JP2017123318A - Method for manufacturing heterogeneous conductive member - Google Patents

Method for manufacturing heterogeneous conductive member Download PDF

Info

Publication number
JP2017123318A
JP2017123318A JP2016002994A JP2016002994A JP2017123318A JP 2017123318 A JP2017123318 A JP 2017123318A JP 2016002994 A JP2016002994 A JP 2016002994A JP 2016002994 A JP2016002994 A JP 2016002994A JP 2017123318 A JP2017123318 A JP 2017123318A
Authority
JP
Japan
Prior art keywords
aluminum
copper
laser beam
laser
aluminum member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016002994A
Other languages
Japanese (ja)
Inventor
松本 剛
Takeshi Matsumoto
松本  剛
崇志 後藤
Takashi Goto
崇志 後藤
拓朗 青木
Takuro Aoki
拓朗 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016002994A priority Critical patent/JP2017123318A/en
Publication of JP2017123318A publication Critical patent/JP2017123318A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a conductive member having high strength and conductivity and high degree of freedom of layout of members when manufacturing heterogeneous conductive members such as bus bars by abutting an aluminum member and a copper member and laser-welding them.SOLUTION: An aluminum member 1 and a copper member 2 are abutted against each other, and an abutted portion is irradiated with a laser beam 5 while moving the laser beam along the abutted portion, and the aluminum member 1 and the copper member 2 are laser-welded. During the laser welding, the laser beam 5 is moved a plurality of times along the abutted portion to melt an end portion of the aluminum member 1 to form a linear fused portion 6 along the abutted portion, and the aluminum member 1 and the copper member 2 are pressed in the abutting direction, and the fused portion 6 is caused to flow outside the abutted portion. After the laser welding, the burr 8 formed outside the abutted portion is removed.SELECTED DRAWING: Figure 1

Description

本発明は、アルミニウム部材と銅部材を突き合わせてレーザ溶接し、電子・電気部品の接続に用いるバスバーなどの異種導電部材を製造する方法に関する。    The present invention relates to a method of manufacturing a dissimilar conductive member such as a bus bar used for connecting electronic / electrical parts by abutting and welding an aluminum member and a copper member.

ハイブリッド自動車や電気自動車などの車両に用いられるコンデンサ装置は、充放電を繰り返し行うことから、渦巻き状に捲回されたコンデンサ素子に電極を設け、この電極間を導電部材であるバスバーで接続し通電している。従来、このような導電部材には高い導電性を確保するために、銅材(純銅又は銅合金)が用いられていた。
ところが近年、環境問題に配慮し、排出ガスの低減等を実現するため、自動車の軽量化が要求されている。このため、特に端子コネクターやバスバーなどの導電部材においては、重量が大きい銅材の一部又は全部を、アルミニウム材(純アルミニウム又はアルミニウム合金)に置き換えて軽量化を図る試みがなされている。
Capacitor devices used in vehicles such as hybrid vehicles and electric vehicles repeatedly charge and discharge, so electrodes are provided on capacitor elements wound in a spiral shape, and the electrodes are connected by a bus bar that is a conductive member. doing. Conventionally, a copper material (pure copper or copper alloy) has been used for such a conductive member in order to ensure high conductivity.
However, in recent years, it has been required to reduce the weight of automobiles in order to realize environmental reductions and reduce exhaust gas. For this reason, particularly in conductive members such as terminal connectors and bus bars, attempts have been made to reduce the weight by replacing part or all of the heavy copper material with aluminum material (pure aluminum or aluminum alloy).

例えば特許文献1には、第1金属板(銅材)と第2金属板(アルミニウム材)の端部を重ね合わせて接合し、異種導電部材を製造する方法が記載されている。具体的には、第1,第2金属板の端部にそれぞれ凸状の山部と凹状の谷部を形成し、第1,第2金属板の端部を重ね合わせて山部と谷部を係合させ、重ね合わせ部を上下一対のロールで圧延して圧接し、拡散焼鈍して第1,第2金属板を接合する。
特許文献2には、アルミニウム部材と銅部材の端部同士を突き合わせ、突き合わせ部をレーザ溶接して、異種導電部材を製造することが記載されている。レーザ溶接に際しては、レーザ光の中心位置を突き合わせ線からアルミニウム部材側にオフセットさせ、レーザ光のアルミニウム部材への照射面積が銅部材への照射面積より大きくなるようにする。
For example, Patent Document 1 describes a method of manufacturing a different conductive member by overlapping and joining ends of a first metal plate (copper material) and a second metal plate (aluminum material). Specifically, a convex crest and a concave trough are formed at the ends of the first and second metal plates, respectively, and the crest and trough are overlapped with the ends of the first and second metal plates. And the overlapped portion is rolled and pressed with a pair of upper and lower rolls, and diffusion-annealed to join the first and second metal plates.
Patent Document 2 describes that end portions of an aluminum member and a copper member are butted together, and the butted portion is laser-welded to manufacture a dissimilar conductive member. At the time of laser welding, the center position of the laser beam is offset from the butt line to the aluminum member side so that the irradiation area of the laser beam on the aluminum member is larger than the irradiation area of the copper member.

特許文献3には、銅材とアルミニウム材を面接触させ、超高圧の静水圧環境下で押出加工して接合し、異種導電部材(バスバー)を製造することが記載されている。また、超高圧の静水圧環境下での押出加工により、銅材とアルミニウム材は金属的結合をすると記載されている。
特許文献4には、合金系の異なるアルミニウム材(1000系と6000系)を摩擦攪拌接合して一体化して、異種導電部材(バスバー)を製造することが記載されている。
Patent Document 3 describes that a copper material and an aluminum material are brought into surface contact and are extruded and joined in an ultrahigh hydrostatic pressure environment to produce a different conductive member (bus bar). Further, it is described that the copper material and the aluminum material are metallicly bonded by an extrusion process under an ultra-high hydrostatic pressure environment.
Patent Document 4 describes that aluminum materials having different alloy systems (1000 series and 6000 series) are friction stir welded and integrated to manufacture a dissimilar conductive member (bus bar).

