates to a processing method and a processing system for contaminated mud water and the like.
シールド工法などによる掘削工事で発生する泥水や浚渫土には、自然由来の砒素や重金属類等が含まれる場合がある。かかる問題の対策として、砒素を含み土壌環境基準を超過する削孔泥水等に、鉄粉を添加し、鉄粉表面に砒素を吸着させた後に遠心分離や磁気分離により鉄粉を分離回収し、非汚染土壌を得る方法・システムが提案されている(たとえば、特許文献1,2,3参照)。
The muddy water and dredged soil generated during excavation work by the shield method may contain naturally derived arsenic or heavy metals. As countermeasures against such problems, iron powder is added to drilling mud that contains arsenic and exceeds the soil environmental standards, and after adsorbing arsenic on the iron powder surface, iron powder is separated and recovered by centrifugation or magnetic separation, Methods and systems for obtaining non-contaminated soil have been proposed (see, for example,
特許文献1〜3によれば、従来の泥水処理施設に加え、鉄粉を回収するための複雑な磁気分離装置や遠心分離装置が必要であり、処理費用が増大することが避けられない。また、大量の泥水を磁気分離や遠心分離により処理する場合、各機器の処理能力が小さいため機器の設置台数が多くなってしまう。また、磁気分離や遠心分離の機構が複雑なため、対象規模が大きくなる際に費用面でのスケールデメリットが大きい。また、鉄粉を含む泥水等を遠心分離する場合、装置の磨耗が大きくなることが予測される。
According to
本発明は、上述のような従来技術の問題に鑑み、従来の磁気分離や遠心分離と比較して装置構造が簡単になり、処理量の増大に対応が容易な汚染泥水の処理方法・システムを提供することを目的とする。 In view of the above-described problems of the prior art, the present invention provides a method and system for treating contaminated mud water that has a simpler device structure than conventional magnetic separation and centrifugal separation and can easily cope with an increase in the amount of treatment. The purpose is to provide.
上記目的を達成するための汚染泥水の処理方法は、処理対象の汚染泥水に鉄粉を混合する工程と、前記鉄粉混合泥水から比重分離により前記鉄粉を分離する工程と、前記分離された鉄粉を回収する工程と、を含み、前記鉄粉混合泥水を通水断面積の小さい送水管路を通して通水断面積の大きい比重分離部に送り、前記比重分離部において前記鉄粉混合泥水から前記鉄粉を沈降させることで前記比重分離を行うことを特徴とする。 The method for treating contaminated mud water for achieving the above-mentioned object includes a step of mixing iron powder into the contaminated mud water to be treated, a step of separating the iron powder by specific gravity separation from the iron powder mixed mud water, and the separated A step of recovering iron powder, and passing the iron powder mixed mud water through a water pipe having a small water cross section to a specific gravity separation section having a large water cross section, and from the iron powder mixed mud water in the specific gravity separation section The specific gravity separation is performed by allowing the iron powder to settle.
この汚染泥水の処理方法によれば、処理対象の汚染泥水に鉄粉を混合することで、泥水中に含まれる処理対象の砒素や重金属類を鉄粉に吸着させ、この鉄粉混合泥水を通水断面積の小さい送水管路を通して通水断面積の大きい比重分離部に送ると、比重分離部において鉄粉混合泥水の流速が低下し、比重の大きい鉄粉が比重の小さい土粒子よりも速い沈降速度で沈降することにより、鉄粉と土粒子とを比重分離することができる。このようにして砒素や重金属類を吸着した鉄粉を分離し回収することで、汚染泥水を非汚染泥水に処理することができる。比重分離部は、従来の磁気分離や遠心分離と比較して装置構造が簡単であり、また、比重分離部の容積を増やすだけで大量処理が可能であるので、汚染泥水の処理量の増大に容易に対応できる。 According to this method for treating contaminated mud water, iron powder is mixed with the contaminated mud water to be treated so that the arsenic and heavy metals to be treated contained in the mud water are adsorbed to the iron powder, and this iron powder mixed mud water is passed through. When sent to a specific gravity separation section with a large water flow cross section through a water pipe with a small water cross section, the flow rate of iron powder mixed mud decreases in the specific gravity separation section, and iron powder with a large specific gravity is faster than soil particles with a small specific gravity. By settling at the settling speed, the iron powder and the soil particles can be separated by specific gravity. By separating and recovering the iron powder adsorbing arsenic and heavy metals in this way, the contaminated mud can be treated into non-contaminated mud. The specific gravity separation unit has a simpler device structure than conventional magnetic separation and centrifugal separation, and can be processed in large quantities simply by increasing the volume of the specific gravity separation unit. Can be easily handled.
上記汚染泥水の処理方法において、前記比重分離後の泥水を前記比重分離部から排水管路を通して排出する際に、前記排水管路の上流側または前記比重分離部の下流側に配置された磁石により前記比重分離後の泥水から前記鉄粉を分離することが好ましい。鉄粉のうち粒子の比較的小さいものは、比重分離後の泥水に含まれることが多いが、磁石によって簡単に分離し除去することができる。磁石を排水管路の上流側や比重分離部の下流側に配置するだけであるので、装置構造が複雑になることはない。 In the method for treating contaminated mud water, when the muddy water after the specific gravity separation is discharged from the specific gravity separation section through the drain pipe, a magnet disposed on the upstream side of the drain pipe or on the downstream side of the specific gravity separation section. It is preferable to separate the iron powder from the muddy water after the specific gravity separation. Iron powder with relatively small particles is often contained in muddy water after separation of specific gravity, but can be easily separated and removed by a magnet. Since the magnet is only disposed on the upstream side of the drain pipe and the downstream side of the specific gravity separation unit, the structure of the apparatus is not complicated.
また、前記比重分離部において上昇流を発生させることが好ましい。これにより、分離した鉄粉へ土粒子が混入することを低減できる。この際の上昇流の速度(絶対値)は、土粒子の沈降速度よりも大きく、鉄粉の沈降速度よりも小さくすることで、混入低減効果が向上する。 Moreover, it is preferable to generate an upward flow in the specific gravity separation part. Thereby, it can reduce that soil particles mix in the separated iron powder. The upflow velocity (absolute value) at this time is larger than the sedimentation rate of the soil particles and smaller than the sedimentation rate of the iron powder, thereby improving the mixing reduction effect.
