JP2017120980A - インター予測装置、インター予測方法、動画像符号化装置、動画像復号装置及びコンピュータ可読記録媒体 - Google Patents

インター予測装置、インター予測方法、動画像符号化装置、動画像復号装置及びコンピュータ可読記録媒体 Download PDF

Info

Publication number
JP2017120980A
JP2017120980A JP2015256490A JP2015256490A JP2017120980A JP 2017120980 A JP2017120980 A JP 2017120980A JP 2015256490 A JP2015256490 A JP 2015256490A JP 2015256490 A JP2015256490 A JP 2015256490A JP 2017120980 A JP2017120980 A JP 2017120980A
Authority
JP
Japan
Prior art keywords
motion vector
processing target
target block
image
generation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015256490A
Other languages
English (en)
Other versions
JP6539580B2 (ja
Inventor
圭 河村
Kei Kawamura
圭 河村
内藤 整
Hitoshi Naito
整 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2015256490A priority Critical patent/JP6539580B2/ja
Publication of JP2017120980A publication Critical patent/JP2017120980A/ja
Application granted granted Critical
Publication of JP6539580B2 publication Critical patent/JP6539580B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

【課題】歪を含む映像の高能率な符号化方式または復号方式を実現する。【解決手段】インター予測装置は、画像の歪を補正するための補正情報を生成する補正情報生成部と、動画像の処理対象ブロックの周囲にある符号化済みブロックの動きベクトルと、補正情報生成部によって生成された補正情報と、から処理対象ブロックの動きベクトルを生成する動きベクトル生成部と、動きベクトル生成部によって生成された動きベクトルと、処理対象ブロックに対応する参照ピクチャと、から処理対象ブロックの動き補償画像を生成する動き補償画像生成部と、を備える。【選択図】図1