特開2008−6496号公報Japanese Patent Laid-Open No. 2008-6696 特開2011−5499号公報JP2011-5499A 特開2011−210480号公報JP 2011-210480 A 特開2015−15211号公報Japanese Patent Laying-Open No. 2015-15211

特許文献1に記載された異種導電部材の製造方法は、第1金属板と第2金属板の端面を予め加工する必要があるため手間がかかり、圧延スタンドの幅により第1,第2金属板の幅が制限される。また、第1,第2金属板に板厚差がある場合は、圧接が困難という問題がある。
特許文献2に記載された異種導電部材の製造方法は、レーザ溶接部分に銅とアルミニウムの2元系金属間化合物が形成され、これにより、銅部材とアルミニウム部材の間の電気の導通が阻害され、銅部材とアルミニウム部材の接合強度が低下するおそれがある。
The manufacturing method of the dissimilar conductive member described in Patent Document 1 requires time since the end surfaces of the first metal plate and the second metal plate need to be processed in advance, and the first and second metal plates depend on the width of the rolling stand. The width of is limited. Moreover, when there is a difference in plate thickness between the first and second metal plates, there is a problem that press contact is difficult.
In the method of manufacturing a different conductive member described in Patent Document 2, a binary intermetallic compound of copper and aluminum is formed in a laser welded portion, thereby preventing electrical conduction between the copper member and the aluminum member. The bonding strength between the copper member and the aluminum member may be reduced.

特許文献3に記載された異種導電部材の製造方法は、銅材とアルミニウム材が金属的結合をしていることで、高い導電性が得られると考えられる。しかし、押出形状はダイス孔の形状に制約されるため、異種導電部材の形状設計の自由度が制約される。
特許文献4に記載された異種導電部材の製造方法は、合金系の異なるアルミニウム材を摩擦攪拌接合で接合しているため、接合体としての強度は得られるものの、アルミニウム材同士が金属的結合をしていない。このため、摩擦攪拌接合で接合した異種導電部材は、バスバーとして用いるための十分な導電性が確保できないという問題がある。
The manufacturing method of the different electroconductive member described in patent document 3 is considered that high electroconductivity is acquired because the copper material and the aluminum material are carrying out the metallic connection. However, since the extrusion shape is restricted by the shape of the die hole, the degree of freedom in designing the shape of the different conductive member is restricted.
In the manufacturing method of the dissimilar conductive member described in Patent Document 4, since aluminum materials having different alloy systems are joined by friction stir welding, the strength as a joined body can be obtained, but the aluminum materials have a metallic bond. Not done. For this reason, the dissimilar conductive member joined by friction stir welding has a problem that sufficient conductivity for use as a bus bar cannot be secured.

本発明は、アルミニウム部材と銅部材を接合して、バスバー等の異種導電部材を製造する場合において、導電部材としての強度が確保でき、導電性が高く、かつ部材のレイアウトの自由度が高い導電部材を提供することを目的とする。   In the case of manufacturing a different conductive member such as a bus bar by joining an aluminum member and a copper member, the present invention can ensure the strength as the conductive member, has high conductivity, and has a high degree of freedom in layout of the member. An object is to provide a member.

本発明は、アルミニウム部材と銅部材を突き合わせ、レーザビームを突き合わせ部に沿って移動(走査)させながら前記突き合わせ部に照射し、前記アルミニウム部材と銅部材をレーザ溶接して異種導電部材を製造する方法において、レーザ溶接に際し、前記レーザビームを前記突き合わせ部に沿って複数回移動させ、前記アルミニウム部材の端部を溶融させて前記突き合わせ部に沿って線状の溶融部を形成し、前記アルミニウム部材と前記銅部材を突き合わせ方向に押し付け、前記溶融部の材料を突き合わせ部の外側に流動させ、レーザ溶接後に前記突き合わせ部の外側に形成されたバリを除去することを特徴とする。
なお、本発明においてアルミニウム部材とは、純アルミニウム又はアルミニウム合金からなる部材を意味し、銅部材とは純銅又は銅合金からなる部材を意味する。
上記製造方法において、レーザビームは、前記突き合わせ部に沿って1回以上往復動させてもよく、一方向にのみ複数回移動させてもよい。
上記製造方法において、前記アルミニウム部材と銅部材は、前記溶融部を形成しながら押し付けてもよく、前記溶融部を形成後に押し付けてもよい。
上記製造方法において、アルミニウム部材の板厚を銅部材の板厚よりも厚くしておくことが好ましい。
According to the present invention, an aluminum member and a copper member are abutted, a laser beam is irradiated to the abutting portion while being moved (scanned) along the abutting portion, and the aluminum member and the copper member are laser-welded to manufacture a different conductive member. In the method, at the time of laser welding, the laser beam is moved a plurality of times along the abutting portion, an end portion of the aluminum member is melted to form a linear melted portion along the abutting portion, and the aluminum member And the copper member are pressed against each other in the abutting direction, the material of the melted portion is caused to flow outside the abutting portion, and burrs formed outside the abutting portion after laser welding are removed.
In the present invention, an aluminum member means a member made of pure aluminum or an aluminum alloy, and a copper member means a member made of pure copper or a copper alloy.
In the manufacturing method, the laser beam may be reciprocated once or more along the abutting portion, or may be moved a plurality of times only in one direction.
In the manufacturing method, the aluminum member and the copper member may be pressed while forming the melted portion, or may be pressed after forming the melted portion.
In the said manufacturing method, it is preferable to make the plate | board thickness of an aluminum member thicker than the plate | board thickness of a copper member.

本発明によれば、バスバー等の導電部材としての強度を確保しつつ、導電性が高く、部材のレイアウトの自由度が高い異種導電部材の製造方法(レーザ溶接方法)を提供することができる。本発明の製造方法で得られた異種導電部材は、アルミニウム部材と銅部材をレーザ溶接したものであり、車載電池ユニット及びキャパシターの電気接続用バスバー等の導電部材として好適に利用することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method (laser welding method) of a different electroconductive member with high electroconductivity and a high freedom degree of member layout can be provided, ensuring the intensity | strength as electroconductive members, such as a bus bar. The dissimilar conductive member obtained by the production method of the present invention is obtained by laser welding an aluminum member and a copper member, and can be suitably used as a conductive member such as an in-vehicle battery unit and a bus bar for electrical connection of a capacitor.