また、前記鉄粉の平均粒径が70〜300μmであることが好ましい。また、前記鉄粉を土粒子に対して重量比で1〜50%混合することが好ましい。 Moreover, it is preferable that the average particle diameter of the said iron powder is 70-300 micrometers. The iron powder is preferably mixed in an amount of 1 to 50% by weight with respect to the soil particles.
また、前記回収された鉄粉を、そのまままたは再生して前記鉄粉混合工程で再使用することが好ましい。なお、鉄粉混合工程前に汚染泥水から礫分・砂分を除去することが好ましい。 The recovered iron powder is preferably reused in the iron powder mixing step as it is or after being regenerated. In addition, it is preferable to remove gravel and sand from the contaminated mud before the iron powder mixing step.
上記目的を達成するための汚染泥水の処理システムは、処理対象の汚染泥水に鉄粉を混合する鉄粉混合部と、前記鉄粉混合泥水から比重分離により前記鉄粉を分離する比重分離部と、前記分離された鉄粉を回収する回収手段と、を備え、前記鉄粉混合泥水を通水断面積の小さい送水管路を通して通水断面積の大きい前記比重分離部に送り、前記比重分離部において前記鉄粉混合泥水から前記鉄粉を沈降させることで前記比重分離を行うことを特徴とする。 The treatment system for contaminated mud water for achieving the above object includes an iron powder mixing unit for mixing iron powder into the contaminated mud water to be treated, and a specific gravity separation unit for separating the iron powder from the iron powder mixed mud water by specific gravity separation. Recovery means for recovering the separated iron powder, and passing the iron powder mixed mud water to the specific gravity separation section having a large water cross section through a water supply pipe having a small water cross section, and the specific gravity separation section The specific gravity separation is performed by allowing the iron powder to settle from the iron powder mixed mud.
この汚染泥水の処理システムによれば、処理対象の汚染泥水に鉄粉を混合することで、泥水中に含まれる処理対象の砒素や重金属類を鉄粉に吸着させ、この鉄粉混合泥水を通水断面積の小さい送水管路を通して通水断面積の大きい比重分離部に送ると、比重分離部において鉄粉混合泥水の流速が低下し、比重の大きい鉄粉が比重の小さい土粒子よりも速い沈降速度で沈降することにより、鉄粉と土粒子とを分離することができる。このようにして砒素や重金属類を吸着した鉄粉を分離し回収することで、汚染泥水を非汚染泥水に処理できる。比重分離部は、従来の磁気分離や遠心分離と比較して装置構造が簡単であり、また、比重分離部の容積を増やすだけで大量処理が可能であるので、汚染泥水の処理量の増大に容易に対応できる。 According to this treatment system for contaminated mud water, iron powder is mixed with the contaminated mud water to be treated to adsorb the arsenic and heavy metals to be treated contained in the mud water to the iron powder, and this iron powder mixed mud water is passed through. When sent to a specific gravity separation section with a large water flow cross section through a water pipe with a small water cross section, the flow rate of iron powder mixed mud decreases in the specific gravity separation section, and iron powder with a large specific gravity is faster than soil particles with a small specific gravity. By settling at the settling speed, the iron powder and the soil particles can be separated. By separating and recovering the iron powder that adsorbs arsenic and heavy metals in this way, the contaminated mud can be processed into non-contaminated mud. The specific gravity separation unit has a simpler device structure than conventional magnetic separation and centrifugal separation, and can be processed in large quantities simply by increasing the volume of the specific gravity separation unit. Can be easily handled.
上記汚染泥水の処理システムにおいて、前記比重分離後の泥水を前記比重分離部から排水管路を通して排出する際に、前記排水管路の上流側または前記比重分離部の下流側に磁石を配置し、前記磁石により前記比重分離後の泥水から前記鉄粉を分離することが好ましい。鉄粉のうち粒子の比較的小さいものは、比重分離後の泥水に含まれることが多いが、磁石によって簡単に分離し除去することができる。磁石を排水管路の上流側や比重分離部の下流側に配置するだけであるので、装置構造が複雑になることはない。 In the treatment system for contaminated mud water, when discharging the muddy water after the specific gravity separation from the specific gravity separation part through the drain pipe, a magnet is arranged on the upstream side of the drain pipe or on the downstream side of the specific gravity separation part, The iron powder is preferably separated from the muddy water after the specific gravity separation by the magnet. Iron powder with relatively small particles is often contained in muddy water after separation of specific gravity, but can be easily separated and removed by a magnet. Since the magnet is only disposed on the upstream side of the drain pipe and the downstream side of the specific gravity separation unit, the structure of the apparatus is not complicated.
前記比重分離部において上昇流を発生させる上昇流発生部を有することが好ましい。これにより、分離した鉄粉へ土粒子が混入することを低減できる。この際の上昇流の速度(絶対値)は、土粒子の沈降速度よりも大きく、鉄粉の沈降速度よりも小さくすることで、混入低減効果が向上する。なお、鉄粉混合部の上流側に汚染泥水から礫分・砂分を除去する礫分・砂分除去部を配置することが好ましい。 It is preferable that the specific gravity separation unit includes an upflow generation unit that generates an upflow. Thereby, it can reduce that soil particles mix in the separated iron powder. The upflow velocity (absolute value) at this time is larger than the sedimentation rate of the soil particles and smaller than the sedimentation rate of the iron powder, thereby improving the mixing reduction effect. In addition, it is preferable to arrange a gravel / sand removal part for removing gravel / sand from the contaminated mud water upstream of the iron powder mixing part.
本発明によれば、従来の磁気分離や遠心分離と比較して装置構造が簡単になり、処理量の増大に対応が容易な汚染泥水の処理方法・システムを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, compared with the conventional magnetic separation and centrifugation, an apparatus structure can be simplified and the processing method and system of contaminated mud water which can respond easily to the increase in a processing amount can be provided.
