JP2017120691A - X-ray tube apparatus - Google Patents

X-ray tube apparatus Download PDF

Info

Publication number
JP2017120691A
JP2017120691A JP2015256009A JP2015256009A JP2017120691A JP 2017120691 A JP2017120691 A JP 2017120691A JP 2015256009 A JP2015256009 A JP 2015256009A JP 2015256009 A JP2015256009 A JP 2015256009A JP 2017120691 A JP2017120691 A JP 2017120691A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
ray tube
coolant
tube container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015256009A
Other languages
Japanese (ja)
Inventor
雅敬 植木
Masataka Ueki
雅敬 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electron Tubes and Devices Co Ltd
Original Assignee
Toshiba Electron Tubes and Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Electron Tubes and Devices Co Ltd filed Critical Toshiba Electron Tubes and Devices Co Ltd
Priority to JP2015256009A priority Critical patent/JP2017120691A/en
Publication of JP2017120691A publication Critical patent/JP2017120691A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • X-Ray Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an X-ray tube apparatus capable of efficiently cooling an X-ray tube.SOLUTION: An X-ray tube apparatus 1 comprises an X-ray tube 3 having an anode unit against which an electron beam discharged from a cathode impinges to generate X-rays, a tube container 5 housing the X-ray tube 3, a refrigerant supply path 29 for supplying refrigerant into the anode unit and the tube container 5 of the X-ray tube 3, a high-temperature refrigerant discharge path 25 for discharging, to the outside of the tube container 5, high-temperature refrigerant after cooling the anode portion, a low-temperature refrigerant discharge path 33 for discharging, to the outside of the tube container 5, refrigerant that has cooled the inside of the tube container 5 and is lower in temperature than the high-temperature refrigerant, and a main heat exchanger 27 that connects only the high temperature refrigerant discharge passage 25 to cool the high temperature refrigerant of the high temperature discharge passage.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、X線管装置に関する。   Embodiments described herein relate generally to an X-ray tube apparatus.

特許文献1には、X線管を収納した管容器内に冷媒を循環させる冷媒循環回路に熱交換器を設け、熱交換器を冷凍サイクルで冷却する技術が開示されている。   Patent Document 1 discloses a technique in which a heat exchanger is provided in a refrigerant circulation circuit that circulates a refrigerant in a tube container containing an X-ray tube, and the heat exchanger is cooled by a refrigeration cycle.

特開2001−185396号公報JP 2001-185396 A

しかし、冷媒循環回路は管容器内を循環してX線管を冷却するものであるか、部位により温度差があるX線管の効率的な冷却ができないという不都合があった。   However, the refrigerant circulation circuit circulates in the tube container to cool the X-ray tube, or there is a disadvantage that the X-ray tube having a temperature difference depending on the site cannot be efficiently cooled.

本実施形態の目的は、X線管の効率的な冷却を図ることができるX線管装置を提供することにある。   An object of the present embodiment is to provide an X-ray tube apparatus capable of efficiently cooling the X-ray tube.

一実施形態に係るX線管装置は、陰極から放出された電子ビームが衝突してX線を発生する陽極部を有するX線管と、前記X線管を収納した管容器と、前記X線管の陽極部及び前記管容器内へ冷媒を供給する冷媒供給路と、前記陽極部を冷却した後の高温冷媒を管容器外に排出する高温冷媒排出路と、前記管容器内を冷却した冷媒であって、前記高温冷媒よりも低温の冷媒を管容器外に排出する低温冷媒排出路と、前記高温冷媒排出路のみを接続して前記高温冷媒のみを冷却する主熱交換器と、を備えるX線管装置である。   An X-ray tube apparatus according to an embodiment includes an X-ray tube having an anode portion that generates X-rays when an electron beam emitted from a cathode collides, a tube container housing the X-ray tube, and the X-rays A refrigerant supply path for supplying refrigerant into the anode part of the tube and the tube container, a high-temperature refrigerant discharge path for discharging the high-temperature refrigerant after cooling the anode part to the outside of the tube container, and a refrigerant for cooling the inside of the tube container A low-temperature refrigerant discharge path for discharging a refrigerant having a temperature lower than that of the high-temperature refrigerant to the outside of the tube container, and a main heat exchanger for cooling only the high-temperature refrigerant by connecting only the high-temperature refrigerant discharge path. X-ray tube device.

図1は、一実施形態に係るX線管装置の概略的構成を示す回路図である。FIG. 1 is a circuit diagram showing a schematic configuration of an X-ray tube apparatus according to an embodiment.