本発明の製造方法の概要を示す斜視図である。It is a perspective view which shows the outline | summary of the manufacturing method of this invention. 本発明の製造方法の概要を示す平面図である。It is a top view which shows the outline | summary of the manufacturing method of this invention. 本発明の製造方法によるレーザ溶接部(溶融部形成時)の板厚方向断面を示す模式図である。It is a schematic diagram which shows the plate | board thickness direction cross section of the laser weld part (at the time of fusion | melting part formation) by the manufacturing method of this invention. 本発明の製造方法によるレーザ溶接部(溶融部流動時)の板厚方向断面を示す模式図である。It is a schematic diagram which shows the plate | board thickness direction cross section of the laser welding part (at the time of a fusion | melting part flow) by the manufacturing method of this invention. 本発明の製造方法によるレーザ溶接部(凝固時)の板厚方向断面を示す模式図である。It is a schematic diagram which shows the plate | board thickness direction cross section of the laser welding part (at the time of solidification) by the manufacturing method of this invention. 本発明の製造方法の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the manufacturing method of this invention. 本発明の製造方法の他の実施形態を示す模式図である。It is a schematic diagram which shows other embodiment of the manufacturing method of this invention. 比較例の製造方法(1パス溶接)によるレーザ溶接部の板厚方向断面図(顕微鏡写真)である。It is plate | board thickness direction sectional drawing (micrograph) of the laser welding part by the manufacturing method (1 pass welding) of a comparative example. 本発明の製造方法(3パス溶接)によるレーザ溶接部の板厚方向断面図(顕微鏡写真)である。It is plate | board thickness direction sectional drawing (micrograph) of the laser welding part by the manufacturing method (3 pass welding) of this invention. 本発明の製造方法(3パス溶接)による別のレーザ溶接部の板厚方向断面図(顕微鏡写真)である。この例では銅部材とアルミニウム部材の板厚が異なる。It is plate | board thickness direction sectional drawing (micrograph) of another laser welding part by the manufacturing method (3 pass welding) of this invention. In this example, the copper member and the aluminum member have different plate thicknesses.

以下、図1〜図5Cを参照して、本発明に係る異種導電部材の製造方法について、より具体的に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。
図1,2に示すように、本発明の製造方法において、アルミニウム部材(アルミニウム板)1と銅部材(銅板)2は、互いに端面同士を突き合わせた状態(突き合わせ線3)で突き合わせ継手を構成する。前記継手部ではアルミニウム部材1と銅部材2が、突き合わせ方向に押し付けられ、この状態でレーザ溶接が行われる。
図1において、4はスキャナレーザ装置のガルバノヘッドであり、内部にガルバノミラーを備え、レーザビーム5を突き合わせ部(突き合わせ線3)に沿って移動(走査)させながら、前記突き合わせ部に照射する。レーザビームの1回の移動(走査)を1パスとした場合、本発明では、これが複数パス実施される。レーザビーム5は、照射したままの状態で前記突き合わせ部に沿って1回以上往復動させてもよく(往復動1回で2パス)、一方向にのみ複数回移動させてもよい。図2には、後者の場合のレーザビーム5の移動方向が矢印で示されている。レーザビーム5が同矢印の方向(その逆方向でもよいが)に複数回移動することにより、前記突き合わせ部では、アルミニウム部材1の端部が板幅方向全域に亘って溶融し、線状の溶融部が形成される。
Hereinafter, with reference to FIG. 1 to FIG. 5C, the method for manufacturing the different type conductive member according to the present invention will be described more specifically. Note that the present invention is not limited to the embodiments described below.
As shown in FIGS. 1 and 2, in the manufacturing method of the present invention, the aluminum member (aluminum plate) 1 and the copper member (copper plate) 2 constitute a butt joint in a state where the end surfaces are butted against each other (butting line 3). . In the joint portion, the aluminum member 1 and the copper member 2 are pressed in the butting direction, and laser welding is performed in this state.
In FIG. 1, reference numeral 4 denotes a galvano head of a scanner laser apparatus, which includes a galvano mirror inside and irradiates the abutting portion while moving (scanning) the laser beam 5 along the abutting portion (abutting line 3). In the present invention, when one movement (scanning) of the laser beam is one pass, a plurality of passes are performed in the present invention. The laser beam 5 may be reciprocated once or more along the abutting portion in the irradiated state (two reciprocations for two passes), or may be moved a plurality of times only in one direction. In FIG. 2, the moving direction of the laser beam 5 in the latter case is indicated by an arrow. When the laser beam 5 moves a plurality of times in the direction of the arrow (or in the opposite direction), the end of the aluminum member 1 is melted over the entire region in the plate width direction at the butt portion, and linear melting occurs. Part is formed.

前記溶融部において溶融している金属は大部分がアルミニウムであるが、入熱量によっては銅が少量溶融する。図3Aに示すように、溶融部6は、アルミニウム部材1側に存在するアルミニウム溶融域6aと、銅部材2とアルミニウム溶融域6aの境界部に存在する混合域6bからなる。この混合域6bは溶融したアルミニウムに銅が溶け込んだ領域であり、混合域6bの銅部材2側の端部に、Al−Cu二元系金属間化合物が膜状に形成される。
なお、アルミニウム部材1と銅部材2が溶接された異種導電部材において、Al−Cu二元系金属間化合物の層が両部材1,2の間に厚く存在すると、アルミニウム部材1と銅部材2との電気の導通が阻害される。また、Al−Cu二元系金属間化合物の層が厚く存在することにより、アルミニウム部材1と銅部材2の接合強度が著しく低下する。バスバー等の導電部材では曲げ加工等が行われるため、所定の接合強度が必要である。このため、溶融部6に存在するAl−Cu二元系金属間化合物は極力排除することが望ましい。
Most of the metal melted in the melting part is aluminum, but depending on the heat input, a small amount of copper melts. As shown in FIG. 3A, the melting part 6 includes an aluminum melting area 6a existing on the aluminum member 1 side and a mixing area 6b existing at the boundary between the copper member 2 and the aluminum melting area 6a. The mixed region 6b is a region where copper is dissolved in molten aluminum, and an Al—Cu binary intermetallic compound is formed in a film shape at the end of the mixed region 6b on the copper member 2 side.
In addition, in the dissimilar conductive member in which the aluminum member 1 and the copper member 2 are welded, if the Al—Cu binary intermetallic compound layer is present between the members 1 and 2, the aluminum member 1 and the copper member 2 The electrical continuity is inhibited. In addition, the presence of a thick Al—Cu binary intermetallic compound layer significantly reduces the bonding strength between the aluminum member 1 and the copper member 2. A conductive member such as a bus bar is bent or the like, and therefore requires a predetermined bonding strength. For this reason, it is desirable to eliminate as much as possible the Al—Cu binary intermetallic compound present in the melting part 6.