Description

本発明は、インター予測装置、インター予測方法、動画像符号化装置、動画像復号装置及びコンピュータ可読記録媒体に関する。
イントラ予測(フレーム内予測)またはインター予測(フレーム間予測)と、残差変換と、エントロピー符号化とを用いた動画像符号化方式が提案されている(例えば、非特許文献1参照)。
この動画像符号化方式において、インター予測は剛体の平行移動をモデルとしている。すなわち、異なるフレーム間において移動しているオブジェクトは形状が変わらず、かつ回転などもないことを前提としている。そのため、画面内で同一のオブジェクト領域は同じ動きベクトルとなることが期待され、その性質を利用した動きベクトル予測としてマージモードが規格化されている(例えば非特許文献1参照)。
上述の平行移動はレンズ歪がない、もしくは十分に無視できる場合を仮定している。近年、広角だが歪の大きなレンズを用いたアクションカメラ等による映像の流通が増大している。
ITU-T H.265 High Efficiency Video Coding. Y. Altunbasak, R.M. Mersereau, and A.J. Patti, A Fast Parametric Motion Estimation Algorithm With Illumination and Lens Distortion Correction, IEEE Trans. Image Processing, Vol. 12, No. 4, April 2003.
しかしながら、非特許文献1に記載の動画像符号化方式の剛体平行移動モデルでは、アクションカメラに代表される歪の大きな広角レンズを用いた撮像装置による映像における動き補償予測性能が低下する虞がある。
本発明はこうした課題に鑑みてなされたものであり、その目的は、歪を含む映像の高能率な符号化方式または復号方式を実現できる技術の提供にある。
本発明のある態様は、インター予測装置に関する。このインター予測装置は、画像の歪を補正するための補正情報を生成する補正情報生成部と、動画像の処理対象ブロックの周囲にある符号化済みブロックの動きベクトルと、補正情報生成部によって生成された補正情報と、から処理対象ブロックの動きベクトルを生成する動きベクトル生成部と、動きベクトル生成部によって生成された動きベクトルと、処理対象ブロックに対応する参照ピクチャと、から処理対象ブロックの動き補償画像を生成する動き補償画像生成部と、を備える。
なお、以上の構成要素の任意の組み合わせや、本発明の構成要素や表現を装置、方法、システム、コンピュータプログラム、コンピュータプログラムを格納した記録媒体などの間で相互に置換したものもまた、本発明の態様として有効である。
本発明によれば、歪を含む映像の高能率な符号化方式または復号方式を実現できる。
実施の形態に係る配信システムの構成を示す模式図である。 図2(a)、(b)は、画像の歪の一例を示す説明図である。 図3(a)〜(d)は、レンズ歪空間における動きベクトルと無レンズ歪空間における動きベクトルとの関係の説明図である。 動きベクトルとレンズ歪補正ベクトルとの関係の説明図である。 図1の動画像符号化装置の機能および構成を示すブロック図である。 図5のインター予測部の機能および構成を示すブロック図である。 図7(a)〜(d)は、マージモードにおける動きベクトルの生成の説明図である。 図1の動画像復号装置の機能および構成を示すブロック図である。 図6のインター予測部における一連の処理を示すフローチャートである。
以下、各図面に示される同一または同等の構成要素、部材、処理、信号には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図面において説明上重要ではない部材の一部は省略して表示する。
実施の形態では、レンズ歪補償画像生成を動き補償画像生成にマージする一方で、動き補償画像生成を動きベクトル生成とブロック単位の補間画像生成とに分離する。動きベクトルの生成時にレンズ歪の補正を行い、撮像面内における同一物体の位置の違いによる動きベクトルの変動を補正する。その結果、見た目上動き量が異なる領域について同じ動きベクトルを割り当てることができ、レンズ歪を補償した補間画像の生成が可能となる。補間画像生成は矩形のブロックごとに平行移動モデルを適用する。
ここで、レンズ歪補正ベクトルは画像の歪を補正するための補正情報であり、レンズ歪のモデル(非特許文献2の式29)に基づいて導出される。具体的には、レンズ歪補正ベクトルは、「レンズ歪空間」(撮影された実際の画像)における画面内の画素位置と、「無レンズ歪空間」(歪の生じないレンズで撮影された仮想の画像)における画面内の画素位置と、の対応関係を表す。
図1は、実施の形態に係る配信システム100の構成を示す模式図である。配信システム100は、広角だが歪の大きなレンズを用いたアクションカメラによる映像などの歪のある映像を配信する映像配信サービスにおいて使用されるシステムである。映像配信サービスは例えばVOD(Video On Demand)であってもよい。配信システム100はインターネットなどのネットワーク106を介して、ユーザサイトに設置されているセットトップボックスやパーソナルコンピュータなどの動画像復号装置102と接続される。動画像復号装置102は、テレビ受像機やモニタなどの表示装置104と接続される。
なお、映像配信サービスにおける配信システムは一例であり、動画像の符号化または復号を含む任意のシステムやサービスに、本実施の形態に係る技術的思想を適用できることは、本明細書に触れた当業者には明らかである。
配信システム100は、ネットワーク106を介してユーザから観たい動画コンテンツの指定を受ける。配信システム100は、指定された動画コンテンツのデータを符号化してビットストリームBSを生成する。配信システム100は、生成されたビットストリームBSをネットワーク106を介して要求元のユーザの動画像復号装置102に送信する。動画像復号装置102は受信したビットストリームBSを復号して動画像データを生成し、表示装置104に送信する。表示装置104は、受信した動画像データを処理し、指定された動画コンテンツを出力する。
配信システム100は、動画像DB(データベース)108と、動画像符号化装置110と、動画像蓄積サーバ101と、を備える。動画像DB108は、歪のある動画像のデータを保持する。動画像符号化装置110は、指定された動画コンテンツに対応する動画像データを動画像DB108から取得し、取得された動画像データを符号化し、ビットストリームBSを生成する。動画像蓄積サーバ101は、動画像符号化装置110によって生成されたビットストリームBSを蓄積する。
