JP2017120838A - Junction temperature specification device and junction temperature specification method - Google Patents

Junction temperature specification device and junction temperature specification method Download PDF

Info

Publication number
JP2017120838A
JP2017120838A JP2015256937A JP2015256937A JP2017120838A JP 2017120838 A JP2017120838 A JP 2017120838A JP 2015256937 A JP2015256937 A JP 2015256937A JP 2015256937 A JP2015256937 A JP 2015256937A JP 2017120838 A JP2017120838 A JP 2017120838A
Authority
JP
Japan
Prior art keywords
junction
semiconductor device
failure
temperature
ambient temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015256937A
Other languages
Japanese (ja)
Other versions
JP6531646B2 (en
Inventor
彩 小東
Aya Koto
彩 小東
一機 中野
Kazuki Nakano
一機 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015256937A priority Critical patent/JP6531646B2/en
Publication of JP2017120838A publication Critical patent/JP2017120838A/en
Application granted granted Critical
Publication of JP6531646B2 publication Critical patent/JP6531646B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To calculate a failure junction temperature that is a junction temperature at failures.SOLUTION: A junction temperature specification device comprises: an ambient temperature controller 3 that controls an ambient temperature of a semiconductor device having a junction; a local heating controller 4 that gives a heat quantity for the purpose of locally heating the semiconductor device, at the ambient temperature; a measurement unit that measures characteristics of the junction of the semiconductor device; a failure determination unit 15 that determines failures of the semiconductor device from the characteristics of the junction at the plurality of ambient temperatures; and a failure junction temperature specification unit that specifies an ambient temperature at which the heat quantity becomes zero as a failure junction temperature, from a correlation between the heat quantity and the ambient temperature in a case where it is determined that the semiconductor device has failures.SELECTED DRAWING: Figure 1

Description

この発明は、半導体装置のジャンクション温度を求める技術に関する。   The present invention relates to a technique for obtaining a junction temperature of a semiconductor device.

半導体装置を動作させると、半導体装置内部の接合部(以降ジャンクションとする)が発熱し温度が上昇する。半導体装置の高密度化およびハイパワー化に伴い、ジャンクション温度が許容値を超えることによる半導体装置の故障が問題となっている。そこで、ジャンクションの温度を推定する方法として、特許文献1に記載のようなジャンクションを流れる電流と周囲温度との関係を求め、内部の温度が定常状態になった時点でのジャンクションの電流に対応する周囲温度を前記関係から求めてジャンクション温度として推定する方法が提案されている。   When the semiconductor device is operated, a junction (hereinafter referred to as a junction) inside the semiconductor device generates heat and the temperature rises. As semiconductor devices have higher densities and higher powers, the failure of semiconductor devices due to the junction temperature exceeding an allowable value has become a problem. Therefore, as a method of estimating the junction temperature, the relationship between the current flowing through the junction as described in Patent Document 1 and the ambient temperature is obtained, and this corresponds to the junction current when the internal temperature becomes a steady state. A method has been proposed in which the ambient temperature is obtained from the above relationship and is estimated as the junction temperature.

特開2004−245756号公報JP 2004-245756 A

特許文献1では、動作時のジャンクション温度を推定することができるが、故障時のジャンクション温度を特定することができない。一般的に、半導体装置の最大動作可能温度は、半導体装置メーカーが半導体装置内の最も熱に弱い構造(例えば封止樹脂等)の故障温度からマージンを差し引いて設定しており、半導体装置のジャンクションの温度に注目したものではなく、故障時のジャンクション温度を特定しているものではない。この発明は、故障時のジャンクション温度である故障ジャンクション温度を求めることを目的とする。   In patent document 1, although the junction temperature at the time of operation | movement can be estimated, the junction temperature at the time of a failure cannot be specified. In general, the maximum operable temperature of a semiconductor device is set by a semiconductor device manufacturer by subtracting a margin from the failure temperature of the most heat-sensitive structure (for example, sealing resin) in the semiconductor device. It does not focus on the temperature of the device, and does not specify the junction temperature at the time of failure. An object of this invention is to obtain | require the failure junction temperature which is the junction temperature at the time of failure.

上記課題を解決するために、ジャンクションを有する半導体装置の周囲温度を制御する周囲温度制御部3と、周囲温度において、半導体装置を局所加熱する為に熱量を付与する局所加熱制御部4と、半導体装置のジャンクションの特性を計測する計測部と、複数の周囲温度でのジャンクションの特性から、半導体装置の故障を判定する故障判定部15と、半導体装置が故障と判定された場合の熱量と周囲温度の相関関係から、熱量が0となる周囲温度を故障ジャンクション温度として特定する故障ジャンクション温度特定部16とを備えることを特徴とする。   In order to solve the above problems, an ambient temperature control unit 3 that controls the ambient temperature of a semiconductor device having a junction, a local heating control unit 4 that applies heat to locally heat the semiconductor device at the ambient temperature, and a semiconductor A measurement unit that measures the junction characteristics of the device, a failure determination unit 15 that determines a failure of the semiconductor device from the junction characteristics at a plurality of ambient temperatures, and an amount of heat and an ambient temperature when the semiconductor device is determined to be failed And a failure junction temperature specifying unit 16 that specifies an ambient temperature at which the amount of heat becomes 0 as a failure junction temperature.

本発明により、半導体装置の故障ジャンクション温度を求めることができる。   According to the present invention, a failure junction temperature of a semiconductor device can be obtained.

本発明の実施の形態1による半導体装置のジャンクション温度特定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the junction temperature specific device of the semiconductor device by Embodiment 1 of this invention. 本発明の実施の形態1における局所加熱制御部から端子に供給される電気的状態の一例を示す図である。It is a figure which shows an example of the electrical state supplied to a terminal from the local heating control part in Embodiment 1 of this invention. 半導体装置の一般的な電圧−電流特性を示す図である。It is a figure which shows the general voltage-current characteristic of a semiconductor device. 正常な状態および故障した状態の半導体装置の電気特性の一例を示す図である。It is a figure which shows an example of the electrical property of the semiconductor device of a normal state and a failure state. 本発明の実施の形態1における、故障時の周囲温度と瞬間入力電力の関係を示す図である。It is a figure which shows the relationship between the ambient temperature at the time of a failure, and instantaneous input electric power in Embodiment 1 of this invention. 本発明の実施の形態2による半導体装置のジャンクション温度特定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the junction temperature specific device of the semiconductor device by Embodiment 2 of this invention. 本発明の実施の形態2におけるレーザ制御部から被測定半導体装置に照射されるパルスレーザ光の波形および電源装置から端子に供給される電気的状態の一例を示す図である。It is a figure which shows an example of the electrical state supplied to the terminal from the waveform of the pulse laser beam irradiated to a to-be-measured semiconductor device from the laser control part in Embodiment 2 of this invention to a terminal. 本発明の実施の形態2における、故障時の周囲温度と瞬間レーザ光強度の関係を示す図である。It is a figure which shows the relationship between the ambient temperature at the time of a failure, and instantaneous laser beam intensity | strength in Embodiment 2 of this invention. 本発明の実施の形態3による半導体装置のジャンクション温度および故障ジャンクション温度特定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the junction temperature of a semiconductor device and failure junction temperature specific | specification apparatus by Embodiment 3 of this invention. 本発明の実施の形態3におけるレーザ走査部から被測定半導体装置に照射されるレーザ走査光の走査の一例を示す図である。It is a figure which shows an example of the scanning of the laser scanning light irradiated to a to-be-measured semiconductor device from the laser scanning part in Embodiment 3 of this invention. 本発明の実施の形態3における、故障時の周囲温度と瞬間レーザ走査光強度の関係を示す図である。It is a figure which shows the relationship between the ambient temperature at the time of a failure, and instantaneous laser scanning light intensity | strength in Embodiment 3 of this invention.