以下、本発明を実施するための形態について図面を用いて説明する。図1は本実施形態による汚染泥水の処理方法の各工程を説明するためのフローチャートである。図2は図1の汚染泥水の処理方法を実行可能な汚染泥水の処理システム10を概略的に示す側面図(a)および上面図(b)である。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a flowchart for explaining each step of the contaminated mud treatment method according to this embodiment. FIG. 2 is a side view (a) and a top view (b) schematically showing a contaminated mud
本実施形態による汚染泥水の処理方法の各工程S01〜S10について図1、図2(a)(b)を参照して説明すると、まず、シールドマシンによる掘削工程において汚染泥水が生じると(S01)、汚染泥水を振動篩からなる礫分除去装置(図示省略)に送り、汚染泥水から径2mm以上の礫分を除去し(S02)、さらにサイクロン付き篩からなる砂分除去装置(図示省略)で径75μm以上の砂分を除去する(S03)。除去された礫分・砂分のうち溶出量が土壌環境基準以下のものは非汚染の土砂として処分される(S04)。 The steps S01 to S10 of the contaminated mud treatment method according to the present embodiment will be described with reference to FIGS. 1, 2A, and 2B. First, when contaminated mud is generated in the excavation process by the shield machine (S01). , Send the contaminated mud water to a gravel removal device (not shown) consisting of a vibrating screen, remove the gravel with a diameter of 2mm or more from the contaminated mud water (S02), and further remove the gravel with a cyclone equipped screen (not shown) Sand having a diameter of 75 μm or more is removed (S03). Of the removed gravel and sand, those whose elution amount is below the soil environmental standard are disposed of as non-contaminated soil (S04).
礫分・砂分が除去された泥水は、調泥槽11にいったん貯蔵される(S05)。なお、シールドマシンによる掘削工程で必要な泥水は、この調泥槽11から送られるようにしてもよい。 The muddy water from which the gravel and sand are removed is once stored in the mud tank 11 (S05). The muddy water necessary for the excavation process by the shield machine may be sent from the mud tank 11.
次に、調泥槽11から砂分礫分除去後の泥水を攪拌・反応槽12に送り、この泥水に鉄粉を添加し、攪拌・反応槽12内で攪拌し混合して、泥水に含まれる砒素や重金属類を鉄粉に吸着させる(S06)。鉄粉は、図2(a)(b)のように、鉄粉フレコンFEをクレーンCRで定量切り出しフィーダFDに投入し、一定量の鉄粉が攪拌・反応槽12に供給される。
Next, the muddy water after the removal of the gravel from the mud conditioning tank 11 is sent to the agitation /
砒素・重金属類の吸着材として平均粒径70〜300μmの鉄粉を使用することが好ましい。鉄粉の混合量は、土粒子に対して重量比で1〜50%が好ましい。また、鉄粉としては砒素吸着能力の高いものを使用することが好ましく、たとえば、株式会社神戸製鋼から販売されている重金属汚染土壌・地下水浄化用鉄粉「エコメル」(登録商標)などを使用できる。 It is preferable to use iron powder having an average particle size of 70 to 300 μm as an adsorbent for arsenic and heavy metals. The mixing amount of the iron powder is preferably 1 to 50% by weight with respect to the soil particles. In addition, it is preferable to use iron powder having a high arsenic adsorption capacity. For example, heavy metal contaminated soil and groundwater purification iron powder "Ecomel" (registered trademark) sold by Kobe Steel, Ltd. can be used. .
次に、図2(a)(b)のように、鉄粉混合泥水を攪拌・反応槽12から圧送ポンプ13でインバータによる流量調整をしながら攪拌・反応槽12から比重分離装置17の比重分離槽17aに供給する。この供給の途中で、流量計14,密度計15により鉄粉混合泥水の流量と密度を測定し、鉄粉混合泥水の供給量と鉄粉混合量を管理する。
Next, as shown in FIGS. 2 (a) and 2 (b), the iron powder mixed mud is separated from the agitation /
比重分離装置17は、その上流側の送水管16の管径よりも断面が大きく構成された比重分離槽17aと、比重分離槽17aに連通して下流側にほぼ鉛直に設けられた立ち上がり部17bと、立ち上がり部17bの上端に水平に接続された排水管20と立ち上がり部17bとの角部に配置された磁石19と、を有する。比重分離装置17は、比重分離槽27aの上流側上端に対し送水管16から泥水が流入し、立ち上がり部17bを設けたため送水管16よりも高い位置の排水管20から流出するようになっている。
The specific
比重分離装置17の比重分離槽17a内で比重分離により鉄粉混合泥水から鉄粉を分離する(S07)。すなわち、鉄粉混合泥水は、送水管16の管径よりも断面が大きい比重分離槽17a内に流入した段階で流速が大きく低下し、鉄粉(密度7.87g/cm3)と土粒子(密度2.66g/cm3程度)との比重差のため沈降速度が大きい鉄粉を沈降させることで、鉄粉の分離が生じる。
Iron powder is separated from the iron powder mixed mud water by specific gravity separation in the specific
鉄粉が分離された泥水は比重分離槽17aから排水管20を通して流れて排出されるが、この泥水に鉄粉のうち粒子の比較的小さいものが含まれるため、この鉄粉を比重分離槽17aの排出側(下流側)の排水管路上流側に設置した磁石19により除去する(磁気分離)。このように磁石19を設置することにより、泥水の処理量を増やし流速を上げた場合でも砒素等が吸着した比較的小さい粒子の鉄粉を効率的に回収することができる。
The muddy water from which the iron powder has been separated flows and is discharged from the specific
次に、鉄粉混合泥水から分離された鉄粉FEを比重分離槽17a内からバックホウBH等を用いて掻き出し回収鉄粉槽22へ移動させて回収する(S08)。
Next, the iron powder FE separated from the iron powder mixed muddy water is scraped out from the specific
上述のようにして鉄粉混合泥水から鉄粉を分離・回収することで、非汚染の泥水を得るが、かかる泥水は、排水管20を通して排出されて濁水槽21にいったん貯蔵されてから、脱水・濁水処理施設(図示省略)に送られ(S09)、脱水処理され、水分は放流され、溶出量が土壌環境基準以下の粘土分は非汚染の汚泥として処分される(S10)。
By separating and collecting iron powder from the iron powder mixed mud as described above, non-contaminated mud is obtained. The mud is discharged through the
本実施形態の汚染泥水の処理方法・システムによれば、処理対象の汚染泥水について礫分・砂分の除去処理後、汚染泥水に鉄粉を混合することで、泥水中に含まれる処理対象の砒素や重金属類を鉄粉に吸着させ、この鉄粉混合泥水を通水断面積の小さい送水管路を通して通水断面積の大きい比重分離槽に送ると、比重分離槽において鉄粉混合泥水の流速が低下し、比重の大きい鉄粉が比重の小さい土粒子よりも速い沈降速度で沈降することにより、鉄粉と土粒子とを比重分離することができる。このようにして重金属類を吸着した鉄粉を分離し回収することで、汚染泥水を非汚染泥水に処理することができる。 According to the method and system for treating contaminated mud water of the present embodiment, after removing the gravel and sand from the contaminated mud water to be treated, iron powder is mixed into the contaminated mud water so that the treatment target contained in the mud water can be treated. When arsenic and heavy metals are adsorbed on iron powder, and this iron powder mixed mud is sent to a specific gravity separation tank with a large cross section through a water pipe with a small cross section, the flow velocity of the iron powder mixed mud in the specific gravity separation tank Decreases, and iron powder having a large specific gravity settles at a faster settling speed than soil particles having a small specific gravity, whereby the iron powder and the soil particles can be separated by specific gravity. By separating and recovering the iron powder that has adsorbed heavy metals in this manner, the contaminated mud can be processed into non-contaminated mud.