図2(a)、(b)は、画像の歪の一例を示す説明図である。レンズを通じた撮像の結果得られる画像が有する歪には主に、歪曲収差(distortion)と、ボリューム歪像と、がある。本実施の形態では例として歪曲収差を扱う。本明細書において「レンズ歪」は歪曲収差を指す。本明細書に触れた当業者には、本実施の形態で説明される構成の、歪曲収差以外の画像の歪を扱う場合への拡張ないし変更は自明である。
図2(a)は糸巻き型(ピンクッション)のレンズ歪を示す。レンズ歪のない画像260に対して、レンズ歪のある画像262は画像の中心から離れるほど歪量が大きくなっている。図2(b)は樽型(バレル)のレンズ歪を示す。レンズ歪のない画像260に対して、レンズ歪のある画像264は画像の中心から離れるほど歪量が大きくなっている。
レンズ歪のない画像260は無レンズ歪空間に対応する。レンズ歪のある画像262、264はレンズ歪空間に対応する。図2(a)は例として2つのレンズ歪補正ベクトル266、268を示す。レンズ歪補正ベクトル266は右上の角の画素に対応する。レンズ歪補正ベクトル268は、画像を6×6=36等分したときの右上のブロック270の左下の角の画素に対応する。図2(b)は例として2つのレンズ歪補正ベクトル272、274を示す。レンズ歪補正ベクトル272は右上の角の画素に対応する。レンズ歪補正ベクトル274は、画像を6×6=36等分したときの右上のブロック276の左下の角の画素に対応する。この例では、ある画素についてのレンズ歪補正ベクトルは、レンズ歪のある画像262、264におけるその画素の位置を始点とし、レンズ歪のない画像260におけるその画素の位置を終点とするベクトルとして定義される。
図3(a)〜(d)は、レンズ歪空間における動きベクトルと無レンズ歪空間における動きベクトルとの関係の説明図である。同じ向きに同じ速さで動く2つの物体を撮像する場合が想定されている。図3(a)はレンズ歪空間における参照ピクチャ310を示す。参照ピクチャ310は第1物体像312と第2物体像314とを含む。図3(b)は無レンズ歪空間における参照ピクチャ316を示す。図3(b)の参照ピクチャ316は図3(a)の参照ピクチャ310に対応し、レンズ歪補正ベクトルにより相互に変換可能である。図3(c)はレンズ歪空間における処理対象ピクチャ318を示す。図3(c)において第1物体像312および第2物体像314の動きベクトルはそれぞれ第1動きベクトル320、第2動きベクトル322として示される。図3(d)は無レンズ歪空間における処理対象ピクチャ324を示す。図3(d)の処理対象ピクチャ324は図3(c)の処理対象ピクチャ318に対応する。図3(d)において第1物体像312および第2物体像314の動きベクトルはそれぞれ第3動きベクトル326、第4動きベクトル328として示される。
図3(a)、(c)に示されるように、同じ向きに同じ速さで動く2つの物体を広角レンズで撮像した場合、レンズ歪に起因して、画像内の位置によって動きベクトルが異なる。例えば、図3(c)において、2つの動きベクトル320、322は異なっている。図3(b)、(d)に示されるようなレンズ歪を補正した画像においては、2つの動きベクトル326、328は同じになる。本実施の形態では、見た目上動きベクトルが異なる場合(第1動きベクトル320と第2動きベクトル322とは異なる)でも、無レンズ歪空間における対応する動きベクトルが同じであれば(第3動きベクトル326と第4動きベクトル328とは同じ)、動きベクトルは同じであると表現する。一例では、第2動きベクトル322そのものではなく「第2動きベクトル322は第1動きベクトル320と同じ」という情報が符号化され、伝送される。
図4は、動きベクトルとレンズ歪補正ベクトルとの関係の説明図である。レンズ歪空間における第1動きベクトル320は、その終点406の位置(処理対象ブロックの位置)の第1レンズ歪補正ベクトル402と、その始点408の位置(参照ブロックの位置)の第2レンズ歪補正ベクトル404と、により無レンズ歪空間における第3動きベクトル326へと変換され、逆もしかりである。
以下、動きベクトルは実際の画像すなわち歪のある画像における動きベクトルを指す。これに対して仮想動きベクトルは歪の無い仮想の画像における動きベクトルを指す。
図5は、図1の動画像符号化装置110の機能および構成を示すブロック図である。ここに示す各ブロックは、ハードウエア的には、コンピュータのCPUをはじめとする素子や機械装置で実現でき、ソフトウエア的にはコンピュータプログラム等によって実現されるが、ここでは、それらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックはハードウエア、ソフトウエアの組合せによっていろいろなかたちで実現できることは、本明細書に触れた当業者には理解される。動画像符号化装置110を実現するコンピュータプログラムは、コンピュータが読み取り可能な記録媒体に記憶されて、又は、ネットワーク経由で配布が可能なものであってもよい。
動画像符号化装置110は、フレームバッファ202と、インループフィルタ204と、インター予測部206と、イントラ予測部208と、変換・量子化部210と、エントロピー符号化部212と、逆量子化・逆変換部214と、減算部218と、加算部220と、ブロック分割部222と、を備える。
ブロック分割部222は、動画像DB108からの動画像データに含まれる符号化対象の歪のあるピクチャを複数のブロックに分割する。ブロックのサイズは様々であり、複数のブロックは四分木構造を有する。ブロック分割部222におけるピクチャのブロックへの分割はHEVC(High Efficiency Video Coding)におけるピクチャのブロックへの分割に準じる。すなわち、もっとも大きな処理サイズであるCTU(Coding Tree Unit)のサイズは64×64であり、これを繰り返し四分割した32×32、16×16、8×8のサイズが存在している。ブロック分割部222は処理対象ブロックを減算部218とインター予測部206とイントラ予測部208とに出力する。
