JP2017118675A - Measuring apparatus - Google Patents

Measuring apparatus Download PDF

Info

Publication number
JP2017118675A
JP2017118675A JP2015251061A JP2015251061A JP2017118675A JP 2017118675 A JP2017118675 A JP 2017118675A JP 2015251061 A JP2015251061 A JP 2015251061A JP 2015251061 A JP2015251061 A JP 2015251061A JP 2017118675 A JP2017118675 A JP 2017118675A
Authority
JP
Japan
Prior art keywords
supply
unit
power
measurement
side holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015251061A
Other languages
Japanese (ja)
Other versions
JP6425645B2 (en
Inventor
智志路 関
Tomoshiro Seki
智志路 関
徳嵩 文男
Fumio Tokukasa
文男 徳嵩
夏樹 宮下
Natsuki Miyashita
夏樹 宮下
友英 塚崎
Tomohide Tsukazaki
友英 塚崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2015251061A priority Critical patent/JP6425645B2/en
Publication of JP2017118675A publication Critical patent/JP2017118675A/en
Application granted granted Critical
Publication of JP6425645B2 publication Critical patent/JP6425645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve measurement efficiency and measurement accuracy.SOLUTION: A measuring apparatus comprises: a supply side holding part that is constructed so as to be able to measure a measured amount used for an evaluation of a non-contact supply device, and holds a supply side electrode of the non-contact supply device; a movement mechanism 23 that moves the supply side holding part; an output part 3 that outputs an electric power supplied through the supply side holding part; a measuring part 4 that measures the measured amount in a state where the electric power is supplied through the supply side holding part; an operation part 5 that can perform a designation operation for designating at least one of a position and a posture of the supply side electrode held by the supply side holding part; and a control part 8. The control part 8 executes a moving processing that moves the supply side holding part to the movement mechanism 23 so as to become the designation state that at least one of the position and the posture of the supply side electrode is designated by the designation operation, and executes a measuring processing for allowing the measuring part 4 to measure the measured amount when at least one of the position and the posture becomes the designation state.SELECTED DRAWING: Figure 1

Description

本発明は、非接触給電装置の評価に用いる被測定量を測定する測定装置に関するものである。   The present invention relates to a measuring apparatus that measures a measured quantity used for evaluating a non-contact power feeding apparatus.

この種の測定装置として、下記非特許文献1に開示された試験装置が知られている。この試験装置は、非接触給電装置の評価をするための試験装置であって、非接触給電装置における供給側の第1コイル(Primary Coil)と受電側の第2コイル(Secondary Coil)とを対向させた状態で、第1コイルから電力を供給すると共に第2コイルで受電した電力を測定可能に構成されている。この場合、各コイルの位置や姿勢を変更して、位置や姿勢の状態毎に上記した電力を測定することで、非接触給電装置の効率等を評価する。このため、この試験装置では、位置決め機構を備え、各コイルの位置や姿勢を変更することが可能となっている。具体的には、この試験装置の位置決め機構では、第1コイルを支持する支持部がXY方向に移動可能に構成されると共に、XY平面に垂直な軸を中心とする回転方向(θ方向)に回転可能に構成されている。また、第2コイルを支持する支持部がZ方向に移動可能に構成されている。   As this type of measurement apparatus, a test apparatus disclosed in Non-Patent Document 1 below is known. This test apparatus is a test apparatus for evaluating a non-contact power feeding device, and the first coil (Primary Coil) on the supply side and the second coil (Secondary Coil) on the power receiving side of the non-contact power feeding device are opposed to each other. In this state, the power is supplied from the first coil and the power received by the second coil can be measured. In this case, the efficiency and the like of the non-contact power feeding apparatus is evaluated by changing the position and orientation of each coil and measuring the power described above for each state of the position and orientation. For this reason, this test apparatus includes a positioning mechanism and can change the position and posture of each coil. Specifically, in the positioning mechanism of this test apparatus, the support portion that supports the first coil is configured to be movable in the XY direction, and in the rotation direction (θ direction) about an axis perpendicular to the XY plane. It is configured to be rotatable. In addition, the support portion that supports the second coil is configured to be movable in the Z direction.

INL Testing of Wireless Charging Systems[平成27年12月10日検索]、インターネット<http://avt.inel.gov/pdf/prog_info/vss096Carlson2014.pdf>INL Testing of Wireless Charging Systems [Searched on December 10, 2015], Internet <http://avt.inel.gov/pdf/prog_info/vss096Carlson2014.pdf>

ところが、上記した従来の試験装置には、改善すべき以下の課題がある。すなわち、この試験装置では、位置決め機構によって第1コイルおよび第2コイルの位置や姿勢を変更することが可能となっている。この場合、上記の試験装置では、各コイルをそれぞれ支持する各支持部を手動またはモータの駆動力によってXYZθ方向に移動させて各コイルの位置や姿勢を変更している。一方、非接触給電装置の効率等を正確に評価するには、各コイルの位置や姿勢をできるだけ多く変更して、数多くの測定値を得ることが好ましい。しかしながら、上記の試験装置では、各コイルをそれぞれ支持する各支持部を手動またはモータの駆動力によってXYZθ方向に移動させて各コイルの位置や姿勢を変更しているため、各支持部を移動させる度に各コイルの位置をメジャー等の測定器を用いて手作業で計測し、その位置と測定値とを関連付けて記録する必要がある。このため、この試験装置には、測定効率の向上が困難であるという課題が存在する。また、この試験装置には、各コイルの位置を手作業で計測しているため、正確な位置の特定が困難な結果、コイルの位置と測定値とを関連付けたデータの精度(測定精度)の向上が困難であるという課題も存在する。   However, the above-described conventional test apparatus has the following problems to be improved. That is, in this test apparatus, the positions and postures of the first coil and the second coil can be changed by the positioning mechanism. In this case, in the test apparatus described above, the positions and postures of the coils are changed by moving the support portions that support the coils in the XYZθ directions manually or by the driving force of the motor. On the other hand, in order to accurately evaluate the efficiency and the like of the non-contact power feeding device, it is preferable to obtain a large number of measured values by changing the position and posture of each coil as much as possible. However, in the above-described test apparatus, each support portion that supports each coil is moved in the XYZθ direction manually or by the driving force of the motor to change the position and posture of each coil. It is necessary to manually measure the position of each coil using a measuring instrument such as a measure and to record the position and the measured value in association with each other. For this reason, this test apparatus has a problem that it is difficult to improve measurement efficiency. In addition, since the position of each coil is manually measured in this test apparatus, it is difficult to specify the exact position. As a result, the accuracy of the data (measurement accuracy) associated with the coil position and the measured value is reduced. There is also a problem that improvement is difficult.

本発明は、かかる改善すべき課題に鑑みてなされたものであり、測定効率および測定精度を向上し得る測定装置を提供することを主目的とする。   The present invention has been made in view of the problems to be improved, and a main object of the present invention is to provide a measuring apparatus capable of improving measurement efficiency and measurement accuracy.

上記目的を達成すべく請求項1記載の測定装置は、非接触給電装置の評価に用いる被測定量を測定する測定装置であって、前記非接触給電装置の供給側電極を保持する供給側保持部と、当該供給側保持部を移動させる移動機構と、前記供給側電極を介して供給する電力を出力する出力部と、前記供給側電極を介して電力が供給されている状態において前記被測定量を測定する測定部と、前記供給側保持部によって保持されている前記供給側電極の位置および姿勢の少なくとも一方を指定する指定操作が可能な操作部と、制御部とを備え、前記制御部は、前記少なくとも一方が前記指定操作によって指定された指定状態となるように前記移動機構に前記供給側保持部を移動させる移動処理を実行すると共に、前記少なくとも一方が前記指定状態となったときに前記測定部に前記被測定量を測定させる測定処理を実行する。   In order to achieve the above object, a measuring apparatus according to claim 1 is a measuring apparatus for measuring a measured amount used for evaluation of a non-contact power feeding apparatus, and holds a supply side electrode of the non-contact power feeding apparatus. A moving mechanism that moves the supply side holding unit, an output unit that outputs power supplied via the supply side electrode, and the measurement target in a state where power is supplied via the supply side electrode A measuring unit for measuring the amount, an operation unit capable of specifying operation for designating at least one of the position and orientation of the supply-side electrode held by the supply-side holding unit, and a control unit, the control unit Performs a moving process for causing the moving mechanism to move the supply side holding unit so that the at least one is in the specified state specified by the specifying operation, and the at least one is in the specified state. Wherein the measurement unit when it is performing the measurement process to measure the amount to be measured.

また、請求項2記載の測定装置は、請求項1記載の測定装置において、前記移動機構は、前記供給側保持部を6軸方向に移動可能に構成されている。   According to a second aspect of the present invention, in the measurement apparatus according to the first aspect, the moving mechanism is configured to be able to move the supply side holding portion in six axial directions.

また、請求項3記載の測定装置は、非接触給電装置の評価に用いる被測定量を測定する測定装置であって、前記非接触給電装置の受電側電極を保持する受電側保持部と、当該受電側保持部を移動させる移動機構と、前記非接触給電装置の供給側電極を介して供給する電力を出力する出力部と、前記供給側電極を介して電力が供給されている状態において前記被測定量を測定する測定部と、前記受電側保持部によって保持されている前記受電側電極の位置および姿勢の少なくとも一方を指定する指定操作が可能な操作部と、制御部とを備え、前記制御部は、前記少なくとも一方が前記指定操作によって指定された指定状態となるように前記移動機構に前記受電側保持部を移動させる移動処理を実行すると共に、前記少なくとも一方が前記指定状態となったときに前記測定部に前記被測定量を測定させる測定処理を実行する。   The measuring device according to claim 3 is a measuring device that measures a measurement amount used for evaluation of the non-contact power feeding device, and includes a power receiving side holding unit that holds a power receiving side electrode of the non-contact power feeding device, A moving mechanism that moves the power receiving side holding unit; an output unit that outputs power supplied via the supply side electrode of the non-contact power supply device; and a state where the power is supplied via the supply side electrode. A measuring unit for measuring a measurement amount; an operation unit capable of performing a designation operation for designating at least one of a position and a posture of the power receiving side electrode held by the power receiving side holding unit; and a control unit. The unit performs a moving process of moving the power receiving side holding unit to the moving mechanism so that the at least one is in the specified state specified by the specifying operation, and the at least one is in the specified state. Wherein the measurement unit when it is to execute the measurement process to measure the amount to be measured.