アルミニウム部材1と銅部材2は突き合わせ方向に押し付けられているため、図3Bに示すように、溶融部6(アルミニウム溶融域6aと混合域6b)の材料は突き合わせ部の外に流動する(押し出される)。溶融部6の流動に伴い、混合域6bの端部で生成したAl−Cu二元系金属間化合物も、突き合わせ部の外に押し出され排除される。
続いて、レーザビーム5の照射を停止させると、図3Cに示すように、その時点で突き合わせ部に存在する溶融部6の材料がすぐに凝固して溶接金属7となり、突き合わせ部の外に押し出された材料も凝固してバリ8となる。図3Cでは、溶融部6の材料のほとんどが排除され、アルミニウム部材1と銅部材2とがごく薄い厚みの溶接金属7を介して接合された状態が模式的に示されている。
なお、混合域6bの材料(銅を含む溶融アルミニウム)が凝固するときAl−Cu二元系金属間化合物が形成されるため、該混合域6bの材料はできるだけ突き合わせ部の外に排除することが好ましい。
Since the aluminum member 1 and the copper member 2 are pressed in the abutting direction, as shown in FIG. 3B, the material of the melting part 6 (the aluminum melting area 6a and the mixing area 6b) flows out of the abutting part (extruded). ). As the molten part 6 flows, the Al—Cu binary intermetallic compound generated at the end of the mixing zone 6 b is also pushed out of the butt part and eliminated.
Subsequently, when the irradiation of the laser beam 5 is stopped, as shown in FIG. 3C, the material of the melted portion 6 existing at the butt portion immediately solidifies to become the weld metal 7 and is pushed out of the butt portion. The resulting material is also solidified to form burrs 8. FIG. 3C schematically shows a state in which most of the material of the melted part 6 is eliminated and the aluminum member 1 and the copper member 2 are joined via the weld metal 7 having a very thin thickness.
In addition, since the Al-Cu binary intermetallic compound is formed when the material of the mixing zone 6b (molten aluminum containing copper) is solidified, the material of the mixing zone 6b can be excluded from the butt portion as much as possible. preferable.

上記レーザ溶接方法によれば、レーザ溶接後、アルミニウム部材1と銅部材2の突き合わせ部にAl−Cu二元系金属間化合物の層が形成されず、仮に形成された場合でもごく薄い層に留まる。これは、溶融部6が流動するとき、混合域6bの材料の全部又は大部分が突き合わせ部の外に押し出されるためと推測される。これによって、アルミニウム部材1と銅部材2とが、突き合わせ面で溶接金属を介して金属的に接合し、良好な導電性と接合強度を得ることができる。
なお、アルミニウム部材1の板厚が銅部材2よりも厚いと、アルミニウム部材1が多く溶融し、突き合わせ部の外に押し出されるメタルの量が多くなるため、混合域6bの材料の排出をより効果的に行うことができる。
レーザ溶接後、突き合わせ部の外に押し出された材料(ばり8)をカッターなどで除去し、異種導電部材を得ることができる。
According to the laser welding method, after laser welding, the Al—Cu binary intermetallic compound layer is not formed at the butt portion of the aluminum member 1 and the copper member 2, and even if formed, the layer remains very thin. . This is presumed to be because when the molten part 6 flows, all or most of the material in the mixing zone 6b is pushed out of the butted part. As a result, the aluminum member 1 and the copper member 2 can be joined metallically via the weld metal at the butted surfaces, and good electrical conductivity and joint strength can be obtained.
In addition, when the plate | board thickness of the aluminum member 1 is thicker than the copper member 2, since the aluminum member 1 will fuse | melt much and the quantity of the metal pushed out of a butt | matching part will increase, the discharge | emission of the material of the mixing zone 6b is more effective. Can be done automatically.
After the laser welding, the material (flash 8) pushed out of the abutting portion can be removed with a cutter or the like to obtain a different conductive member.

前記スキャナレーザ装置より発せられるレーザビーム5の種類は、特に限定されず、YAGレーザ、COレーザ、ファイバ―レーザ、ディスクレーザ、半導体レーザ等が利用できる。レーザビーム5のビーム径(直径)は特に限定されず、適宜変更することができるが、0.1〜0.6mmの範囲であることが好ましい。レーザビーム5の出力は特に限定されず、アルミニウム部材1を線状に溶融させることができれば良い。突き合わせ部にいわゆる貫通ビードを形成させるために、レーザビーム出力は2000W以上が好ましく、10kW以上がより好ましく、ビームの移動速度は10m/min以上が好ましく、50m/min以上がより好ましい。
なお、レーザビーム溶接はキーホール溶接でも良いし、レーザビームをデフォーカスさせて照射していわゆるする熱伝導型ビーム溶接で行うこともできるが、キーホール溶接の方が好ましい。
The type of the laser beam 5 emitted from the scanner laser device is not particularly limited, and a YAG laser, a CO 2 laser, a fiber laser, a disk laser, a semiconductor laser, or the like can be used. The beam diameter (diameter) of the laser beam 5 is not particularly limited and can be appropriately changed, but is preferably in the range of 0.1 to 0.6 mm. The output of the laser beam 5 is not particularly limited as long as the aluminum member 1 can be melted linearly. In order to form a so-called penetrating bead at the butted portion, the laser beam output is preferably 2000 W or more, more preferably 10 kW or more, and the moving speed of the beam is preferably 10 m / min or more, and more preferably 50 m / min or more.
The laser beam welding may be keyhole welding or may be performed by so-called heat conduction type beam welding by defocusing and irradiating the laser beam, but keyhole welding is preferable.

レーザビーム5の中心は、アルミニウム部材1と銅部材2の突き合わせ部(突き合わせ線3)に一致させてもよく、また、特許文献2に記載されているように、アルミニウム部材1側にシフト(オフセット)させてもよい。後者の場合、アルミニウム部材1への熱量供給量が大きくなり、脆性の高いAl−Cu二元系金属間化合物の生成を低減することができる。好ましいオフセット量(レーザビーム5の中心と突き合わせ線3の距離)は、ビーム径をD、オフセット量をdとしたとき、d/D×100=10〜45(%)である。   The center of the laser beam 5 may coincide with the abutting portion (butting line 3) of the aluminum member 1 and the copper member 2, and as described in Patent Document 2, it is shifted to the aluminum member 1 side (offset). ). In the latter case, the amount of heat supplied to the aluminum member 1 is increased, and the generation of highly brittle Al—Cu binary intermetallic compounds can be reduced. A preferred offset amount (distance between the center of the laser beam 5 and the butt line 3) is d / D × 100 = 10 to 45 (%) where D is the beam diameter and d is the offset amount.