インター予測部206には、フレームバッファ202から処理対象ブロックに対応する参照ピクチャが入力される。インター予測部206は、ピクチャのレンズ歪の度合いを表すレンズ歪パラメータと参照ピクチャとに基づき、フレーム間予測により処理対象ブロックの動き補償画像を出力する。イントラ予測部208には、処理対象のフレームと同じフレームの既に処理したブロックの画像データが加算部220から入力される。イントラ予測部208は、処理対象ブロックと同じフレームの他のブロックに基づき、処理対象ブロックの予測ブロックを出力する。処理対象ブロックにフレーム間予測を適用するか、フレーム内予測を適用するかに応じて、インター予測部206の出力とイントラ予測部208の出力とのいずれかが減算部218に出力される。
減算部218は、ブロック単位で符号化対象の画像とイントラ予測画像または動き補償画像との誤差(残差)信号を生成する。減算部218は、処理対象ブロックと、インター予測部206が出力した動き補償画像またはイントラ予測部208が出力した予測ブロックとの誤差を示す誤差信号を出力する。変換・量子化部210は、ブロック単位で誤差信号を変換(例えば、直交変換)および量子化し、レベル値を生成する。変換・量子化部210は、生成されたレベル値をエントロピー符号化部212および逆量子化・逆変換部214に出力する。エントロピー符号化部212は、変換・量子化部210によって生成されたレベル値とサイド情報(不図示)とをエントロピー符号化して、ビットストリームBSを生成する。
なお、サイド情報は、復号装置において使用する画素値の再構成に必要な情報であり、イントラ予測またはインター予測の何れを使用したかを示す予測モード、動き情報、量子化パラメータ、ブロックサイズ等の関連情報を含む。動き情報は、インター予測部206で使用された動きベクトル、候補ベクトルのうち動きベクトルの予測に用いられた候補ベクトルの識別子と差分動きベクトルとの組、動きベクトル候補のうちマージ先として選択された動きベクトル候補の識別子、のうちの少なくともひとつを含む。
ビットストリームBSは、映像符号化レイヤ(video coding layer)以外の情報(例えば、VUI(Video Usability Information)、SPS(Sequence Parameter Set)、PPS(Picture Parameter Set)などであり、高位文法と称される)と、スライスヘッダと、CU(Coding Unit)情報と、PU(Prediction Unit)情報と、TU(Transform Unit)情報と、を含む。高位文法のSPSには解像度が含まれる。レンズ歪パラメータはピクチャごとまたはシーケンスごとに指定される。ピクチャごとに指定される場合はPPSにレンズ歪パラメータが含まれる。シーケンスごとに指定される場合はSPSにレンズ歪パラメータが含まれる。高位文法はさらに、レンズ歪補正機能の有効(オン)/無効(オフ)を示すフラグを含む。該フラグはピクチャごとまたはシーケンスごとに指定される。ピクチャごとに指定される場合はPPSにフラグが含まれる。シーケンスごとに指定される場合はSPSにフラグが含まれる。フラグが無効を示す場合はレンズ歪パラメータは高位文法に含まれない、すなわちフラグが有効な場合にのみレンズ歪パラメータが高位文法に含まれてもよい。CU情報にはブロック分割およびイントラ予測モードに関する情報が格納されている。PU情報には動きベクトルに関する情報が格納されている。TU情報にはレベル値が格納されている。
逆量子化・逆変換部214は、変換・量子化部210における処理とは逆の処理を行って誤差信号を生成する。加算部220は、逆量子化・逆変換部214が出力する誤差信号と、インター予測部206が出力する動き補償画像またはイントラ予測部208が出力する予測ブロックと、を加算して処理対象ブロックを生成し、イントラ予測部208と、インループフィルタ204に出力する。インループフィルタ204は、当該フレームに対応する局所復号画像を生成してフレームバッファ202に出力する。この局所復号画像は、インター予測部206におけるフレーム間予測に使用される。
図6は、図5のインター予測部206の機能および構成を示すブロック図である。ここに示す各ブロックは、ハードウエア的には、コンピュータのCPUをはじめとする素子や機械装置で実現でき、ソフトウエア的にはコンピュータプログラム等によって実現されるが、ここでは、それらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックはハードウエア、ソフトウエアの組合せによっていろいろなかたちで実現できることは、本明細書に触れた当業者には理解される。インター予測部206を実現するコンピュータプログラムは、コンピュータが読み取り可能な記録媒体に記憶されて、又は、ネットワーク経由で配布が可能なものであってもよい。
インター予測部206は、補間画像生成部620と、動きベクトル生成部622と、動きベクトルバッファ624と、レンズ歪補正ベクトル生成部626と、を含む。補間画像生成部620は、フレームバッファ202に保持される参照ピクチャのなかから処理対象ブロックに対応する参照ピクチャを取得する。補間画像生成部620は、取得した参照ピクチャと、動きベクトル生成部622によって生成された1/4画素精度の動きベクトルと、から処理対象ブロックの補間画像を生成し、動き補償画像として出力する。
動きベクトルバッファ624は、動きベクトル生成部622によって生成、出力された動きベクトルを取得し、保持する。動きベクトルバッファ624は、動きベクトル生成部622における動きベクトルの生成で必要となる符号化済みブロックの位置を動きベクトル生成部622から取得し、取得した位置の符号化済みブロックにおける動きベクトルを動きベクトル生成部622に出力する。
レンズ歪補正ベクトル生成部626は、レンズ歪補正機能のフラグが有効を示す場合は図2(a)、(b)に例示されるレンズ歪補正ベクトルを生成し、無効を示す場合は非活性化される。例えば、レンズ歪補正ベクトル生成部626は、レンズ歪補正機能のフラグが無効を示す場合はレンズ歪補正ベクトルとしてゼロベクトルを生成する。無効の場合はレンズ歪を補正しないことを意味し、ゼロベクトルを加算する代わりに、レンズ歪補正ベクトル生成部626を利用しないこととしてもよい。
フラグが有効を示す場合、レンズ歪補正ベクトル生成部626は、ピクチャの解像度とピクチャごとに指定されるレンズ歪パラメータとを取得し、取得された解像度とレンズ歪パラメータとを用いて例えば1/4画素精度のレンズ歪補正ベクトルフィールドを生成する。例えば、無歪レンズにおける画素[x、y」は、レンズ歪により[x、y]に射影される。
Figure 2017120980
ここでκはレンズ歪パラメータである。レンズ歪補正ベクトル生成部626は、動きベクトル生成部622から出力された座標を取得し、取得された座標に対応するレンズ歪補正ベクトルを動きベクトル生成部622に出力する。
動きベクトル生成部622は、処理対象ブロックの周囲にある符号化済みブロックの動きベクトルと、各ブロックの画面上の座標値に対応するレンズ歪補正ベクトルとを取得し、取得された情報から処理対象ブロックの動きベクトルを生成する。まず、動きベクトル生成部622は、処理対象ブロックの周囲の符号化済みブロックおよび動きベクトルバッファ624の動きベクトル(歪有り)と、動きベクトルが所属するブロックにおけるレンズ歪補正ベクトルとを用いて、レンズ歪が存在する見かけ上の動きベクトル(歪有り)から、レンズ歪を補正したレンズ歪のない無レンズ歪空間における仮想動きベクトル(歪なし)へ変換する(図4参照)。次に、動きベクトル生成部622は、仮想動きベクトル(歪なし)を用いて、処理対象ブロックにおける仮想動きベクトル(歪なし)を生成する。次に、動きベクトル生成部622は、仮想動きベクトル(歪なし)と処理対象ブロックにおけるレンズ歪補正ベクトルとを用いて、レンズ歪が存在する見かけ上の動きベクトル(歪有り)へ変換する(図4参照)。動きベクトル生成部622は、処理対象ブロックにおける見かけ上の動きベクトル(歪有り)を補間画像生成部620に出力すると共に、動きベクトルバッファ624に蓄積する。
動きベクトル生成部622における動きベクトルの生成には、マージモードと予測モードとの2つのモードがある。マージモードでは、動きベクトル生成部622は、処理対象ブロックの周囲にある符号化済みブロックの動きベクトルに該符号化済みブロックの位置に対応するレンズ歪補正ベクトルを適用することで仮想動きベクトルを生成する。動きベクトル生成部622は、生成された仮想動きベクトルから選択されたひとつの仮想動きベクトルから処理対象ブロックの動きベクトルを生成する。
図7(a)〜(d)は、マージモードにおける動きベクトルの生成の説明図である。図7(a)は処理対象ブロック702とその周囲にある3つの符号化済みブロック704、706、708とを示す。動きベクトルバッファ624には、第1符号化済みブロック704の第1動きベクトル710と、第2符号化済みブロック706の第2動きベクトル712と、第3符号化済みブロック708の第3動きベクトル714と、が保持されている。
図7(b)は、図7(a)に示される3つの動きベクトルに対して、レンズ歪補正ベクトル生成部626によって生成されたレンズ歪補正ベクトルによる補正を行った状態を示す。該補正の結果、第1符号化済みブロック704の第1動きベクトル710は第1仮想動きベクトル716に変換され、第2符号化済みブロック706の第2動きベクトル712は第2仮想動きベクトル718に変換され、第3符号化済みブロック708の第3動きベクトル714は第3仮想動きベクトル720に変換される。図7(b)の状態で、いくつかの仮想動きベクトル候補が決定される。決定された仮想動きベクトル候補のなかから処理対象ブロック702の仮想動きベクトルのマージ先が選択される。選択された仮想動きベクトルは添字により表現される。
図7(c)は、マージ先として第1符号化済みブロック704の第1仮想動きベクトル716が選択された場合を示す。処理対象ブロック702について、第1仮想動きベクトル716と同じベクトルである第4仮想動きベクトル722が生成される。図7(d)は、図7(c)に示される第4仮想動きベクトル722に対して、レンズ歪補正ベクトル生成部626によって生成されたレンズ歪補正ベクトルによる逆補正を行った状態を示す。第4仮想動きベクトル722に対して歪を導入するように補正した結果、処理対象ブロック702の第4動きベクトル724が生成される。第4動きベクトル724は補間画像生成部620に出力されると共に、処理対象ブロック702に対応付けて動きベクトルバッファ624に格納される。インター予測部206が符号化側に適用される場合には、選択された仮想動きベクトルを示す添字はサイド情報としてエントロピー符号化される。インター予測部206が復号側に適用される場合には、符号化側で符号化された添字が用いられる。
予測モードでは、動きベクトル生成部622は、処理対象ブロックの周囲にある符号化済みブロックの動きベクトルから予測される予測動きベクトルと、処理対象ブロックおよび符号化済みブロックの位置に対応するレンズ歪補正ベクトルと、処理対象ブロックの差分動きベクトルと、から処理対象ブロックの動きベクトルを生成する。例示的な処理としては、図7(b)まではマージモードと同じである。図7(b)の状態で、動きベクトル生成部622は第1仮想動きベクトル716、第2仮想動きベクトル718、第3仮想動きベクトル720のなかから候補ベクトルを2つ決定し、決定された2つの候補ベクトルのうちの一方を処理対象ブロック702の予測動きベクトルとして選択する。動きベクトル生成部622は、このようにして生成された予測動きベクトルに差分動きベクトルを加算することにより、処理対象ブロックにおける仮想動きベクトルを生成する。該仮想動きベクトルは逆補正により動きベクトルに変換される。インター予測部206が符号化側に適用される場合には、選択された候補ベクトルの識別子および差分動きベクトルはサイド情報としてエントロピー符号化される。インター予測部206が復号側に適用される場合には、符号化側で符号化された差分動きベクトルが用いられる。
図8は、図1の動画像復号装置102の機能および構成を示すブロック図である。ここに示す各ブロックは、ハードウエア的には、コンピュータのCPUをはじめとする素子や機械装置で実現でき、ソフトウエア的にはコンピュータプログラム等によって実現されるが、ここでは、それらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックはハードウエア、ソフトウエアの組合せによっていろいろなかたちで実現できることは、本明細書に触れた当業者には理解される。動画像復号装置102を実現するコンピュータプログラムは、コンピュータが読み取り可能な記録媒体に記憶されて、又は、ネットワーク経由で配布が可能なものであってもよい。
動画像復号装置102は、エントロピー復号部602と、逆量子化・逆変換部604と、加算部606と、インター予測部608と、イントラ予測部610と、フレームバッファ612と、インループフィルタ614と、を備える。動画像復号装置102は、動画像符号化装置110で行われる手順と逆の手順により、ビットストリームBSから出力動画像データを得る。
エントロピー復号部602は、ネットワーク106を介して配信システム100からビットストリームBSを受信する。エントロピー復号部602は、受信したビットストリームをエントロピー復号し、レベル値とサイド情報とを取り出す。なお、ビットストリームからサイド情報およびレベル値を得る処理はパース(parse)処理と称される。このようにして得られたサイド情報およびレベル値を用いて画素値を再構成することは、復号処理と称される。
逆量子化・逆変換部604は、ブロック単位でレベル値を逆量子化および逆変換して誤差信号を生成する。加算部606は、逆量子化・逆変換部604によって生成された誤差信号に対応するブロックがイントラ予測されたものであるかインター予測されたものであるかに応じて、インター予測部608またはイントラ予測部610のいずれか一方が出力する当該ブロックの予測画像と当該ブロックの誤差信号とを加算し、当該ブロックを再生する。加算部606は、再生されたブロックをイントラ予測部610とインループフィルタ614とに出力する。インター予測部608は図6のインター予測部206と同様の構成を有する。イントラ予測部610は再生されたブロックを使用してフレーム内予測を行いイントラ予測画像を生成する。インループフィルタ614は例えばデブロックフィルタである。インループフィルタ614は、当該フレームに対応する局所復号画像を生成してフレームバッファ612に出力する。この局所復号画像は、インター予測部608におけるフレーム間予測に使用されると同時に、出力動画像データとして表示装置104に出力される。
以上の構成によるインター予測部206の動作を説明する。
図9は、図6のインター予測部206における一連の処理を示すフローチャートである。インター予測部206は、レンズ歪パラメータを取得する(S902)。インター予測部206は、取得されたレンズ歪パラメータに基づいてレンズ歪補正ベクトルを生成する(S904)。インター予測部206は、処理対象ブロックの周囲にある符号化済みブロックの動きベクトルを取得する(S906)。インター予測部206は、取得された符号化済みブロックの動きベクトルを、符号化済みブロックの位置に対応するレンズ歪補正ベクトルに基づいて仮想動きベクトルに変換する(S908)。インター予測部206は、符号化済みブロックの仮想動きベクトルから、予測またはマージにより処理対象ブロックの仮想動きベクトルを生成する(S910)。インター予測部206は、生成された処理対象ブロックの仮想動きベクトルを、処理対象ブロックの位置に対応するレンズ歪補正ベクトルに基づいて動きベクトルに変換する(S912)。インター予測部206は、処理対象ブロックの動きベクトルと処理対象ブロックに対応する参照ピクチャとから、処理対象ブロックの動き補償画像を生成する(S914)。
本実施の形態に係る配信システム100によると、符号化側、復号側のそれぞれにおいて動きベクトルの生成の過程でレンズ歪の影響を加味することで、動きベクトルの見かけ上のばらつきによる動きベクトル関連の符号量の増大を抑制または除去することができる。すなわち、動きベクトルのばらつきがレンズ歪に起因するのであれば、レンズ歪を取り除けばそれらのベクトルは揃う。したがって、本実施の形態では処理対象ブロックの周囲にあるブロックについてレンズ歪のない状態の(仮想)動きベクトルを生成し、生成された(仮想)動きベクトルを使用して処理対象ブロックの(仮想)動きベクトルを予測し、予測により得られた(仮想)動きベクトルをレンズ歪のある動きベクトルに変換する。その結果、動きベクトルが見かけ上ばらついていても、そのばらつきがレンズ歪に起因するものであれば、それらの動きベクトルは「同じ」であるという情報(とレンズ歪パラメータ)が動きベクトルそのものの代わりに伝送される。
また、レンズ歪を考慮した動き補償方式として、非特許文献2では、レンズ歪をモデル化し(非特許文献2の式29)、三角形パッチを基本とする手法が提案されている。しかしながら、このような画素単位でのレンズ歪補償や動き補償による予測画像生成は演算複雑度が高く、必要メモリ帯域も広大になり、実現が困難である。これに対し、本実施の形態ではブロック単位での演算となるので演算複雑度はより低く、必要メモリ帯域もより小さい。
また、レンズ歪をコーデックのプレ処理で補正する方法も考えられる。しかしながら、符号化する前にレンズ歪を補正し画面に合うようにクロップすると、センサの無駄になる領域が増加する。レンズ歪を補正してからクロップしないと、映像のない領域も符号化することになり符号化処理量が増え、また補正そのものによる劣化も増加する。これに対して本実施の形態では、レンズ歪を有したままの映像が符号化され、復号されるので上記のような課題は発生しない。
上述の実施の形態において、データベースの例は、ハードディスクや半導体メモリである。また、本明細書の記載に基づき、各部を、図示しないCPUや、インストールされたアプリケーションプログラムのモジュールや、システムプログラムのモジュールや、ハードディスクから読み出したデータの内容を一時的に記憶する半導体メモリなどにより実現できることは本明細書に触れた当業者には理解される。
以上、実施の形態に係る配信システム100の構成と動作について説明した。この実施の形態は例示であり、各構成要素や各処理の組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解される。
実施の形態では、インター予測部206はブロック単位で処理を行う場合について説明したが、これに限られない。例えば、動きベクトル生成部は処理対象ブロックを処理対象ブロックより小さいサブブロックに分割し、サブブロックごとに動きベクトルを生成してもよい。この場合、実施の形態の動きベクトル生成部の説明におけるブロックをサブブロックに読み替える。補間画像生成部は、サブブロックごとに該サブブロックについて生成された動きベクトルに基づき補間画像を生成してもよい。補間画像生成部は、処理対象ブロックの全てのサブブロックの補間画像を合わせて処理対象ブロックの動き補償画像を生成してもよい。
実施の形態では、ビットストリームBSの高位文法がレンズ歪パラメータとフラグとをそれぞれ別体として含む場合について説明したが、これに限られず、それらは一体の情報として高位文法に含まれてもよい。例えば、レンズ歪パラメータのみが高位文法に含まれ、それが0であればレンズ歪補正機能が無効と解釈されるか実質的に無効となるよう、符号化側および復号側が構成されてもよい。
100 配信システム、 102 動画像復号装置、 104 表示装置、 106 ネットワーク、 110 動画像符号化装置。

Claims (12)

  1. 画像の歪を補正するための補正情報を生成する補正情報生成部と、
    動画像の処理対象ブロックの周囲にある符号化済みブロックの動きベクトルと、前記補正情報生成部によって生成された補正情報と、から処理対象ブロックの動きベクトルを生成する動きベクトル生成部と、
    前記動きベクトル生成部によって生成された動きベクトルと、処理対象ブロックに対応する参照ピクチャと、から処理対象ブロックの動き補償画像を生成する動き補償画像生成部と、を備えることを特徴とするインター予測装置。
  2. 前記補正情報生成部は、画像のレンズ歪の度合いを表すパラメータを用いて該レンズ歪を補正するための補正ベクトルを補正情報として生成し、
    前記動きベクトル生成部は、処理対象ブロックの周囲にある符号化済みブロックの動きベクトルと、処理対象ブロックの位置に対応する補正ベクトルと、から処理対象ブロックの動きベクトルを生成することを特徴とする請求項1に記載のインター予測装置。
  3. 前記動きベクトル生成部によって生成された動きベクトルを保持する動きベクトルバッファをさらに備えることを特徴とする請求項1または2に記載のインター予測装置。
  4. 前記補正情報生成部は、ピクチャまたはシーケンスごとに指定されるフラグが有効を示す場合は補正情報を生成し、無効を示す場合は非活性化されることを特徴とする請求項1から3のいずれか1項に記載のインター予測装置。
  5. 画像のレンズ歪の度合いを表すパラメータはピクチャごとまたはシーケンスごとに指定されることを特徴とする請求項4に記載のインター予測装置。
  6. 前記動きベクトル生成部は、処理対象ブロックの周囲にある符号化済みブロックの動きベクトルから予測される予測動きベクトルと、前記補正情報生成部によって生成された補正情報と、処理対象ブロックの差分動きベクトルと、から処理対象ブロックの動きベクトルを生成することを特徴とする請求項1から5のいずれか1項に記載のインター予測装置。
  7. 前記動きベクトル生成部は、処理対象ブロックの周囲にある符号化済みブロックの動きベクトルに該符号化済みブロックの位置に対応する補正情報を適用することで補正後動きベクトルを生成し、生成された補正後動きベクトルから選択されたひとつの補正後動きベクトルから処理対象ブロックの動きベクトルを生成することを特徴とする請求項1から5のいずれか1項に記載のインター予測装置。
  8. 前記動きベクトル生成部は、処理対象ブロックを処理対象ブロックより小さいサブブロックに分割し、サブブロックごとに動きベクトルを生成し、
    前記動き補償画像生成部は、サブブロックごとに該サブブロックについて生成された動きベクトルに基づき補間画像を生成することを特徴とする請求項1から7のいずれか1項に記載のインター予測装置。
  9. 画像の歪を補正するための補正情報を生成することと、
    動画像の処理対象ブロックの周囲にある符号化済みブロックの動きベクトルと、生成された補正情報と、から処理対象ブロックの動きベクトルを生成することと、
    生成された動きベクトルと、処理対象ブロックに対応する参照ピクチャと、から処理対象ブロックの動き補償画像を生成することと、を含むことを特徴とするインター予測方法。
  10. 請求項1から8のいずれか1項に記載のインター予測装置としてコンピュータを機能させるプログラムを有することを特徴とするコンピュータ可読記録媒体。
  11. 請求項1から8のいずれか1項に記載のインター予測装置を備えることを特徴とする動画像復号装置。
  12. 請求項1から8のいずれか1項に記載のインター予測装置を備えることを特徴とする動画像符号化装置。
JP2015256490A 2015-12-28 2015-12-28 インター予測装置、インター予測方法、動画像符号化装置、動画像復号装置及びコンピュータ可読記録媒体 Active JP6539580B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015256490A JP6539580B2 (ja) 2015-12-28 2015-12-28 インター予測装置、インター予測方法、動画像符号化装置、動画像復号装置及びコンピュータ可読記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015256490A JP6539580B2 (ja) 2015-12-28 2015-12-28 インター予測装置、インター予測方法、動画像符号化装置、動画像復号装置及びコンピュータ可読記録媒体

Publications (2)

Publication Number Publication Date
JP2017120980A true JP2017120980A (ja) 2017-07-06
JP6539580B2 JP6539580B2 (ja) 2019-07-03

Family

ID=59272456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015256490A Active JP6539580B2 (ja) 2015-12-28 2015-12-28 インター予測装置、インター予測方法、動画像符号化装置、動画像復号装置及びコンピュータ可読記録媒体

Country Status (1)

Country Link
JP (1) JP6539580B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019097157A (ja) * 2017-10-18 2019-06-20 アクシス アーベー 補助フレームをサポートするビデオコーディングフォーマットでビデオストリームを符号化するための方法およびエンコーダ
WO2019176189A1 (ja) * 2018-03-16 2019-09-19 ソニー株式会社 画像処理装置と画像処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011079A (ja) * 2006-06-28 2008-01-17 Matsushita Electric Ind Co Ltd 動画像符号化装置、動画像復号化装置及び動画像伝送システム
JP2012160886A (ja) * 2011-01-31 2012-08-23 Canon Inc 撮像装置、その制御方法及びプログラム
JP2014176034A (ja) * 2013-03-12 2014-09-22 Ricoh Co Ltd 映像伝送装置
JP2014192704A (ja) * 2013-03-27 2014-10-06 Mega Chips Corp 動画像符号化処理装置、プログラムおよび集積回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011079A (ja) * 2006-06-28 2008-01-17 Matsushita Electric Ind Co Ltd 動画像符号化装置、動画像復号化装置及び動画像伝送システム
JP2012160886A (ja) * 2011-01-31 2012-08-23 Canon Inc 撮像装置、その制御方法及びプログラム
JP2014176034A (ja) * 2013-03-12 2014-09-22 Ricoh Co Ltd 映像伝送装置
JP2014192704A (ja) * 2013-03-27 2014-10-06 Mega Chips Corp 動画像符号化処理装置、プログラムおよび集積回路

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019097157A (ja) * 2017-10-18 2019-06-20 アクシス アーベー 補助フレームをサポートするビデオコーディングフォーマットでビデオストリームを符号化するための方法およびエンコーダ
WO2019176189A1 (ja) * 2018-03-16 2019-09-19 ソニー株式会社 画像処理装置と画像処理方法
CN111837394A (zh) * 2018-03-16 2020-10-27 索尼公司 图像处理装置和图像处理方法
KR20200131231A (ko) 2018-03-16 2020-11-23 소니 주식회사 화상 처리 장치와 화상 처리 방법
JPWO2019176189A1 (ja) * 2018-03-16 2021-03-25 ソニー株式会社 画像処理装置と画像処理方法
US11245919B2 (en) 2018-03-16 2022-02-08 Sony Corporation Image processing device and image processing method
JP7310794B2 (ja) 2018-03-16 2023-07-19 ソニーグループ株式会社 画像処理装置と画像処理方法
CN111837394B (zh) * 2018-03-16 2024-01-26 索尼公司 图像处理装置和图像处理方法

Also Published As

Publication number Publication date
JP6539580B2 (ja) 2019-07-03

Similar Documents

Publication Publication Date Title
KR102545299B1 (ko) 비디오 디코딩을 위한 방법 및 장치
KR102635983B1 (ko) 스킵 모드를 이용한 영상 복호화 방법 및 이러한 방법을 사용하는 장치
JP7223116B2 (ja) 動画の符号化及び復号の方法、装置及びコンピュータプログラム
CN113545083A (zh) 视频编解码的方法和装置
JP7209819B2 (ja) ビデオ符号化及び復号のための方法および装置
CN112970256B (zh) 用于提供视频数据比特流的编/解码方法和编/解码装置
KR102140331B1 (ko) 인트라 예측 방법 및 그 장치
JP6027143B2 (ja) 画像符号化方法、画像復号方法、画像符号化装置、画像復号装置、画像符号化プログラム、および画像復号プログラム
CN110546960B (zh) 多层视频流传输系统和方法
US20150092862A1 (en) Modified hevc transform tree syntax
CN112655205A (zh) 仿射模型运动矢量的约束
CN113259661A (zh) 视频解码的方法和装置
JP2023162380A (ja) Vvcにおける色変換のための方法及び機器
JP2022179505A (ja) ビデオ復号方法およびビデオデコーダ
JP7505017B2 (ja) ビデオコーディングのための方法および装置
CN114787870A (zh) 用于视频编码的用虚拟参考图片进行帧间图片预测的方法和装置
WO2018055910A1 (ja) 動画像復号装置、動画像復号方法、動画像符号化装置、動画像符号化方法及びコンピュータ可読記録媒体
CN112997499B (zh) 用于提供视频数据比特流的编/解码方法和编/解码装置
CN113228631A (zh) 视频编解码的方法和装置
JP7528335B2 (ja) ピクチャ分割情報をシグナリングする方法及び装置
KR20220165274A (ko) 비디오 코딩을 위한 방법 및 장치
JP2023520594A (ja) ビデオ・コーディングのための方法及び装置
WO2015056712A1 (ja) 動画像符号化方法、動画像復号方法、動画像符号化装置、動画像復号装置、動画像符号化プログラム、及び動画像復号プログラム
JP6539580B2 (ja) インター予測装置、インター予測方法、動画像符号化装置、動画像復号装置及びコンピュータ可読記録媒体
JP2018085660A (ja) 画像符号化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190610

R150 Certificate of patent or registration of utility model

Ref document number: 6539580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150