以下に、本発明の一実施形態を、図面を参照しながら説明する。なお、開示はあくまで一例に過ぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は、説明をより明確にするため、実際の態様に比べて、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同一又は類似した機能を発揮する構成要素には同一の参照符号を付し、重複する詳細な説明を適宜省略することがある。   An embodiment of the present invention will be described below with reference to the drawings. It should be noted that the disclosure is merely an example, and those skilled in the art can easily conceive of appropriate changes while maintaining the gist of the invention are naturally included in the scope of the present invention. In addition, for the sake of clarity, the drawings may be schematically represented with respect to the width, thickness, shape, etc. of each part as compared to actual aspects, but are merely examples, and The interpretation is not limited. In addition, in the present specification and each drawing, components that perform the same or similar functions as those described above with reference to the previous drawings are denoted by the same reference numerals, and repeated detailed description may be omitted as appropriate. .

図1は、本実施形態に係るX線管装置1を概略的に示す回路図である。図1に示すように、X線管装置1は、X線管3と、X線管3を収納する管容器5と、冷却部7とを備えている。   FIG. 1 is a circuit diagram schematically showing an X-ray tube apparatus 1 according to the present embodiment. As shown in FIG. 1, the X-ray tube apparatus 1 includes an X-ray tube 3, a tube container 5 that houses the X-ray tube 3, and a cooling unit 7.

X線管3は、伝動冷却方式の回転陽極型X線管であり、陰極から放出された電子ビームが衝突してX線を発生する陽極部(図示せず)に固定された陽極固定軸9を有し、陽極固定軸9の外周には、絶縁筒11を介して陽極部を回転駆動するための回転磁界を発生するステータコイル13及びステータインシュレータ14が設けてある。   The X-ray tube 3 is a transmission cooling type rotary anode X-ray tube, and is fixed to an anode fixing shaft 9 fixed to an anode portion (not shown) that generates X-rays by collision of an electron beam emitted from a cathode. A stator coil 13 and a stator insulator 14 are provided on the outer periphery of the anode fixed shaft 9 to generate a rotating magnetic field for rotating the anode portion through an insulating cylinder 11.

陽極固定軸9には、液体金属軸受面を介して陽極部の熱が伝導されており、内部に冷媒を導入して、陽極固定軸9を冷却する冷却通路15が形成されている。冷却通路15には、冷媒導入路(冷媒導入パイプ)15aが挿入してあり、冷媒導入路15aから導入された冷媒が冷却通路15を通って陽極固定軸9を冷却する。尚、冷媒は絶縁油である。   The anode fixing shaft 9 is conducted with heat of the anode portion through the liquid metal bearing surface, and a cooling passage 15 for introducing a refrigerant into the anode fixing shaft 9 to cool the anode fixing shaft 9 is formed. A refrigerant introduction path (refrigerant introduction pipe) 15 a is inserted into the cooling passage 15, and the refrigerant introduced from the refrigerant introduction path 15 a cools the anode fixing shaft 9 through the cooling passage 15. The refrigerant is insulating oil.

また、陽極固定軸9の冷媒導入側には、主としてポリカーボン等の樹脂で成形された冷媒分流カバー17が取り付けてある。この冷媒分流カバー17内には冷媒導入路15aが挿入してあると共に冷却通路15に連通する冷媒導出路19が形成してある。また、冷媒分流カバー17には、冷媒導入路15aから冷媒の一部を管容器5内に導入する分流路21が形成されている。   Further, on the refrigerant introduction side of the anode fixed shaft 9, a refrigerant distribution cover 17 mainly formed of a resin such as polycarbonate is attached. In the refrigerant distribution cover 17, a refrigerant introduction path 15 a is inserted and a refrigerant outlet path 19 communicating with the cooling path 15 is formed. Further, the refrigerant distribution cover 17 is formed with a distribution path 21 for introducing a part of the refrigerant into the tube container 5 from the refrigerant introduction path 15a.

管容器5内には内部にX線管3と共に冷媒(絶縁油)が充填されている。   The tube container 5 is filled with refrigerant (insulating oil) together with the X-ray tube 3.

X線管3の陰極側高電圧配線20は陰極側高電圧ソケット23に接続されており、陽極側高電圧配線22は陽極側高電圧ソケット24に接続されている。   The cathode side high voltage wiring 20 of the X-ray tube 3 is connected to a cathode side high voltage socket 23, and the anode side high voltage wiring 22 is connected to an anode side high voltage socket 24.