次に、図2の比重分離装置の別の例について図3を参照して説明する。図3は、図2の汚染泥水の処理システムに適用可能な比重分離装置を概略的に示す側面図(a)〜(h)である。 Next, another example of the specific gravity separator in FIG. 2 will be described with reference to FIG. FIG. 3 is a side view (a) to (h) schematically showing a specific gravity separator applicable to the contaminated mud treatment system of FIG.
図3(a)の比重分離装置は、比重分離槽27aの上端に位置する送水管16から泥水が流入し、送水管16と同じ高さ位置の排水管20から流出するようになっている。鉄粉FEの沈降は主に比重分離槽27a内の送水管16側の上流〜中央近傍で優先的に生じる。なお、図2(a)(b)の比重分離槽17aにおいても鉄粉FEの沈降は主に上流〜中央近傍で優先的に生じる。
In the specific gravity separation device of FIG. 3A, muddy water flows in from the
図3(b)の比重分離装置は、比重分離槽27bの下端に位置する送水管16から泥水が流入し、比重分離槽27bの上端に位置する排水管20から流出するようになっている。
In the specific gravity separation device of FIG. 3B, muddy water flows in from the
図3(c)の比重分離装置は、比重分離槽27cの底板から槽内部に鉛直に延びる送水管16から泥水が流入し、比重分離槽27cの上端に位置する排水管20から流出するようになっている。鉄粉FEの沈降は比重分離槽2cb内でほぼ均等に生じる。
In the specific gravity separation device of FIG. 3 (c), muddy water flows from the
図3(d)〜(f)の比重分離装置は、排水管20の上流側に配置された磁石19に加えて比重分離槽27a〜27cの上端水平部(比重分離槽の下流側)に平板状の磁石25を配置したものである。磁石19,25に比較的小さい粒子の鉄粉FE’を吸着させて効率的に除去し回収することができる。
3 (d) to 3 (f) has a flat plate on the upper horizontal portion (downstream of the specific gravity separation tank) of the specific
図3(g)の比重分離装置は、図2の比重分離槽17aの上方の立ち上がり部17bの上端水平部(比重分離槽の下流側)に平板状の磁石25を配置したものである。磁石19,25に比較的小さい粒子の鉄粉FE’を吸着させて効率的に除去し回収することができる。
The specific gravity separation device in FIG. 3G is a device in which a plate-
図3(h)の比重分離装置は、比重分離槽27dを下端に位置する送水管16から泥水が流入し、立ち上がり部27eの上端に位置する排水管20から流出するように構成し、磁石19に加えて、立ち上がり部27eの上端水平部(比重分離槽の下流側)に平板状の磁石25を配置したものである。磁石19,25に比較的小さい粒子の鉄粉FE’を吸着させて効率的に除去し回収することができる。
The specific gravity separation device of FIG. 3 (h) is configured such that muddy water flows in the specific
図2,図3(a)〜(g)の比重分離装置は、従来の磁気分離や遠心分離と比較して装置構造が簡単であり、また、比重分離槽の容積を増やすだけで大量処理が可能であるので、汚染泥水の処理量の増大に容易に対応できる。なお、図2,図3(a)〜(g)では、磁石19,25を装置外側に設置したが、装置内部に設置してもよい。また、磁石は、永久磁石や電磁石等を使用できる。
The specific gravity separators of FIGS. 2 and 3 (a) to 3 (g) have a simpler device structure than conventional magnetic separation and centrifugal separation, and can be processed in large quantities simply by increasing the volume of the specific gravity separation tank. Therefore, it is possible to easily cope with an increase in the amount of contaminated mud. 2 and 3 (a) to 3 (g), the
次に、図2の比重分離装置のさらに別の例について図4を参照して説明する。図4は、図2の汚染泥水の処理システムに適用可能な上昇流発生部を有する比重分離装置を概略的に示す側面図(a)(b)である。 Next, still another example of the specific gravity separation device of FIG. 2 will be described with reference to FIG. FIGS. 4A and 4B are side views (a) and (b) schematically showing a specific gravity separator having an upflow generation unit applicable to the contaminated mud water treatment system of FIG.
図4(a)(b)の比重分離装置は、図3(a)の比重分離槽27a、図3(c)の比重分離槽27cにおいて、それらの底面から上昇流を発生させる上昇流発生部を設けたものである。かかる上昇流発生部として、たとえば、底板に配置した孔付き鋼管から外部のポンプ等により水流を上昇させるように構成できる。上昇流を槽底面から発生させることにより、分離した鉄粉へ土粒子が混入することを低減できる。この際の上昇流の速度(絶対値)は、土粒子の沈降速度よりも大きく、鉄粉の沈降速度よりも小さくすることで、混入低減効果が向上する。
4 (a) and 4 (b), the specific gravity separation device generates an upward flow from their bottom surfaces in the specific
図1の鉄粉の回収工程S08における回収後の鉄粉は、砒素等に対する処理能力が残っている場合にはそのまま再利用し、能力が残っていない場合には酸等での洗浄による再生や場外処分等を行う。 The iron powder after the recovery in the iron powder recovery step S08 in FIG. 1 is reused as it is when the processing capacity for arsenic or the like remains, and when the capacity does not remain, it can be regenerated by washing with acid or the like. Dispose off-site.