実施の形態1
図1は本発明の実施の形態1による半導体装置のジャンクション温度特定装置1の構成を示すブロック図である。図1を参照して、半導体装置のジャンクション温度特定装置1は、被測定半導体装置2の周囲温度を制御する周囲温度制御部3と、被測定半導体装置2の任意領域を局所的に加熱する為に熱量を付与する局所加熱制御部4と、被測定半導体装置2の故障判定を行うための印加電圧および印加電流をモニターし、半導体装置のジャンクションの特性を計測する計測部5を備える。また、半導体装置が故障しているかどうか、半導体装置のジャンクションの特性から判定する故障判定部15と、半導体装置が故障であると判定された場合の、熱量との相関関係から熱量が0となる周囲温度を、故障するジャンクション温度である故障ジャンクション温度として特定する故障ジャンクション温度特定部16とを備える。
Embodiment 1
FIG. 1 is a block diagram showing a configuration of a junction temperature specifying device 1 for a semiconductor device according to Embodiment 1 of the present invention. Referring to FIG. 1, a semiconductor device junction temperature specifying device 1 locally heats an ambient temperature control unit 3 that controls the ambient temperature of a semiconductor device 2 to be measured and an arbitrary region of the semiconductor device 2 to be measured. And a measurement unit 5 that monitors the applied voltage and the applied current for determining the failure of the semiconductor device 2 to be measured and measures the junction characteristics of the semiconductor device. Further, the amount of heat becomes 0 based on the correlation between the failure determination unit 15 that determines whether or not the semiconductor device has failed and the junction characteristics of the semiconductor device and the amount of heat when it is determined that the semiconductor device has failed. A failure junction temperature specifying unit 16 that specifies the ambient temperature as a failure junction temperature that is a failure junction temperature is provided.

本実施の形態では、一例として、被測定半導体装置2はダイオードとし、半導体装置内のPN接合にそれぞれ接続された2つの端子201、202を備えるものとする。端子201がP型半導体に接続された陽極であり、端子202がN型半導体に接続された陰極である。本実施の形態はダイオードより複雑なICに対しても適用可能である。ここで、ジャンクションはPN接合に限定されず、ジャンクションを有している半導体装置ならば何でもよい。PN接合とはP型半導体とN型半導体の接合部をいうが、ジャンクションはこれに限定されず、半導体同士または半導体と金属が接合する部分のことをいう。   In this embodiment, as an example, the semiconductor device 2 to be measured is a diode, and includes two terminals 201 and 202 respectively connected to PN junctions in the semiconductor device. The terminal 201 is an anode connected to a P-type semiconductor, and the terminal 202 is a cathode connected to an N-type semiconductor. This embodiment can also be applied to an IC that is more complicated than a diode. Here, the junction is not limited to the PN junction, and any semiconductor device having a junction may be used. A PN junction refers to a junction between a P-type semiconductor and an N-type semiconductor, but a junction is not limited to this, and refers to a portion where semiconductors or semiconductors and metals are joined.

周囲温度制御部3が、被測定半導体装置2の周囲温度が任意に設定可能とし、例えば25℃で定常状態(被測定半導体装置2のPN接合部も含む)になるように保つ。本実施の形態において、局所加熱制御部4は被測定半導体装置2の端子201、202にパルス状電圧および電流を印加し、そのパルス幅および周期を変えることで、PN接合部の発熱による温度上昇領域を任意に変える手法を用いる。   The ambient temperature control unit 3 allows the ambient temperature of the semiconductor device 2 to be measured to be arbitrarily set, and keeps the steady state (including the PN junction portion of the semiconductor device 2 to be measured) at 25 ° C., for example. In the present embodiment, the local heating control unit 4 applies a pulse voltage and current to the terminals 201 and 202 of the semiconductor device 2 to be measured, and changes the pulse width and period, thereby increasing the temperature due to heat generation at the PN junction. A method of changing the area arbitrarily is used.

周囲温度制御部3は、被測定半導体装置2の端子201、202へ供給する電圧または電流を任意に変化させることが可能であり、一般的には矩形波を供給するが、例えば、間欠的な正弦波や三角波でもよい。また、局所加熱制御部4はパルス状電圧及び電圧を印加するものとしているが、これに限定されるものではなく、熱量を与えるものならば何でもよい。   The ambient temperature control unit 3 can arbitrarily change the voltage or current supplied to the terminals 201 and 202 of the semiconductor device 2 to be measured, and generally supplies a rectangular wave. A sine wave or a triangular wave may be used. Moreover, although the local heating control part 4 shall apply a pulse-form voltage and a voltage, it is not limited to this, What is necessary is given if it provides calorie | heat amount.

例えば、矩形波の場合、下側端子の電圧および電流、並びに上側端子の電圧、電流、パルス幅、周期およびサイクル数は任意に設定可能である。ここで、上側端子とは端子201をいい、下側端子とは端子202のことをいう。本実施の形態では、局所加熱制御部4は、端子201へは矩形波の電圧または電流を供給し、端子202へは0Vの定電圧を供給する。矩形波の上側端子の電圧または電流(第一電気的状態)は、被測定半導体装置2のジャンクション温度を上昇させるためであり、下側端子の電圧および電流(第二電気的状態)は被測定半導体装置2の故障判定を行うためである。半導体装置に電圧または電流を供給して加熱し、瞬間的に故障判定の為の電流または電圧をかけて故障しているかどうかを確認し、故障していない場合には、また局所加熱制御部により加熱ようの電流または電圧がかけられる。故障判定を上側端子の電圧および電流で行う場合は、下側端子の電圧および電流は0にしてもよい。   For example, in the case of a rectangular wave, the voltage and current of the lower terminal and the voltage, current, pulse width, period, and cycle number of the upper terminal can be arbitrarily set. Here, the upper terminal refers to the terminal 201, and the lower terminal refers to the terminal 202. In the present embodiment, the local heating control unit 4 supplies a rectangular wave voltage or current to the terminal 201 and supplies a constant voltage of 0 V to the terminal 202. The voltage or current (first electrical state) of the upper terminal of the rectangular wave is for increasing the junction temperature of the semiconductor device 2 to be measured, and the voltage and current (second electrical state) of the lower terminal is to be measured. This is for determining the failure of the semiconductor device 2. Supply voltage or current to the semiconductor device to heat it, and instantaneously apply the current or voltage for failure determination to check if there is a failure. A heating current or voltage is applied. When failure determination is performed using the voltage and current of the upper terminal, the voltage and current of the lower terminal may be zero.