アルミニウム部材1と銅部材2を突き合わせ方向に押し付けるとき、両部材1,2を全幅で均一に押し付ける必要があり、そのためには、アルミニウム部材1の端部を、突き合わせ線3に沿って線状に溶融し、線状の溶融部6を全幅で形成する必要がある。
アルミニウム部材1及び銅部材2は熱伝導率が高いため、レーザビーム5の通過後、前記両部材に接する溶融部6の凝固がすぐに始まる。このため、レーザビーム5の走査が1パスのみでは、幅方向の溶融状態にバラツキがでる。その場合、溶融部と凝固部が幅方向に混在することになり、アルミニウム部材1と銅部材2を幅方向で均一に押し付けることが困難であり、混合域6bの材料(銅を含む溶融アルミニウム及びアルミニウムAl−Cu二元系金属間化合物)の排出がうまくできない。
When pressing the aluminum member 1 and the copper member 2 in the butting direction, it is necessary to press both the members 1 and 2 uniformly over the entire width. For that purpose, the end of the aluminum member 1 is linearly formed along the butting line 3. It is necessary to melt and form the linear melted part 6 with the full width.
Since the aluminum member 1 and the copper member 2 have high thermal conductivity, the solidification of the molten part 6 in contact with both members starts immediately after the laser beam 5 passes. For this reason, when only one pass of the laser beam 5 is scanned, the melted state in the width direction varies. In that case, the molten part and the solidified part are mixed in the width direction, and it is difficult to press the aluminum member 1 and the copper member 2 uniformly in the width direction, and the material of the mixed zone 6b (molten aluminum containing copper and The aluminum Al—Cu binary intermetallic compound) cannot be discharged well.

一方、突き合わせ部に対するレーザビーム5の走査を複数パス実施することにより、突き合わせ線3に沿った線状の溶融部6を形成すると、両部材1,2を全幅で均一な力で押し付けることができる。具体的には、レーザビーム5をアルミニウム部材1と銅部材2の突き合わせ部(突き合わせ線3)に沿って1回以上往復動させるか、一方向に複数回繰り返し移動させる。これにより、突き合わせ線3に沿って線状の溶融部6を形成し、両部材1,2の突き合わせ部から、混合域6bの材料の排出をスムーズに行うことができる。
なお、アルミニウム部材1及び銅部材2が幅広の場合は、複数のスキャナレーザ装置を幅方向に沿って配置し、それらにより線状の溶融部6を形成することもできる。
On the other hand, when the linear melted portion 6 along the butt line 3 is formed by performing a plurality of passes of scanning of the laser beam 5 on the butt portion, both members 1 and 2 can be pressed with a uniform force over the entire width. . Specifically, the laser beam 5 is reciprocated once or more along the abutting portion (abutting line 3) between the aluminum member 1 and the copper member 2, or is repeatedly moved in one direction a plurality of times. Thereby, the linear fusion | melting part 6 can be formed along the butt | matching line 3, and the discharge | emission of the material of the mixing zone 6b can be performed smoothly from the butt | matching part of both the members 1 and 2. FIG.
In the case where the aluminum member 1 and the copper member 2 are wide, a plurality of scanner laser devices can be arranged along the width direction, thereby forming the linear melted portion 6.

以上説明したレーザ溶接方法では、レーザビーム5の照射前から、アルミニウム部材1と銅部材2を突き合わせ方向に押し付け、その状態でレーザビーム5を照射し突き合わせ線3に沿った線状の溶融部6を形成していた。この場合、溶融部6の形成と溶融部6の材料の流動(突き合わせ部から排出)が実質的に並行して進行し、レーザビーム5の照射を停止すると、突き合わせ部に残留する溶融アルミニウムの凝固がすぐに始まる。
一方、レーザビーム5を照射して線状の溶融部6を形成した後、アルミニウム部材1と銅部材2を突き合わせ方向に押し付け、溶融部6の材料を流動(突き合わせ部から排出)させることもできる。レーザビーム5の照射の停止は、例えばアルミニウム部材1と銅部材2を互いに押し付ける直前などの適宜のタイミングで行うことができる。この場合も、混合域6bの材料は突き合わせ部の外に排除され、アルミニウム部材1と銅部材2の突き合わせ部にAl−Cu二元系金属間化合物の層が形成されず、仮に形成された場合でもごく薄い層に留まる。
In the laser welding method described above, the aluminum member 1 and the copper member 2 are pressed in the abutting direction before irradiation with the laser beam 5, and the laser beam 5 is irradiated in this state to form a linear melting portion 6 along the butting line 3. Was forming. In this case, the formation of the molten portion 6 and the flow of the material of the molten portion 6 (discharge from the butt portion) proceed substantially in parallel, and when irradiation with the laser beam 5 is stopped, the molten aluminum remaining in the butt portion is solidified. Begins immediately.
On the other hand, after irradiating the laser beam 5 to form the linear melted portion 6, the aluminum member 1 and the copper member 2 can be pressed in the butting direction so that the material of the melted portion 6 can flow (discharge from the butted portion). . The irradiation of the laser beam 5 can be stopped at an appropriate timing, for example, immediately before the aluminum member 1 and the copper member 2 are pressed together. Also in this case, the material of the mixing zone 6b is excluded from the abutting portion, and the Al—Cu binary intermetallic compound layer is not formed in the abutting portion of the aluminum member 1 and the copper member 2, but is temporarily formed. But it stays in a very thin layer.

アルミニウム部材1は、純アルミニウム又はアルミニウム合金からなる。純アルミニウムとしては、JISA1000系などを使用することができ、その中でも、加工性が高いA1050が好ましい。アルミニウム合金としては、JIS A2000系(Al−Cu系合金)、JIS A3000系(Al−Mn系合金)、JIS A4000系(Al−Si系合金)、JIS A5000系(Al−Mg系合金)、JIS A6000系(Al−Mg−Si系合金)、JIS A7000系(Al−Zn−Mg系合金、Al−Zn−Mg−Cu系合金)等を使用することができ、その中でも、導電性に優れたJISA6101が好ましい。   The aluminum member 1 is made of pure aluminum or an aluminum alloy. As pure aluminum, JISA1000 series or the like can be used, and among them, A1050 having high workability is preferable. Aluminum alloys include JIS A2000 (Al-Cu alloy), JIS A3000 (Al-Mn alloy), JIS A4000 (Al-Si alloy), JIS A5000 (Al-Mg alloy), JIS. A6000 series (Al-Mg-Si based alloy), JIS A7000 series (Al-Zn-Mg based alloy, Al-Zn-Mg-Cu based alloy) and the like can be used, and among them, the conductivity is excellent. JISA6101 is preferred.