鉄粉の砒素吸着能力の判定は、鉄粉の吸着能力を事前に判定して処理前の泥水中の砒素濃度から計算する方法、鉄粉を砒素濃度が既知の溶液に浸し一定時間後に水溶液中の濃度を分析して余力を確認する方法、鉄粉表面の砒素濃度を分析する方法等によって行うことができる。 Judgment of arsenic adsorption capacity of iron powder is based on a method in which the adsorption capacity of iron powder is determined in advance and calculated from the arsenic concentration in the muddy water before treatment. For example, a method for confirming the remaining power by analyzing the concentration of iron, and a method for analyzing the arsenic concentration on the surface of the iron powder.
また、分離後の鉄粉は、比重分離装置を停止させて回収する方法(たとえば、図2(a)(b)のように、バックホーBHを用いて掻き出して回収する)、比重分離装置に排出装置を設置し鉄粉を連続的に回収する方法、比重分離装置を複数用意して交互に使用し、使用していない方の鉄粉を掻き出す方法等により回収することができる。 Also, the iron powder after separation is recovered by stopping the specific gravity separator (for example, scraped and recovered using a backhoe BH as shown in FIGS. 2 (a) and 2 (b)) and discharged to the specific gravity separator. It can be recovered by a method of continuously collecting iron powder by installing an apparatus, a method of preparing a plurality of specific gravity separators and using them alternately, and scraping out the iron powder that is not used.
図5(a)〜(c)に本実施形態による比重分離装置の具体例を示す。図5(a)〜(c)の比重分離装置30は、図2(a)(b)の比重分離装置を具体化したもので、比重分離槽31と、立ち上がり部32と、複数の槽架台33と、を有する。比重分離槽31は、図3(c)の側面上部に配置された鉄粉混合泥水注入口31aと、槽の水平上面に配置された開閉可能な矩形状の蓋34と、槽内部を点検のために覗くための覗き窓36と、を有する。立ち上がり部32は、その上面に設けられた泥水排出口32aと、上部側面に設けられた複数の磁石挿入孔35と、を有する。磁石挿入孔35には、図5(a)の破線のように、棒状体の磁石37が挿入され、磁石37は立ち上がり部32の内部上面近傍に水平に位置するようになっている。
5A to 5C show specific examples of the specific gravity separation device according to the present embodiment. The specific
図5(a)〜(c)の比重分離装置30によれば、鉄粉混合泥水が注入口31aから比重分離槽31内に流入すると、比重分離により鉄粉が沈降するとともに、立ち上がり部32の内部上面近傍(比重分離槽の下流側)に配置された複数の棒状体の磁石37に比較的小さい粒子の鉄粉が吸着する。棒状体の磁石37に吸着した鉄粉は、磁石37を磁石挿入孔35から引き抜くときに、孔35の周囲に当たり落下することで、簡単に除去することができる。
According to the specific
本実施形態の汚染泥水の処理システムによれば、磁気分離や遠心分離と比較して装置の構造が簡単であり、処理量を増やしたい場合、装置の大型化と台数増加の両方での対応が可能であり、低コストの簡便なシステムで汚染泥水の大量処理を行うことができる。 According to the contaminated muddy water treatment system of the present embodiment, the structure of the device is simple compared to magnetic separation and centrifugal separation, and when it is desired to increase the amount of treatment, both the increase in the size of the device and the increase in the number of devices can be handled. It is possible, and a large amount of contaminated mud can be treated with a simple and low-cost system.
また、比重分離装置内における鉄粉混合泥水の流速や泥水への加水(粘度の調整)等を設定することで、鉄粉の回収状況を調整することができる。たとえば、鉄粉混合泥水へ加水して粘度を低くして比重分離槽内における鉄粉の沈降比率を増やすことができる。 Moreover, the collection | recovery condition of iron powder can be adjusted by setting the flow rate of iron powder mixed mud in the specific gravity separator, the addition to mud (adjustment of viscosity), and the like. For example, it is possible to increase the sedimentation ratio of the iron powder in the specific gravity separation tank by reducing the viscosity by adding water to the iron powder mixed mud water.
以下、実験例1〜4により本実施形態の効果を確認した。実験例1は、鉄粉の粒径が鉄粉の吸着性に及ぼす影響を確認したものである。鉄粉の粒径を大きくすると単位重量あたりの表面積は減少し、砒素や重金属類との接触・反応効率は低下するが、鉄粉添加量の増加や反応時間の調整により重金属の除去能力を調整することができる。 Hereinafter, the effects of the present embodiment were confirmed by Experimental Examples 1 to 4. Experimental example 1 confirms the influence which the particle size of iron powder has on the adsorptivity of iron powder. Increasing the particle size of iron powder reduces the surface area per unit weight and decreases the contact and reaction efficiency with arsenic and heavy metals, but adjusts the removal capacity of heavy metals by increasing the amount of iron powder added and adjusting the reaction time can do.