図2は、局所加熱制御部4から端子201、202に供給される電気的状態の一例である。図2(a)の縦軸は電圧を示し、横軸は時間を示す。図2(b)の縦軸は電流を示し、横軸は時間を示す。本実施の形態では、図2(a)は定電流制御、図2(b)は定電圧制御で局所加熱制御部4が、測定を実施する。   FIG. 2 is an example of an electrical state supplied from the local heating control unit 4 to the terminals 201 and 202. In FIG. 2A, the vertical axis represents voltage, and the horizontal axis represents time. In FIG. 2B, the vertical axis represents current, and the horizontal axis represents time. In the present embodiment, the local heating control unit 4 performs measurement with constant current control in FIG. 2A and constant voltage control in FIG. 2B.

図3は、半導体装置の一般的な電圧−電流特性を示す。横軸が電圧、縦軸が電流を示している。PN接合を有する半導体装置は、印加電圧が閾値(Vth)を超えると、急激に電流が増加する性質を持っているため、PN接合部の温度を上昇させるためには、Vth以上の電圧を印加し、ある程度以上の電力を消費させる必要がある。Vthを超える領域では電圧−電流特性の傾きが大きいため、電流の方が電圧よりも増加量が多く制御しやすいことから定電流制御を採用している。図3のIaは電流の増加量、図3のVaは電圧の増加量を示している。   FIG. 3 shows a general voltage-current characteristic of a semiconductor device. The horizontal axis represents voltage and the vertical axis represents current. A semiconductor device having a PN junction has a property that current rapidly increases when an applied voltage exceeds a threshold (Vth). Therefore, in order to raise the temperature of the PN junction, a voltage higher than Vth is applied. However, it is necessary to consume a certain amount of power. Since the slope of the voltage-current characteristic is large in the region exceeding Vth, constant current control is adopted because the amount of increase in the current is larger than that in the voltage and control is easy. In FIG. 3, Ia indicates the amount of increase in current, and Va in FIG. 3 indicates the amount of increase in voltage.

一方、半導体装置の故障判定では、Vth以下の電圧を印加し、電圧を固定して、その際の電流を測定する。  On the other hand, in the failure determination of the semiconductor device, a voltage equal to or lower than Vth is applied, the voltage is fixed, and the current at that time is measured.

図4には、正常な状態および故障した状態の半導体装置の電気特性の一例を示す。縦軸が電流の対数、横軸が電圧を示している。半導体装置のジャンクションが正常な状態の場合、Vth以下の領域ではほとんど電流が流れないが、故障している場合は、Vth以下の場合においても電流が流れるため、故障しているかどうかを判定できる。正常状態でも僅かに電流は流れるので、故障判定部15は、前もって基準値を設定して、所定電圧での電流が基準値を超える場合に、故障と判定する。このような故障判定の仕方は一般的なものである。   FIG. 4 shows an example of electrical characteristics of a semiconductor device in a normal state and a failed state. The vertical axis represents the logarithm of current, and the horizontal axis represents voltage. When the junction of the semiconductor device is in a normal state, almost no current flows in a region below Vth, but when there is a failure, current flows even when it is below Vth, so it can be determined whether or not it is broken. Since a slight current flows even in a normal state, the failure determination unit 15 sets a reference value in advance, and determines that a failure occurs when the current at a predetermined voltage exceeds the reference value. Such a failure determination method is general.

半導体装置内のジャンクションの構造が故障した場合、Vth以下の領域で流れる電流が増加する。そのため、本実施の形態ではVth以下の領域で測定を実施するが、この領域では半導体装置に流れる電流量が少ないため、制御しやすい定電圧制御を採用している。   When the junction structure in the semiconductor device fails, the current flowing in the region below Vth increases. Therefore, in this embodiment, measurement is performed in a region below Vth. However, since the amount of current flowing through the semiconductor device is small in this region, constant voltage control that is easy to control is employed.

また、半導体装置を加熱する為の電流または電圧のパルス幅は、被測定半導体装置2における電圧および電流の印加時間であり、被測定半導体装置2のPN接合からの熱供給時間であるため、パルス幅によって温度上昇領域を任意に設定可能である。パルス幅を十分に短くすることで、特許文献1に記載の方法では測定が不可能な、微小な熱容量しか持たないPN接合部のような微小領域のみを加熱することが可能となる。パルスの周期は、矩形波の上側電圧および電流の印加によって被測定半導体装置2の温度上昇した領域が上側電圧および電流印加前の温度状態に戻る時間とする。サイクル数は半導体装置2の温度変化の繰り返しが安定するサイクル数とし、任意に設定可能とする。   The pulse width of the current or voltage for heating the semiconductor device is the voltage and current application time in the semiconductor device 2 to be measured and the heat supply time from the PN junction of the semiconductor device 2 to be measured. The temperature rise region can be arbitrarily set according to the width. By sufficiently shortening the pulse width, it is possible to heat only a minute region such as a PN junction having only a minute heat capacity, which cannot be measured by the method described in Patent Document 1. The period of the pulse is defined as a time required for the region where the temperature of the semiconductor device 2 to be measured to rise due to the application of the rectangular wave upper voltage and current to return to the temperature state before the application of the upper voltage and current. The number of cycles is set to the number of cycles in which the repetition of the temperature change of the semiconductor device 2 is stable, and can be arbitrarily set.

局所加熱制御部4による被測定半導体装置2の電圧および電流変化を計測部5でモニターし、定電圧制御において測定する電流量が故障判定の基準値に到達した場合、故障判定部15は被測定半導体装置2を故障と判定し、計測部5は半導体の電流量の測定を終了する。または定電流制御の電圧が故障判定電圧に到達した場合、被測定半導体装置2を故障と判定し、測定を終了する。被測定半導体装置2の電気的故障はオープン故障とショート(微小電流を含む)故障の2通りであるため、故障判定部15は、2通りの故障判定電圧および電流を設定する必要があり、被測定半導体装置2の電気特性により任意で設定可能である。   When the voltage and current changes of the semiconductor device 2 to be measured by the local heating control unit 4 are monitored by the measurement unit 5 and the amount of current measured in the constant voltage control reaches the reference value for failure determination, the failure determination unit 15 The semiconductor device 2 is determined to be faulty, and the measurement unit 5 ends the measurement of the semiconductor current amount. Alternatively, when the constant current control voltage reaches the failure determination voltage, the semiconductor device 2 to be measured is determined to be failed, and the measurement is terminated. Since the electrical failure of the semiconductor device 2 to be measured has two types of failure, that is, an open failure and a short (including a small current) failure, the failure determination unit 15 needs to set two types of failure determination voltage and current. It can be arbitrarily set according to the electrical characteristics of the measurement semiconductor device 2.