また、管容器5は、気密構造であり、管容器5内に充填されている冷媒(絶縁油)の温度上昇による体積膨張で、管容器5内の圧力が上昇しようとするのを吸収するため、ニトリルブタジエンゴム等を主成分とする空盆28が設けられている。この空盆28は、大気導通穴26を通じて気密シールを保持しながら、管容器5の内部が大気圧に等しくなるようにしている。   In addition, the tube container 5 has an airtight structure, and absorbs an increase in pressure in the tube container 5 due to volume expansion due to a temperature rise of the refrigerant (insulating oil) filled in the tube container 5. An air basin 28 mainly composed of nitrile butadiene rubber or the like is provided. The air basin 28 keeps an airtight seal through the air conduction hole 26, and makes the inside of the tube container 5 equal to the atmospheric pressure.

次に、冷却部7について説明する。   Next, the cooling unit 7 will be described.

冷却部7は、陽極固定軸9の冷却通路15に冷媒導出路19を介して接続された高温冷媒排出路25と、主熱交換器27と、主熱交換器27の出口側で高温冷媒排出路25に接続された冷媒供給路29と、制御部30を備え、冷媒供給路29は冷媒導入路15aに接続されている。そして、高温冷媒排出路25と、冷媒供給路29と、冷媒導入路15a、冷却通路15で冷媒の循環回路を構成している。   The cooling unit 7 discharges the high temperature refrigerant at the outlet side of the high temperature refrigerant discharge path 25, the main heat exchanger 27, and the main heat exchanger 27 connected to the cooling path 15 of the anode fixed shaft 9 via the refrigerant outlet path 19. A refrigerant supply path 29 connected to the path 25 and a control unit 30 are provided, and the refrigerant supply path 29 is connected to the refrigerant introduction path 15a. The high-temperature refrigerant discharge path 25, the refrigerant supply path 29, the refrigerant introduction path 15a, and the cooling path 15 constitute a refrigerant circulation circuit.

高温冷媒排出路25は、管容器5の外に導出してあり、管容器5の外部に設けた主熱交換器27に接続されており、高温冷媒は主熱交換器27で熱交換されることで冷却される。   The high-temperature refrigerant discharge path 25 is led out of the tube container 5 and is connected to a main heat exchanger 27 provided outside the tube container 5, and the high-temperature refrigerant exchanges heat with the main heat exchanger 27. It is cooled by that.

主熱交換器27は、ブレージングプレート式熱交換器であり、熱交換媒体としては、冷却水又は冷却空気、ヒートポンプにより冷却された代替フロン、炭酸ガス等が使用されるが、この実施の形態では冷却水が用いられており、主熱交換器27には冷却水配管31が接続されている。冷却水又は冷却空気の温度は室温ものを使用することができる。また、主熱交換器27は外周面が断熱カバー34で覆われている。   The main heat exchanger 27 is a brazing plate type heat exchanger, and as the heat exchange medium, cooling water or cooling air, alternative chlorofluorocarbon cooled by a heat pump, carbon dioxide gas, or the like is used. In this embodiment, Cooling water is used, and a cooling water pipe 31 is connected to the main heat exchanger 27. The temperature of the cooling water or cooling air can be room temperature. The main heat exchanger 27 has an outer peripheral surface covered with a heat insulating cover 34.

一方、管容器5には、内部の冷媒を導出する低温冷媒排出路33が接続されている。この管容器5内の冷媒温度は、陽極固定軸9から熱を受ける高温冷媒排出路25を流れる冷媒よりも低い温度である。   On the other hand, the tube container 5 is connected with a low-temperature refrigerant discharge path 33 for leading the internal refrigerant. The refrigerant temperature in the tube container 5 is lower than the refrigerant flowing through the high-temperature refrigerant discharge path 25 that receives heat from the anode fixed shaft 9.

低温冷媒排出路33は、管容器5において、高温冷媒排出路25よりも空盆28側で、空盆28の近傍で管容器5に接続されている。   The low-temperature refrigerant discharge path 33 is connected to the tube container 5 in the tube container 5 on the air basin 28 side of the high-temperature refrigerant discharge channel 25 and in the vicinity of the air basin 28.

高温冷媒排出路25において、主熱交換器27の出口側には、低温冷媒排出路33に接続されて低温冷媒が合流する冷媒合流部35が設けてあり、冷媒合流部35は冷媒供給路29に接続されている。この冷媒供給路29には、主循環ポンプ37が設けてあり、主循環ポンプ37は、ブラシレスDCポンプであり、冷媒合流部35の下流側に吸い込み口を設けている。   In the high-temperature refrigerant discharge path 25, a refrigerant merging portion 35 connected to the low-temperature refrigerant discharge path 33 and where the low-temperature refrigerant merges is provided on the outlet side of the main heat exchanger 27, and the refrigerant merging section 35 is connected to the refrigerant supply path 29. It is connected to the. A main circulation pump 37 is provided in the refrigerant supply path 29, and the main circulation pump 37 is a brushless DC pump, and a suction port is provided on the downstream side of the refrigerant junction 35.