また、請求項4記載の測定装置は、請求項3記載の測定装置において、前記移動機構は、前記受電側保持部を6軸方向に移動可能に構成されている。   According to a fourth aspect of the present invention, in the measurement apparatus according to the third aspect, the moving mechanism is configured to be able to move the power receiving side holding portion in six axial directions.

また、請求項5記載の測定装置は、非接触給電装置の評価に用いる被測定量を測定する測定装置であって、前記非接触給電装置の供給側電極を保持する供給側保持部と、前記非接触給電装置の受電側電極を保持する受電側保持部と、前記供給側保持部および前記受電側保持部を移動させる移動機構と、前記供給側電極を介して供給する電力を出力する出力部と、前記供給側電極を介して電力が供給されている状態において前記被測定量を測定する測定部と、前記供給側保持部によって保持されている前記受電側電極の位置および姿勢の少なくとも一方並びに前記受電側保持部によって保持されている前記受電側電極の位置および姿勢の少なくとも一方を指定する指定操作が可能な操作部と、制御部とを備え、前記制御部は、前記供給側電極の前記少なくとも一方および前記受電側電極の前記少なくとも一方がそれぞれ前記指定操作によって指定された前記指定状態となるように前記移動機構に前記供給側保持部および前記受電側保持部を移動させる移動処理を実行すると共に、前記供給側電極の前記少なくとも一方および前記受電側電極の前記少なくとも一方がそれぞれ前記指定状態となったときに前記測定部に前記被測定量を測定させる測定処理を実行する。   The measurement device according to claim 5 is a measurement device that measures a measurement amount used for evaluation of the non-contact power feeding device, and includes a supply-side holding unit that holds a supply-side electrode of the non-contact power feeding device, A power receiving side holding unit that holds a power receiving side electrode of the non-contact power feeding device, a moving mechanism that moves the supply side holding unit and the power receiving side holding unit, and an output unit that outputs power supplied via the supply side electrode And at least one of the position and orientation of the power receiving side electrode held by the supply side holding unit, a measuring unit that measures the measured amount in a state where electric power is supplied through the supply side electrode, An operation unit capable of performing a designation operation for designating at least one of a position and an attitude of the power receiving side electrode held by the power receiving side holding unit; and a control unit, wherein the control unit includes the supply side electrode. The moving mechanism is configured to cause the moving mechanism to move the supply side holding unit and the power receiving side holding unit so that at least one of the power receiving side electrode and the at least one of the power receiving side electrode are in the specified state specified by the specifying operation. In addition, a measurement process for causing the measurement unit to measure the measured amount when the at least one of the supply-side electrodes and the at least one of the power-receiving-side electrodes are respectively in the designated state is executed.

また、請求項6記載の測定装置は、請求項5記載の測定装置において、前記移動機構は、前記供給側保持部を6軸方向のうちのn軸方向(nは、1以上5以下の自然数)に移動可能でかつ前記受電側保持部を当該6軸のうちの前記n軸方向を除くm軸方向(mは、6−n)に移動可能に構成されている。   The measuring apparatus according to claim 6 is the measuring apparatus according to claim 5, wherein the moving mechanism moves the supply side holding portion in an n-axis direction among six axis directions (n is a natural number of 1 or more and 5 or less. ) And the power receiving side holding portion is configured to be movable in the m-axis direction (m is 6-n) excluding the n-axis direction of the six axes.

また、請求項7記載の測定装置は、請求項1から6のいずれかに記載の測定装置において、前記操作部は、前記少なくとも一方を時間経過に伴って連続的に変化させる前記指定操作が可能に構成され、前記制御部は、前記移動処理において、前記指定操作による指定に応じて前記少なくとも一方を時間経過に伴って連続的に変化させると共に、前記測定処理において、前記少なくとも一方の連続的な変化に応じて前記被測定量を連続的に測定させる。   Further, in the measurement apparatus according to claim 7, in the measurement apparatus according to any one of claims 1 to 6, the operation unit can perform the designation operation to continuously change the at least one as time elapses. In the movement process, the control unit continuously changes the at least one as time elapses according to designation by the designation operation, and in the measurement process, the at least one continuous The measured amount is continuously measured according to the change.

請求項1記載の測定装置は、供給側電極の位置や姿勢を指定する指定操作が可能な操作部と、供給側電極の位置や姿勢が指定状態となるように移動機構に供給側保持部を移動させる移動処理を実行すると共に供給側電極の位置や姿勢が指定状態となったときに測定部に被測定量を測定させる測定処理を実行する制御部とを備えている。このため、この測定装置によれば、供給側保持部を移動させる度に供給側電極の位置や姿勢を計測し、計測した位置や姿勢と測定値とを関連付けて記録する従来の構成と比較して、測定作業を十分に短縮することができる結果、測定効率を十分に向上させることができる。また、この測定装置によれば、移動させた供給側電極の位置や姿勢が予め指定した位置であるため、供給側電極の位置や姿勢を手作業で測定することによる供給側電極の位置や姿勢と測定値とを関連付けたデータの精度(測定精度)の低下を確実に防止して測定精度を十分に向上させることができる。   The measuring apparatus according to claim 1 includes an operation unit capable of performing a designation operation for designating a position and orientation of the supply-side electrode, and a supply-side holding unit in the moving mechanism so that the position and orientation of the supply-side electrode are in a designated state. And a control unit that executes a measurement process that causes the measurement unit to measure the measured amount when the position and orientation of the supply-side electrode are in a specified state. For this reason, according to this measuring apparatus, the position and orientation of the supply-side electrode are measured each time the supply-side holding unit is moved, and compared with the conventional configuration in which the measured position and orientation are associated with the measured value and recorded. As a result, the measurement work can be sufficiently shortened, and as a result, the measurement efficiency can be sufficiently improved. Further, according to this measuring apparatus, since the position and posture of the moved supply side electrode are the positions specified in advance, the position and posture of the supply side electrode by manually measuring the position and posture of the supply side electrode The measurement accuracy can be sufficiently improved by reliably preventing a decrease in the accuracy (measurement accuracy) of the data in which the measurement values are associated with each other.

また、請求項2記載の測定装置によれば、供給側保持部を6軸方向に移動可能に移動機構を構成したことにより、受電側電極を移動させることなく、供給側電極だけを任意の位置に任意の姿勢で位置させることができる。このため、例えば、受電側電極を固定した状態で使用する非接触給電装置の評価に使用する被測定量を測定する際に、実際の使用形態に即した測定環境で被測定量を測定することができる。   Further, according to the measuring apparatus of the second aspect, since the moving mechanism is configured to be able to move the supply side holding portion in the six axis directions, only the supply side electrode is moved to an arbitrary position without moving the power receiving side electrode. Can be positioned in any posture. For this reason, for example, when measuring the measured amount used for the evaluation of the non-contact power feeding device used with the power receiving side electrode fixed, the measured amount should be measured in a measurement environment according to the actual usage pattern. Can do.

また、請求項3記載の測定装置は、受電側電極の位置や姿勢を指定する指定操作が可能な操作部と、受電側電極の位置や姿勢が指定状態となるように移動機構に受電側保持部を移動させる移動処理を実行すると共に受電側電極の位置や姿勢が指定状態となったときに測定部に被測定量を測定させる測定処理を実行する制御部とを備えている。このため、この測定装置によれば、受電側保持部を移動させる度に受電側電極の位置や姿勢を計測し、計測した位置や姿勢と測定値とを関連付けて記録する従来の構成と比較して、測定作業を十分に短縮することができる結果、測定効率を十分に向上させることができる。また、この測定装置によれば、移動させた受電側電極の位置や姿勢が予め指定した位置であるため、受電側電極の位置や姿勢を手作業で測定することによる受電側電極の位置や姿勢と測定値とを関連付けたデータの精度(測定精度)の低下を確実に防止して測定精度を十分に向上させることができる。   Further, the measuring device according to claim 3 is provided with an operation unit capable of performing a designation operation for designating the position and orientation of the power receiving side electrode, and holding the power receiving side in the moving mechanism so that the position and orientation of the power receiving side electrode are in a designated state. And a control unit that executes a measurement process that causes the measurement unit to measure the measured amount when the position and orientation of the power receiving side electrode are in a specified state. For this reason, according to this measuring apparatus, the position and orientation of the power receiving side electrode are measured each time the power receiving side holding portion is moved, and compared with the conventional configuration in which the measured position and posture are associated with the measured value and recorded. As a result, the measurement work can be sufficiently shortened, and as a result, the measurement efficiency can be sufficiently improved. In addition, according to this measuring apparatus, since the position and orientation of the moved power receiving side electrode are the positions specified in advance, the position and orientation of the power receiving side electrode by manually measuring the position and posture of the power receiving side electrode. The measurement accuracy can be sufficiently improved by reliably preventing a decrease in the accuracy (measurement accuracy) of the data in which the measurement values are associated with each other.

また、請求項4記載の測定装置によれば、受電側保持部を6軸方向に移動可能に移動機構を構成したことにより、供給側電極を移動させることなく、受電側電極だけを任意の位置に任意の姿勢で位置させることができる。このため、例えば、供給側電極を固定した状態で使用する非接触給電装置の評価に使用する被測定量を測定する際に、実際の使用形態に即した測定環境で被測定量を測定することができる。   Further, according to the measuring apparatus of the fourth aspect, since the moving mechanism is configured so that the power receiving side holding portion can be moved in the six-axis directions, only the power receiving side electrode is moved to an arbitrary position without moving the supply side electrode. Can be positioned in any posture. For this reason, for example, when measuring a measured amount used for evaluation of a non-contact power feeding device used with the supply-side electrode fixed, the measured amount should be measured in a measurement environment according to the actual usage pattern. Can do.