オープン故障のような程度が重い故障は定電流制御で故障判定可能である。Vth以下で電流が漏れるようなリーク故障のような程度が軽いのは、精度よく電流を計測する必要があるので定電圧制御することが望ましい。オープン故障の場合は、定電流制御では電圧は局所加熱制御部4または電源装置8にあらかじめ設定した制限電圧値まで上昇し、定電圧制御では電流はほぼ0となる。ショート故障の場合は、定電流制御では電圧は低下し、電圧値はショート箇所の抵抗によって決まる。定電圧制御では電流は局所加熱制御部4または電源装置8にあらかじめ設定した制限電流値まで上昇する。   A heavy failure such as an open failure can be determined by constant current control. It is desirable to perform constant voltage control because it is necessary to measure the current with high accuracy when the degree of leakage failure such that current leaks below Vth is light. In the case of an open failure, the voltage rises to the limit voltage value set in advance in the local heating control unit 4 or the power supply device 8 in the constant current control, and the current becomes almost zero in the constant voltage control. In the case of a short-circuit failure, the voltage decreases with constant current control, and the voltage value is determined by the resistance at the short-circuit location. In the constant voltage control, the current rises to a limit current value set in advance in the local heating control unit 4 or the power supply device 8.

任意のサイクル数内で故障判定とならなかった場合、故障判定部15は、第一電気的状態の電流を増加することで被測定半導体装置2の上側電圧と電流の積である瞬間入力電力を増加させて、再び上述の故障判定を実施する。電流の増加幅は任意に設定可能とする。第一電気的状態の電流増加を、被測定半導体装置2の故障判定部15が故障判定となるまで実施し、故障判定時の第一電気的状態の電流(以下故障電流と呼ぶ)を記録する。   When failure determination does not occur within an arbitrary number of cycles, failure determination unit 15 increases instantaneous input power that is the product of the upper voltage and current of semiconductor device 2 to be measured by increasing the current in the first electrical state. The above-described failure determination is performed again. The increase width of the current can be arbitrarily set. The current increase in the first electrical state is performed until the failure determination unit 15 of the semiconductor device 2 to be measured determines failure, and the current in the first electrical state at the time of failure determination (hereinafter referred to as failure current) is recorded. .

以上の故障電流測定を異なる温度条件下、例えば50℃、75℃、100℃において実施する。周囲温度が上昇すると、印加電流による温度上昇領域の到達温度も上昇するため、図5に示すような周囲温度と故障時の瞬間入力電力の関係が得られる。周囲温度をY軸、故障時の瞬間入力電力をX軸とすると、故障時の瞬間入力電力が0である時すなわちY軸の切片を外挿近似によって求めることで、任意領域における故障ジャンクション温度を算出することができる。ここで入力電力と周囲温度の関係を見ているが、これは半導体に与えられる熱量と周囲温度の関係を見るとしてもよい。   The above fault current measurement is performed under different temperature conditions, for example, 50 ° C., 75 ° C., and 100 ° C. When the ambient temperature rises, the temperature reached in the temperature rise region due to the applied current also rises, so that the relationship between the ambient temperature and the instantaneous input power at the time of failure as shown in FIG. 5 is obtained. Assuming that the ambient temperature is the Y-axis and the instantaneous input power at the time of failure is the X-axis, the failure junction temperature in an arbitrary region can be obtained by obtaining the intercept of the Y-axis by extrapolation approximation when the instantaneous input power at the time of failure is zero. Can be calculated. Here, the relationship between the input power and the ambient temperature is seen, but this may be the relationship between the amount of heat given to the semiconductor and the ambient temperature.

また、図5に示すように、故障ジャンクション温度から周囲温度を差し引いた分が、局所制御加熱部から故障時に与えられていた電力である故障時の瞬間入力電力によるジャンクション温度増加量に相当する。すなわち、複数の周囲温度と故障時の瞬間入力電力との関係から、瞬間入力電力とジャンクション温度増加量の相関が求められるため、動作時の周囲温度に動作時に印加される瞬間入力電力によるジャンクション温度増加量を足し合わせることで、動作時のジャンクション温度を算出することが出来る。瞬間入力電力、つまりジャンクションに熱量が加えられて高くなる場合、周囲温度が低くても、全体としてのジャンクション温度はあがり、ジャンクションは故障することになる。ジャンクションにどれぐらいの熱量を加えた場合に、周囲温度がどれぐらいの場合に半導体装置が故障するかを見ていくことで、瞬間入力電力が0つまり熱量が0の場合に故障する周囲温度である故障ジャンクション温度を特定することができる。   Further, as shown in FIG. 5, the amount obtained by subtracting the ambient temperature from the failure junction temperature corresponds to the junction temperature increase amount due to the instantaneous input power at the time of failure, which is the power given from the local control heating unit at the time of failure. That is, since the correlation between the instantaneous input power and the increase in junction temperature is obtained from the relationship between the multiple ambient temperatures and the instantaneous input power at the time of failure, the junction temperature due to the instantaneous input power applied during operation to the ambient temperature during operation The junction temperature during operation can be calculated by adding the increments. When the instantaneous input power, that is, the amount of heat applied to the junction increases, the junction temperature as a whole increases even if the ambient temperature is low, and the junction fails. By checking how much heat is applied to the junction and how much the ambient temperature is at the semiconductor device, the ambient temperature at which the instantaneous input power is 0, that is, when the heat is 0, A fault junction temperature can be identified.

故障判定部15は、複数の周囲温度での計測部5で計測される半導体装置のジャンクションの特性から、半導体装置の故障を判定する。本実施の形態では、電流電圧特性により、所定電圧での電流が閾値を超えるか超えないかを計測して、超える場合に故障と判定する。   The failure determination unit 15 determines a failure of the semiconductor device from the junction characteristics of the semiconductor device measured by the measurement unit 5 at a plurality of ambient temperatures. In the present embodiment, whether or not the current at the predetermined voltage exceeds or does not exceed the threshold is measured based on the current-voltage characteristics, and if it exceeds, the failure is determined.

故障ジャンクション温度特定部16は、半導体装置が故障と判定された場合の、熱量もしくは電力と周囲温度の関係を記憶していき、半導体装置が故障する場合において、熱量もしくは電力がいくらの場合に周囲温度が何度になるかの相関関係を特定する。特定された相関関係において、熱量もしくは電力が0となる場合の周囲温度を特定して、その周囲温度を故障ジャンクション温度として特定する。   The failure junction temperature specifying unit 16 stores the relationship between the amount of heat or power and the ambient temperature when it is determined that the semiconductor device has failed. When the semiconductor device fails, the failure junction temperature specifying unit 16 Specify the correlation of the temperature. In the specified correlation, the ambient temperature when the amount of heat or power becomes 0 is identified, and the ambient temperature is identified as the failure junction temperature.