砒素を含むベントナイト泥水に粒径の異なる鉄粉を添加し混合し、鉄粉回収後に溶出試験を実施した結果を図6に示す。図6からわかるように、中央粒径150μmの鉄粉を10%混合した(ベントナイト土粒子に対する重量比)ケースは、中央粒径70μmの鉄粉を10%混合したケースと同様に、砒素溶出量が土壌環境基準以下となった。中央粒径300μmの鉄粉の場合、10%、30%の混合のケースでは土壌環境基準を超えたが、50%の混合のケースに土壌環境基準以下となった。鉄粉の粒径が比較的小さいと、砒素や重金属類に対する吸着性がよく、砒素や重金属類の除去能力が優れることがわかる。また、鉄粉の粒径を比較的大きくしても、鉄粉混合量の増加により砒素や重金属類の除去能力を調整できることがわかる。 FIG. 6 shows the results of adding and mixing iron powders having different particle diameters to bentonite mud containing arsenic and conducting an elution test after iron powder recovery. As can be seen from Fig. 6, the arsenic elution amount in the case of 10% iron powder with a median particle size of 150μm (weight ratio to bentonite soil particles) is the same as the case of 10% iron powder with a median particle size of 70μm. Fell below the soil environmental standards. In the case of iron powder with a median particle size of 300 μm, the soil environmental standard was exceeded in the case of mixing 10% and 30%, but was below the soil environmental standard in the case of mixing 50%. It can be seen that when the particle size of the iron powder is relatively small, the adsorptivity to arsenic and heavy metals is good and the ability to remove arsenic and heavy metals is excellent. It can also be seen that even if the particle size of the iron powder is relatively large, the removal ability of arsenic and heavy metals can be adjusted by increasing the iron powder mixing amount.
次に、実験例2により、反応時間が鉄粉の吸着性に及ぼす影響について調査した。中央粒径72μmの鉄粉を浚渫土に添加し混合し、所定の時間経過後に鉄粉を除去して溶出試験を実施した結果を図7に示す。図7からわかるように、鉄粉の混合量が1%、5%、10%のケースではともに10分経過した段階において、土壌環境基準以下となっているが、反応時間を30分とした場合には、1%添加の場合には溶出量の低下が見られた。すなわち、汚染濃度が低い場合、鉄粉の添加量を減らすことが可能であり、さらに反応時間を長くとることにより鉄粉の添加量を減らすことが可能であることはわかる。 Next, the influence of the reaction time on the iron powder adsorptivity was investigated in Experimental Example 2. FIG. 7 shows the result of conducting an elution test by adding iron powder having a median particle diameter of 72 μm to the clay and mixing it, removing the iron powder after a predetermined time has elapsed. As can be seen from Fig. 7, when the mixing amount of iron powder is 1%, 5%, and 10%, the soil environmental standard is below the point when 10 minutes have passed, but the reaction time is 30 minutes. In the case of 1% addition, a decrease in elution amount was observed. That is, it can be seen that when the contamination concentration is low, the amount of iron powder added can be reduced, and the amount of iron powder added can be reduced by increasing the reaction time.
次に、実験例3により、図3(c)のように比重分離槽の底面から泥水を流入させ上昇させた場合の上昇流速の影響について調査した。図8(a)に上端(排水管上流端)に磁石を配置した円筒カラムからなる実験装置を示し、(b)に同じ構成であるが磁石を省略した実験装置を示す。 Next, the effect of the rising flow velocity when muddy water was introduced and raised from the bottom of the specific gravity separation tank as shown in FIG. FIG. 8A shows an experimental apparatus composed of a cylindrical column having a magnet disposed at the upper end (upstream end of the drain pipe), and FIG. 8B shows an experimental apparatus having the same configuration but omitting the magnet.
図8(a)(b)に示す円筒カラムの底面より鉄粉混合泥水を供給し上昇させた場合の装置内の上昇流速と鉄粉の沈降率、流出率を図9(磁石なし),図10(磁石あり)に示す。この沈降率および流出率は混合した鉄粉に対して沈降・流出した鉄粉の重量比である。また、ここでの流速は円筒カラム内の流速であり、送泥水量と断面積とから算出した値である。図9から、装置内の上昇流速を大きくすると、処理量を増やすことができるが、磁石がない場合、流出する鉄粉量が増え、磁石により回収する鉄粉量が減り、また、逆に流速を小さくすると、処理量は減るが流出鉄粉量を減らすことができる。また、図10から、磁石を配置することで、装置内の上昇流速を大きくして処理量を増やしても、流出する鉄粉量がわずかに減少する程度であり、磁石配置の効果が確認できた。 Fig. 9 (No magnet), Fig. 9 shows the ascending flow rate, the settling rate of iron powder, and the outflow rate when the iron powder mixed mud is supplied and raised from the bottom of the cylindrical column shown in Figs. 8 (a) and 8 (b). 10 (with magnet). This settling rate and outflow rate are the weight ratio of the settling and outflowing iron powder to the mixed iron powder. The flow rate here is the flow rate in the cylindrical column, and is a value calculated from the amount of muddy water and the cross-sectional area. From FIG. 9, the amount of processing can be increased by increasing the ascending flow rate in the apparatus. However, when there is no magnet, the amount of iron powder flowing out increases, the amount of iron powder collected by the magnet decreases, and conversely the flow rate If the value is made smaller, the amount of spilled iron powder can be reduced although the processing amount is reduced. In addition, from FIG. 10, by arranging magnets, the amount of iron powder flowing out is only slightly reduced even if the ascending flow rate in the apparatus is increased to increase the processing amount, and the effect of magnet arrangement can be confirmed. It was.
図8(a)の実験装置は、図3(c)(f)の構成を模擬したもので、図3(c)(f)の比重分離装置による効果を確認できたといえる。また、図3(b)(e)の比重分離装置についても、鉛直方向の流速による分離状況は実験例3によって確認できたといえる。 The experimental apparatus of FIG. 8A simulates the configuration of FIGS. 3C and 3F, and it can be said that the effect of the specific gravity separation apparatus of FIGS. 3C and 3F has been confirmed. 3B and 3E, it can be said that the separation state based on the flow velocity in the vertical direction could be confirmed by Experimental Example 3.