また、請求項5記載の測定装置は、供給側電極および受電側電極の位置や姿勢を指定する指定操作が可能な操作部と、供給側電極および受電側電極の位置や姿勢が指定状態となるように移動機構に供給側保持部および受電側保持部を移動させる移動処理を実行すると共に供給側電極および受電側電極の位置や姿勢が指定状態となったときに測定部に被測定量を測定させる測定処理を実行する制御部とを備えている。このため、この測定装置によれば、供給側電極および受電側保持部を移動させる度に供給側電極および受電側電極の位置や姿勢を計測し、計測した位置や姿勢と測定値とを関連付けて記録する従来の構成と比較して、測定作業を十分に短縮することができる結果、測定効率を十分に向上させることができる。また、この測定装置によれば、移動させた供給側電極および受電側電極の位置や姿勢が予め指定した位置であるため、供給側電極および受電側電極の位置や姿勢を手作業で測定することによる受電側電極の位置や姿勢と測定値とを関連付けたデータの精度(測定精度)の低下を確実に防止して測定精度を十分に向上させることができる。   In the measuring device according to claim 5, the operation unit capable of performing a designation operation for designating the positions and postures of the supply side electrode and the power reception side electrode, and the positions and postures of the supply side electrode and the power reception side electrode are in the designated state. In this way, the moving mechanism moves the supply-side holding unit and the power-receiving-side holding unit, and the measurement unit measures the measured amount when the position and orientation of the supply-side electrode and the power-receiving side electrode are in the specified state. And a control unit that executes measurement processing. Therefore, according to this measuring apparatus, the position and orientation of the supply side electrode and the power receiving side electrode are measured each time the supply side electrode and the power receiving side holding portion are moved, and the measured position and orientation are associated with the measured value. Compared with the conventional configuration for recording, the measurement work can be sufficiently shortened, and as a result, the measurement efficiency can be sufficiently improved. Further, according to this measuring apparatus, since the positions and postures of the moved supply-side electrode and the power-receiving-side electrode are positions specified in advance, the positions and postures of the supply-side electrode and the power-receiving-side electrode can be manually measured. Therefore, it is possible to reliably prevent a reduction in the accuracy (measurement accuracy) of data in which the position and orientation of the power receiving side electrode and the measurement value are associated with each other, thereby sufficiently improving the measurement accuracy.

また、請求項6記載の測定装置によれば、供給側保持部を6軸方向のうちのn軸方向に移動可能でかつ受電側保持部を6軸のうちのn軸方向を除くm軸方向に移動可能に移動機構を構成したことにより、供給側電極および供給側電極の双方を移動させて、供給側電極および受電側電極を任意の相対的な位置に任意の相対的な姿勢で位置させることができる。このため、例えば、供給側電極および供給側電極の双方を移動させて使用する非接触給電装置の評価に使用する被測定量を測定する際に、実際の使用形態に即した測定環境で被測定量を測定することができる。また、この測定装置によれば、供給側保持部および受電側保持部を合わせて6軸方向に移動させるため、供給側保持部および受電側保持部の双方を移動させて供給側電極および受電側電極を任意の相対的な位置に任意の相対的な姿勢で位置させる各種の構成(供給側保持部および受電側保持部の移動方向が合わせて6軸方向以上となる構成)の中で移動機構の構造を最も簡略化することができる。   According to the measuring apparatus of claim 6, the supply side holding portion can be moved in the n-axis direction of the six axis directions, and the power receiving side holding portion can be moved in the m-axis direction excluding the n-axis direction of the six axes. Since the moving mechanism is configured to be movable, both the supply-side electrode and the supply-side electrode are moved, and the supply-side electrode and the power-receiving-side electrode are positioned at an arbitrary relative position in an arbitrary relative posture. be able to. For this reason, for example, when measuring the amount to be used for evaluation of a non-contact power feeding device that is used by moving both the supply side electrode and the supply side electrode, the measurement is performed in a measurement environment that matches the actual usage pattern. The amount can be measured. Further, according to this measuring apparatus, the supply side holding unit and the power receiving side holding unit are moved together in the six-axis direction. Therefore, both the supply side holding unit and the power receiving side holding unit are moved to supply the supply side electrode and the power receiving side. Movement mechanism in various configurations (configurations in which the movement direction of the supply side holding unit and the power receiving side holding unit is 6 axes or more in total) for positioning the electrode at an arbitrary relative position in an arbitrary relative posture The structure can be simplified most.

また、請求項7記載の測定装置では、各電極の位置や姿勢を時間経過に伴って連続的に変化させる指定操作を可能に操作部が構成され、制御部が、移動処理において、指定操作による指定に応じて各電極の位置や姿勢を時間経過に伴って連続的に変化させると共に、測定処理において、各電極の位置や姿勢の連続的な変化に応じて被測定量を連続的に測定させる。このため、この測定装置によれば、例えば、各電極の位置や姿勢の変化の状態(例えば、各電極の相対的な移動速度)と被測定量との関係から非接触給電装置を評価する場合において有効に利用可能な被測定量を測定することができる。   Further, in the measurement apparatus according to claim 7, the operation unit is configured to enable a designation operation for continuously changing the position and posture of each electrode with time, and the control unit is configured to perform the designation operation in the movement process. The position and orientation of each electrode is continuously changed over time according to the designation, and the measured amount is continuously measured according to the continuous change in the position and orientation of each electrode in the measurement process. . Therefore, according to this measuring apparatus, for example, when a non-contact power feeding apparatus is evaluated from the relationship between the state of change of the position and posture of each electrode (for example, the relative moving speed of each electrode) and the amount to be measured. It is possible to measure the amount to be measured that can be used effectively in

測定装置1の構成を示す構成図である。1 is a configuration diagram showing a configuration of a measuring device 1. FIG. 保持装置2の構成を示す構成図である。2 is a configuration diagram showing a configuration of a holding device 2. FIG. 測定装置1を用いた測定方法を説明する第1の説明図である。FIG. 3 is a first explanatory diagram illustrating a measurement method using the measurement device 1. 測定装置1を用いた測定方法を説明する第2の説明図である。It is the 2nd explanatory view explaining the measuring method using measuring device 1.

以下、測定装置の実施の形態について、添付図面を参照して説明する。   Hereinafter, embodiments of a measuring apparatus will be described with reference to the accompanying drawings.

最初に、測定装置の一例としての図1に示す測定装置1の構成について説明する。測定装置1は、例えば、非接触給電装置(ワイヤレス給電装置)の評価(性能評価)に用いる被測定量(例えば、給電効率や磁界等)を測定する測定装置であって、同図に示すように、保持装置2、出力部3、測定部4、操作部5、記憶部6、表示部7および制御部8を備えて構成されている。   First, the configuration of the measurement apparatus 1 shown in FIG. 1 as an example of the measurement apparatus will be described. The measurement apparatus 1 is a measurement apparatus that measures a measurement amount (for example, power supply efficiency or magnetic field) used for evaluation (performance evaluation) of a non-contact power supply apparatus (wireless power supply apparatus), for example, as shown in FIG. Further, the holding device 2, the output unit 3, the measurement unit 4, the operation unit 5, the storage unit 6, the display unit 7, and the control unit 8 are configured.

保持装置2は、非接触給電装置の供給側コイル101(図3参照)の位置および姿勢(非接触給電装置の受電側コイル102(同図参照)に対する相対的な位置や姿勢)を任意に変更することが可能に構成されている。具体的には、保持装置2は、図2に示すように、供給側保持部21、受電側保持部22、移動機構23およびフレーム24を備えて構成されている。この場合、供給側コイル101は、供給側電極の一例であって、導線をコイル状に巻回して形成され、受電側コイル102は、受電側電極の一例であって、導線をコイル状に巻回して形成されているが、非接触給電装置の種類(給電方式)によっては、導電材料によって板状に形成された供給側電極および受電側電極が採用されていることもある。   The holding device 2 arbitrarily changes the position and posture of the supply-side coil 101 (see FIG. 3) of the non-contact power feeding device (relative position and posture with respect to the power-receiving coil 102 (see FIG. 3) of the non-contact power feeding device). It is configured to be able to. Specifically, as illustrated in FIG. 2, the holding device 2 includes a supply side holding unit 21, a power receiving side holding unit 22, a moving mechanism 23, and a frame 24. In this case, the supply-side coil 101 is an example of a supply-side electrode, and is formed by winding a conductive wire in a coil shape. The power-receiving side coil 102 is an example of a power-receiving side electrode, and the conductive wire is wound in a coil shape. However, depending on the type (power feeding method) of the non-contact power feeding device, a supply side electrode and a power receiving side electrode formed in a plate shape with a conductive material may be employed.

供給側保持部21は、非接触給電装置の供給側コイル101を保持可能に構成されている。具体的には、供給側保持部21は、供給側コイル101を載置可能なテーブルと、必要に応じてテーブルに載置した供給側コイル101を固定する図外の固定具とを備えて構成されている。この場合、供給側コイル101が発生する磁界に対する影響を低減するため、供給側保持部21を構成する材料としては、比透磁率(透磁率)および比誘電率(誘電率)が小さい材料を用いるのが好ましい。具体的には、樹脂(一例として、ポリカーボネート、ポリスチレン、ABS樹脂等の非晶性樹脂)を用いることができる。また、剛性の確保や製造効率を考慮して金属を用いるときには、比透磁率および比誘電率が比較的小さいアルミニウムを用いるのが好ましい。また、供給側保持部21は、図2に示すように、移動機構23における後述する回転テーブル32ψの上に固定されて、移動機構23によって移動させられる。なお、同図では、移動機構23の構成の理解を容易とするため、供給側保持部21を回転テーブル32ψから離間させた状態で図示している。   The supply side holding | maintenance part 21 is comprised so that the supply side coil 101 of a non-contact electric power feeder can be hold | maintained. Specifically, the supply-side holding unit 21 includes a table on which the supply-side coil 101 can be placed, and a fixture (not shown) that fixes the supply-side coil 101 placed on the table as necessary. Has been. In this case, in order to reduce the influence on the magnetic field generated by the supply-side coil 101, a material having a small relative permeability (permeability) and a relative permittivity (dielectric constant) is used as the material constituting the supply-side holding unit 21. Is preferred. Specifically, a resin (for example, an amorphous resin such as polycarbonate, polystyrene, or ABS resin) can be used. Further, when using a metal in consideration of ensuring rigidity and manufacturing efficiency, it is preferable to use aluminum having a relatively low relative permeability and relative permittivity. Further, as shown in FIG. 2, the supply-side holding unit 21 is fixed on a rotary table 32ψ, which will be described later, in the moving mechanism 23 and is moved by the moving mechanism 23. In the drawing, in order to facilitate understanding of the configuration of the moving mechanism 23, the supply side holding portion 21 is illustrated in a state of being separated from the rotary table 32ψ.