PN接合部(ジャンクション)の故障する温度を特定しようとして、実際にPN接合部が故障する温度まで温度を上昇させてしまうと、熱的に安定し精度良く測定が可能となる前に故障によって測定ができなくなるという問題がある。また、特許文献1に記載のような方法では、半導体装置全体に熱が飽和するために、先にパッケージ樹脂等の熱に弱い部分が故障し、任意領域のPN接合部が故障する温度を測定することができないといった問題も起こる。   If you try to identify the temperature at which the PN junction (junction) fails, and if you raise the temperature to the temperature at which the PN junction actually fails, it will be measured by the failure before it becomes thermally stable and accurate. There is a problem that it becomes impossible. Further, in the method as described in Patent Document 1, since the heat is saturated in the entire semiconductor device, the temperature at which the heat-sensitive portion such as the package resin fails first and the PN junction in the arbitrary region fails is measured. The problem of not being able to do it also occurs.

本実施の形態1によれば、半導体装置のジャンクションを実際に故障するまで加熱させて、局所加熱を繰り返し熱的に安定した状態とすることで精度良く電流または電圧の関係とジャンクションの故障の関係性を特定することができ、半導体装置のジャンクションにおいて故障のおこる温度である故障ジャンクション温度を特定することができる効果がある。   According to the first embodiment, the junction of the semiconductor device is heated until it actually fails, and the local heating is repeatedly repeated in a thermally stable state so that the relationship between the current or voltage and the junction failure can be accurately performed. Thus, there is an effect that a failure junction temperature, which is a temperature at which a failure occurs in a junction of a semiconductor device, can be specified.

実施の形態2
実施の形態1では、被測定半導体装置2を局所加熱する方法として、パルス状電圧および電流を印加する手法を用いていたが、実施の形態2では、局所加熱する方法をパルスレーザ光照射とすることで、PN接合部のように最も電力を消費する箇所に限定されず、動作時のジャンクション温度および故障ジャンクション温度を求めたい任意の箇所を局所加熱することが可能となる。また、その波長および照射面積、照射時間を変えることで温度上昇領域を任意に変えることが可能である。
Embodiment 2
In the first embodiment, a method of applying a pulse voltage and current is used as a method of locally heating the semiconductor device 2 to be measured. However, in the second embodiment, the method of locally heating is pulsed laser light irradiation. Thus, it is not limited to the place where the power is consumed most like the PN junction portion, and it is possible to locally heat an arbitrary place where it is desired to obtain the junction temperature and the failure junction temperature during operation. Further, the temperature rise region can be arbitrarily changed by changing the wavelength, irradiation area, and irradiation time.

図6は本発明の実施の形態2による半導体装置のジャンクション温度特定装置6の構成を示すブロック図である。図6を参照して、半導体装置のジャンクション温度特定装置6は、被測定半導体装置2の周囲温度を制御する周囲温度制御部3と、被測定半導体装置2の任意領域を局所的に加熱するためのパルスレーザ光701を制御するレーザ制御部7と、被測定半導体装置2の故障判定を行うための電圧を印加する電源装置8と、その印加電圧および印加電流をモニターする計測部5を備える。   FIG. 6 is a block diagram showing a configuration of the junction temperature specifying device 6 of the semiconductor device according to the second embodiment of the present invention. Referring to FIG. 6, the junction temperature specifying device 6 of the semiconductor device locally heats the ambient temperature control unit 3 that controls the ambient temperature of the semiconductor device 2 to be measured and an arbitrary region of the semiconductor device 2 to be measured. A laser control unit 7 for controlling the pulse laser beam 701, a power supply device 8 for applying a voltage for determining a failure of the semiconductor device 2 to be measured, and a measuring unit 5 for monitoring the applied voltage and applied current.

周囲温度制御部3により被測定半導体装置2の周囲温度が任意に設定可能であり、例えば25℃で定常状態(被測定半導体装置2のPN接合部も含む)になるように保つ。本実施の形態において、レーザ制御部7から照射されるパルスレーザ光701の波長、および照射面積、照射時間を変えることで、被測定半導体装置2の温度上昇領域を任意に変える手法を用いる。パルスレーザ光701の波長、および照射面積、照射時間は任意に設定可能である。   The ambient temperature of the semiconductor device 2 to be measured can be arbitrarily set by the ambient temperature control unit 3, and is kept at a steady state (including the PN junction portion of the semiconductor device 2 to be measured) at 25 ° C., for example. In the present embodiment, a method of arbitrarily changing the temperature rise region of the semiconductor device 2 to be measured by changing the wavelength, irradiation area, and irradiation time of the pulsed laser light 701 emitted from the laser control unit 7 is used. The wavelength, irradiation area, and irradiation time of the pulse laser beam 701 can be arbitrarily set.

図7は、レーザ制御部7から被測定半導体装置2に照射されるパルスレーザ光701の波形および電源装置8から端子201に供給される電気的状態の一例である。パルスレーザ光701照射の局所加熱による被測定半導体装置2の故障判定を実施するために、パルスレーザ光701がOFF状態の間に、電源装置8から被測定半導体装置2の端子201〜202に、被測定半導体装置2のジャンクション温度を上昇させない電圧および電流(例えば、ダイオードの閾値電圧未満)を印加し、その電圧および電流変化を計測部5でモニターする。モニターした電圧および電流量が故障判定電圧および電流に到達した場合、被測定半導体装置2を故障と判定し、当該被測定半導体装置の測定を終了する。被測定半導体装置2の電気的故障はオープン故障とショート(微小電流を含む)故障の2通りであるため、2通りの故障判定電圧および電流を設定する必要があり、被測定半導体装置2の電気特性により任意で設定可能である。   FIG. 7 shows an example of the waveform of the pulse laser beam 701 irradiated from the laser control unit 7 to the semiconductor device 2 to be measured and the electrical state supplied from the power supply device 8 to the terminal 201. In order to perform a failure determination of the semiconductor device 2 to be measured by local heating by irradiation with the pulse laser beam 701, the power supply device 8 supplies the terminals 201 to 202 of the semiconductor device 2 to be measured while the pulse laser beam 701 is OFF. A voltage and current that do not increase the junction temperature of the semiconductor device 2 to be measured (for example, less than the threshold voltage of the diode) are applied, and changes in the voltage and current are monitored by the measuring unit 5. When the monitored voltage and current amount reach the failure determination voltage and current, the semiconductor device 2 to be measured is determined to be faulty, and the measurement of the semiconductor device to be measured is terminated. Since there are two types of electrical failure of the semiconductor device 2 to be measured, an open failure and a short failure (including a small current), it is necessary to set two types of failure determination voltages and currents. It can be set arbitrarily depending on the characteristics.