次に、実験例4により、図8(a)の実験装置を用いて、鉄粉混合泥水の粘度の影響について調査した。鉄粉混合泥水に加水して粘性を調整し、上昇流速を三段階に変えた場合の鉄粉の沈降率、流出率を調べ、その結果を図11に示す。図11から、鉄粉混合泥水の粘度を低下させファンネル粘度の値を小さくすることで、いずれの流速でも鉄粉の沈降比率を増やし、磁気分離の負荷を減らす(磁石からの鉄粉の分離回収頻度を減らす)ことが可能であることがわかる。なお、鉄粉混合泥水のファンネル粘度は、(株)西日本試験機製のファンネル粘度計(S-251)を用いて測定した。 Next, the influence of the viscosity of the iron powder mixed mud water was investigated according to Experimental Example 4 using the experimental apparatus shown in FIG. The viscosity is adjusted by adding water to the iron powder mixed mud water, and the settling rate and outflow rate of the iron powder when the rising flow rate is changed in three stages are examined, and the results are shown in FIG. From FIG. 11, by reducing the viscosity of the iron powder mixed mud water and reducing the value of the funnel viscosity, the sedimentation ratio of the iron powder is increased at any flow rate and the magnetic separation load is reduced (separation and recovery of the iron powder from the magnet). It can be seen that it is possible to reduce the frequency). The funnel viscosity of the iron powder mixed mud was measured using a funnel viscometer (S-251) manufactured by West Japan Testing Machine Co., Ltd.
以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。たとえば、本実施形態における処理対象の汚染泥水は、シールドマシンによる掘削工程において生じるものとしたが、本発明は、これに限定されず、他の汚染泥水にも適用できることはもちろんである。 As described above, the modes for carrying out the present invention have been described. However, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, the contaminated mud water to be treated in the present embodiment is generated in the excavation process by the shield machine. However, the present invention is not limited to this, and can naturally be applied to other contaminated mud water.
また、鉄粉を比重分離する比重分離装置は、槽構成に限定されず、たとえば、管路構成であってもよく、また、上部が開いた流路であってもよい。 Moreover, the specific gravity separator which isolate | separates specific gravity of iron powder is not limited to a tank structure, For example, a pipe line structure may be sufficient and the flow path which the upper part opened may be sufficient.
また、磁石に吸着した鉄粉は、図5では、機械的構成により強制的に除去し回収するようにしたが、これに限定されず、たとえば、電磁石を使用しオン・オフの切替によって回収するようにしてもよい。また、図2(a)、図3(a)〜(c)における磁石の位置は、図示の位置に限定されず、たとえば、比重分離装置側の排水管近傍であってもよい。また、磁石は、図3(d)〜(h)のように複数位置に配置してもよく、また、排水管側の複数位置に配置してもよい。 Further, in FIG. 5, the iron powder adsorbed on the magnet is forcibly removed and collected by a mechanical configuration, but the invention is not limited to this. For example, the iron powder is collected by switching on and off using an electromagnet. You may do it. Moreover, the position of the magnet in Fig.2 (a) and FIG.3 (a)-(c) is not limited to the position shown in figure, For example, the drain pipe vicinity by the side of a specific gravity separation apparatus may be sufficient. Moreover, a magnet may be arrange | positioned in multiple positions like FIG.3 (d)-(h), and may be arrange | positioned in multiple positions by the side of a drain pipe.
また、自然由来の砒素や重金属類を含む浚渫土を埋立てに使用する場合、埋立て完了後に土壌環境基準を超過した地盤ができあがることになるが(埋立て段階では水底土砂基準以下であれば埋立ては可能である)、砒素等を含む浚渫土に本方法を適用することで、土壌環境基準以下の地盤とすることができる。このように浚渫土に適用する場合、たとえば、土運船内において鉄粉を添加・混合し、バージアンローダー船で埋立地に投入する直前に本方法・システムを用いて鉄粉を回収することができる。 In addition, when dredged soil containing natural arsenic and heavy metals is used for landfill, the ground will exceed soil environmental standards after landfill is completed (if the landfill level is below the bottom sediment standard) By applying this method to dredged soil containing arsenic, etc., it is possible to make the ground below the soil environmental standard. When applying to dredged soil in this way, for example, iron powder can be recovered using the present method / system immediately before adding / mixing iron powder in a ship carrier and putting it into a landfill on a Virgin loader ship. it can.
また、浚渫土中の砂鉄が多く、鉄粉とともに回収されて再利用する際に両者の区別が困難となることが予想される場合、本システムを2台使用し、1台目で前処理として砂鉄を回収した後に、鉄粉を加えて2台目で鉄粉を回収することが考えられる。 Also, if there is a lot of iron sand in the dredged soil and it is expected that it will be difficult to distinguish between the two when recovered with iron powder and reused, use this system as a pre-treatment with the first one After collecting iron sand, it is conceivable to add iron powder and collect iron powder at the second unit.
本発明の汚染泥水の処理方法・システムによれば、従来の磁気分離や遠心分離と比較して装置構造が簡単になり、処理量の増大に対応が容易であるので、効率よくかつ低コストで汚染泥水を処理可能である。 According to the method and system for treating contaminated mud water of the present invention, the structure of the apparatus becomes simpler than conventional magnetic separation and centrifugal separation, and it is easy to cope with an increase in the amount of treatment. The contaminated mud can be treated.
10 汚染泥水の処理システム
12 攪拌・反応槽
16 送水管
17 比重分離装置
17a 比重分離槽(比重分離部)
19,25 磁石
20 排水管
27a〜27c 比重分離槽(比重分離部)
30 比重分離装置
31 比重分離槽(比重分離部)
35 磁石挿入孔
37 磁石
FE,FE’ 鉄粉
10 Contaminated Mud
19, 25
30
35
Claims (9)
前記鉄粉混合泥水から比重分離により前記鉄粉を分離する工程と、
前記分離された鉄粉を回収する工程と、を含み、
前記鉄粉混合泥水を通水断面積の小さい送水管路を通して通水断面積の大きい比重分離部に送り、前記比重分離部において前記鉄粉混合泥水から前記鉄粉を沈降させることで前記比重分離を行うことを特徴とする汚染泥水の処理方法。 Mixing iron powder into contaminated mud water to be treated;
Separating the iron powder by specific gravity separation from the iron powder mixed mud,
Recovering the separated iron powder, and
The iron powder mixed mud water is sent to a specific gravity separation section having a large water flow cross section through a water pipe having a small water cross section, and the specific gravity separation is performed by allowing the iron powder to settle from the iron powder mixed mud water in the specific gravity separation section. A method for treating contaminated mud water.