銅部材2は、純銅又は銅合金からなる。純銅としては、例えばOFC(Oxygen−Free Copper/無酸素銅)、タフピッチ銅、りん脱酸銅等を使用することができる。銅合金としては、例えばCu−Fe−P系、Cu−Ni−Si(コルソン合金)系等を使用することができる。
なお、アルミニウム部材1と銅部材2の素材としては、表面処理がなされていない裸材でもよいし、Snめっき、亜鉛めっき等の電気めっき処理、亜鉛溶射などの表面処理を行った材料を使用してもよい。
The copper member 2 is made of pure copper or a copper alloy. As pure copper, for example, OFC (Oxygen-Free Copper / oxygen-free copper), tough pitch copper, phosphorous deoxidized copper, or the like can be used. As the copper alloy, for example, a Cu-Fe-P system, a Cu-Ni-Si (Corson alloy) system, or the like can be used.
The material of the aluminum member 1 and the copper member 2 may be a bare material that has not been surface-treated, or a material that has been subjected to surface treatment such as Sn plating, electroplating such as zinc plating, or zinc spraying. May be.

アルミニウム部材1と銅部材2を突き合わせレーザ溶接する際の具体的方法の例を、図4A,4Bを参照して説明する。
図4Aに示す方法は、アルミニウム部材1と銅部材2を共に平板の状態で突き合わせるもので、アルミニウム部材1を一対のピンチロール11,11挟み、銅部材2をピンチロール12,12で挟む。突き合わせ部に沿ってレーザビーム5を往復照射し、突き合わせ部に線状の溶融部6を形成しながら、前記ピンチロール11,11,12,12を作動させ、アルミニウム部材1と銅部材2を突き合わせ方向に押し付け、次いでレーザビーム5の照射を止める。
An example of a specific method when the aluminum member 1 and the copper member 2 are butted and laser-welded will be described with reference to FIGS. 4A and 4B.
In the method shown in FIG. 4A, both the aluminum member 1 and the copper member 2 are abutted in a flat plate state. The aluminum member 1 is sandwiched between a pair of pinch rolls 11 and 11, and the copper member 2 is sandwiched between pinch rolls 12 and 12. The laser beam 5 is reciprocated along the abutting portion, and the pinch rolls 11, 11, 12, and 12 are operated while the linear melted portion 6 is formed in the abutting portion, so that the aluminum member 1 and the copper member 2 are abutted. Then, the irradiation with the laser beam 5 is stopped.

図4Bに示す方法は、共に板材からなるアルミニウム部材1と銅部材2を仮止めし(仮止め部13)、パイプ状に曲げ加工した後、鼓形のスクイズロール14,14で前方に移動させながら端部同士を突き合わせ、突き合わせ部に沿ってレーザビーム5を往復照射する。突き合わせ部に沿って線状の溶融部6が形成され、スクイズロール14,14により両部材1,2が互いに押し付けられ、その状態で前方に移動する。レーザ溶接後は、仮止め部13を解除し、必要に応じてパイプ形状から例えば板状に成形(曲げ戻し)する。
なお、アルミニウム部材1と銅部材2の幅W(図4A参照)が狭い場合は、図4Aに示す方法でも、溶融部6が幅方向に均一に形成され、両部材1,2を幅方向に沿って均一に押し付けることができる。しかし、両部材1,2の幅が広い場合は、図4Bに示す方法の方が、両部材1,2を幅方向に沿って均一に押し付けることができる。
In the method shown in FIG. 4B, the aluminum member 1 and the copper member 2 which are both plate materials are temporarily fixed (temporary fixing portion 13), bent into a pipe shape, and then moved forward by the drum-shaped squeeze rolls 14 and 14. However, the end portions are butted together, and the laser beam 5 is reciprocated along the butted portion. A linear melted portion 6 is formed along the abutting portion, and both members 1 and 2 are pressed against each other by the squeeze rolls 14 and 14 and move forward in that state. After laser welding, the temporary fixing portion 13 is released, and the pipe shape is formed (bent back), for example, from a pipe shape as necessary.
In addition, when the width W (refer FIG. 4A) of the aluminum member 1 and the copper member 2 is narrow, also by the method shown to FIG. 4A, the fusion | melting part 6 is formed uniformly in the width direction, and both the members 1 and 2 are made into the width direction. Can be pressed uniformly along. However, when both the members 1 and 2 are wider, the method shown in FIG. 4B can press both the members 1 and 2 more uniformly along the width direction.

以下、本発明に係る異種導電部材の製造方法の実施例を示し、本発明を更に詳細に説明する。なお、以下に説明する実施例は本発明の一例にすぎず、これにより本発明の範囲が狭く解釈されるべきではない。
アルミニウム部材及び銅部材として、いずれも幅20mm長さ100mmの平板(短冊片)を用い、幅側の端面同士を突き合わせた。アルミニウム及び銅の組成(いずれもJISの合金番号)、及び両部材の板厚を表1に示す。
アルミニウム部材と銅部材を突き合わせ方向に押し付けながら、突き合わせ部に沿って上面からレーザビームを照射し、アルミニウム部材の端部を溶融させて突き合わせ部に沿って線状に溶融部を形成した。これにより、溶融部の材料が突き合わせ部の外側に押し出され、両部材が接合された。
EXAMPLES Hereinafter, the Example of the manufacturing method of the dissimilar electrically conductive member based on this invention is shown, and this invention is demonstrated still in detail. In addition, the Example described below is only an example of this invention, and the range of this invention should not be interpreted narrowly by this.
As the aluminum member and the copper member, flat plates (strip strips) each having a width of 20 mm and a length of 100 mm were used, and the end surfaces on the width side were butted together. Table 1 shows the composition of aluminum and copper (both are JIS alloy numbers) and the plate thickness of both members.
While pressing the aluminum member and the copper member in the abutting direction, a laser beam was irradiated from the upper surface along the abutting portion to melt the end portion of the aluminum member and form a molten portion linearly along the abutting portion. Thereby, the material of the fusion | melting part was extruded to the outer side of the butt | matching part, and both members were joined.

スキャナーレーザ装置は、発振器としてトルンプ株式会社製のTrudisk4002、溶接ヘッドとして株式会社ワイ・イー・データ製のガルバノヘッドスキャナーユニットを用いた。レーザビームはヘッド内のミラー動作により直線方向に移動する。実施例1〜7では、突き合わせ部に沿って全幅に複数回レーザビームを走査し複数パス溶接をした。比較例1,2では、レーザビームを1回走査させるだけの1パス溶接をした。レーザ溶接条件を表1に示す。レーザ溶接後、ばりを除去した。   The scanner laser device used was a Trudisk 4002 made by Trump Co., Ltd. as an oscillator, and a galvano head scanner unit made by YE Data Co., Ltd. as a welding head. The laser beam moves in a linear direction by a mirror operation in the head. In Examples 1 to 7, the laser beam was scanned a plurality of times along the abutting portion over the entire width, and multiple pass welding was performed. In Comparative Examples 1 and 2, one-pass welding was performed by scanning the laser beam once. Table 1 shows the laser welding conditions. The flash was removed after laser welding.