また、冷媒供給路29には、並列に設けた補助冷媒供給路39が接続してある。補助冷媒供給路39には、補助循環ポンプ41と、補助循環ポンプ41の下流側に補助熱交換器43が設けてある。補助熱交換器43は、ブレージングプレート式熱交換器であり、熱交換媒体を供給する冷却配管45が接続してあり、冷却配管45から供給する熱交換媒体により補助熱交換器43を冷却している。冷却配管45から供給する熱交換媒体は、主熱交換機27と同様に冷却水又は冷却空気である。   The refrigerant supply path 29 is connected to an auxiliary refrigerant supply path 39 provided in parallel. The auxiliary refrigerant supply passage 39 is provided with an auxiliary circulation pump 41 and an auxiliary heat exchanger 43 on the downstream side of the auxiliary circulation pump 41. The auxiliary heat exchanger 43 is a brazing plate heat exchanger, to which a cooling pipe 45 for supplying a heat exchange medium is connected, and the auxiliary heat exchanger 43 is cooled by a heat exchange medium supplied from the cooling pipe 45. Yes. The heat exchange medium supplied from the cooling pipe 45 is cooling water or cooling air like the main heat exchanger 27.

補助循環ポンプ41も冷媒合流部35側を吸い込み口にしている。また、補助循環ポンプ41の吐出側で、補助冷媒供給路39の出口側には、逆止弁44が設けてあり、冷媒供給路29から冷媒が補助冷媒供給路39へ逆流するのを防止している。   The auxiliary circulation pump 41 also has the refrigerant confluence portion 35 side as a suction port. In addition, a check valve 44 is provided on the discharge side of the auxiliary circulation pump 41 and on the outlet side of the auxiliary refrigerant supply passage 39 to prevent the refrigerant from flowing back from the refrigerant supply passage 29 to the auxiliary refrigerant supply passage 39. ing.

低温冷媒排出路33には冷媒合流部35の上流側に流量調整弁47が設けてあり、冷媒合流部35で合流する低温冷媒の量を調整できるようにしてある。   The low-temperature refrigerant discharge path 33 is provided with a flow rate adjusting valve 47 on the upstream side of the refrigerant merging section 35 so that the amount of the low-temperature refrigerant merged in the refrigerant merging section 35 can be adjusted.

尚、主循環ポンプ37及び補助循環ポンプ41は、各々電源49に接続されている。   The main circulation pump 37 and the auxiliary circulation pump 41 are each connected to a power source 49.

次に、制御部30について説明する。   Next, the control unit 30 will be described.

制御部30は、管容器5の温度検出部51と、ポンプ駆動制御部53とを備え、ポンプ駆動制御部53は、主循環ポンプ37の駆動を制御すると共に温度検出部51の検出信号に応じて補助循環ポンプ41の駆動を制御している。   The control unit 30 includes a temperature detection unit 51 of the tube container 5 and a pump drive control unit 53. The pump drive control unit 53 controls the drive of the main circulation pump 37 and responds to a detection signal of the temperature detection unit 51. Thus, the driving of the auxiliary circulation pump 41 is controlled.

温度検出部51は、サーモスタットであり、管容器5の温度が所定温度よりも高くなると入力され、ポンプ駆動制御部53は、主循環ポンプ37の駆動中に温度検出部51の入力信号を受けると補助循環ポンプ41を駆動し、管容器の温度が所定温度よりも低くなると切断信号を受け、補助循環ポンプ41の駆動を停止する。   The temperature detection unit 51 is a thermostat, and is input when the temperature of the tube container 5 becomes higher than a predetermined temperature. When the pump drive control unit 53 receives an input signal of the temperature detection unit 51 while the main circulation pump 37 is being driven. When the auxiliary circulation pump 41 is driven and the temperature of the tube container becomes lower than the predetermined temperature, a cutting signal is received and the driving of the auxiliary circulation pump 41 is stopped.

次に、一実施形態にかかるX線管装置1の作用及び効果について説明する。   Next, the operation and effect of the X-ray tube apparatus 1 according to the embodiment will be described.

一実施形態にかかるX線管装置1では、制御部30から駆動信号を受けて主循環ポンプ37が駆動する。これにより、冷媒供給路29から冷媒導入路15aを通じて冷媒の一部は陽極固定軸9の冷却通路15に供給され、冷媒の他部は分流路21を介して管容器5内に供給される。   In the X-ray tube apparatus 1 according to the embodiment, the main circulation pump 37 is driven in response to a drive signal from the control unit 30. Thereby, a part of the refrigerant is supplied from the refrigerant supply path 29 through the refrigerant introduction path 15 a to the cooling passage 15 of the anode fixed shaft 9, and the other part of the refrigerant is supplied into the tube container 5 through the branch path 21.

陽極部から熱が伝動してくる陽極固定軸9の冷却通路15では、熱伝達面は200℃近い高温となり、冷却後の冷媒温度は100℃近くまで上昇し、高温冷媒となる。高温冷媒は、管容器5内の冷媒と分離したまま、冷媒導出路19を介して高温冷媒排出路25を通じて主熱交換器27に流入され、冷却水と熱交換される。   In the cooling passage 15 of the anode fixing shaft 9 where heat is transmitted from the anode part, the heat transfer surface is a high temperature close to 200 ° C., and the refrigerant temperature after cooling rises to near 100 ° C. to become a high temperature refrigerant. The high-temperature refrigerant flows into the main heat exchanger 27 through the high-temperature refrigerant discharge path 25 through the refrigerant outlet path 19 while being separated from the refrigerant in the tube container 5, and is heat-exchanged with the cooling water.

主熱交換器27の冷却水が室温(25℃)とし、主熱交換器27で熱交換される高温冷媒の温度が100℃とした場合に、温度差ΔT=75℃となり、温度差が大きく取れるから、比較的小さな熱交換器で、且つ、管容器5内の冷媒の全体平均温度が低い場合でも、大きな冷却効率を得ることが可能となる。   When the cooling water of the main heat exchanger 27 is room temperature (25 ° C.) and the temperature of the high-temperature refrigerant exchanged with the main heat exchanger 27 is 100 ° C., the temperature difference ΔT = 75 ° C., and the temperature difference is large. Therefore, even when the overall average temperature of the refrigerant in the tube container 5 is low with a relatively small heat exchanger, a large cooling efficiency can be obtained.

また、主熱交換器27では、その流入側の配管は、管容器5全体の平均温度が低くても、X線撮影後(X線管が作動後)、高温媒体との熱交換により早期に80℃以上に上昇する可能性があるが、断熱カバー34で覆われているので、作業者等が高温部に接触するのを防止できる。   In addition, in the main heat exchanger 27, the inflow side of the piping can be brought forward early by heat exchange with a high-temperature medium after X-ray imaging (after the X-ray tube is activated) even if the average temperature of the entire tube container 5 is low. Although it may rise to 80 ° C. or more, since it is covered with the heat insulating cover 34, it is possible to prevent workers and the like from coming into contact with the high temperature part.

高温冷媒排出路25の冷媒は、主熱交換器27で熱交換されて温度を下げた後、管容器5から低温冷媒排出路33により導出された低温冷媒と冷媒合流部35で合流して、冷媒供給路29へ送られる。   The refrigerant in the high-temperature refrigerant discharge path 25 is heat-exchanged by the main heat exchanger 27 and lowered in temperature, and then merged with the low-temperature refrigerant led out from the tube container 5 by the low-temperature refrigerant discharge path 33 at the refrigerant junction 35, It is sent to the refrigerant supply path 29.

また、管容器5から導出される低温冷媒の冷媒温度が、例えば45℃以下の場合には、制御部30のポンプ駆動制御部53では、主循環ポンプ37のみを駆動して冷媒合流部35で合流した冷媒を冷媒供給路29へ圧送する。   Further, when the refrigerant temperature of the low-temperature refrigerant derived from the tube container 5 is 45 ° C. or less, for example, the pump drive control unit 53 of the control unit 30 drives only the main circulation pump 37 and the refrigerant junction unit 35 The merged refrigerant is pumped to the refrigerant supply path 29.

高温の冷媒を主循環ポンプ37や補助循環ポンプ41に吸い込ませるとポンプのサーマルプロテクションが動作したり、ポンプヘッドの軸受寿命を著しく縮めたりする可能性があるが、本実施の形態では、主循環ポンプ37や補助循環ポンプ41は、主熱交換器27の出口側に配置されており、低温冷媒排出路33を主熱交換器27の出口側で合流し、主循環ポンプ37や補助循環ポンプ41の吸い込み側に接続しているから、これらのポンプ起動時に、冷媒の粘性と慣性力が原因でポンプ背圧側が負圧となりキャビテーションが発生して、ポンプ起動が著しく困難になって流量が低下するのを防止できる。   If a high-temperature refrigerant is sucked into the main circulation pump 37 or the auxiliary circulation pump 41, there is a possibility that the thermal protection of the pump operates or the bearing life of the pump head is remarkably shortened. The pump 37 and the auxiliary circulation pump 41 are disposed on the outlet side of the main heat exchanger 27, and the low-temperature refrigerant discharge path 33 is merged on the outlet side of the main heat exchanger 27, so that the main circulation pump 37 and the auxiliary circulation pump 41 are combined. Because these are connected to the suction side of the pump, when these pumps are started, the pump back pressure side becomes negative pressure due to the viscosity and inertial force of the refrigerant, causing cavitation, making the pump startup extremely difficult and reducing the flow rate. Can be prevented.

更に、主循環ポンプ37や補助循環ポンプ41が吸い込む冷媒温度の調整は、流量調整弁47で合流する冷媒の割合を調整することによっても行っている。   Furthermore, the refrigerant temperature sucked by the main circulation pump 37 and the auxiliary circulation pump 41 is also adjusted by adjusting the ratio of the refrigerant to be merged by the flow rate adjustment valve 47.

低温冷媒排出路33は、空盆28の近傍にあるため、主循環ポンプ37及び補助循環ポンプ41の吸込み側は、常に大気圧に近い圧力に保たれ、負圧になる事が抑制される。   Since the low-temperature refrigerant discharge path 33 is in the vicinity of the air basin 28, the suction side of the main circulation pump 37 and the auxiliary circulation pump 41 is always maintained at a pressure close to atmospheric pressure, and a negative pressure is suppressed.

また、本実施の形態では、制御部30の温度検出部51が管容器5の温度が所定温度(例えば、45℃)以上になるとポンプ駆動制御部53では、補助循環ポンプ41を駆動して、補助熱交換器43でも冷却して、冷却能力を上げることができる。尚、管容器5内の平均温度が低いときには、冷媒の粘性が高く、主循環ポンプ37と補助循環ポンプ41との2台のポンプを駆動させると低温冷媒排出路33及び流量調整弁47の流速が早くなりすぎて、各ポンプ37、41の吸い込み口側圧力が下がりすぎる可能性があるから、この場合には主循環ポンプ37のみを駆動する。このように、管容器5の温度を管理する温度検出部51を設けることにより、管容器5内の冷媒温度に応じた制御を図ることができる。   In the present embodiment, when the temperature detection unit 51 of the control unit 30 causes the temperature of the tube container 5 to be equal to or higher than a predetermined temperature (for example, 45 ° C.), the pump drive control unit 53 drives the auxiliary circulation pump 41, The auxiliary heat exchanger 43 can also be cooled to increase the cooling capacity. When the average temperature in the tube container 5 is low, the viscosity of the refrigerant is high. When the two pumps of the main circulation pump 37 and the auxiliary circulation pump 41 are driven, the flow rates of the low-temperature refrigerant discharge passage 33 and the flow rate adjustment valve 47 are increased. In this case, only the main circulation pump 37 is driven because there is a possibility that the suction side pressure of the pumps 37 and 41 is too low. Thus, by providing the temperature detection unit 51 that manages the temperature of the tube container 5, control according to the refrigerant temperature in the tube container 5 can be achieved.

上述した一実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   The above-described embodiment has been presented as an example, and is not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

例えば、補助冷媒供給路39、補助循環ポンプ41及び補助熱交換器43を設けないで、制御部30では、温度検出部51が所定温度を検知すると主循環ポンプの出力を高める制御をして、冷媒の高温化によるキュビテーションの発生を防止すると共に省エネルギー化を図るものとしても良い。   For example, without providing the auxiliary refrigerant supply path 39, the auxiliary circulation pump 41, and the auxiliary heat exchanger 43, the control unit 30 performs control to increase the output of the main circulation pump when the temperature detection unit 51 detects a predetermined temperature, It is good also as what saves energy generation while preventing generation | occurrence | production of the cavitation by the high temperature of a refrigerant | coolant.

X線管3は、回転陽極型X線管に限らず、固定陽極型X線管にも適用することもできる。   The X-ray tube 3 can be applied not only to a rotary anode X-ray tube but also to a fixed anode X-ray tube.

陽極部を冷却した高温冷媒の排出する高温冷媒排出路25は、金属製の真空外囲器の陽極側周囲に巻き付けた真空外囲器高温部の高温冷媒排出部であっても良い。   The high-temperature refrigerant discharge path 25 for discharging the high-temperature refrigerant having cooled the anode part may be a high-temperature refrigerant discharge part of the high-temperature part of the vacuum envelope wound around the anode side of the metal vacuum envelope.

流量調整弁47は、高温冷媒排出路25に設けても良い。   The flow rate adjustment valve 47 may be provided in the high-temperature refrigerant discharge path 25.

冷媒合流部35で合流する冷媒の割合調整は、流量調整弁47に換えて、高温冷媒排出路25や低温冷媒排出路の配管の太さで調整しても良い。   The ratio adjustment of the refrigerant to be merged in the refrigerant merge section 35 may be adjusted by the thickness of the high temperature refrigerant discharge path 25 or the low temperature refrigerant discharge path instead of the flow rate adjustment valve 47.

1…X線管装置、3…X線管、5…管容器、25…高温冷媒排出路、27…主熱交換器、28…空盆、29…冷媒供給路、33…低温冷媒排出路、34…断熱カバー、35…冷媒合流部、37…主循環ポンプ、39…補助冷媒供給路、41…補助循環ポンプ、43…補助熱交換器、47…流量調整弁、51…温度検出部。   DESCRIPTION OF SYMBOLS 1 ... X-ray tube apparatus, 3 ... X-ray tube, 5 ... Tube container, 25 ... High temperature refrigerant | coolant discharge path, 27 ... Main heat exchanger, 28 ... Air basin, 29 ... Refrigerant supply path, 33 ... Low temperature refrigerant discharge path, 34 ... heat insulation cover, 35 ... refrigerant junction, 37 ... main circulation pump, 39 ... auxiliary refrigerant supply path, 41 ... auxiliary circulation pump, 43 ... auxiliary heat exchanger, 47 ... flow control valve, 51 ... temperature detection unit.

Claims (7)

陰極から放出された電子ビームが衝突してX線を発生する陽極部を有するX線管と、
前記X線管を収納した管容器と、
前記X線管の陽極部及び前記管容器内へ冷媒を供給する冷媒供給路と、
前記陽極部を冷却した後の高温冷媒を管容器外に排出する高温冷媒排出路と、
前記管容器内を冷却した冷媒であって、前記高温冷媒よりも低温の冷媒を管容器外に排出する低温冷媒排出路と、
前記高温冷媒排出路のみを接続して前記高温冷媒のみを冷却する主熱交換器と、を備えるX線管装置。
An X-ray tube having an anode part that generates X-rays by colliding with an electron beam emitted from the cathode;
A tube container containing the X-ray tube;
A refrigerant supply path for supplying refrigerant into the anode part of the X-ray tube and the tube container;
A high-temperature refrigerant discharge path for discharging the high-temperature refrigerant after cooling the anode part to the outside of the tube container;
A refrigerant that has cooled the inside of the tube container, and discharges a refrigerant having a temperature lower than that of the high-temperature refrigerant to the outside of the tube container; and
An X-ray tube device comprising: a main heat exchanger that connects only the high-temperature refrigerant discharge path and cools only the high-temperature refrigerant.
前記主熱交換器で冷却した冷媒と前記低温冷媒排出路の冷媒とを合流する冷媒合流部を備え、冷媒合流部で合流した後の混合冷媒を前記冷媒供給路に供給する請求項1に記載のX線管装置。   The refrigerant | coolant merge part which merges the refrigerant | coolant cooled with the said main heat exchanger, and the refrigerant | coolant of the said low-temperature refrigerant | coolant discharge path is provided, The mixed refrigerant after joining by the refrigerant merge part is supplied to the said refrigerant | coolant supply path. X-ray tube device. 前記冷媒供給路は、冷媒を送出する主循環ポンプを備え、前記主循環ポンプは、前記主熱交換器の出口側に吸い込み口を有する請求項1又は2に記載のX線管装置。   The X-ray tube apparatus according to claim 1, wherein the refrigerant supply path includes a main circulation pump that sends out the refrigerant, and the main circulation pump has a suction port on an outlet side of the main heat exchanger. 前記冷媒供給路は前記冷媒合流部の下流側に並列に設けた補助冷媒供給路と、前記補助冷媒供給路に設けた補助循環ポンプ及び補助熱交換器と、前記管容器の温度検出部と、補助循環ポンプの制御部とを備え、前記制御部は前記温度検出部が所定温度以上を検出した場合に、補助循環ポンプを駆動する請求項2に記載のX線管装置。   The refrigerant supply path includes an auxiliary refrigerant supply path provided in parallel on the downstream side of the refrigerant merging section, an auxiliary circulation pump and an auxiliary heat exchanger provided in the auxiliary refrigerant supply path, a temperature detection unit of the tube container, An X-ray tube apparatus according to claim 2, further comprising a control unit for an auxiliary circulation pump, wherein the control unit drives the auxiliary circulation pump when the temperature detection unit detects a predetermined temperature or more. 前記高温冷媒排出路又は前記低温冷媒排出路は、流量調整弁を備え、前記冷媒混合部で混合する前記高温冷媒と前記低温冷媒の混合量を調整可能としてある請求項2〜4のいずれか一項に記載のX線管装置。   The said high temperature refrigerant | coolant discharge path or the said low temperature refrigerant | coolant discharge path is equipped with the flow control valve, and can adjust the mixing amount of the said high temperature refrigerant | coolant mixed with the said refrigerant | coolant mixing part, and the said low temperature refrigerant | coolant. X-ray tube apparatus as described in the item. 前記管容器は、容器壁面に設けて容器内の圧力を調整する空盆を備え、前記低温冷媒排出路は前記高温排出路よりも前記空盆側で前記管容器に接続する接続口を有する請求項1〜5のいずれか一項に記載のX線管装置。   The tube container includes an air basin provided on a container wall surface to adjust a pressure in the container, and the low-temperature refrigerant discharge path has a connection port connected to the tube container on the air basin side of the high-temperature discharge path. Item 6. The X-ray tube device according to any one of Items 1 to 5. 前記主熱交換器は、外周面を覆う断熱カバーを備える請求項1〜6のいずれか一項に記載のX線管装置。   The said main heat exchanger is an X-ray tube apparatus as described in any one of Claims 1-6 provided with the heat insulation cover which covers an outer peripheral surface.
JP2015256009A 2015-12-28 2015-12-28 X-ray tube apparatus Pending JP2017120691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015256009A JP2017120691A (en) 2015-12-28 2015-12-28 X-ray tube apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015256009A JP2017120691A (en) 2015-12-28 2015-12-28 X-ray tube apparatus

Publications (1)

Publication Number Publication Date
JP2017120691A true JP2017120691A (en) 2017-07-06

Family

ID=59272400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015256009A Pending JP2017120691A (en) 2015-12-28 2015-12-28 X-ray tube apparatus

Country Status (1)

Country Link
JP (1) JP2017120691A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760786A (en) * 2018-07-18 2018-11-06 国家地质实验测试中心 Cooling recirculation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760786A (en) * 2018-07-18 2018-11-06 国家地质实验测试中心 Cooling recirculation system
CN108760786B (en) * 2018-07-18 2023-10-03 国家地质实验测试中心 Cooling circulation system

Similar Documents

Publication Publication Date Title
JP6150140B2 (en) Heat exchange device and heat pump device
CN103573713B (en) A kind of high temperature is from cooling down hot water circulating pump
US20120161554A1 (en) cooling system for a high density power motor, in particular an axial-flux motor
US8820114B2 (en) Cooling of heat intensive systems
US20140076522A1 (en) Cooling system for a power module
CN108512360B (en) Double cooling device for turbine motor
JP2017120691A (en) X-ray tube apparatus
JP2011210776A (en) Liquid cooling type cooling device
JP2012047179A (en) Electric pump
JP2016512298A (en) System and method for cooling an OTEC working fluid pump motor
JP2012184906A (en) Outdoor unit of air conditioning device, and air conditioning device employing the same
TWM492957U (en) Water-cooling electric water pump
TW201920885A (en) Two step oil motive eductor system
CN205657965U (en) Liquid-cooled heat dissipation system and pump thereof
CN110661379B (en) Cooling and heat dissipating device of wet motor
JP2010085054A (en) Outdoor unit for air-conditioning apparatus
CN209087758U (en) Hall ion source magnetic pole cooling device
JP2018007222A (en) Air-cooled amplifier using free piston stirling cooler
CN207265791U (en) A kind of direct current generator cooling controller
JP2017156055A (en) Heat pump type steam generation device
JP2010175210A (en) Refrigerating cycle device
JP2011222692A (en) Cooling device and electronic device
JP2015065187A (en) Cooling device and electronic equipment mounting the same
CN117295314B (en) Heat dissipation system of server room
JP2014136524A (en) On-vehicle unit cooling device