任意のサイクル数内で故障判定とならなかった場合、パルスレーザ光701のレーザ光強度を増加することで被測定半導体装置2への熱負荷を増加させて、再び上述の測定を実施する。レーザ光強度の増加幅は任意に設定可能とする。レーザ光強度の増加を、被測定半導体装置2が故障判定となるまで実施し、故障判定時のレーザ光強度(以下故障レーザ光強度と呼ぶ)を記録する。   When failure determination is not made within an arbitrary number of cycles, the laser beam intensity of the pulsed laser beam 701 is increased to increase the thermal load on the semiconductor device 2 to be measured, and the above measurement is performed again. The increase width of the laser light intensity can be set arbitrarily. The laser light intensity is increased until the semiconductor device 2 to be measured becomes a failure determination, and the laser light intensity at the time of the failure determination (hereinafter referred to as failure laser light intensity) is recorded.

以上の故障電流測定を異なる周囲温度条件下、例えば50℃、75℃、100℃において実施する。周囲温度が上昇すると、パルスレーザ照射による温度上昇領域の到達温度も上昇するため、図8に示すような周囲温度と故障レーザ光強度の関係が得られる。周囲温度をY軸、故障レーザ光強度をX軸とすると、故障レーザ光強度が0である時の周囲温度すなわちY軸の切片を外挿近似により求めることで、任意領域における故障ジャンクション温度を推定することができる。   The above fault current measurement is performed under different ambient temperature conditions, for example, 50 ° C., 75 ° C., and 100 ° C. When the ambient temperature rises, the temperature reached in the temperature rise region due to the pulse laser irradiation also rises, so that the relationship between the ambient temperature and the failure laser light intensity as shown in FIG. 8 is obtained. If the ambient temperature is the Y axis and the failure laser light intensity is the X axis, the failure junction temperature in an arbitrary region is estimated by obtaining the ambient temperature when the failure laser light intensity is 0, that is, the intercept of the Y axis by extrapolation approximation. can do.

また、図8に示すように、被測定半導体装置2を電流が流れている動作状態で故障条件(故障時の周囲温度および瞬間レーザ光強度)を1点測定し、周囲温度と故障レーザ光強度の関係のグラフにプロットすると、同じ瞬間レーザ光強度において、動作状態の方が入力電力による発熱分だけ周囲温度が減少する。その減少量が動作時の発熱によるジャンクション温度増加量に相当する。動作時の周囲温度に動作時の発熱によるジャンクション温度増加量を足し合わせることで、動作時のジャンクション温度を推定することが出来る。   Further, as shown in FIG. 8, one failure condition (ambient temperature and instantaneous laser light intensity at the time of failure) is measured at one point in an operating state in which a current flows through the semiconductor device 2 to be measured, and the ambient temperature and the failure laser light intensity are measured. When the graph of the relationship is plotted, at the same instantaneous laser beam intensity, the ambient temperature decreases in the operating state by the amount of heat generated by the input power. The amount of decrease corresponds to the amount of increase in junction temperature due to heat generation during operation. The junction temperature during operation can be estimated by adding the increase in junction temperature due to heat generation during operation to the ambient temperature during operation.

なお、本実施の形態では実施の形態1と異なる部分を説明した。それ以外の部分については実施の形態1と同様であるとする。   In the present embodiment, the parts different from the first embodiment have been described. The other parts are the same as those in the first embodiment.

実施の形態3
実施の形態2では、被測定半導体装置2を局所加熱する方法として、局所加熱する方法をパルスレーザ光照射とする手法を用いて、電圧と電流で故障判定していたが、実施の形態3では、局所加熱する方法をレーザ光の走査とすることで、動作時のジャンクション温度および故障ジャンクション温度を求めたい一定範囲に対して局所加熱することが可能となる。また、レーザ光走査と同時にレーザ反射光強度を検出し、その強度変化から故障判定を実施することで、その瞬間照射されていた箇所での動作時のジャンクション温度および故障ジャンクション温度を求めることができ、取得した各レーザ照射箇所の動作時のジャンクション温度および故障ジャンクション温度を画像化することも可能である。さらに、その波長および照射範囲、走査速度を変えることで温度上昇領域範囲を任意に変えることが可能である。
Embodiment 3
In the second embodiment, as a method for locally heating the semiconductor device 2 to be measured, a failure is determined by voltage and current using a method in which the local heating method is pulsed laser light irradiation. However, in the third embodiment, By using laser beam scanning as the local heating method, it is possible to perform local heating over a certain range in which the junction temperature and failure junction temperature during operation are desired. In addition, by detecting the laser reflected light intensity at the same time as the laser beam scanning and determining the failure from the intensity change, it is possible to determine the junction temperature and the failure junction temperature at the time of operation at the location that was irradiated at that moment. It is also possible to image the acquired junction temperature and failure junction temperature of each laser irradiation location. Furthermore, the temperature rise region range can be arbitrarily changed by changing the wavelength, irradiation range, and scanning speed.

図9は本発明の実施の形態3による半導体装置のジャンクション温度特定装置9の構成を示すブロック図である。図9を参照して、半導体装置のジャンクション温度特定装置9は、被測定半導体装置2の周囲温度を制御する周囲温度制御部3と、被測定半導体装置2の任意領域を局所的に加熱するためのレーザ走査光1201を走査するレーザ走査部12と、被測定半導体装置2の故障判定を行うためのレーザ反射光検出装置13と、取得した動作時のジャンクション温度および故障ジャンクション温度をマッピングする画像化処理装置14を備える。   FIG. 9 is a block diagram showing a configuration of the junction temperature specifying device 9 for a semiconductor device according to the third embodiment of the present invention. Referring to FIG. 9, the junction temperature specifying device 9 of the semiconductor device locally heats the ambient temperature control unit 3 that controls the ambient temperature of the semiconductor device 2 to be measured and an arbitrary region of the semiconductor device 2 to be measured. A laser scanning section 12 that scans the laser scanning light 1201, a laser reflected light detection device 13 for determining a failure of the semiconductor device 2 to be measured, and an imaging that maps the acquired junction temperature and failure junction temperature during operation A processing device 14 is provided.

周囲温度制御部3により被測定半導体装置2の周囲温度が任意に設定可能であり、例えば25℃で定常状態(被測定半導体装置2のPN接合部も含む)になるように保つ。本実施の形態において、レーザ走査部12によって走査されるレーザ走査光1201の波長、および照射範囲、走査速度を変えることで、被測定半導体装置2の温度上昇領域を任意に変える手法を用いる。レーザ走査光1201の波長、および照射面積、照射時間は任意に設定可能である。   The ambient temperature of the semiconductor device 2 to be measured can be arbitrarily set by the ambient temperature control unit 3, and is kept at a steady state (including the PN junction portion of the semiconductor device 2 to be measured) at 25 ° C., for example. In the present embodiment, a method of arbitrarily changing the temperature rise region of the semiconductor device 2 to be measured by changing the wavelength, irradiation range, and scanning speed of the laser scanning light 1201 scanned by the laser scanning unit 12 is used. The wavelength, irradiation area, and irradiation time of the laser scanning light 1201 can be arbitrarily set.