得られた接合部材(異種導電材料)を用い、引張試験、曲げ試験、及び電気抵抗の測定を下記要領で行った。その結果を表1に併せて示す。また、表1には、個々の特性の評価のほか、優(◎)、良(○)、不可(×)の総合評価を記載している。
引張試験は、前記接合後の短冊試験片を引張試験機を用いて破断するまで引張って破断荷重(N)を測定した。継手の引張強度は前記破断荷重を試験片の断面積(1×20mm)で除して求めた。
曲げ試験は、接合部材の溶接線の部分を直径10mmの丸棒に宛がい(溶接線の方向を丸棒の長さ方向に平行)、接合部材を丸棒に対して押し当て90度になるまで曲げ加工した。破断せずに曲げ加工できたものを良好(○)と評価した。
電気抵抗は、四端子法を用い、100Aの電流を流した時の溶接線中央からそれぞれ25mm離れた地点間(測定間長さ50mm)の電気抵抗を測定した。
Using the obtained joining member (dissimilar conductive material), a tensile test, a bending test, and measurement of electric resistance were performed as follows. The results are also shown in Table 1. In addition to the evaluation of individual characteristics, Table 1 lists overall evaluations of excellent ()), good (◯), and unacceptable (x).
In the tensile test, the strip test piece after joining was pulled using a tensile tester until it was broken, and the breaking load (N) was measured. The tensile strength of the joint was obtained by dividing the breaking load by the cross-sectional area (1 × 20 mm 2 ) of the test piece.
In the bending test, the weld line portion of the joining member is directed to a round bar having a diameter of 10 mm (the direction of the weld line is parallel to the length direction of the round bar), and the joining member is pressed against the round bar at 90 degrees. Until bent. Those that could be bent without breaking were evaluated as good (◯).
The electrical resistance was measured by using a four-terminal method and measuring the electrical resistance between points 25 mm away from the center of the weld line when a current of 100 A was passed (length between measurements: 50 mm).

レーザビームのパス回数が1回である比較例1,2は、突き合わせ部に沿った溶融部の形成が不均一で、溶融部が押し潰されず、図4Aに示すように、溶融部が突き合わせ部から押し出されないままに凝固した。なお、図4Aに見られる黒い線状の部分はAl−Cu二元系金属間化合物である。その結果、比較例1,2は突き合わせ部(継手部)が非常に脆く、表1に示すように、引張試験の途中で接合部が破断し引張り強度の測定ができず、曲げ試験においても曲げ途中で接合部が破断し、曲げ強度の評価もできなかった。また、継ぎ手部の導電性が不良(電気抵抗が比較的大きい)であった。   In Comparative Examples 1 and 2 in which the number of passes of the laser beam is 1, the formation of the melted portion is not uniform along the butted portion, and the melted portion is not crushed. As shown in FIG. It solidified without being extruded from. Note that the black linear portion seen in FIG. 4A is an Al—Cu binary intermetallic compound. As a result, in Comparative Examples 1 and 2, the butt part (joint part) was very brittle, and as shown in Table 1, the joint part was broken during the tensile test, and the tensile strength could not be measured. The joint part broke along the way, and the bending strength could not be evaluated. Further, the conductivity of the joint portion was poor (electrical resistance was relatively large).

一方、レーザビームのパス回数が複数回である本発明の実施例1〜7は、突き合わせ部に沿って形成された溶融部が押し潰され、溶融部の材料が板厚方向外側に押し出されて排除され、外側にバリが形成された。その結果、実施例1〜7の突き合わせ部(継手部)ではAl−Cu二元系金属間化合物が未形成か、形成された場合でも最大で10μm程度の厚みであり、高い継手引張強度が得られ、曲げ加工性が良好で、継ぎ手の導電性が良好(電気抵抗が小さい)であった。特にアルミニウム部材の板厚が銅部材の板厚より大きい実施例6,7は、全ての特性に優れ(特に引張強度)、総合評価も◎であった。
実施例1〜5及び実施例6,7では、それぞれ図5B及び図5Cに示すように、突き合わせ部で溶融部の材料が板厚方向外側に良好に排出されていた。
On the other hand, in the first to seventh embodiments of the present invention in which the number of passes of the laser beam is multiple, the melted portion formed along the butt portion is crushed, and the material of the melted portion is extruded outward in the plate thickness direction. Eliminated and burrs formed on the outside. As a result, at the butt portion (joint portion) of Examples 1 to 7, the Al—Cu binary intermetallic compound is not formed or even when formed, the thickness is about 10 μm at maximum, and high joint tensile strength is obtained. The bending workability was good and the conductivity of the joint was good (low electrical resistance). In particular, Examples 6 and 7 in which the plate thickness of the aluminum member was larger than the plate thickness of the copper member were excellent in all properties (particularly tensile strength), and the overall evaluation was also excellent.
In Examples 1 to 5 and Examples 6 and 7, as shown in FIG. 5B and FIG. 5C, the material of the melted part was discharged well to the outside in the plate thickness direction at the butt part.

1 アルミニウム部材
2 銅部材
3 突き合わせ線
5 レーザビーム
6 溶融部
6a アルミニウム溶融部
6b 混合部
1 Aluminum member 2 Copper member 3 Butt line 5 Laser beam 6 Melting part 6a Aluminum melting part 6b Mixing part

Claims (2)

アルミニウム部材と銅部材を突き合わせ、レーザビームを突き合わせ部に沿って移動させながら前記突き合わせ部に照射し、前記アルミニウム部材と銅部材をレーザ溶接して異種導電部材を製造する方法において、レーザ溶接に際し、前記レーザビームを前記突き合わせ部に沿って複数回移動させ、前記アルミニウム部材の端部を溶融させて前記突き合わせ部に沿って線状の溶融部を形成し、前記アルミニウム部材と前記銅部材を突き合わせ方向に押し付け、前記溶融部の材料を突き合わせ部の外側に流動させ、レーザ溶接後に前記突き合わせ部の外側に形成されたバリを除去することを特徴とする異種導電部材の製造方法。 In the method of abutting an aluminum member and a copper member, irradiating the abutting portion while moving a laser beam along the abutting portion, and laser welding the aluminum member and the copper member to produce a different conductive member, in laser welding, The laser beam is moved a plurality of times along the abutting portion, the end portion of the aluminum member is melted to form a linear melted portion along the abutting portion, and the abutting direction of the aluminum member and the copper member A method of manufacturing a dissimilar conductive member, wherein the material of the melted portion is caused to flow to the outside of the abutting portion, and burrs formed on the outside of the abutting portion are removed after laser welding. 前記アルミニウム部材と銅部材が共に板材からなり、前記アルミニウム部材の板厚が前記銅部材の板厚よりも厚いことを特徴とする請求項1に記載された異種導電部材の製造方法。 2. The method for producing a dissimilar conductive member according to claim 1, wherein both the aluminum member and the copper member are made of a plate material, and the plate thickness of the aluminum member is larger than the plate thickness of the copper member.
JP2016002994A 2016-01-08 2016-01-08 Method for manufacturing heterogeneous conductive member Pending JP2017123318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016002994A JP2017123318A (en) 2016-01-08 2016-01-08 Method for manufacturing heterogeneous conductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016002994A JP2017123318A (en) 2016-01-08 2016-01-08 Method for manufacturing heterogeneous conductive member