前記鉄粉混合泥水から比重分離により前記鉄粉を分離する比重分離部と、
前記分離された鉄粉を回収する回収手段と、を備え、
前記鉄粉混合泥水を通水断面積の小さい送水管路を通して通水断面積の大きい前記比重分離部に送り、前記比重分離部において前記鉄粉混合泥水から前記鉄粉を沈降させることで前記比重分離を行うことを特徴とする汚染泥水の処理システム。 An iron powder mixing section for mixing iron powder into contaminated mud water to be treated;
A specific gravity separation part for separating the iron powder from the iron powder mixed mud by specific gravity separation;
Recovery means for recovering the separated iron powder,
The iron powder mixed mud is passed through a water pipe having a small water cross-sectional area and sent to the specific gravity separation part having a large water flow cross-sectional area, and the specific gravity is set by allowing the iron powder to settle from the iron powder mixed mud in the specific gravity separation part. A treatment system for contaminated mud water characterized by separation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016004271A JP6572135B2 (en) | 2016-01-13 | 2016-01-13 | Method and system for treating contaminated mud water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016004271A JP6572135B2 (en) | 2016-01-13 | 2016-01-13 | Method and system for treating contaminated mud water |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017124359A true JP2017124359A (en) | 2017-07-20 |
JP6572135B2 JP6572135B2 (en) | 2019-09-04 |
Family
ID=59364959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016004271A Active JP6572135B2 (en) | 2016-01-13 | 2016-01-13 | Method and system for treating contaminated mud water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6572135B2 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001073402A (en) * | 1999-09-06 | 2001-03-21 | Toyo Constr Co Ltd | Method and device for processing dredging slurry |
JP2001198567A (en) * | 2000-01-19 | 2001-07-24 | Hazama Gumi Ltd | Slurry containing fine iron particle, method of producing the same, soil-cleaning agent and method of cleaning soil |
JP2002355663A (en) * | 2001-05-29 | 2002-12-10 | Ichinomiya Kimitake | Soil cleaning system with high pressure jet and method for the same |
US6596190B1 (en) * | 1999-07-29 | 2003-07-22 | Hazama Corp. | Remediation agent for contaminated soil and method for the remediation of soil |
JP2005081334A (en) * | 2003-09-11 | 2005-03-31 | Penta Ocean Constr Co Ltd | Method and apparatus for classifying earth and sand slurry |
JP2011056482A (en) * | 2009-09-14 | 2011-03-24 | Kajima Corp | Method for treating heavy metal-contaminated soil, and system for treating heavy metal-contaminated soil |
JP2014073464A (en) * | 2012-10-04 | 2014-04-24 | Ohbayashi Corp | Contaminated soil decontamination method in shield method |
JP2014188408A (en) * | 2013-03-26 | 2014-10-06 | Ohbayashi Corp | Method for purifying contaminated soil and contaminated soil purification system |
-
2016
- 2016-01-13 JP JP2016004271A patent/JP6572135B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6596190B1 (en) * | 1999-07-29 | 2003-07-22 | Hazama Corp. | Remediation agent for contaminated soil and method for the remediation of soil |
JP2001073402A (en) * | 1999-09-06 | 2001-03-21 | Toyo Constr Co Ltd | Method and device for processing dredging slurry |
JP2001198567A (en) * | 2000-01-19 | 2001-07-24 | Hazama Gumi Ltd | Slurry containing fine iron particle, method of producing the same, soil-cleaning agent and method of cleaning soil |
JP2002355663A (en) * | 2001-05-29 | 2002-12-10 | Ichinomiya Kimitake | Soil cleaning system with high pressure jet and method for the same |
JP2005081334A (en) * | 2003-09-11 | 2005-03-31 | Penta Ocean Constr Co Ltd | Method and apparatus for classifying earth and sand slurry |
JP2011056482A (en) * | 2009-09-14 | 2011-03-24 | Kajima Corp | Method for treating heavy metal-contaminated soil, and system for treating heavy metal-contaminated soil |
JP2014073464A (en) * | 2012-10-04 | 2014-04-24 | Ohbayashi Corp | Contaminated soil decontamination method in shield method |
JP2014188408A (en) * | 2013-03-26 | 2014-10-06 | Ohbayashi Corp | Method for purifying contaminated soil and contaminated soil purification system |
Also Published As
Publication number | Publication date |
---|---|
JP6572135B2 (en) | 2019-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4823387B1 (en) | Material recycling system for producing sand products from mineral mixtures | |
JP4455631B2 (en) | Solid-liquid separator | |
JP6599190B2 (en) | Treatment method of heavy metal sludge water in shield construction | |
JP2006116397A (en) | Washing method and washing apparatus of contaminated soil | |
JP5990442B2 (en) | Volume reduction treatment method for contaminated soil | |
JP2016013522A (en) | Water treatment system and water treatment method | |
CA2788623C (en) | Ballast flocculation and sedimentation water treatment system with simplified sludge recirculation, and process therefor | |
JP4466216B2 (en) | Magnetic separation and purification method and apparatus | |
JP6411909B2 (en) | Detoxification system for arsenic contaminated soil | |
JP6643141B2 (en) | Detoxification system for heavy metal contaminated soil | |
CA2766376C (en) | Carbon retention screen with variable discharge head | |
JP6363969B2 (en) | Method and apparatus for treating heavy metal contaminated soil | |
JP5470563B2 (en) | Contaminated soil treatment equipment | |
JP6572135B2 (en) | Method and system for treating contaminated mud water | |
JP5881043B2 (en) | Radioactive material recovery method and radioactive material recovery device | |
CN205442860U (en) | Utilize device of lime treatment metallurgy of copper waste water | |
JP6425170B2 (en) | Muddy water treatment system and muddy water treatment method | |
JP2005262076A (en) | Method for cleaning soil contaminated with oil | |
US20110067525A1 (en) | Apparatus and methods for mercury and precious metal recovery | |
JP2017094234A (en) | Polluted soil purification method and purification system | |
JP6458635B2 (en) | Contaminated soil cleaning equipment and contaminated soil cleaning method | |
JP5226730B2 (en) | Cyan contaminated soil purification system | |
JP6618039B2 (en) | Decontamination soil treatment apparatus and method | |
KR101573624B1 (en) | Dredged processing device using a magnetic field | |
JP2015033665A (en) | Settling separation apparatus for coagulant-added turbid water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181102 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190705 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190716 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190723 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190806 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190809 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6572135 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |