JP2017119294A - Solder iron - Google Patents

Solder iron Download PDF

Info

Publication number
JP2017119294A
JP2017119294A JP2015256985A JP2015256985A JP2017119294A JP 2017119294 A JP2017119294 A JP 2017119294A JP 2015256985 A JP2015256985 A JP 2015256985A JP 2015256985 A JP2015256985 A JP 2015256985A JP 2017119294 A JP2017119294 A JP 2017119294A
Authority
JP
Japan
Prior art keywords
temperature
thermocouple
tips
series
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015256985A
Other languages
Japanese (ja)
Other versions
JP6559061B2 (en
Inventor
栄一郎 片岡
Eiichiro Kataoka
栄一郎 片岡
知寛 茂川
Tomohiro Shigekawa
知寛 茂川
育子 福山
Ikuko Fukuyama
育子 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Electric Industry Co Ltd
Original Assignee
Taiyo Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Electric Industry Co Ltd filed Critical Taiyo Electric Industry Co Ltd
Priority to JP2015256985A priority Critical patent/JP6559061B2/en
Publication of JP2017119294A publication Critical patent/JP2017119294A/en
Application granted granted Critical
Publication of JP6559061B2 publication Critical patent/JP6559061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solder iron which has a low cost and high reliability by simplifying a configuration relating to temperature control, in the solder iron formed of a plurality of iron tips each provided with a heater.SOLUTION: A solder iron includes a plurality of iron tips configured such that a tip part can melt solder and a temperature control means which controls a temperature of the iron tips. Therein, each of the iron tips has a heater connected in series or in parallel and a thermo-couple which generates a thermoelectromotive force in accordance with the temperature of the tip part, respective thermo-couples are all connected in series with each other to form a thermocouple group, a plurality of resistances are connected in series between one end of the thermo-couple group and the other end, a divided voltage potential between each other of the plurality of resistances connected in series with one end of the thermocouple is inputted to the temperature control means as a temperature signal, and temperature control means performs feedback control of the heater based on the temperature signal.SELECTED DRAWING: Figure 1

Description

本発明は、複数のこて先を備えた半田ごてに関する。   The present invention relates to a soldering iron having a plurality of tips.

従来、半田を溶融させるこて先を複数備えた半田ごてが知られている。こうした複数のこて先を備えた半田ごての一例として、特許文献1には、可動自在な一対の脚部の先端に設けられた接触片でICチップなどの電気部品を挟持すると共に接触片で電気部品を回路基板に固着している半田を加熱して溶融状態とし、この状態で電気部品を回路基板から取り除く装置(電気部品取り除き装置)が開示されている。   Conventionally, a soldering iron having a plurality of tips for melting solder is known. As an example of such a soldering iron provided with a plurality of tips, Patent Document 1 describes that an electrical component such as an IC chip is sandwiched between contact pieces provided at the tips of a pair of movable legs and a contact piece. A device (electric component removing device) is disclosed in which the solder that fixes the electrical component to the circuit board is heated to a molten state, and the electrical component is removed from the circuit board in this state.

この電気部品取り除き装置では、各脚部内に個別に設けられたヒータで各脚部を個別に加熱することにより、各脚部の先端に設けられた接触片を加熱し、当該接触片の熱で半田を溶融させる。このような電気部品取り除き装置は、複数のこて先を備えた半田ごての一例である。   In this electrical component removing device, each leg is individually heated by a heater provided individually in each leg, thereby heating the contact piece provided at the tip of each leg and using the heat of the contact piece. Melt the solder. Such an electrical component removing device is an example of a soldering iron having a plurality of tips.

特開2004−058064号公報JP 2004-058064 A

上述したような複数のこて先をもつ半田ごては、それぞれのこて先ごとにヒータを個別に設けるので、ヒータごとにヒータ制御回路(温度制御手段)が形成されているものがあった。例えば、2つのこて先を備えた半田ごての場合、ヒータも2つ形成されるため、それぞれヒータに対応して2つのヒータ制御回路が設けられているものがあった。一方、複数のヒータを1つのヒータ制御回路で制御するものもあるが、この場合、ヒータ制御回路として複数のヒータを制御可能な回路構成としたり、制御ソフトウェアによって複数のヒータを制御するといった構成となっている。
しかしながら、ヒータの数、即ちこて先の数に対応した複数のヒータ制御回路を設ける半田ごては、回路構成が複雑になり、信頼性の低下や製造コストの上昇を招く原因となる。また、複数のヒータを1つのヒータ制御回路で制御する半田ごてでは、ヒータ制御回路そのものの回路構成が複雑になったり、専用の制御ソフトウェアが必要になり、製造コストの上昇を招く原因となる。
A soldering iron having a plurality of tips as described above is provided with a heater for each of the tips, so that a heater control circuit (temperature control means) is formed for each heater. . For example, in the case of a soldering iron provided with two tips, since two heaters are formed, there are some in which two heater control circuits are provided corresponding to each heater. On the other hand, some heaters control a plurality of heaters with a single heater control circuit. In this case, the heater control circuit can be configured to control a plurality of heaters, or the control software can control a plurality of heaters. It has become.
However, a soldering iron provided with a plurality of heater control circuits corresponding to the number of heaters, i.e., the number of tips, complicates the circuit configuration and causes a decrease in reliability and an increase in manufacturing cost. In addition, in a soldering iron that controls a plurality of heaters with a single heater control circuit, the circuit configuration of the heater control circuit itself becomes complicated, or dedicated control software is required, leading to an increase in manufacturing cost. .

本発明は、それぞれにヒータを備えたこて先を複数形成してなる半田ごてにおいて、温度制御に係る構成を簡略化し、低コストで信頼性の高い半田ごての提供を目的とするものである。   An object of the present invention is to provide a soldering iron having a low cost and a high reliability by simplifying the structure related to temperature control in a soldering iron having a plurality of tips each provided with a heater. is there.

上記目的を達成するために、本発明では、先端部が半田を溶融可能に構成された複数のこて先と、前記こて先の温度を制御する温度制御手段と、を備えた半田ごてであって、
前記こて先は、それぞれ直列接続あるいは並列接続されたヒータと、前記先端部の温度に応じた熱起電力を生じさせる熱電対と、を有し、それぞれの前記熱電対どうしは全て直列接続されて熱電対群を成し、かつ、前記熱電対群の一端と他端との間に複数の抵抗が直列接続され、前記熱電対群の一端と直列接続された複数の前記抵抗どうしの間の分圧電位を温度信号として前記温度制御手段に入力させ、前記温度制御手段は、前記温度信号に基づいて前記ヒータをフィードバック制御することを特徴とする。
In order to achieve the above object, in the present invention, a soldering iron provided with a plurality of tips whose tip portions are configured to melt the solder, and temperature control means for controlling the temperature of the tip. Because
Each of the tips has a heater connected in series or in parallel, and a thermocouple that generates a thermoelectromotive force according to the temperature of the tip, and the thermocouples are all connected in series. A plurality of resistors connected in series between one end and the other end of the thermocouple group, and between the plurality of resistors connected in series with one end of the thermocouple group. The divided voltage potential is input to the temperature control means as a temperature signal, and the temperature control means feedback-controls the heater based on the temperature signal.

このような構成の本発明の半田ごてによれば、直列に接続した複数の熱電対からなる熱電対群の一端と他端との間に、複数の抵抗素子を接続するだけで、容易に複数の熱電対の熱起電力の平均値が得られ、これを熱電対と1対1で対応した簡易な構成の温度制御手段に入力させることで、複数のこて先の温度制御を温度制御手段によって一括して容易に行うことができる。これによって、例えば、熱電対ごとに温度制御手段を形成しなくても、複数の抵抗素子を設けるだけで、容易に、かつ低コストに複数のこて先をもつ半田ごての温度制御を行うことが可能になる。   According to the soldering iron of the present invention having such a configuration, it is easy to connect a plurality of resistance elements between one end and the other end of a thermocouple group composed of a plurality of thermocouples connected in series. An average value of the thermoelectromotive force of a plurality of thermocouples is obtained, and this is input to a temperature control means having a simple configuration corresponding one-to-one with a thermocouple, thereby controlling the temperature control of a plurality of tips. It can be easily performed collectively by means. Thus, for example, temperature control of a soldering iron having a plurality of tips is easily performed at a low cost by providing a plurality of resistance elements without forming a temperature control means for each thermocouple. It becomes possible.

前記温度信号は、それぞれの前記熱電対の起電力の平均電位であることを特徴とする。   The temperature signal is an average potential of an electromotive force of each thermocouple.

前記熱電対は、アルメル合金とクロメル合金とを接合したK型熱電対であることを特徴とする。   The thermocouple is a K-type thermocouple in which an alumel alloy and a chromel alloy are joined.

本発明によれば、それぞれにヒータを備えたこて先を複数形成してなる半田ごてにおいて、温度制御に係る構成を簡略化し、低コストで信頼性の高い半田ごてを提供することが可能になる。   According to the present invention, it is possible to provide a low-cost and high-reliability soldering iron by simplifying the structure related to temperature control in a soldering iron formed with a plurality of tips each having a heater. become.

本発明の第1実施形態に係る半田ごての電気的構成を示す概略構成図である。It is a schematic block diagram which shows the electrical structure of the soldering iron which concerns on 1st Embodiment of this invention. 図1の制御部の構成を示すブロック図である。It is a block diagram which shows the structure of the control part of FIG. 本発明の第2実施形態に係る半田ごての電気的構成を示す概略構成図である。It is a schematic block diagram which shows the electrical structure of the soldering iron which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る半田ごての電気的構成を示す概略構成図である。It is a schematic block diagram which shows the electrical structure of the soldering iron which concerns on 3rd Embodiment of this invention.

以下、図面を参照して、本発明の実施形態について説明する。
(第1実施形態)
図1は、第1実施形態に係る半田ごての電気的構成を示す概略構成図である。
本実施形態の半田ごて10は、2つのこて先11A、11Bと、それぞれのこて先の温度制御を行う1つの制御部(温度制御手段)21とを備えている。
こて先11A、11Bは、それぞれヒータ線12A、12Bと、熱電対13A、13Bとを内部に収容している。
Embodiments of the present invention will be described below with reference to the drawings.
(First embodiment)
FIG. 1 is a schematic configuration diagram showing an electrical configuration of the soldering iron according to the first embodiment.
The soldering iron 10 of the present embodiment includes two tips 11A and 11B and one control unit (temperature control means) 21 that controls the temperature of each tip.
The tips 11A and 11B accommodate heater wires 12A and 12B and thermocouples 13A and 13B, respectively.

ヒータ線12A、12Bは、例えば、アルミニウム含有鉄クロム合金線、タングステン線、ニクロム線などから構成され、こて先11A、11Bの内部でコイル状に巻回されてなる。こて先11Aに形成されたヒータ線12Aと、こて先11Bに形成されたヒータ線12Bとは、電気的に直列に接続され、制御部21を介して制御される。   The heater wires 12A and 12B are made of, for example, an aluminum-containing iron-chromium alloy wire, a tungsten wire, a nichrome wire, and the like, and are wound in a coil shape inside the tips 11A and 11B. The heater wire 12A formed on the tip 11A and the heater wire 12B formed on the tip 11B are electrically connected in series and controlled through the control unit 21.

熱電対13A、13Bは、互いに異なる金属材料からなる金属線どうしを、こて先11A、11Bの先端部11Ap、11Bpの近傍で接合したものからなる。熱電対13A、13Bとしては、例えば、アルメル−クロメル接合体などのK型熱電対、クロメル−コンスタンタン接合体などのE型熱電対、鉄−コンスタンタン接合体などのJ型熱電対を用いることができる。こうした熱電対13A、13Bは、互いに異なる金属材料からなる金属線どうしの接合部分で、ゼーベック効果により熱起電力が生じる。また、熱電対と同等の働きをするセンサも適用することができる。   The thermocouples 13A and 13B are formed by joining metal wires made of different metal materials in the vicinity of the tips 11Ap and 11Bp of the tips 11A and 11B. As the thermocouples 13A and 13B, for example, a K-type thermocouple such as an alumel-chromel joint, an E-type thermocouple such as a chromel-constantan joint, or a J-type thermocouple such as an iron-constantan joint can be used. . These thermocouples 13A and 13B are portions where metal wires made of different metal materials are joined to each other, and a thermoelectromotive force is generated by the Seebeck effect. Also, a sensor that works in the same way as a thermocouple can be applied.

こて先11Aに形成された熱電対13Aと、こて先11Bに形成された熱電対13Bとは、電気的に直列に接続されて熱電対群13Sを構成する。こうした熱電対群13Sの一端側13Saと他端側13Sbとの間には、複数の抵抗素子15A,15Bが直列接続されている。本実施形態においては、抵抗素子15Aと抵抗素子15Bとは、互いに等しい抵抗値をもつ抵抗素子を用いている。   The thermocouple 13A formed on the tip 11A and the thermocouple 13B formed on the tip 11B are electrically connected in series to form a thermocouple group 13S. A plurality of resistance elements 15A and 15B are connected in series between the one end side 13Sa and the other end side 13Sb of the thermocouple group 13S. In the present embodiment, the resistance elements 15A and 15B use resistance elements having the same resistance value.

そして、熱電対群13Sの一端13Saと、抵抗素子15Aおよび抵抗素子15Bの間との分圧電位が、こて先11Aとこて先11Bの平均温度を示す温度信号として、制御部(温度制御手段)21に入力される。   The voltage dividing potential between the one end 13Sa of the thermocouple group 13S and the resistance element 15A and the resistance element 15B is used as a temperature signal indicating the average temperature of the tip 11A and the tip 11B. ) 21.

図2は、図1の制御部の構成を示すブロック図である。
制御部(温度制御手段)21は、起電力測定回路22、温度補償回路23、基準温度設定回路24、ヒータ制御回路25、オペアンプ26を備えている。
FIG. 2 is a block diagram showing a configuration of the control unit of FIG.
The control unit (temperature control means) 21 includes an electromotive force measurement circuit 22, a temperature compensation circuit 23, a reference temperature setting circuit 24, a heater control circuit 25, and an operational amplifier 26.

起電力測定回路22は、熱電対群13Sで生じた熱起電力、即ち熱電対13Aの熱起電力と、熱電対13Bの熱起電力との合計電位の平均値となる分圧電位を温度信号として測定する。温度補償回路23は、起電力測定回路22に対して、熱電対の数(本実施形態では2つ)に応じた温度補償を行う。   The electromotive force measurement circuit 22 uses a temperature signal indicating a divided potential that is an average value of the total potential of the thermoelectromotive force generated in the thermocouple group 13S, that is, the thermoelectromotive force of the thermocouple 13A and the thermoelectromotive force of the thermocouple 13B. Measure as The temperature compensation circuit 23 performs temperature compensation on the electromotive force measurement circuit 22 according to the number of thermocouples (two in the present embodiment).

基準温度設定回路24は、こて先11A、11Bの温度設定を行う。オペアンプ26は、こうした基準温度設定回路24によって設定された設定温度(基準温度)と、起電力測定回路22によって測定されたこて先11A、11Bの実際の温度との差分信号を出力する。   The reference temperature setting circuit 24 sets the temperatures of the tips 11A and 11B. The operational amplifier 26 outputs a difference signal between the set temperature (reference temperature) set by the reference temperature setting circuit 24 and the actual temperatures of the tips 11A and 11B measured by the electromotive force measurement circuit 22.

ヒータ制御回路25は、オペアンプ26で出力された差分信号に基づいて、こて先11A、11Bの温度が設定温度(基準温度)になるように、互いに直列に接続されたヒータ線12A、12Bの通電を制御する。   Based on the difference signal output from the operational amplifier 26, the heater control circuit 25 is connected to the heater wires 12A and 12B connected in series so that the temperatures of the tips 11A and 11B become the set temperature (reference temperature). Control energization.

以上のような構成の第1実施形態に係る半田ごて10の作用を図1、2を参照して説明する。
本実施形態の半田ごて10は、こて先11Aの温度とこて先11Bの温度とが等しくなるように制御される。このため、基準温度設定回路24で任意に設定された設定温度(基準温度)と、起電力測定回路22で測定された熱電対群13Sの熱起電力に基づく実際のこて先11A、11Bの温度(実測温度)と差分を検出する。そして、この差分に応じてヒータ制御回路25が互いに直列に接続されたヒータ線12A、12Bの通電を制御する。
The operation of the soldering iron 10 according to the first embodiment having the above configuration will be described with reference to FIGS.
The soldering iron 10 of this embodiment is controlled so that the temperature of the tip 11A is equal to the temperature of the tip 11B. Therefore, the actual tips 11A and 11B based on the set temperature (reference temperature) arbitrarily set by the reference temperature setting circuit 24 and the thermoelectromotive force of the thermocouple group 13S measured by the electromotive force measuring circuit 22 are used. The temperature (measured temperature) and the difference are detected. The heater control circuit 25 controls energization of the heater wires 12A and 12B connected in series according to the difference.

例えば、起電力測定回路22で測定されたこて先11A、11Bの実測温度が、基準温度設定回路24で設定された設定温度よりも低い状態では、ヒータ制御回路25がヒータ線12A、12Bに対する通電を継続させる。一方、起電力測定回路22で測定されたこて先11A、11Bの実測温度が、基準温度設定回路24で設定された設定温度と同じか高い状態では、ヒータ制御回路25がヒータ線12A、12Bに対する通電を行わない。   For example, when the measured temperatures of the tips 11A and 11B measured by the electromotive force measuring circuit 22 are lower than the set temperature set by the reference temperature setting circuit 24, the heater control circuit 25 energizes the heater wires 12A and 12B. To continue. On the other hand, when the measured temperatures of the tips 11A and 11B measured by the electromotive force measuring circuit 22 are the same as or higher than the set temperature set by the reference temperature setting circuit 24, the heater control circuit 25 applies the heater wires 12A and 12B to the heater wires 12A and 12B. Do not energize.

なお、ヒータ制御回路25は、上述したON−OFF制御以外にも、基準温度設定回路24の設定温度と、起電力測定回路22で測定された実測温度との差分に基づいて、ヒータ線12A、12Bの通電電圧を任意に可変させる可変電圧制御によるヒータ線12A、12Bの通電制御を行う構成であってもよい。   In addition to the ON-OFF control described above, the heater control circuit 25 is based on the difference between the set temperature of the reference temperature setting circuit 24 and the actually measured temperature measured by the electromotive force measurement circuit 22. The configuration may be such that energization control of the heater wires 12A, 12B is performed by variable voltage control that arbitrarily varies the energization voltage of 12B.

このようにこて先11Aとこて先11Bとが等温になるように制御するためには、互いに同一抵抗値のヒータ線12A、12Bを用いて、制御部(温度制御手段)21を構成する起電力測定回路22に、熱電対13Aの熱起電力と、熱電対13Bの熱起電力との合計電位の平均値となる分圧電位を温度信号として入力させる必要がある。   In order to control the tip 11A and the tip 11B to be isothermal in this way, the heater wire 12A, 12B having the same resistance value is used to form the control unit (temperature control means) 21. It is necessary to input to the power measurement circuit 22 a divided potential that is an average value of the total potential of the thermoelectromotive force of the thermocouple 13A and the thermoelectromotive force of the thermocouple 13B as a temperature signal.

本実施形態の半田ごて10では、こうした分圧電位を得るために、熱電対13Aと熱電対13Bとが直列接続されてなる熱電対群13Sの一端側13Saと他端側13Sbとの間に直列接続された抵抗素子15Aと抵抗素子15Bとの間の接続点J1と、熱電対群13Sの一端13Saとの間の電位を温度信号として起電力測定回路22に入力する。   In the soldering iron 10 of the present embodiment, in order to obtain such a divided potential, a thermocouple group 13A and a thermocouple 13B are connected in series between one end side 13Sa and the other end side 13Sb of the thermocouple group 13S. A potential between a connection point J1 between the resistance element 15A and the resistance element 15B connected in series and one end 13Sa of the thermocouple group 13S is input to the electromotive force measurement circuit 22 as a temperature signal.

こうした接続点J1と熱電対群13Sの一端13Saとの間の電位は、熱電対13Aの熱起電力と熱電対13Bの熱起電力とを合計した熱起電力の平均電位になる。即ち、こて先11Aの温度と、こて先11Bの温度との平均温度を示す温度信号になる。   The potential between the connection point J1 and the one end 13Sa of the thermocouple group 13S is an average potential of the thermoelectromotive force obtained by adding the thermoelectromotive force of the thermocouple 13A and the thermoelectromotive force of the thermocouple 13B. That is, the temperature signal indicates an average temperature of the temperature of the tip 11A and the temperature of the tip 11B.

例えば、こて先11Aに形成された熱電対13Aの起電力をE1、こて先11Bに形成された熱電対13Bの起電力をE2とした場合、熱電対群13Sの一端側13Saと他端側13Sbとの間の電位E3は、次式(1)で示される。
E3=E1+E2・・・(1)
For example, when the electromotive force of the thermocouple 13A formed on the tip 11A is E1, and the electromotive force of the thermocouple 13B formed on the tip 11B is E2, one end side 13Sa and the other end of the thermocouple group 13S The potential E3 between the side 13Sb is expressed by the following equation (1).
E3 = E1 + E2 (1)

そして、抵抗素子15Aの抵抗値をR1、抵抗素子15Bの抵抗値をR2とした場合、抵抗素子15Aと抵抗素子15Bとの間の接続点J1と、熱電対群13Sの一端13Saとの間の電位E4は、R1=R2であるから、次式(2)で示される。
E4=E3/2・・・(2)
When the resistance value of the resistance element 15A is R1 and the resistance value of the resistance element 15B is R2, the distance between the connection point J1 between the resistance element 15A and the resistance element 15B and the one end 13Sa of the thermocouple group 13S. Since the potential E4 is R1 = R2, it is expressed by the following formula (2).
E4 = E3 / 2 (2)

このように、こて先11Aとこて先11Bの温度が異なる場合であっても、制御部(温度制御手段)21を構成する起電力測定回路22に入力される温度信号となる電位E4は、熱電対13Aの熱起電力と熱電対13Bの熱起電力との平均値となる。   Thus, even when the temperatures of the tip 11A and the tip 11B are different, the potential E4 serving as a temperature signal input to the electromotive force measurement circuit 22 constituting the control unit (temperature control means) 21 is It becomes an average value of the thermoelectromotive force of the thermocouple 13A and the thermoelectromotive force of the thermocouple 13B.

そして、こうした熱電対13Aの熱起電力と熱電対13Bの熱起電力との平均値である温度信号と、基準温度設定回路24によって設定された設定温度(基準温度)との差分信号に基づいて、こて先11A、11Bの温度が設定温度(基準温度)になるように、互いに直列に接続されたヒータ線12A、12Bの通電が制御される。   Then, based on a difference signal between the temperature signal that is an average value of the thermoelectromotive force of the thermocouple 13A and the thermoelectromotive force of the thermocouple 13B and the set temperature (reference temperature) set by the reference temperature setting circuit 24. The energization of the heater wires 12A and 12B connected in series is controlled so that the temperatures of the tips 11A and 11B become the set temperature (reference temperature).

以上のように、本発明の一実施形態である半田ごて10によれば、直列に接続した2つの熱電対13A,13Bからなる熱電対群13Sの一端13Saと他端13Sbとの間に、例えば互いに等しい抵抗値をもつ複数の抵抗素子15A,15Bを接続するたけで、容易に熱電対13Aの熱起電力と熱電対13Bの熱起電力との平均値(分圧電位)である温度信号が得られ、これを1つの制御部(温度制御手段)21に入力させることで、複数のこて先11A,11Bの温度制御を1つの制御部(温度制御手段)21によって一括して容易に行うことができる。   As described above, according to the soldering iron 10 according to an embodiment of the present invention, between the one end 13Sa and the other end 13Sb of the thermocouple group 13S composed of two thermocouples 13A and 13B connected in series, For example, a temperature signal that is an average value (divided potential) of the thermoelectromotive force of the thermocouple 13A and the thermoelectromotive force of the thermocouple 13B simply by connecting a plurality of resistance elements 15A and 15B having the same resistance value. Is obtained, and this is input to one control unit (temperature control means) 21 so that the temperature control of the plurality of tips 11A and 11B can be easily performed collectively by one control unit (temperature control means) 21. It can be carried out.

これによって、例えば、従来のように、熱電対ごとに制御部(温度制御手段)を形成したり、あるいは複数の熱電対を制御可能な複雑な回路構成の制御部を用いなくても、複数の抵抗素子を設けるだけで、容易に、かつ低コストに複数のこて先をもつ半田ごての温度制御を行うことが可能になる。   Thus, for example, a plurality of control units (temperature control means) can be formed for each thermocouple, or a control unit having a complicated circuit configuration capable of controlling a plurality of thermocouples can be used. By simply providing a resistance element, it becomes possible to control the temperature of a soldering iron having a plurality of tips easily and at low cost.

(第2実施形態)
図3は、第2実施形態に係る半田ごての電気的構成を示す概略構成図である。
なお、図1、2に示す第1実施形態と同一構成の部材には同一の番号を付し、その詳細な説明は省略する。
本実施形態の半田ごて30は、こて先11Aの温度に応じた熱起電力を生じる熱電対13Aと、こて先11Bの温度に応じた熱起電力を生じる熱電対13Bとを備え、これら
熱電対13Aと熱電対13Bとが直列に接続されて熱電対群13Sを構成している。そして、こうした熱電対群13Sの一端側13Saと他端側13Sbとの間には、複数の抵抗素子35A,35Bが直列接続されている。このうち、抵抗素子35Bは、可変抵抗素子とされている。
(Second Embodiment)
FIG. 3 is a schematic configuration diagram showing an electrical configuration of the soldering iron according to the second embodiment.
In addition, the same number is attached | subjected to the member of the same structure as 1st Embodiment shown in FIG.1, 2, The detailed description is abbreviate | omitted.
The soldering iron 30 of the present embodiment includes a thermocouple 13A that generates a thermoelectromotive force according to the temperature of the tip 11A, and a thermocouple 13B that generates a thermoelectromotive force according to the temperature of the tip 11B. The thermocouple 13A and the thermocouple 13B are connected in series to form a thermocouple group 13S. A plurality of resistance elements 35A and 35B are connected in series between the one end side 13Sa and the other end side 13Sb of the thermocouple group 13S. Among these, the resistance element 35B is a variable resistance element.

このような構成の半田ごて30では、可変抵抗素子である抵抗素子35Bの抵抗値を任意の値に設定することによって、制御部(温度制御手段)21を構成する基準温度設定回路24(図2参照)の温度設定によらず、こて先11A,11Bの温度設定を行うことができる。   In the soldering iron 30 having such a configuration, by setting the resistance value of the resistance element 35B, which is a variable resistance element, to an arbitrary value, a reference temperature setting circuit 24 (see FIG. The temperature of the tips 11A and 11B can be set regardless of the temperature setting of 2).

例えば、熱電対群13Sの起電力をE3、抵抗素子35Aの抵抗値をR1、可変抵抗素子からなる抵抗素子35Bの設定抵抗値をVR2とした時に、抵抗素子35Aと抵抗素子35Bとの間の接続点J1と熱電対群13Sの一端13Saとの間の電位E4(温度信号)は、次式(3)で示される。
E4=VR2/(R1+VR2)×E3・・・(3)
For example, when the electromotive force of the thermocouple group 13S is E3, the resistance value of the resistance element 35A is R1, and the set resistance value of the resistance element 35B made of a variable resistance element is VR2, the resistance between the resistance element 35A and the resistance element 35B A potential E4 (temperature signal) between the connection point J1 and one end 13Sa of the thermocouple group 13S is represented by the following equation (3).
E4 = VR2 / (R1 + VR2) × E3 (3)

例えば、抵抗素子35Bの設定抵抗値VR2を抵抗素子35Aの抵抗値R1よりも小さくなるように設定(VR2<R1)した場合、E4>(E3/2)となるため、制御部(温度制御手段)21に入力される温度信号は、抵抗素子35Aと抵抗素子35Bの抵抗値が等しい場合と比較して、低い値になるように入力される。その結果、制御部(温度制御手段)21は、こて先11A,11Bの温度が基準温度設定回路24(図2参照)の設定値よりも低くなっていると認識し、ヒータ線12A、12Bの通電制御によって、こて先11A,11Bの温度を更に高める。これにより、こて先11A,11Bの温度が基準温度設定回路24(図2参照)の温度設定によらず高められる。   For example, when the set resistance value VR2 of the resistance element 35B is set to be smaller than the resistance value R1 of the resistance element 35A (VR2 <R1), E4> (E3 / 2) is satisfied, so that the control unit (temperature control means) ) The temperature signal input to 21 is input so as to be a lower value than when the resistance values of the resistance element 35A and the resistance element 35B are equal. As a result, the controller (temperature control means) 21 recognizes that the temperatures of the tips 11A and 11B are lower than the set value of the reference temperature setting circuit 24 (see FIG. 2), and the heater wires 12A and 12B. The temperature of the tips 11A and 11B is further increased by the energization control. As a result, the temperatures of the tips 11A and 11B are raised regardless of the temperature setting of the reference temperature setting circuit 24 (see FIG. 2).

また、例えば、抵抗素子35Bの設定抵抗値VR2を抵抗素子35Aの抵抗値R1よりも大きくなるように設定(VR2>R1)した場合、E4<(E3/2)となるため、制御部(温度制御手段)21に入力される温度信号は、抵抗素子35Aと抵抗素子35Bの抵抗値が等しい場合と比較して、高い値になるように入力される。その結果、制御部(温度制御手段)21は、こて先11A,11Bの温度が基準温度設定回路24(図2参照)の設定値よりも高くなっていると認識し、ヒータ線12A、12Bの通電停止によって、こて先11A,11Bの温度を低下させる。これにより、こて先11A,11Bの温度が基準温度設定回路24(図2参照)の温度設定によらず低められる。   Further, for example, when the set resistance value VR2 of the resistance element 35B is set to be larger than the resistance value R1 of the resistance element 35A (VR2> R1), E4 <(E3 / 2), so that the control unit (temperature The temperature signal input to the control means 21 is input so as to have a higher value than when the resistance values of the resistance elements 35A and 35B are equal. As a result, the control unit (temperature control means) 21 recognizes that the temperatures of the tips 11A and 11B are higher than the set value of the reference temperature setting circuit 24 (see FIG. 2), and the heater wires 12A and 12B. The temperature of the tips 11A and 11B is lowered by stopping energization. As a result, the temperatures of the tips 11A and 11B are lowered regardless of the temperature setting of the reference temperature setting circuit 24 (see FIG. 2).

このように複数の抵抗素子のうちの1つを可変抵抗素子にすることによって、例えば、抵抗素子15Bの抵抗値設定スイッチを半田ごて30の把持部などに形成すれば、半田付けの作業中に手元で一時的にこて先11A,11Bの温度設定を高めたり、あるいは低めたりするといったことも可能になる。   Thus, by making one of the plurality of resistance elements a variable resistance element, for example, if the resistance value setting switch of the resistance element 15B is formed on the gripping portion of the soldering iron 30, the soldering operation is in progress. It is also possible to temporarily increase or decrease the temperature setting of the tips 11A and 11B at hand.

(第3実施形態)
図4は、第3実施形態に係る半田ごての電気的構成を示す概略構成図である。
なお、図1、2に示す第1実施形態と同一構成の部材には同一の番号を付し、その詳細な説明は省略する。また、ヒータ線は省略している。
本実施形態の半田ごて40は、3つ以上のこて先11A,11B,11C・・11nを形成した例である。こうした多数nのこて先11A,11B,11C・・11nを形成した場合であっても、それぞれのこて先に対応した熱電対13A,13B,13C・・13nを全て直列に接続してなる熱電対群13Snの一端側13Saと他端側13Sbとの間に、互いに抵抗値の等しい複数の抵抗素子15A,15Bを直列接続することで、抵抗素子15Aと抵抗素子15Bとの間の接続点J1と熱電対群13Snの一端13Saとの間で、全ての熱電対13A,13B,13C・・13nの平均起電力を容易に得ることができる。なお、接続点J1と熱電対群13Snの一端13Saとの間の電位は、1/熱電対の数nとなるように、抵抗素子15A,15Bの抵抗値を選択する。
(Third embodiment)
FIG. 4 is a schematic configuration diagram showing an electrical configuration of a soldering iron according to the third embodiment.
In addition, the same number is attached | subjected to the member of the same structure as 1st Embodiment shown in FIG.1, 2, The detailed description is abbreviate | omitted. Also, the heater wire is omitted.
The soldering iron 40 of this embodiment is an example in which three or more tips 11A, 11B, 11C,. Even when such many n tips 11A, 11B, 11C... 11n are formed, the thermocouples 13A, 13B, 13C... 13n corresponding to the respective tips are all connected in series. A connection point between the resistance element 15A and the resistance element 15B by connecting a plurality of resistance elements 15A and 15B having the same resistance value in series between the one end side 13Sa and the other end side 13Sb of the thermocouple group 13Sn. The average electromotive force of all the thermocouples 13A, 13B, 13C,... 13n can be easily obtained between J1 and one end 13Sa of the thermocouple group 13Sn. The resistance values of the resistance elements 15A and 15B are selected so that the potential between the connection point J1 and one end 13Sa of the thermocouple group 13Sn is 1 / the number n of thermocouples.

こうした平均起電力を温度信号として制御部21に入力させれば、3つ以上のこて先11A,11B,11C・・11nを備えた半田ごて40であっても、全てのこて先の温度を一括して容易に制御することが可能になる。   If such an average electromotive force is input to the control unit 21 as a temperature signal, all the tips of the soldering irons 40 having three or more tips 11A, 11B, 11C,. It becomes possible to easily control the temperature collectively.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

第1実施形態から第3実施形態に示した回路構成、各部品どうしのの接続形態は一例であり、電気的に等価な回路構成を含むものである。例えば、熱電素子群の一端と他端との間に形成する抵抗素子は、上述した各実施形態のように2つに限定されるものでは無く、3つ以上の抵抗素子を接続して分圧回路を形成することもできる。   The circuit configuration shown in the first to third embodiments and the connection form between the components are examples, and include an electrically equivalent circuit configuration. For example, the number of resistance elements formed between one end and the other end of the thermoelectric element group is not limited to two as in each of the above-described embodiments, and voltage is divided by connecting three or more resistance elements. A circuit can also be formed.

10 半田ごて
11A,11B こて先
12A、12B ヒータ線
13A、13B 熱電対
21 制御部
DESCRIPTION OF SYMBOLS 10 Soldering iron 11A, 11B Tip 12A, 12B Heater wire 13A, 13B Thermocouple 21 Control part

Claims (3)

先端部が半田を溶融可能に構成された複数のこて先と、前記こて先の温度を制御する温度制御手段と、を備えた半田ごてであって、
前記こて先は、それぞれ直列接続あるいは並列接続されたヒータと、前記先端部の温度に応じた熱起電力を生じさせる熱電対と、を有し、
それぞれの前記熱電対どうしは全て直列接続されて熱電対群を成し、かつ、前記熱電対群の一端と他端との間に複数の抵抗が直列接続され、
前記熱電対群の一端と直列接続された複数の前記抵抗どうしの間の分圧電位を温度信号として前記温度制御手段に入力させ、
前記温度制御手段は、前記温度信号に基づいて前記ヒータをフィードバック制御することを特徴とする半田ごて。
A soldering iron comprising a plurality of tips whose tip portions are configured to be able to melt solder, and temperature control means for controlling the temperature of the tip,
The tips each have a heater connected in series or in parallel, and a thermocouple that generates a thermoelectromotive force according to the temperature of the tip,
All the thermocouples are connected in series to form a thermocouple group, and a plurality of resistors are connected in series between one end and the other end of the thermocouple group,
The divided potential between a plurality of resistors connected in series with one end of the thermocouple group is input to the temperature control means as a temperature signal,
The temperature control means feedback controls the heater based on the temperature signal.
前記温度信号は、それぞれの前記熱電対の起電力の平均電位であることを特徴とする請求項1記載の半田ごて。   The soldering iron according to claim 1, wherein the temperature signal is an average potential of an electromotive force of each of the thermocouples. 前記熱電対は、アルメル合金とクロメル合金とを接合したK型熱電対であることを特徴とする請求項1または2記載の半田ごて。   3. The soldering iron according to claim 1, wherein the thermocouple is a K-type thermocouple in which an alumel alloy and a chromel alloy are joined.
JP2015256985A 2015-12-28 2015-12-28 Soldering iron Active JP6559061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015256985A JP6559061B2 (en) 2015-12-28 2015-12-28 Soldering iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015256985A JP6559061B2 (en) 2015-12-28 2015-12-28 Soldering iron

Publications (2)

Publication Number Publication Date
JP2017119294A true JP2017119294A (en) 2017-07-06
JP6559061B2 JP6559061B2 (en) 2019-08-14

Family

ID=59271356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015256985A Active JP6559061B2 (en) 2015-12-28 2015-12-28 Soldering iron

Country Status (1)

Country Link
JP (1) JP6559061B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102061231B1 (en) 2018-08-31 2019-12-31 주식회사 타비엔지 Burning machine whose output temperature is controlled by electromagnetic induction conversion system
CN111992837A (en) * 2020-08-28 2020-11-27 中国船舶重工集团公司七五0试验场 Special electric soldering iron device for dismounting electronic components

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102061231B1 (en) 2018-08-31 2019-12-31 주식회사 타비엔지 Burning machine whose output temperature is controlled by electromagnetic induction conversion system
CN111992837A (en) * 2020-08-28 2020-11-27 中国船舶重工集团公司七五0试验场 Special electric soldering iron device for dismounting electronic components

Also Published As

Publication number Publication date
JP6559061B2 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
CN1991654B (en) Temperature sensor needless accurate heating-up temperature control device and method
TWI707141B (en) Sensor system and integrated heater-sensor for measuring and controlling performance of a heater system
CN107852778B (en) Resistive heater with temperature sensing power pin
CN107389206B (en) Thermopile sensor and control method thereof
JP6559061B2 (en) Soldering iron
JP6866047B2 (en) Methods and calibration elements for calibrating dental furnace temperature measuring instruments
JP7374922B2 (en) Resistive heater with temperature sensing power pin and auxiliary sensing junction
JPWO2016088332A1 (en) Liquid level detection circuit, liquid level gauge, container provided with the same, and vaporizer using the container
JP2013229496A5 (en)
JP2016024174A (en) Substance thermal diffusivity measurement method and substance thermoelectric characteristic evaluation device using the method
Pavlasek et al. Hysteresis effects and strain-induced homogeneity effects in base metal thermocouples
CN109313089A (en) Device and method for determining convective heat transfer coefficient
JP6607469B2 (en) Thermophysical property measuring method and thermophysical property measuring device
CN115669217A (en) Passive and active calibration methods for resistive heaters
JP5264671B2 (en) Thermocouple-equipped temperature measuring plate
JP4580562B2 (en) Non-contact temperature sensor and infrared thermometer using the same
US20230134684A1 (en) Modular heater assembly with interchangeable auxiliary sensing junctions
JP6555429B2 (en) Temperature measuring device, temperature indicator and temperature controller
US3260113A (en) Heat transfer measuring apparatus
JP7536885B2 (en) Modular heater assembly and interchangeable auxiliary sensing junctions
JP2019082407A (en) Temperature measurement device
JP2003035607A (en) Thermocouple thermometer and ceramic furnace
JP6233970B2 (en) Heating and gripping device
RU2273005C1 (en) Method and device for measuring temperature of heating spiral
JP2023010503A (en) Abnormality determination device, abnormality determination method, and abnormality determination system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181116

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190716

R150 Certificate of patent or registration of utility model

Ref document number: 6559061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250