受電側保持部22は、非接触給電装置の受電側コイル102を保持可能に構成されている。具体的には、受電側保持部22は、下面に受電側コイル102が配置されるボードと、必要に応じてボードに配置した受電側コイル102を固定するクランプ等の固定具とを備えて構成されている。この場合、受電側保持部22を構成する材料についても、供給側保持部21と同様にして、比透磁率(透磁率)および比誘電率(誘電率)が小さい材料を用いるのが好ましく、供給側保持部21を構成する材料と同様の樹脂を用いることができる。また、剛性の確保や製造効率を考慮して金属を用いるときには、アルミニウムを用いるのが好ましい。また、受電側保持部22は、図2に示すように、フレーム24に固定されている。   The power receiving side holding unit 22 is configured to be able to hold the power receiving side coil 102 of the non-contact power feeding device. Specifically, the power receiving side holding portion 22 includes a board on which the power receiving side coil 102 is disposed on the lower surface, and a fixture such as a clamp for fixing the power receiving side coil 102 disposed on the board as necessary. Has been. In this case, it is preferable to use a material having a small relative permeability (permeability) and a relative permittivity (dielectric constant) as in the case of the supply side holding unit 21 for the material constituting the power receiving side holding unit 22. Resin similar to the material which comprises the side holding | maintenance part 21 can be used. In addition, when metal is used in consideration of securing rigidity and manufacturing efficiency, it is preferable to use aluminum. Moreover, the power receiving side holding | maintenance part 22 is being fixed to the flame | frame 24, as shown in FIG.

移動機構23は、制御部8の制御に従って供給側保持部21を6軸方向(XYZ方向およびφψθ方向)に移動させる。具体的には、移動機構23は、図2に示すように、6軸方向のうちの3軸方向であるX方向、Y方向およびZ方向(3つの移動方向)にそれぞれ移動可能な3つの移動テーブル31x,31y,31z(以下、区別しないときには「移動テーブル31」ともいう)を備えている。また、移動機構23は、同図に示すように、6軸方向のうちの他の3軸方向であるφ方向(X方向の軸を中心とする回転方向)、ψ方向(Y方向の軸を中心とする回転方向)およびθ方向(Z方向の軸を中心とする回転方向)にそれぞれ移動可能な3つの回転テーブル32φ,32ψ,32θ(以下、区別しないときには「回転テーブル32」ともいう)とを備えて構成されている。この場合、同図に示すように、回転テーブル32ψの上面に供給側保持部21が固定される。   The moving mechanism 23 moves the supply-side holding unit 21 in six axial directions (XYZ direction and φψθ direction) according to the control of the control unit 8. Specifically, as shown in FIG. 2, the moving mechanism 23 has three movements that can move in the X direction, the Y direction, and the Z direction (three moving directions), which are three axial directions among the six axial directions. Tables 31x, 31y, and 31z (hereinafter also referred to as “movement table 31” when not distinguished) are provided. Further, as shown in the figure, the moving mechanism 23 includes the φ direction (rotation direction centered on the X direction axis) and the ψ direction (Y direction axis) which are the other three axis directions of the six axis directions. Three rotation tables 32φ, 32ψ, 32θ that can be moved in the rotation direction about the center) and θ direction (the rotation direction about the axis in the Z direction) (hereinafter also referred to as “rotation table 32” if not distinguished). It is configured with. In this case, as shown in the figure, the supply side holding part 21 is fixed to the upper surface of the rotary table 32ψ.

また、移動機構23は、制御部8の制御に従って各移動テーブル31および各回転テーブル32を駆動する図外のアクチュエータを備えて構成されている。アクチュエータとしては、電動アクチュエータ(モータ)、エアシリンダ、油圧シリンダ、リニアアクチュエータおよび圧電アクチュエータ等の各種のアクチュエータを用いることができる。   The moving mechanism 23 includes an actuator (not shown) that drives each moving table 31 and each rotating table 32 under the control of the control unit 8. As the actuator, various actuators such as an electric actuator (motor), an air cylinder, a hydraulic cylinder, a linear actuator, and a piezoelectric actuator can be used.

この場合、各移動テーブル31による供給側保持部21のXYZ方向への移動によって供給側保持部21によって保持されている供給側コイル101の位置が変更され(変化し)、各回転テーブル32による供給側保持部21のφψθ方向への移動によって供給側保持部21によって保持されている供給側コイル101の姿勢が変更される(変化する)。   In this case, the position of the supply-side coil 101 held by the supply-side holding unit 21 is changed (changed) by the movement of the supply-side holding unit 21 in the XYZ directions by each moving table 31, and the supply by each rotary table 32 is performed. The posture of the supply-side coil 101 held by the supply-side holding unit 21 is changed (changed) by the movement of the side holding unit 21 in the φψθ direction.

出力部3は、制御部8の制御に従い、非接触給電装置の供給側コイル101を介して供給する電力を出力する。この場合、出力部3は、指定した値に電圧値を維持した状態(電流値が変動する状態)で電力を出力する出力モード、指定した値に電流値を維持した状態(電圧値が変動する状態)で電力を出力する出力モード、および指定した値に電力値を維持した状態(電圧値および電流値が変動する状態)で電力を出力する出力モードの各出力モードの中から操作部5に対する操作によって選択されたモードで電力を供給可能に構成されている。   The output unit 3 outputs electric power supplied via the supply-side coil 101 of the non-contact power feeding device according to the control of the control unit 8. In this case, the output unit 3 outputs power in a state where the voltage value is maintained at the specified value (state where the current value varies), and a state where the current value is maintained at the specified value (where the voltage value varies) Output mode in which the power is output in the state) and the output mode in which the power value is maintained at the specified value (a state in which the voltage value and the current value fluctuate) and the output mode in which the power is output to the operation unit 5 The power can be supplied in the mode selected by the operation.

測定部4は、制御部8の制御に従い、非接触給電装置の供給側コイル101を介して電力が供給されている状態(出力部3から供給側コイル101に電力が出力されている状態)において、非接触給電装置の評価に用いる被測定量を測定する。この場合、測定部4は、非接触給電装置の供給側コイル101から供給される電力に対する受電側コイル102によって受電される電力の比率(給電効率)などを被測定量として測定する。   The measurement unit 4 is in a state where power is supplied via the supply side coil 101 of the non-contact power feeding device (in a state where power is output from the output unit 3 to the supply side coil 101) according to the control of the control unit 8. The amount to be measured used for the evaluation of the non-contact power feeding device is measured. In this case, the measurement unit 4 measures the ratio (power supply efficiency) of the power received by the power receiving side coil 102 with respect to the power supplied from the supply side coil 101 of the non-contact power supply apparatus as a measured amount.

操作部5は、例えば、キーボートおよびポインティングデバイスを備えて構成され、測定に関する各種の操作を行う際に用いられる。具体的には、操作部5は、測定開始の指示操作や測定終了の指示操作を行う際に用いられる。また、操作部5は、保持装置2の供給側保持部21によって保持されている供給側コイル101の位置や姿勢を指定する操作(指定操作)を行う際に用いられる。また、操作部5は、供給側コイル101の位置や姿勢を時間経過に伴って連続的に変化するように指定する操作を行う際に用いられる。さらに、操作部5は、測定部4に測定させる被測定量の種類を指定する操作や、保持装置2に電力を出力させる際の上記の出力モードを選択する操作を行う際に用いられる。   The operation unit 5 includes, for example, a keyboard and a pointing device, and is used when performing various operations related to measurement. Specifically, the operation unit 5 is used when a measurement start instruction operation or a measurement end instruction operation is performed. The operation unit 5 is used when an operation (designation operation) for designating the position and orientation of the supply side coil 101 held by the supply side holding unit 21 of the holding device 2 is performed. The operation unit 5 is used when performing an operation for designating the position and orientation of the supply-side coil 101 so as to change continuously over time. Further, the operation unit 5 is used when performing an operation for specifying the type of the amount to be measured to be measured by the measurement unit 4 and an operation for selecting the output mode when the holding device 2 outputs power.

記憶部6は、制御部8の制御に従い、測定部4によって測定された被測定量を記憶する。表示部7は、制御部8の制御に従い、操作部5を用いて設定(指定)した内容、測定部4によって測定された被測定量の値、および被測定量に基づく画像等を表示する。   The storage unit 6 stores the amount to be measured measured by the measurement unit 4 under the control of the control unit 8. Under the control of the control unit 8, the display unit 7 displays the contents set (designated) using the operation unit 5, the value of the measured amount measured by the measuring unit 4, the image based on the measured amount, and the like.

制御部8は、操作部5に対する操作に従って測定装置1を構成する各構成要素を制御する。具体的には、制御部8は、移動機構23に供給側保持部21を移動させて、供給側保持部21によって保持されている供給側コイル101を、操作部5に対する操作によって指定された位置に指定された姿勢で位置する状態(以下、この状態を「指定状態」ともいう)とさせる移動処理を実行する。また、制御部8は、供給側コイル101の位置および姿勢を指定状態とさせたときに測定部4に被測定量を測定させる測定処理を実行する。また、制御部8は、測定部4によって測定された被測定量を測定時の供給側コイル101の位置および姿勢を示す情報と対応付けて記憶部6に記憶させる。   The control unit 8 controls each component constituting the measuring device 1 according to an operation on the operation unit 5. Specifically, the control unit 8 moves the supply side holding unit 21 to the moving mechanism 23, and positions the supply side coil 101 held by the supply side holding unit 21 by the operation on the operation unit 5. A movement process is executed to change the state to the position specified in (1) (hereinafter, this state is also referred to as “specified state”). In addition, the control unit 8 executes a measurement process that causes the measurement unit 4 to measure the amount to be measured when the position and orientation of the supply-side coil 101 are set to the designated state. In addition, the control unit 8 stores the measured amount measured by the measuring unit 4 in the storage unit 6 in association with information indicating the position and orientation of the supply-side coil 101 at the time of measurement.

また、制御部8は、操作部5に対する操作によって供給側コイル101の位置や姿勢が時間経過に伴って連続的に変化させるように指定されているきには、移動処理において、供給側コイル101の位置や姿勢をその指定に応じて時間経過に伴って連続的に変化させると共に、測定処理において、供給側コイル101の位置や姿勢の連続的な変化に応じて被測定量を連続的に測定させる。   Further, when the control unit 8 is designated to continuously change the position and posture of the supply side coil 101 as time passes by an operation on the operation unit 5, the supply side coil 101 is moved in the movement process. The position and orientation of the sensor are continuously changed over time according to the designation, and in the measurement process, the measured amount is continuously measured according to the continuous change of the position and orientation of the supply side coil 101. Let

次に、測定装置1を用いて非接触給電装置の評価に用いる被測定量を測定する方法、およびその際の測定装置1の動作について図面を参照して説明する。まず、測定対象の一例として、家庭用の電気製品のバッテリーを充電するのに使用される非接触給電装置の評価に用いる被測定量を測定する例について説明する。   Next, a method for measuring an amount to be measured used for evaluating the non-contact power feeding apparatus using the measuring apparatus 1 and an operation of the measuring apparatus 1 at that time will be described with reference to the drawings. First, as an example of a measurement target, an example in which a measurement amount used for evaluation of a non-contact power feeding device used for charging a battery of a household electric appliance will be described.

まず、図3に示すように、検査対象の非接触給電装置の供給側コイル101を保持装置2の供給側保持部21の上に載置して図外の固定具で固定することにより、供給側コイル101を供給側保持部21に保持させる。次いで、非接触給電装置の受電側コイル102を受電側保持部22の下面に配置して図外の固定具で固定することにより、受電側コイル102を受電側保持部22に保持させる。この場合、供給側コイル101が筐体等の内部に収容されていたり、受電側コイル102が電気製品の内部に収容されていたりする場合において、その状態(供給側コイル101を筐体から取り出したり、受電側コイル102を電気製品から取り出したりしていない状態)で測定した被測定量を用いて非接触給電装置を評価するときには、供給側コイル101を筐体ごと供給側保持部21に保持させ、受電側コイル102を電気製品ごと受電側保持部22に保持させる。   First, as shown in FIG. 3, the supply-side coil 101 of the non-contact power feeding device to be inspected is placed on the supply-side holding portion 21 of the holding device 2 and fixed by a fixing tool (not shown). The side coil 101 is held by the supply side holding unit 21. Next, the power receiving side coil 102 is held by the power receiving side holding portion 22 by placing the power receiving side coil 102 of the non-contact power feeding device on the lower surface of the power receiving side holding portion 22 and fixing it with a fixing tool (not shown). In this case, when the supply-side coil 101 is housed in a housing or the like, or the power-receiving coil 102 is housed in an electrical product, the state (the supply-side coil 101 is taken out of the housing) When the non-contact power feeding apparatus is evaluated using the measured amount measured in a state where the power receiving coil 102 is not taken out from the electrical product), the supply coil 101 is held by the supply holding unit 21 together with the housing. Then, the power receiving side coil 102 is held by the power receiving side holding portion 22 together with the electric product.

続いて、操作部5を操作して各種の設定を行う。まず、被測定量を測定する際に供給側コイル101(例えば、供給側コイル101の中心部)を位置させる位置をXYZ座標で指定する。次いで、その位置における供給側コイル101の姿勢を、φ方向、ψ方向およびθ方向の角度を入力することによって指定する。これにより、1つの指定状態を指定する操作が終了する。この場合、この測定装置1では、1つの指定状態(1つの位置および姿勢)を指定する毎に、その指定状態における被測定量を測定させることもできるし、複数の指定状態を予め指定して各指定状態における被測定量を、指定状態を変更しつつ連続して測定させることもできる。この例では、複数の指定状態を予め指定したものとして以下説明する。   Subsequently, various settings are performed by operating the operation unit 5. First, the position at which the supply side coil 101 (for example, the central part of the supply side coil 101) is positioned when measuring the measured amount is designated by XYZ coordinates. Next, the posture of the supply-side coil 101 at that position is designated by inputting angles in the φ direction, the ψ direction, and the θ direction. Thereby, the operation of designating one designated state is completed. In this case, the measuring apparatus 1 can measure the measured amount in the designated state each time one designated state (one position and orientation) is designated, or can designate a plurality of designated states in advance. It is also possible to continuously measure the amount to be measured in each designated state while changing the designated state. In this example, a description will be given below assuming that a plurality of designated states are designated in advance.

続いて、操作部5を操作して、測定部4に測定させる被測定量の種類を指定すると共に、保持装置2に電力を出力させる際の出力モードを選択する。この場合、被測定量として、給電効率(供給する電力に対する受電する電力の比率)を指定し、出力モードとして、電圧値を指定した値に維持した状態で電力を出力する出力モードを選択したものとする。   Subsequently, the operation unit 5 is operated to specify the type of the measured amount to be measured by the measurement unit 4 and to select an output mode when the holding device 2 outputs power. In this case, power supply efficiency (ratio of received power to supplied power) is specified as the amount to be measured, and an output mode that outputs power while maintaining the voltage value at the specified value is selected as the output mode. And

次いで、操作部5を操作して、測定開始の指示操作を行う。これに応じて、制御部8が、出力部3を制御して、選択された出力モードでの電力の出力を開始させる。また、制御部8は、保持装置2の移動機構23を制御して、供給側保持部21に支持されている供給側コイル101が最初の指定状態として指定された位置において指定された姿勢となるように供給側保持部21をXYZ方向およびφψθ方向に移動させる(移動処理の実行)。   Next, the operation unit 5 is operated to perform a measurement start instruction operation. In response to this, the control unit 8 controls the output unit 3 to start the output of power in the selected output mode. Further, the control unit 8 controls the moving mechanism 23 of the holding device 2 so that the supply side coil 101 supported by the supply side holding unit 21 assumes a specified posture at the position specified as the first specified state. In this way, the supply side holding part 21 is moved in the XYZ direction and the φψθ direction (execution of movement processing).

続いて、制御部8は、供給側コイル101が最初の指定状態となったときに、測定部4を制御して、供給側コイル101から供給される電力に対する受電側コイル102によって受電される電力の比率である被測定量としての給電効率を測定させる(測定処理の実行)。次いで、制御部8は、測定部4によって測定された最初の指定状態における給電効率を、測定時の供給側コイル101の位置および姿勢を示す情報と対応付けて記憶部6に記憶させる。   Subsequently, the control unit 8 controls the measurement unit 4 when the supply-side coil 101 is in the first designated state, and the power received by the power-receiving-side coil 102 with respect to the power supplied from the supply-side coil 101. The power supply efficiency is measured as the amount to be measured, which is the ratio of (measurement processing execution). Next, the control unit 8 causes the storage unit 6 to store the power supply efficiency in the first designated state measured by the measurement unit 4 in association with information indicating the position and orientation of the supply side coil 101 at the time of measurement.

続いて、制御部8は、保持装置2の移動機構23を制御して、供給側コイル101が2つめ目の指定状態として指定された位置において指定された姿勢となるように供給側保持部21を移動させる。次いで、制御部8は、供給側コイル101が2つめ目の指定状態となったときに、測定部4を制御して給電効率を測定させ、続いて、2つめ目の指定状態における給電効率を、測定時の供給側コイル101の位置および姿勢を示す情報と対応付けて記憶部6に記憶させる。以下同様にして、制御部8は、保持装置2および測定部4を制御して、指定された各指定状態における給電効率を測定させて(移動処理および測定処理を実行して)、給電効率を測定時の供給側コイル101の位置および姿勢を示す情報と対応付けて記憶部6に記憶させる。   Subsequently, the control unit 8 controls the moving mechanism 23 of the holding device 2 so that the supply side coil 101 assumes the specified posture at the position specified as the second specified state. Move. Next, when the supply-side coil 101 is in the second designated state, the control unit 8 controls the measurement unit 4 to measure the power feeding efficiency, and subsequently determines the power feeding efficiency in the second designated state. The information is stored in the storage unit 6 in association with information indicating the position and orientation of the supply side coil 101 at the time of measurement. In the same manner, the control unit 8 controls the holding device 2 and the measurement unit 4 to measure the power supply efficiency in each designated state (execution of the movement process and the measurement process), and to improve the power supply efficiency. The information is stored in the storage unit 6 in association with information indicating the position and orientation of the supply side coil 101 at the time of measurement.

以上により、非接触給電装置の評価に用いる被測定量としての給電効率の測定が終了する。この場合、記憶部6に記憶させた給電効率は、供給側コイル101の位置(XYZ方向の座標)や姿勢(φψθ方向の角度)による給電効率の相違を一覧で示したり、三次元画像で表示させたりするのに用いることができる。   This completes the measurement of the power supply efficiency as the measured quantity used for the evaluation of the non-contact power supply apparatus. In this case, the power supply efficiency stored in the storage unit 6 is displayed as a list of differences in power supply efficiency depending on the position (the coordinates in the XYZ directions) and the posture (the angle in the φψθ direction) of the supply side coil 101, or displayed as a three-dimensional image. Can be used.

この測定装置1では、上記したように、制御部8が、供給側保持部21によって保持されている供給側コイル101の位置および姿勢が操作部5に対する指定操作によって指定した指定状態となるように移動機構23に供給側保持部21を移動させる移動処理を実行すると共に、供給側コイル101の位置および姿勢が指定状態となったときに測定部4に被測定量を測定させる測定処理を実行する。このため、この測定装置1では、供給側保持部21を移動させる度に手作業で計測した供給側コイル101の位置と測定値とを関連付けて記録する従来の構成と比較して、測定効率および測定精度を十分に向上させることが可能となっている。   In the measuring apparatus 1, as described above, the control unit 8 is in a specified state in which the position and orientation of the supply-side coil 101 held by the supply-side holding unit 21 are specified by a designation operation on the operation unit 5. A movement process for moving the supply side holding unit 21 to the movement mechanism 23 is executed, and a measurement process for causing the measurement unit 4 to measure a measurement amount when the position and posture of the supply side coil 101 are in a specified state is executed. . For this reason, in this measuring apparatus 1, compared with the conventional configuration in which the position and the measured value of the supply-side coil 101 measured manually each time the supply-side holding unit 21 is moved, the measurement efficiency and Measurement accuracy can be sufficiently improved.

次に、測定装置1を用いて、測定対象の他の一例として、電気自動車200(図4参照)のバッテリーを充電するのに用いられる非接触給電装置の評価に用いる被測定量を測定する例について説明する。   Next, an example in which the measurement device 1 is used to measure a measurement amount used for evaluating a non-contact power feeding device used for charging a battery of an electric vehicle 200 (see FIG. 4) as another example of a measurement target. Will be described.

この場合、受電側コイル102が電気自動車内に配置されていて、受電側コイル102を電気自動車から取り出さない状態で測定した被測定量を用いて非接触給電装置を評価するときには、図4に示すように、保持装置2のフレーム24および受電側保持部22を取り外し、スロープ300を用いて電気自動車200を供給側保持部21の上方に位置させる。また、同図に示すように、供給側コイル101を保持装置2の供給側保持部21に保持させる。   In this case, when the non-contact power feeding apparatus is evaluated using the measured amount measured in a state where the power receiving side coil 102 is disposed in the electric vehicle and the power receiving side coil 102 is not taken out from the electric vehicle, FIG. As described above, the frame 24 and the power receiving side holding unit 22 of the holding device 2 are removed, and the electric vehicle 200 is positioned above the supply side holding unit 21 using the slope 300. In addition, as shown in the figure, the supply-side coil 101 is held by the supply-side holding portion 21 of the holding device 2.

次いで、操作部5を操作して、被測定量を測定する際の供給側コイル101の位置および姿勢を指定する。この場合、例えば、走行状態の電気自動車200に対して道路等に固定されている供給側コイル101を介して給電を行う非接触給電装置の使用形態を想定すると、供給側コイル101と電気自動車200に配置されている受電側コイル102とが相対的に移動している状態で測定した被測定量を用いて非接触給電装置の評価をするのが好ましいことがある。このような評価に用いる被測定量を測定する際には、供給側コイル101の位置および姿勢の一方または双方を時間経過に伴って連続的に変化させるように指定する。一例として、供給側コイル101のXYZ座標の初期値(初期位置)およびφ方向、ψ方向およびθ方向の角度の初期値(初期姿勢)を指定すると共に、供給側コイル101のY,Z座標およびφψθ方向の角度を一定にした状態でX座標が一定の速度で規定時間(例えば、10秒)だけ変化するように指定する。   Next, the operation unit 5 is operated to specify the position and orientation of the supply-side coil 101 when measuring the amount to be measured. In this case, for example, assuming a usage form of a non-contact power feeding device that feeds power to the traveling electric vehicle 200 via the supply coil 101 fixed to a road or the like, the supply coil 101 and the electric vehicle 200 are assumed. It may be preferable to evaluate the non-contact power feeding apparatus using the measured amount measured in a state where the power receiving side coil 102 arranged in the position is relatively moved. When measuring the amount to be measured used for such evaluation, it is specified that one or both of the position and posture of the supply side coil 101 are continuously changed over time. As an example, an initial value (initial position) of the XYZ coordinates of the supply side coil 101 and initial values (initial postures) of angles in the φ direction, ψ direction, and θ direction are designated, and the Y, Z coordinates of the supply side coil 101 and The X coordinate is designated to change at a constant speed for a specified time (for example, 10 seconds) with the angle in the φφθ direction being constant.

続いて、操作部5を操作して、測定部4に測定させる被測定量の種類として、例えば給電効率を指定すると共に、保持装置2に電力を出力させる際の出力モードとして、例えば電力値を指定した値に維持した状態で出力する出力モードを選択する。次いで、操作部5を操作して、測定開始の指示操作を行い、これに応じて、制御部8が、出力部3を制御して、選択された出力モードでの電力の出力を開始させる。また、制御部8は、保持装置2の移動機構23を制御して、供給側保持部21に支持されている供給側コイル101が指定された初期位置において指定された初期姿勢(初期の指定状態)となるように供給側保持部21をXYZ方向およびφψθ方向に移動させる。   Subsequently, the operation unit 5 is operated to specify, for example, the power supply efficiency as the type of the amount to be measured to be measured by the measurement unit 4, and as the output mode when the holding device 2 outputs power, for example, the power value. Select the output mode to output while maintaining the specified value. Next, the operation unit 5 is operated to perform an instruction operation to start measurement, and in response thereto, the control unit 8 controls the output unit 3 to start outputting power in the selected output mode. Further, the control unit 8 controls the moving mechanism 23 of the holding device 2 so that the supply-side coil 101 supported by the supply-side holding unit 21 has an initial posture (initial specified state) specified at the specified initial position. ) To move the supply side holding portion 21 in the XYZ direction and the φψθ direction.

続いて、制御部8は、供給側コイル101が初期の指定状態となったときに、測定部4を制御して、供給側コイル101から供給される電力に対する受電側コイル102によって受電される電力の比率である被測定量としての給電効率の測定を開始させる。次いで、制御部8は、保持装置2の移動機構23を制御して、操作部5に対する指定操作で指定された速度で供給側コイル101のX座標(位置)を規定時間だけ連続的に変化させる(移動処理の実行)。また、制御部8は、測定部4を制御して、供給側コイル101の位置の連続的な変化に応じて給電効率を連続的に測定させる(測定処理の実行)。また、制御部8は、測定部4によって連続的に測定される給電効率を測定時の供給側コイル101の位置および姿勢を示す情報と対応付けて記憶部6に記憶させる。   Subsequently, the control unit 8 controls the measurement unit 4 when the supply-side coil 101 is in the initial designated state, and receives the power received by the power-receiving-side coil 102 with respect to the power supplied from the supply-side coil 101. The measurement of the power supply efficiency as the measured quantity that is the ratio of Next, the control unit 8 controls the moving mechanism 23 of the holding device 2 to continuously change the X coordinate (position) of the supply-side coil 101 for a specified time at a speed specified by a specified operation on the operation unit 5. (Execution of move processing). Further, the control unit 8 controls the measurement unit 4 to continuously measure the power supply efficiency in accordance with the continuous change in the position of the supply side coil 101 (execution of the measurement process). In addition, the control unit 8 causes the storage unit 6 to store the power supply efficiency continuously measured by the measurement unit 4 in association with information indicating the position and orientation of the supply side coil 101 at the time of measurement.

この場合、上記した供給側コイル101のX座標の変化の速度(つまり、供給側コイル101のX方向への移動速度)を複数回変更し、速度毎に移動処理および測定処理を実行して給電効率を記憶させることで、供給側コイル101の速度(つまり、電気自動車200の移動速度)と給電効率との関係を知ることができ、その結果から非接触給電装置を評価することができる。   In this case, the speed of change of the X coordinate of the supply side coil 101 (that is, the movement speed of the supply side coil 101 in the X direction) is changed a plurality of times, and movement processing and measurement processing are executed for each speed to supply power. By storing the efficiency, the relationship between the speed of the supply-side coil 101 (that is, the moving speed of the electric vehicle 200) and the power supply efficiency can be known, and the non-contact power supply apparatus can be evaluated from the result.

このように、この測定装置1は、供給側コイル101の位置および姿勢を指定する指定操作が可能な操作部5と、供給側コイル101が指定状態となるように移動機構23に供給側保持部21を移動させる移動処理を実行すると共に供給側コイル101が指定状態となったときに測定部4に被測定量を測定させる測定処理を実行する制御部8とを備えている。このため、この測定装置1によれば、供給側保持部21を移動させる度に供給側コイル101の位置や姿勢を計測し、計測した位置や姿勢と測定値とを関連付けて記録する従来の構成と比較して、測定作業を十分に短縮することができる結果、測定効率を十分に向上させることができる。また、この測定装置1によれば、移動させた供給側コイル101の位置や姿勢が予め指定した位置であるため、供給側コイル101の位置や姿勢を手作業で測定することによる供給側コイル101の位置や姿勢と測定値とを関連付けたデータの精度(測定精度)の低下を確実に防止して測定精度を十分に向上させることができる。   As described above, the measuring apparatus 1 includes the operation unit 5 that can perform the designation operation for designating the position and orientation of the supply side coil 101, and the supply side holding unit in the moving mechanism 23 so that the supply side coil 101 is in the designated state. And a control unit 8 that executes a measurement process that causes the measurement unit 4 to measure a measured amount when the supply-side coil 101 is in a designated state. For this reason, according to this measuring apparatus 1, the position and attitude | position of the supply side coil 101 are measured whenever the supply side holding | maintenance part 21 is moved, and the measured position and attitude | position, and a measured value are linked | related and recorded. As a result, the measurement work can be shortened sufficiently, and as a result, the measurement efficiency can be sufficiently improved. Moreover, according to this measuring apparatus 1, since the position and attitude | position of the moved supply side coil 101 are the positions designated beforehand, the supply side coil 101 by measuring the position and attitude | position of the supply side coil 101 manually. Therefore, it is possible to reliably prevent a decrease in the accuracy (measurement accuracy) of data in which the position and orientation are associated with the measurement value, thereby sufficiently improving the measurement accuracy.

また、この測定装置1によれば、供給側保持部21を6軸方向に移動可能に移動機構23を構成したことにより、受電側コイル102を移動させることなく、供給側コイル101だけを任意の位置(受電側コイル102に対する任意の相対的な位置)に任意の姿勢(受電側コイル102に対する任意の相対的な姿勢)で位置させることができる。このため、例えば、受電側コイル102を固定した状態で使用する非接触給電装置の評価に使用する被測定量を測定する際に、実際の使用形態に即した測定環境で被測定量を測定することができる。   Moreover, according to this measuring apparatus 1, since the moving mechanism 23 is configured to be able to move the supply side holding portion 21 in the six-axis directions, only the supply side coil 101 can be arbitrarily moved without moving the power receiving side coil 102. The position (arbitrary relative position with respect to the power receiving side coil 102) can be positioned in an arbitrary posture (arbitrary relative position with respect to the power receiving side coil 102). For this reason, for example, when measuring a measurement amount used for evaluation of a non-contact power feeding device that is used in a state where the power receiving coil 102 is fixed, the measurement amount is measured in a measurement environment according to an actual usage pattern. be able to.

また、この測定装置1では、供給側コイル101の位置を時間経過に伴って連続的に変化させる指定操作を可能に操作部5が構成され、制御部8が、移動処理において、指定操作による指定に応じて供給側コイル101の位置を時間経過に伴って連続的に変化させると共に、測定処理において、供給側コイル101の位置の連続的な変化に応じて被測定量を連続的に測定させる。このため、この測定装置1によれば、例えば、供給側コイル101の位置の変化の状態(例えば、供給側コイル101の移動速度)と被測定量との関係から非接触給電装置を評価する場合において有効に利用可能な被測定量を測定することができる。   Further, in this measuring apparatus 1, the operation unit 5 is configured to enable a designation operation for continuously changing the position of the supply-side coil 101 with time, and the control unit 8 designates the designation operation by the designation operation in the movement process. Accordingly, the position of the supply side coil 101 is continuously changed over time, and the measurement target is continuously measured in accordance with the continuous change of the position of the supply side coil 101 in the measurement process. For this reason, according to this measuring apparatus 1, for example, when the non-contact power feeding apparatus is evaluated from the relationship between the change state of the position of the supply side coil 101 (for example, the moving speed of the supply side coil 101) and the measured amount. It is possible to measure the amount to be measured that can be used effectively in

なお、測定装置は、上記の構成に限定されない。例えば、供給側保持部21を6軸方向に移動可能な移動機構23を採用した例について上記したが、必ずしも6軸の全方向に移動可能な移動機構23を採用する必要はなく、非接触給電装置の使用形態に応じて6軸方向の一部の方向にのみ供給側保持部21を移動可能な移動機構23を採用することもできる。   The measuring device is not limited to the above configuration. For example, the example in which the moving mechanism 23 that can move the supply-side holding unit 21 in the six-axis direction is described above. However, the moving mechanism 23 that can move in all six-axis directions is not necessarily used, and contactless power feeding It is also possible to employ a moving mechanism 23 that can move the supply side holding portion 21 only in a part of the six axial directions according to the usage form of the apparatus.

また、非接触給電装置の供給側コイル101を保持する供給側保持部21を移動機構23が移動させる構成例について上記したが、非接触給電装置の受電側コイル102を保持する受電側保持部22を移動機構23が移動させる構成を採用することもできる。この構成においても、受電側保持部22を6軸方向に移動可能な移動機構23を採用することもできるし、非接触給電装置の使用形態に応じて6軸方向の一部の方向にのみ受電側保持部22を移動可能な移動機構23を採用することもできる。   Further, the configuration example in which the moving mechanism 23 moves the supply-side holding unit 21 that holds the supply-side coil 101 of the non-contact power feeding device has been described above. However, the power-receiving side holding unit 22 that holds the power-receiving side coil 102 of the non-contact power feeding device. It is also possible to adopt a configuration in which the moving mechanism 23 moves. Also in this configuration, it is possible to employ a moving mechanism 23 that can move the power receiving side holding portion 22 in the six-axis direction. It is also possible to employ a moving mechanism 23 that can move the side holding portion 22.

また、供給側コイル101を保持する供給側保持部21、および受電側コイル102を保持する受電側保持部22の双方を移動機構23が移動させる構成を採用することもできる。この場合、供給側保持部21を移動させる軸方向は、1軸方向から6軸方向の任意の数の軸方向に規定することができ、受電側保持部22を移動させる軸方向も、1軸方向から6軸方向の任意の数の軸方向に規定することができる。また、供給側保持部21および受電側保持部22の双方を移動機構23が移動させる構成において、6軸方向のうちのn軸方向(nは、1以上5以下の自然数)に供給側保持部21を移動させ、6軸のうちのn軸方向を除くm軸方向(mは、6−n)に受電側保持部22を移動させる(つまり、供給側保持部21および受電側保持部22を合わせて6軸方向に移動させる)構成を採用することもできる。このように構成することで、供給側保持部21および受電側保持部22の双方を移動させて供給側コイル101および受電側コイル102を任意の相対的な位置に任意の相対的な姿勢で位置させる各種の構成(供給側保持部21および受電側保持部22の移動方向が合わせて6軸方向以上となる構成)の中で移動機構23の構造を最も簡略化することができる。   In addition, a configuration in which the moving mechanism 23 moves both the supply side holding unit 21 that holds the supply side coil 101 and the power reception side holding unit 22 that holds the power reception side coil 102 may be employed. In this case, the axial direction in which the supply-side holding unit 21 is moved can be defined as any number of axial directions from one axial direction to six axial directions, and the axial direction in which the power-receiving-side holding unit 22 is moved is also one axis. Any number of axial directions from the direction to the six axial directions can be defined. Further, in the configuration in which the moving mechanism 23 moves both the supply-side holding unit 21 and the power-receiving-side holding unit 22, the supply-side holding unit in the n-axis direction (n is a natural number of 1 or more and 5 or less) among the six axis directions. 21 is moved, and the power receiving side holding part 22 is moved in the m axis direction (m is 6-n) excluding the n axis direction of the six axes (that is, the supply side holding part 21 and the power receiving side holding part 22 are moved). It is also possible to adopt a configuration in which they are moved in the 6-axis direction. With this configuration, both the supply-side holding unit 21 and the power-receiving-side holding unit 22 are moved to position the supply-side coil 101 and the power-receiving-side coil 102 in arbitrary relative positions. The structure of the moving mechanism 23 can be most simplified among various configurations to be performed (a configuration in which the moving directions of the supply-side holding unit 21 and the power-receiving-side holding unit 22 are six or more axial directions).

また、被測定量としての給電効率を測定する構成例について上記したが、他の被測定量を測定することもできる。例えば、保持装置2のフレーム24や保持装置2の周囲に磁界センサを配置し、その磁界センサによって検出される検出値に基づいて供給側コイル101から生じる磁界を被測定量として測定可能に測定部4を構成し、制御部8が、移動処理を実行したときに測定部4を制御して磁界を測定させる測定処理を実行する構成を採用することもできる。   Moreover, although the configuration example for measuring the power supply efficiency as the measured amount has been described above, other measured amounts can also be measured. For example, a magnetic field sensor is arranged around the frame 24 of the holding device 2 and the holding device 2, and the magnetic field generated from the supply-side coil 101 can be measured as a measured amount based on a detection value detected by the magnetic field sensor. 4, and the control unit 8 may perform a measurement process that controls the measurement unit 4 to measure a magnetic field when the movement process is executed.

1 測定装置
2 保持装置
3 出力部
4 測定部
5 操作部
6 記憶部
8 制御部
21 供給側保持部
22 受電側保持部
23 移動機構
100 非接触給電装置
101 供給側コイル
102 受電側コイル
DESCRIPTION OF SYMBOLS 1 Measuring apparatus 2 Holding | maintenance apparatus 3 Output part 4 Measuring part 5 Operation part 6 Memory | storage part 8 Control part 21 Supply side holding | maintenance part 22 Power receiving side holding | maintenance part 23 Movement mechanism 100 Non-contact electric power feeder 101 Supply side coil 102 Power receiving side coil

Claims (7)

非接触給電装置の評価に用いる被測定量を測定する測定装置であって、
前記非接触給電装置の供給側電極を保持する供給側保持部と、当該供給側保持部を移動させる移動機構と、前記供給側電極を介して供給する電力を出力する出力部と、前記供給側電極を介して電力が供給されている状態において前記被測定量を測定する測定部と、前記供給側保持部によって保持されている前記供給側電極の位置および姿勢の少なくとも一方を指定する指定操作が可能な操作部と、制御部とを備え、
前記制御部は、前記少なくとも一方が前記指定操作によって指定された指定状態となるように前記移動機構に前記供給側保持部を移動させる移動処理を実行すると共に、前記少なくとも一方が前記指定状態となったときに前記測定部に前記被測定量を測定させる測定処理を実行する測定装置。
A measuring device for measuring a measured amount used for evaluation of a non-contact power feeding device,
A supply-side holding unit that holds the supply-side electrode of the non-contact power feeding device, a moving mechanism that moves the supply-side holding unit, an output unit that outputs electric power supplied through the supply-side electrode, and the supply side A designating operation for designating at least one of a measurement unit that measures the measured amount in a state where electric power is supplied through the electrodes, and a position and orientation of the supply-side electrode held by the supply-side holding unit; A possible operation unit and a control unit,
The control unit performs a moving process of moving the supply side holding unit to the moving mechanism so that at least one of the specified states is designated by the designation operation, and at least one of the designated units is in the designated state. A measurement apparatus that executes a measurement process that causes the measurement unit to measure the measured amount when the measurement unit measures.
前記移動機構は、前記供給側保持部を6軸方向に移動可能に構成されている請求項1記載の測定装置。   The measuring apparatus according to claim 1, wherein the moving mechanism is configured to be able to move the supply side holding portion in six axial directions. 非接触給電装置の評価に用いる被測定量を測定する測定装置であって、
前記非接触給電装置の受電側電極を保持する受電側保持部と、当該受電側保持部を移動させる移動機構と、前記非接触給電装置の供給側電極を介して供給する電力を出力する出力部と、前記供給側電極を介して電力が供給されている状態において前記被測定量を測定する測定部と、前記受電側保持部によって保持されている前記受電側電極の位置および姿勢の少なくとも一方を指定する指定操作が可能な操作部と、制御部とを備え、
前記制御部は、前記少なくとも一方が前記指定操作によって指定された指定状態となるように前記移動機構に前記受電側保持部を移動させる移動処理を実行すると共に、前記少なくとも一方が前記指定状態となったときに前記測定部に前記被測定量を測定させる測定処理を実行する測定装置。
A measuring device for measuring a measured amount used for evaluation of a non-contact power feeding device,
A power receiving side holding unit that holds a power receiving side electrode of the non-contact power feeding device, a moving mechanism that moves the power receiving side holding unit, and an output unit that outputs electric power supplied via the supply side electrode of the non-contact power feeding device And at least one of the position and posture of the power receiving side electrode held by the power receiving side holding part, and a measuring unit that measures the measured amount in a state where power is supplied through the power supply side electrode An operation unit capable of performing a designated operation to be designated, and a control unit,
The control unit performs a moving process for causing the moving mechanism to move the power receiving side holding unit so that at least one of the specified states is designated by the designation operation, and at least one of the control units is in the designated state. A measurement apparatus that executes a measurement process that causes the measurement unit to measure the measured amount when the measurement unit measures.
前記移動機構は、前記受電側保持部を6軸方向に移動可能に構成されている請求項3記載の測定装置。   The measuring apparatus according to claim 3, wherein the moving mechanism is configured to be able to move the power receiving side holding portion in six axial directions. 非接触給電装置の評価に用いる被測定量を測定する測定装置であって、
前記非接触給電装置の供給側電極を保持する供給側保持部と、前記非接触給電装置の受電側電極を保持する受電側保持部と、前記供給側保持部および前記受電側保持部を移動させる移動機構と、前記供給側電極を介して供給する電力を出力する出力部と、前記供給側電極を介して電力が供給されている状態において前記被測定量を測定する測定部と、前記供給側保持部によって保持されている前記受電側電極の位置および姿勢の少なくとも一方並びに前記受電側保持部によって保持されている前記受電側電極の位置および姿勢の少なくとも一方を指定する指定操作が可能な操作部と、制御部とを備え、
前記制御部は、前記供給側電極の前記少なくとも一方および前記受電側電極の前記少なくとも一方がそれぞれ前記指定操作によって指定された前記指定状態となるように前記移動機構に前記供給側保持部および前記受電側保持部を移動させる移動処理を実行すると共に、前記供給側電極の前記少なくとも一方および前記受電側電極の前記少なくとも一方がそれぞれ前記指定状態となったときに前記測定部に前記被測定量を測定させる測定処理を実行する測定装置。
A measuring device for measuring a measured amount used for evaluation of a non-contact power feeding device,
A supply-side holding unit that holds a supply-side electrode of the non-contact power supply device, a power-receiving-side holding unit that holds a power-receiving-side electrode of the non-contact power supply device, and the supply-side holding unit and the power-receiving-side holding unit are moved. A moving mechanism; an output unit that outputs electric power supplied via the supply side electrode; a measurement unit that measures the measured amount in a state where electric power is supplied via the supply side electrode; and the supply side An operation unit capable of a designation operation for designating at least one of the position and posture of the power receiving side electrode held by the holding unit and at least one of the position and posture of the power receiving side electrode held by the power receiving side holding unit And a control unit,
The controller controls the moving mechanism so that the at least one of the supply side electrodes and the at least one of the power reception side electrodes are in the designated state designated by the designation operation, respectively. A movement process for moving the side holding portion is performed, and the measured amount is measured by the measuring portion when the at least one of the supply side electrode and the at least one of the power receiving side electrode are respectively in the designated state. A measurement device that executes measurement processing.
前記移動機構は、前記供給側保持部を6軸方向のうちのn軸方向(nは、1以上5以下の自然数)に移動可能でかつ前記受電側保持部を当該6軸のうちの前記n軸方向を除くm軸方向(mは、6−n)に移動可能に構成されている請求項5記載の測定装置。   The moving mechanism is capable of moving the supply side holding portion in an n-axis direction (n is a natural number of 1 or more and 5 or less) of six axis directions, and the power receiving side holding portion is the n of the six axes. The measuring apparatus according to claim 5, wherein the measuring apparatus is configured to be movable in an m-axis direction (m is 6-n) excluding the axial direction. 前記操作部は、前記少なくとも一方を時間経過に伴って連続的に変化させる前記指定操作が可能に構成され、
前記制御部は、前記移動処理において、前記指定操作による指定に応じて前記少なくとも一方を時間経過に伴って連続的に変化させると共に、前記測定処理において、前記少なくとも一方の連続的な変化に応じて前記被測定量を連続的に測定させる請求項1から6のいずれかに記載の測定装置。
The operation unit is configured to be capable of performing the designation operation for continuously changing the at least one with time.
In the movement process, the control unit continuously changes the at least one as time passes according to the designation by the designation operation, and in the measurement process, according to the at least one continuous change. The measuring apparatus according to claim 1, wherein the measured amount is continuously measured.
JP2015251061A 2015-12-24 2015-12-24 measuring device Active JP6425645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015251061A JP6425645B2 (en) 2015-12-24 2015-12-24 measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015251061A JP6425645B2 (en) 2015-12-24 2015-12-24 measuring device

Publications (2)

Publication Number Publication Date
JP2017118675A true JP2017118675A (en) 2017-06-29
JP6425645B2 JP6425645B2 (en) 2018-11-21

Family

ID=59232435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015251061A Active JP6425645B2 (en) 2015-12-24 2015-12-24 measuring device

Country Status (1)

Country Link
JP (1) JP6425645B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110658378A (en) * 2018-06-28 2020-01-07 日置电机株式会社 Measuring apparatus
KR20230016545A (en) * 2021-07-26 2023-02-02 경일대학교산학협력단 Wireless Power Supply Verification System

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109762A (en) * 2006-10-24 2008-05-08 Olympus Imaging Corp Power transmission device
JP2008283792A (en) * 2007-05-10 2008-11-20 Olympus Corp Radio power feeding system
JP2012120288A (en) * 2010-11-30 2012-06-21 Hitachi Ltd Impedance matching method of non-contact power supply device, and non-contact power supply device using same
US20140217966A1 (en) * 2011-06-28 2014-08-07 Jesse M. Schneider Alignment, Verification, and Optimization of High Power Wireless Charging Systems
JP2015084642A (en) * 2010-05-19 2015-04-30 クアルコム,インコーポレイテッド Apparatus and method for wireless power transfer, and apparatus for wirelessly receiving power in electric vehicle
JP2015136286A (en) * 2014-01-17 2015-07-27 本田技研工業株式会社 Method and device for arranging wireless charging coil
JP2015532084A (en) * 2012-08-24 2015-11-05 ドレイソン ワイヤレス リミテッドDrayson Wireless Limited Inductive power transmission system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109762A (en) * 2006-10-24 2008-05-08 Olympus Imaging Corp Power transmission device
JP2008283792A (en) * 2007-05-10 2008-11-20 Olympus Corp Radio power feeding system
JP2015084642A (en) * 2010-05-19 2015-04-30 クアルコム,インコーポレイテッド Apparatus and method for wireless power transfer, and apparatus for wirelessly receiving power in electric vehicle
JP2012120288A (en) * 2010-11-30 2012-06-21 Hitachi Ltd Impedance matching method of non-contact power supply device, and non-contact power supply device using same
US20140217966A1 (en) * 2011-06-28 2014-08-07 Jesse M. Schneider Alignment, Verification, and Optimization of High Power Wireless Charging Systems
JP2015532084A (en) * 2012-08-24 2015-11-05 ドレイソン ワイヤレス リミテッドDrayson Wireless Limited Inductive power transmission system
JP2015136286A (en) * 2014-01-17 2015-07-27 本田技研工業株式会社 Method and device for arranging wireless charging coil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110658378A (en) * 2018-06-28 2020-01-07 日置电机株式会社 Measuring apparatus
JP2020003323A (en) * 2018-06-28 2020-01-09 日置電機株式会社 measuring device
JP7218109B2 (en) 2018-06-28 2023-02-06 日置電機株式会社 measuring device
CN110658378B (en) * 2018-06-28 2023-06-02 日置电机株式会社 Measuring device
KR20230016545A (en) * 2021-07-26 2023-02-02 경일대학교산학협력단 Wireless Power Supply Verification System
KR102594311B1 (en) * 2021-07-26 2023-10-25 경일대학교산학협력단 Wireless Power Supply Verification System

Also Published As

Publication number Publication date
JP6425645B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
CN105965505A (en) Robot controlling method, robot apparatus, program and recording medium
CN108235696B (en) Robot control method and apparatus
US20120185092A1 (en) Robotic arm position controlling device and robotic arm having same
JP2006024845A (en) Probe card and inspecting method for magnetic sensor
JP2008275624A (en) Coordinate measuring method and device
CN105437230B (en) Industrial robot tool coordinates calibrating installation and method
JP2014128845A (en) Robot system display device
US20170066137A1 (en) Control device, robot, and robot system
JP2012171027A (en) Workpiece picking system
JP2019168419A (en) Three-dimensional measuring device
JP6425645B2 (en) measuring device
CN108458669A (en) A kind of circularity cylindricity measurement device
JP2006030200A (en) Freely orientational probe
JP2017201258A (en) Fatigue test method, and fatigue test device
JP6755746B2 (en) measuring device
JP4462564B2 (en) Communication characteristic measurement system
CN205219126U (en) Industrial robot instrument coordinate calibrating device
JP6234091B2 (en) Robot apparatus and teaching point setting method
JP6651352B2 (en) measuring device
JP2007057547A (en) Inspection method for magnetic sensor
JP6752641B2 (en) measuring device
JP2013175229A (en) Numerical control machine tool
JP5835740B2 (en) Coil taping equipment
JP2015085494A (en) Robot, control device, robot system and robot control method
JP7218109B2 (en) measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180426

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180426

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181023

R150 Certificate of patent or registration of utility model

Ref document number: 6425645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250