Publications (1)

Publication Number Publication Date
JP2017123318A true JP2017123318A (en) 2017-07-13

Family

ID=59306670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016002994A Pending JP2017123318A (en) 2016-01-08 2016-01-08 Method for manufacturing heterogeneous conductive member

Country Status (1)

Country Link
JP (1) JP2017123318A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235762A1 (en) 2017-06-23 2018-12-27 キヤノン株式会社 Display control device, display control method, and program
WO2019021623A1 (en) * 2017-07-25 2019-01-31 住友電気工業株式会社 Method for producing welded structure of metal members, and welded structure of metal members
CN112958910A (en) * 2021-03-02 2021-06-15 广东海洋大学 Laser welding method for copper-aluminum dissimilar metal
CN113001024A (en) * 2021-03-18 2021-06-22 松山湖材料实验室 Laser welding method for dissimilar materials
CN113226618A (en) * 2019-02-19 2021-08-06 株式会社阿斯特 Bus bar assembly and method for manufacturing bus bar assembly
JPWO2021261565A1 (en) * 2020-06-25 2021-12-30
EP4135119A1 (en) * 2021-08-06 2023-02-15 Yazaki Corporation Bus bar
EP4138205A1 (en) * 2021-08-06 2023-02-22 Yazaki Corporation Bus bar
EP4138204A1 (en) * 2021-08-06 2023-02-22 Yazaki Corporation Bus bar

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235762A1 (en) 2017-06-23 2018-12-27 キヤノン株式会社 Display control device, display control method, and program
WO2019021623A1 (en) * 2017-07-25 2019-01-31 住友電気工業株式会社 Method for producing welded structure of metal members, and welded structure of metal members
US20200141434A1 (en) * 2017-07-25 2020-05-07 Sumitomo Electric Industries, Ltd. Method of manufacturing metal member-welded structure, and metal member-welded structure
JPWO2019021623A1 (en) * 2017-07-25 2020-05-28 住友電気工業株式会社 Method for manufacturing welded structure of metal member, and welded structure of metal member
JP7174361B2 (en) 2017-07-25 2022-11-17 住友電気工業株式会社 METHOD FOR MANUFACTURING WELDED STRUCTURE OF METAL MEMBER, AND WELDED STRUCTURE OF METAL MEMBER
US11870193B2 (en) 2019-02-19 2024-01-09 Aster Co., Ltd. Busbar unit and method of manufacturing busbar unit
CN113226618A (en) * 2019-02-19 2021-08-06 株式会社阿斯特 Bus bar assembly and method for manufacturing bus bar assembly
EP3928911A4 (en) * 2019-02-19 2022-04-13 Aster Co., Ltd. Busbar joint and manufacturing method for busbar joint
WO2021261565A1 (en) * 2020-06-25 2021-12-30 古河電気工業株式会社 Bus bar and bus bar production method
JPWO2021261565A1 (en) * 2020-06-25 2021-12-30
JP7326617B2 (en) 2020-06-25 2023-08-15 古河電気工業株式会社 Busbar and busbar manufacturing method
CN112958910B (en) * 2021-03-02 2022-02-18 广东海洋大学 Laser welding method for copper-aluminum dissimilar metal
WO2022183548A1 (en) * 2021-03-02 2022-09-09 广东海洋大学 Laser welding method for copper and aluminum dissimilar metals
CN112958910A (en) * 2021-03-02 2021-06-15 广东海洋大学 Laser welding method for copper-aluminum dissimilar metal
CN113001024A (en) * 2021-03-18 2021-06-22 松山湖材料实验室 Laser welding method for dissimilar materials
EP4135119A1 (en) * 2021-08-06 2023-02-15 Yazaki Corporation Bus bar
EP4138205A1 (en) * 2021-08-06 2023-02-22 Yazaki Corporation Bus bar
EP4138204A1 (en) * 2021-08-06 2023-02-22 Yazaki Corporation Bus bar
JP7405799B2 (en) 2021-08-06 2023-12-26 矢崎総業株式会社 Bus bar

Similar Documents

Publication Publication Date Title
JP2017123318A (en) Method for manufacturing heterogeneous conductive member
US9484642B2 (en) Terminal, a wire connecting structure and a method of manufacturing the terminal
JP6301768B2 (en) Crimping terminal manufacturing method, crimping terminal and wire harness
KR100925580B1 (en) Bonding method, bonding structure and bonding device of hetero-metal
US9385439B2 (en) Metal member, a terminal, a wire connecting structure and a method of manufacturing a terminal
CN107639343B (en) Welded metal member and battery having the same
JP5598888B1 (en) Crimp terminal, crimp terminal manufacturing method and manufacturing apparatus
JP2011005499A (en) Method for laser butt-welding aluminum member and copper member
JP2014164964A (en) Method of manufacturing terminal, terminal material for use in manufacturing method, terminal manufactured by manufacturing method, terminal connection structure of wire and manufacturing method therefor, and copper or copper alloy plate material for terminal
JP2014164943A (en) Method for manufacturing crimp terminal
JP5794843B2 (en) Wire conductor welding method
JP2016162643A (en) Conductive member
JP4401678B2 (en) Electronic component terminal and method for manufacturing the same
JP6060579B2 (en) Resistance spot welding method
JP7110907B2 (en) Lap welding method for dissimilar metal members
JP6377048B2 (en) Manufacturing method of dissimilar metal joined body
CN114535766B (en) Capacitive discharge welding of dissimilar metals
JP2014164944A (en) Method for manufacturing crimp terminal
JP2024000692A (en) Junction structure and junction method
CN116368265A (en) Metal strip and method for producing such a metal strip
JPS6380993A (en) Production of clad steel pipe
JP2014164950A (en) Method for manufacturing tube terminal and tube terminal
JP2009246223A (en) Lead terminal for capacitor