レーザ走査光1201照射の局所加熱による被測定半導体装置2の故障判定は、レーザ反射光検出装置13によってレーザ反射光の強度変化を検出して故障判定部15が行う。半導体装置がレーザ光照射の局所過熱によって故障した場合、レーザ照射箇所の光吸収特性が変化するため、レーザ反射光の強度変化を検出することで半導体装置の故障判定が可能である。   The failure determination of the semiconductor device 2 to be measured due to local heating by irradiation with the laser scanning light 1201 is performed by the failure determination unit 15 by detecting the intensity change of the laser reflected light by the laser reflected light detection device 13. When a semiconductor device fails due to local overheating of laser light irradiation, the light absorption characteristics at the laser irradiation location change, so that it is possible to determine the failure of the semiconductor device by detecting a change in the intensity of laser reflected light.

図10は、レーザ走査部12から被測定半導体装置2に照射されるレーザ走査光1201の走査の一例である。レーザ照射箇所からの反射光強度を照射ポイントごとに検出しながら、被測定半導体装置2を走査する。動作時のジャンクション温度および故障ジャンクション温度を求めたい一定範囲の走査を終了し、全照射ポイントで故障判定とならなかった場合、レーザ光1201のレーザ光強度を増加することで、被測定半導体装置2への熱負荷を増加させて、再び上述の測定を実施する。レーザ光強度の増加幅は任意に設定可能とする。レーザ光強度の増加を、被測定半導体装置2のレーザ光照射ポイント全点が故障判定となるまで実施し、各ポイントでの故障判定時のレーザ光強度(以下故障レーザ光強度と呼ぶ)を記録する。   FIG. 10 shows an example of scanning with the laser scanning light 1201 irradiated from the laser scanning unit 12 to the semiconductor device 2 to be measured. The semiconductor device 2 to be measured is scanned while detecting the reflected light intensity from the laser irradiation spot for each irradiation point. When scanning within a certain range in which the junction temperature during operation and the failure junction temperature are to be obtained is completed and failure is not determined at all irradiation points, the laser light intensity of the laser light 1201 is increased, thereby increasing the semiconductor device 2 to be measured. The above-mentioned measurement is performed again by increasing the heat load on the. The increase width of the laser light intensity can be set arbitrarily. The laser light intensity is increased until all the laser light irradiation points of the semiconductor device 2 to be measured are determined to be faulty, and the laser light intensity at the time of the fault judgment at each point (hereinafter referred to as fault laser light intensity) is recorded. To do.

以上の故障判定を異なる周囲温度条件下、例えば50℃、75℃、100℃において実施する。周囲温度が上昇すると、レーザ照射による温度上昇領域の到達温度も上昇するため、図11に示すような周囲温度と故障時の瞬間レーザ走査光強度の関係が得られる。周囲温度をY軸、故障時の瞬間レーザ走査光強度をX軸とすると、故障時の瞬間レーザ走査光強度が0である時の周囲温度すなわちY軸の切片を外挿近似により求めることで、任意領域における故障ジャンクション温度を各レーザ光照射箇所で算出することができ、故障ジャンクション温度のマッピングが可能になる。   The above failure determination is performed under different ambient temperature conditions, for example, 50 ° C., 75 ° C., and 100 ° C. When the ambient temperature rises, the temperature reached in the temperature rise region due to laser irradiation also rises, so that the relationship between the ambient temperature and the instantaneous laser scanning light intensity at the time of failure as shown in FIG. 11 is obtained. If the ambient temperature is the Y axis and the instantaneous laser scanning light intensity at the time of failure is the X axis, the ambient temperature when the instantaneous laser scanning light intensity at the time of failure is 0, that is, the intercept of the Y axis is obtained by extrapolation approximation, The failure junction temperature in an arbitrary region can be calculated at each laser light irradiation location, and the failure junction temperature can be mapped.

また、図11に示すように、被測定半導体装置2を動作状態で、故障条件(故障時の周囲温度および瞬間レーザ光強度)を測定し、周囲温度と故障レーザ光強度の関係のグラフにプロットすると、同じ周囲温度において、動作状態の方が入力電力による発熱分だけ故障レーザ光強度が減少する。その減少量が動作時の発熱によるジャンクション温度増加量に相当する。動作時の周囲温度に動作時の発熱によるジャンクション温度増加量を足し合わせることで、動作時のジャンクション温度を算出することが出来る。さらに、各レーザ光照射ポイントで動作時のジャンクション温度を算出できるため、動作時のジャンクション温度のマッピングも可能である。   In addition, as shown in FIG. 11, with the semiconductor device 2 to be measured operating, failure conditions (ambient temperature at the time of failure and instantaneous laser light intensity) are measured and plotted on a graph of the relationship between the ambient temperature and the failure laser light intensity. Then, at the same ambient temperature, the failure laser light intensity decreases in the operating state by the amount of heat generated by the input power. The amount of decrease corresponds to the amount of increase in junction temperature due to heat generation during operation. The junction temperature during operation can be calculated by adding the increase in junction temperature due to heat generation during operation to the ambient temperature during operation. Furthermore, since the junction temperature during operation can be calculated at each laser beam irradiation point, mapping of the junction temperature during operation is also possible.

なお、本実施の形態では実施の形態1又は2と異なる部分を説明した。それ以外の部分については実施の形態1又は2と同様であるとする。   In the present embodiment, the parts different from the first or second embodiment have been described. The other parts are the same as those in the first or second embodiment.

1、6、9 半導体装置のジャンクション温度特定装置、2 被測定半導体装置、201 端子1、202 端子2、3 周囲温度制御部、4 局所加熱制御部、5 計測部、7 レーザ制御部、8 電源装置、12 レーザ走査部、15 故障判定部、1201 レーザ走査光、13 レーザ反射光検出装置、14 画像化処理装置   1, 6, 9 Junction temperature specifying device of semiconductor device, 2 semiconductor device to be measured, 201 terminal 1, 202 terminal 2, 3 ambient temperature control unit, 4 local heating control unit, 5 measurement unit, 7 laser control unit, 8 power supply Apparatus, 12 laser scanning section, 15 failure determination section, 1201 laser scanning light, 13 laser reflected light detection apparatus, 14 imaging processing apparatus

Claims (7)

ジャンクションを有する半導体装置の周囲温度を制御する周囲温度制御部と、
前記周囲温度において、前記半導体装置を局所加熱する為に熱量を付与する局所加熱制御部と、
前記半導体装置の前記ジャンクションの特性を計測する計測部と、
複数の前記周囲温度での前記ジャンクションの特性から、前記半導体装置の故障を判定する故障判定部と、
前記半導体装置が故障と判定された場合の前記熱量と前記周囲温度との相関関係から、前記熱量が0となる前記周囲温度を故障ジャンクション温度として特定する故障ジャンクション温度特定部と
を備えるジャンクション温度特定装置。
An ambient temperature controller that controls the ambient temperature of the semiconductor device having the junction;
At the ambient temperature, a local heating control unit that applies heat to locally heat the semiconductor device; and
A measurement unit for measuring the characteristics of the junction of the semiconductor device;
From a plurality of characteristics of the junction at the ambient temperature, a failure determination unit that determines a failure of the semiconductor device,
A junction temperature specifying unit including a failure junction temperature specifying unit for specifying the ambient temperature at which the amount of heat becomes 0 as a failure junction temperature based on a correlation between the amount of heat and the ambient temperature when the semiconductor device is determined to be in failure; apparatus.
前記熱量が電流によって与えられる
ことを特徴とする請求項1に記載のジャンクション温度特定装置。
The junction temperature specifying device according to claim 1, wherein the amount of heat is given by an electric current.
前記熱量がレーザ光によって与えられる
ことを特徴とする請求項1に記載のジャンクション温度特定装置。
The junction temperature specifying device according to claim 1, wherein the amount of heat is given by laser light.
前記ジャンクションの特性が電流電圧特性である
ことを特徴とする請求項1から請求項3のいずれか1項に記載のジャンクション温度特定装置。
The junction temperature specifying device according to any one of claims 1 to 3, wherein the junction characteristic is a current-voltage characteristic.
前記ジャンクションの特性がレーザ光の反射強度である
ことを特徴とする請求項3に記載のジャンクション温度特定装置。
The junction temperature specifying device according to claim 3, wherein the characteristic of the junction is a reflection intensity of laser light.
前記故障判定部が、前記電流電圧特性において所定電圧での電流が閾値を超える場合に故障と判定する
ことを特徴とする請求項4に記載のジャンクション温度特定装置。
The junction temperature specifying device according to claim 4, wherein the failure determination unit determines that a failure occurs when a current at a predetermined voltage exceeds a threshold in the current-voltage characteristics.
ジャンクションを有する半導体装置の周囲温度を制御するステップと、
前記周囲温度において、前記半導体装置を加熱する為に熱量を付与するステップと、
前記半導体装置のジャンクションの特性を計測するステップと、
複数の前記周囲温度での前記ジャンクションの特性から、前記半導体装置の故障を判定するステップと、
前記半導体装置が故障と判定された場合の前記熱量と各前記周囲温度との相関関係から、前記熱量が0となる前記周囲温度を故障ジャンクション温度として特定するステップと
を備えるジャンクション温度特定方法。
Controlling the ambient temperature of the semiconductor device having a junction;
Applying an amount of heat to heat the semiconductor device at the ambient temperature;
Measuring the junction characteristics of the semiconductor device;
Determining a failure of the semiconductor device from a plurality of characteristics of the junction at the ambient temperature;
A step of identifying the ambient temperature at which the amount of heat is 0 as a failure junction temperature from the correlation between the amount of heat and each ambient temperature when it is determined that the semiconductor device has failed.
JP2015256937A 2015-12-28 2015-12-28 Junction temperature identification device and junction temperature identification method Expired - Fee Related JP6531646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015256937A JP6531646B2 (en) 2015-12-28 2015-12-28 Junction temperature identification device and junction temperature identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015256937A JP6531646B2 (en) 2015-12-28 2015-12-28 Junction temperature identification device and junction temperature identification method

Publications (2)

Publication Number Publication Date
JP2017120838A true JP2017120838A (en) 2017-07-06
JP6531646B2 JP6531646B2 (en) 2019-06-19

Family

ID=59272177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015256937A Expired - Fee Related JP6531646B2 (en) 2015-12-28 2015-12-28 Junction temperature identification device and junction temperature identification method

Country Status (1)

Country Link
JP (1) JP6531646B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53153870U (en) * 1977-05-10 1978-12-04
JPH0529417A (en) * 1991-07-19 1993-02-05 Sumitomo Electric Ind Ltd Method and apparatus for burn-in
JPH0536791A (en) * 1991-07-31 1993-02-12 Sumitomo Electric Ind Ltd Method and apparatus for burn-in
US5756369A (en) * 1996-07-11 1998-05-26 Lsi Logic Corporation Rapid thermal processing using a narrowband infrared source and feedback
JP2004245756A (en) * 2003-02-17 2004-09-02 Alps Electric Co Ltd Method for estimating junction temperature

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53153870U (en) * 1977-05-10 1978-12-04
JPH0529417A (en) * 1991-07-19 1993-02-05 Sumitomo Electric Ind Ltd Method and apparatus for burn-in
JPH0536791A (en) * 1991-07-31 1993-02-12 Sumitomo Electric Ind Ltd Method and apparatus for burn-in
US5756369A (en) * 1996-07-11 1998-05-26 Lsi Logic Corporation Rapid thermal processing using a narrowband infrared source and feedback
JP2004245756A (en) * 2003-02-17 2004-09-02 Alps Electric Co Ltd Method for estimating junction temperature

Also Published As

Publication number Publication date
JP6531646B2 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
US8380451B2 (en) System and method for monitoring the state of health of a power electronic system
CN111781480B (en) IGBT junction temperature monitoring method, device and system
CN109342914B (en) IGBT junction temperature monitoring method and device and computer equipment
US7839158B2 (en) Method of detecting abnormality in burn-in apparatus
JP4153513B2 (en) Semiconductor device temperature measuring method and semiconductor device temperature measuring device
CN103245694B (en) Method for measuring thermal contact resistance between semiconductor device and contact material
RU2300115C1 (en) Mode of definition of thermal resistance transition-body of power of semi-conductive devices fulfilled in a body
JP6531646B2 (en) Junction temperature identification device and junction temperature identification method
US20160202129A1 (en) Apparatus and method for measuring temperature of led
CN100385639C (en) System and method for heating semiconductor in standard test environment
Zhang et al. Comparison of junction temperature measurement using the TSEP method and optical fiber method in IGBT power modules without silicone gel removal
JP4373206B2 (en) Apparatus and method for measuring the operating temperature of an electrical component
Choi et al. Junction temperature estimation for an advanced active power cycling test
KR101480439B1 (en) Method for measuring of junction temperature of semiconductor device
JP7181805B2 (en) Power supply circuit for transient thermal resistance measurement of semiconductor devices
KR101473986B1 (en) Power device's test apparatus and test method for it
US8917103B2 (en) Device and method for testing semiconductor device
CN113125927B (en) Test circuit and method for acquiring junction temperature thermal resistance model of power module
Hillkirk et al. Space and time resolved surface temperature distributions in Si power diodes operating under self-heating conditions
Tanuja et al. A review of existing methods for study and analysis of thermal design of LED lighting products
KR20150130782A (en) Apparatus for measuring heating value and method of measuring heating value
CN116500400B (en) Online in-situ characterization system and method for failure state of solder layer of silicon carbide power device
KR20220114330A (en) Junction temperature setting semiconductor device reliability test apparatus and method using dynamic thermal characteristic evaluation
KR100770388B1 (en) Heater power control circuit and burn-in apparatus using the same
CN115902564A (en) Device and method for testing thermal resistance of photoelectric detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190506

R151 Written notification of patent or utility model registration

Ref document number: 6531646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees