JP2017115243A - Stirring method of molten metal, stirring apparatus, desulfurization method and desulfurization apparatus - Google Patents

Stirring method of molten metal, stirring apparatus, desulfurization method and desulfurization apparatus Download PDF

Info

Publication number
JP2017115243A
JP2017115243A JP2016244582A JP2016244582A JP2017115243A JP 2017115243 A JP2017115243 A JP 2017115243A JP 2016244582 A JP2016244582 A JP 2016244582A JP 2016244582 A JP2016244582 A JP 2016244582A JP 2017115243 A JP2017115243 A JP 2017115243A
Authority
JP
Japan
Prior art keywords
molten metal
rotating shaft
stirring
rotating body
suction port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016244582A
Other languages
Japanese (ja)
Other versions
JP6489109B2 (en
Inventor
憲治 中瀬
Kenji Nakase
憲治 中瀬
中井 由枝
Yoshie Nakai
由枝 中井
菊池 直樹
Naoki Kikuchi
直樹 菊池
内田 祐一
Yuichi Uchida
祐一 内田
三木 祐司
Yuji Miki
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2017115243A publication Critical patent/JP2017115243A/en
Application granted granted Critical
Publication of JP6489109B2 publication Critical patent/JP6489109B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To stably enhance stirring ability for molten metal or to stably enhance reaction efficiency in desulfurization process by stably enhancing the stirring ability.SOLUTION: With a stirring apparatus (for example, a desulfurization apparatus 14) which comprises: a rotational axis 3 which is arranged in an extending manner in a height direction of a container 16 storing molten metal and is rotatably arranged on its axis in the height direction; and a rotator 7b which is connected coaxially with the rotational axis 3 on a lower edge or between the lower edge and upper edge in an extending direction of the rotational axis 3, is rotated due to rotation of the rotational axis 3, is communicated with a suction port 12 at an inner section, and comprises ejection ports 13a to 13h arranged more outside than the suction port 12 relatively to the rotational axis of the rotational axis 3 on its surface, the rotator 7b is immersed into the molten metal stored in the container 16 and the rotator 7b is rotated by rotation of the rotational axis 3 so as to stir the molten metal.SELECTED DRAWING: Figure 3

Description

本開示は、溶融金属の攪拌方法、攪拌装置、脱硫方法および脱硫装置に関する。   The present disclosure relates to a molten metal stirring method, a stirring device, a desulfurization method, and a desulfurization device.

近年、鋼の高付加価値化や鉄鋼材料の使用用途の拡大などに伴う材料特性向上の観点から、極低燐や極低硫といった高品質な鋼の要求が高まっている。これらの品質要求に対応するため、溶鋼を精錬処理する製鋼工程では、製造コストやスラグ発生量の増大を招くことなく、これらの品質要求に応じた鋼を溶製することが求められている。このため、製鋼工程の精錬処理では、脱燐剤や脱硫剤等の精錬剤と溶銑との反応効率を高めることが不可欠となっている。加えて、近年の鉄鋼需要の伸びに対応するためには、生産性の向上を図る必要があり、溶銑や溶鋼の精錬処理における反応速度の向上も重要となる。   In recent years, the demand for high-quality steel such as extremely low phosphorus and extremely low sulfur has been increased from the viewpoint of improving material properties accompanying the increase in added value of steel and the expansion of usage of steel materials. In order to meet these quality requirements, in the steelmaking process for refining molten steel, it is required to melt the steel according to these quality requirements without causing an increase in production cost and slag generation. For this reason, in the refining process of a steelmaking process, it is indispensable to raise the reaction efficiency of refining agents, such as a dephosphorizing agent and a desulfurizing agent, and hot metal. In addition, in order to respond to the recent increase in steel demand, it is necessary to improve productivity, and it is also important to improve the reaction rate in the refining treatment of hot metal and molten steel.

これらの要求に応える技術として、従来から、機械攪拌式脱硫装置を用いた溶銑の脱硫処理方法が広く実用化されている。この脱硫処理方法では、インペラ(「回転羽根」または「攪拌羽根」とも称する)を溶銑中に浸漬させて回転させ、溶銑と脱硫剤とを強攪拌する。これにより、安価なCaO(石灰)を主成分とする脱硫剤(以下、「CaO系脱硫剤」と記す)を使用しても、硫黄濃度が0.002〜0.004質量%の低硫黄濃度域まで、溶銑を短時間で脱硫処理することが可能である。   Conventionally, hot metal desulfurization processing methods using a mechanical stirring type desulfurization apparatus have been widely put into practical use as a technology that meets these requirements. In this desulfurization treatment method, an impeller (also referred to as “rotary blade” or “stirring blade”) is immersed in hot metal and rotated to strongly stir the hot metal and the desulfurizing agent. As a result, even if an inexpensive desulfurizing agent mainly composed of CaO (lime) (hereinafter referred to as “CaO-based desulfurizing agent”) is used, the sulfur concentration is low from 0.002 to 0.004 mass%. It is possible to desulfurize the hot metal in a short time to the region.

CaO系脱硫剤を用いた機械攪拌式脱硫装置における溶銑の脱硫処理では、溶銑湯面に添加された粉状または粒上のCaO系脱硫剤は、インペラの回転によって形成される溶銑の渦の中に巻き込まれる。これにより、CaO系脱硫剤と溶銑との接触界面積が大きくなり、CaO系脱硫剤の反応効率を高めることができる。この際、溶銑がインペラの回転によって攪拌され、溶銑中の硫黄が反応界面(脱硫剤表面)に順次供給されることによって、脱硫反応は進行する。また、通常、溶銑を収容する反応容器は、横断面が円形の鍋型であり、反応容器のほぼ中心にインペラが上方から挿入されている。   In the hot metal desulfurization treatment in the mechanical stirring type desulfurization equipment using the CaO-based desulfurizing agent, the powdered or granular CaO-based desulfurizing agent added to the surface of the molten iron is contained in the hot metal vortex formed by the rotation of the impeller. Get involved in. Thereby, the contact interface area of a CaO type | system | group desulfurization agent and hot metal becomes large, and the reaction efficiency of a CaO type | system | group desulfurization agent can be improved. At this time, the hot metal is stirred by the rotation of the impeller, and the sulfur in the hot metal is sequentially supplied to the reaction interface (desulfurization agent surface), whereby the desulfurization reaction proceeds. In general, the reaction container for containing the hot metal is a pan-shaped cross section, and an impeller is inserted from above at the substantial center of the reaction container.

しかし、近年における極低硫鋼に対する要求の高まりに対しては、上記従来技術だけでは対応することが難しくなってきている。そこで、機械攪拌式脱硫装置における溶銑の脱硫処理方法において、CaO系脱硫剤の反応効率を更に向上させ、且つ、処理時間をより短縮する技術として、インペラのスクリュー化やインペラの偏心挿入、反応容器への邪魔板設置などによって攪拌能力を向上させる技術が提案されている。   However, it has become difficult to respond to the recent increase in demand for ultra low-sulfur steel by the conventional technology alone. Therefore, as a technique for further improving the reaction efficiency of the CaO-based desulfurization agent and further shortening the processing time in the hot metal desulfurization processing method in the mechanical stirring desulfurization apparatus, the impeller is screwed, the impeller is eccentrically inserted, the reaction vessel Techniques have been proposed to improve the stirring ability by installing baffles on the screen.

例えば、特許文献1には、溶銑を収容した反応容器底部の内面形状が反応容器の中心軸に対して軸対称とはならないように、反応容器底部に施工する耐火物の厚みに変化を持たせる脱硫処理方法が提案されている。特許文献1に記載の脱硫処理方法によれば、インペラの回転によって形成される渦が偏心し、溶銑中へのCaO系脱硫剤の巻き込みが促進されることで攪拌能力が向上する。   For example, in Patent Document 1, the thickness of the refractory to be applied to the bottom of the reaction vessel is changed so that the inner surface shape of the bottom of the reaction vessel containing hot metal is not axially symmetric with respect to the central axis of the reaction vessel. A desulfurization method has been proposed. According to the desulfurization treatment method described in Patent Document 1, the vortex formed by the rotation of the impeller is decentered, and the stirring ability is improved by promoting the inclusion of the CaO-based desulfurization agent in the hot metal.

また、特許文献2には、インペラの挿入位置を反応容器の中心から偏心させることによって、インペラの回転により形成される渦を偏心させ、更に、形成された渦に専用ランスから粉状のCaO系脱硫剤を搬送用ガスとともに吹き付ける脱硫処理方法が提案されている。特許文献2に記載の脱硫処理方法によれば、渦が偏心することによって回転流に十分な強制的な乱れが発生するため、攪拌能力が向上し、CaO系脱硫剤による高い反応効率を実現することができる。   Further, in Patent Document 2, the vortex formed by the rotation of the impeller is decentered by decentering the insertion position of the impeller from the center of the reaction vessel, and further, the powdered CaO system from the dedicated lance to the formed vortex. A desulfurization treatment method in which a desulfurizing agent is sprayed together with a carrier gas has been proposed. According to the desulfurization processing method described in Patent Document 2, since the forced turbulence is generated in the rotating flow due to the eccentricity of the vortex, the stirring ability is improved and the high reaction efficiency by the CaO-based desulfurizing agent is realized. be able to.

特開2011−26696号公報JP 2011-26696 A 特開2011−42815号公報JP 2011-42815 A

しかし、特許文献1に記載の脱硫処理方法では、耐火物の高低差によって設けた反応容器底部の高低差が、耐火物の損耗によって小さくなるため、攪拌能力の向上効果を長期間に亘って維持できないという問題がある。特に、反応容器に冷鉄源を前装入する場合には、前装入される冷鉄源による底部耐火物の損耗が激しくなるため、この問題が顕著になる。   However, in the desulfurization treatment method described in Patent Document 1, the difference in height of the bottom of the reaction vessel provided by the difference in height of the refractory is reduced by the wear of the refractory, so that the effect of improving the stirring ability is maintained over a long period of time. There is a problem that you can not. In particular, when the cold iron source is pre-charged into the reaction vessel, this problem becomes significant because the wear of the bottom refractory due to the pre-charged cold iron source becomes severe.

また、特許文献2に提案される脱硫処理方法では、反応容器とインペラとの位置関係の調整が難しいため、安定した攪拌能力の向上効果が得られないという問題がある。インペラの挿入位置が目標からずれた場合には、脱硫効率が低下するため再度の脱硫処理が必要となる場合があり、溶銑温度の低下や生産性の低下を招くおそれがある。
本発明は上記の課題に鑑みてなされてものであり、溶融金属の攪拌能力を安定的に高めることができる溶融金属の攪拌方法および攪拌装置、または攪拌能力を安定的に高めることで脱硫処理における反応効率を安定的に高めることができる溶融金属の脱硫方法および脱硫装置を提供することを目的としている。
In addition, the desulfurization treatment method proposed in Patent Document 2 has a problem in that it is difficult to adjust the positional relationship between the reaction vessel and the impeller, so that a stable stirring ability cannot be improved. When the impeller insertion position deviates from the target, the desulfurization efficiency is lowered, so that a re-desulfurization process may be necessary, which may cause a reduction in hot metal temperature and a decrease in productivity.
The present invention has been made in view of the above-described problems, and in the desulfurization treatment by stably increasing the stirring method and stirring apparatus of the molten metal, or stably increasing the stirring ability of the molten metal. An object of the present invention is to provide a molten metal desulfurization method and a desulfurization apparatus capable of stably increasing the reaction efficiency.

本発明の一態様によれば、溶融金属を収容する容器の高さ方向に延在して配され、上記高さ方向の自身の軸を中心に回転可能に設けられる回転軸と、上記回転軸の延在する方向の下端または下端と上端との間に上記回転軸と同心に接続され、上記回転軸の回転によって回転し、吸入口と、上記吸入口と内部で連通し、上記回転軸が回転する軸に対して上記吸入口よりも外側に設けられる吐出口とを表面に有する回転体とを備える攪拌装置を用いて、上記容器に収容された溶融金属に上記回転体を浸漬させ、上記回転軸を回転することで上記回転体を回転させて上記溶融金属を攪拌することを特徴とする溶融金属の攪拌方法が提供される。   According to one aspect of the present invention, the rotating shaft is provided so as to extend in the height direction of the container containing the molten metal and is provided to be rotatable around its own axis in the height direction, and the rotating shaft. Is connected concentrically with the rotating shaft between the lower end or the lower end and the upper end in the direction in which the rotating shaft extends, rotates by rotation of the rotating shaft, communicates with the inside of the suction port and the suction port, The rotating body is immersed in the molten metal accommodated in the container by using a stirring device including a rotating body having a discharge port provided on the surface with respect to the rotating shaft on the surface of the discharge port. A molten metal stirring method is provided, wherein the molten metal is stirred by rotating the rotating body by rotating a rotating shaft.

本発明の一態様によれば、溶融金属を収容する容器の高さ方向に延在して配され、上記高さ方向の自身の軸を中心に回転可能に設けられる回転軸と、上記回転軸の延在する方向の下端または下端と上端との間に上記回転軸と同心に接続され、上記回転軸の回転によって回転し、吸入口と、上記吸入口と内部で連通し、上記回転軸が回転する軸に対して上記吸入口よりも外側に設けられる吐出口とを表面に有する回転体とを備えることを特徴とする溶融金属の攪拌装置が提供される。   According to one aspect of the present invention, the rotating shaft is provided so as to extend in the height direction of the container containing the molten metal and is provided to be rotatable around its own axis in the height direction, and the rotating shaft. Is connected concentrically with the rotating shaft between the lower end or the lower end and the upper end in the direction in which the rotating shaft extends, rotates by rotation of the rotating shaft, communicates with the inside of the suction port and the suction port, There is provided a molten metal stirring device comprising: a rotating body having a discharge port provided on an outer surface of the rotating shaft with respect to a rotating shaft.

本発明の一態様によれば、溶融金属を収容する容器の高さ方向に延在して配され、上記高さ方向の自身の軸を中心に回転可能に設けられる回転軸と、上記回転軸の延在する方向の下端または下端と上端との間に上記回転軸と同心に接続され、上記回転軸の回転によって回転し、吸入口と、上記吸入口と内部で連通し、上記回転軸が回転する軸に対して上記吸入口よりも外側に設けられる吐出口とを表面に有する回転体とを備える攪拌装置を用いて、上記容器に収容された溶融金属に上記回転体を浸漬させ、上記回転軸を回転することで上記回転体を回転させて上記溶融金属を攪拌し、上記攪拌装置を用いた上記溶融金属の攪拌中に、上記溶融金属にCaO系脱硫剤を投入することを特徴とする溶融金属の脱硫方法が提供される。   According to one aspect of the present invention, the rotating shaft is provided so as to extend in the height direction of the container containing the molten metal and is provided to be rotatable around its own axis in the height direction, and the rotating shaft. Is connected concentrically with the rotating shaft between the lower end or the lower end and the upper end in the direction in which the rotating shaft extends, rotates by rotation of the rotating shaft, communicates with the inside of the suction port and the suction port, The rotating body is immersed in the molten metal accommodated in the container by using a stirring device including a rotating body having a discharge port provided on the surface with respect to the rotating shaft on the surface of the discharge port. The rotating body is rotated by rotating a rotating shaft to stir the molten metal, and a CaO-based desulfurizing agent is added to the molten metal during the stirring of the molten metal using the stirring device. A method for desulfurizing molten metal is provided.

本発明の一態様によれば、溶融金属を収容する容器の高さ方向に延在して配され、上記高さ方向の自身の軸を中心に回転可能に設けられる回転軸と、上記回転軸の延在する方向の下端または下端と上端との間に上記回転軸と同心に接続され、上記回転軸の回転によって回転し、吸入口と、上記吸入口と内部で連通し、上記回転軸が回転する軸に対して上記吸入口よりも外側に設けられる吐出口とを表面に有する回転体と、上記容器に収容された上記溶融金属にCaO系脱硫剤を投入する投入手段とを備えることを特徴とする溶融金属の脱硫装置が提供される。   According to one aspect of the present invention, the rotating shaft is provided so as to extend in the height direction of the container containing the molten metal and is provided to be rotatable around its own axis in the height direction, and the rotating shaft. Is connected concentrically with the rotating shaft between the lower end or the lower end and the upper end in the direction in which the rotating shaft extends, rotates by rotation of the rotating shaft, communicates with the inside of the suction port and the suction port, A rotating body having a discharge port provided outside the suction port with respect to the rotating shaft, and a charging unit for charging a CaO-based desulfurizing agent into the molten metal accommodated in the container. A molten metal desulfurization apparatus is provided.

本発明の一態様によれば、溶融金属の攪拌能力を安定的に高めること、または攪拌能力を安定的に高めることで脱硫処理における反応効率を安定的に高めることができる。   According to one embodiment of the present invention, the reaction efficiency in the desulfurization treatment can be stably increased by stably increasing the stirring ability of the molten metal or by stably increasing the stirring ability.

水モデル実験における攪拌装置を示す模式図である。It is a schematic diagram which shows the stirring apparatus in a water model experiment. インペラを示す平面図および正面図である。It is the top view and front view which show an impeller. 回転体を示す平面図および正面図である。It is the top view and front view which show a rotary body. 図3のI−I線矢視図である。It is the II arrow directional view of FIG. 水モデル実験におけるトルクと均一混合時間との関係を示すグラフである。It is a graph which shows the relationship between the torque in a water model experiment, and uniform mixing time. 水モデル実験における吐出流量と浴径に対する凹み深さの比との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the dent depth with respect to the discharge flow rate and bath diameter in a water model experiment. 水モデル実験におけるa・d・n・N−0.62×H/Dと巻き込み個数との関係を示すグラフである。It is a graph showing the relationship between a 2 · d · n P · N-0.62 × H / D and winding number of the water model experiment. 本発明の一実施形態に係る脱硫装置を示す模式図である。It is a mimetic diagram showing a desulfurization device concerning one embodiment of the present invention. 回転体の変形例を示す断面図である。It is sectional drawing which shows the modification of a rotary body. 実施例におけるトルク比と脱硫率との関係を示すグラフである。It is a graph which shows the relationship between the torque ratio in an Example, and a desulfurization rate. 実施例におけるa・d・n・N−0.62×H/Dと脱硫率との関係を示すグラフである。Is a graph showing the relationship between a 2 · d · n P · N-0.62 × H / D and desulfurization rate in the embodiment.

以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の細部について記載される。しかしながら、かかる特定の細部がなくても1つ以上の実施態様が実施できることは明らかであろう。他にも、図面を簡潔にするために、周知の構造及び装置が略図で示されている。   In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of embodiments of the present invention. However, it will be apparent that one or more embodiments may be practiced without such specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.

<水モデル実験>
本発明者らは、機械攪拌式脱硫装置における溶銑の脱硫処理方法において、攪拌能力を高め、溶銑とCaO系脱硫剤との反応効率を高める方法について検討を重ねた結果、溶銑に浸漬させる攪拌部に、後述する吸入口と吐出口とを設けることにより、より多くのエネルギーを溶銑に与えられることを見出した。以下に検討内容の詳細を示す。
本発明者らは、図1〜図4に示す実機を模した攪拌装置1を用いて水モデル実験を行い、攪拌部の形状の違いによる攪拌挙動の違いを確認した。図1に示すように、攪拌装置1は、円筒容器2と、回転軸3と、回転用モータ4と、回転数制御盤5と、トルク計6と、攪拌部7とを備える。
<Water model experiment>
As a result of repeated investigations on the method of increasing the stirring capacity and increasing the reaction efficiency between hot metal and a CaO-based desulfurizing agent in the hot metal desulfurization treatment method in the mechanical stirring desulfurization apparatus, the present inventors have found that the stirring unit is immersed in hot metal. Further, it has been found that more energy can be given to the hot metal by providing a suction port and a discharge port, which will be described later. Details of the examination are shown below.
The present inventors conducted a water model experiment using the stirring apparatus 1 simulating an actual machine shown in FIGS. 1 to 4 and confirmed the difference in stirring behavior due to the difference in the shape of the stirring section. As shown in FIG. 1, the stirring device 1 includes a cylindrical container 2, a rotating shaft 3, a rotating motor 4, a rotation speed control panel 5, a torque meter 6, and a stirring unit 7.

円筒容器2は、有底筒状の容器であり、内部に溶銑を模した水8を収容する。円筒容器2の内面底部の直径は、350mmとした。回転軸3は、円筒容器2の高さ方向(図1の紙面に対する上下方向)に延在して配される棒状体である。回転用モータ4は、回転軸3の上端側に接続されるモータであり、接続される回転軸3を、回転軸3の軸心を中心に回転させる。回転数制御盤5は、回転用モータ4に電気的に接続される制御装置であり、回転用モータ4を制御することで回転軸3の回転数を制御する。トルク計6は、回転軸3の上端側に設けられ、回転する回転軸3のトルクを計測する。攪拌部7は、回転軸3の下端に、回転軸3と同心に接続され固定される。水モデル実験では、図2〜図4に示す形状の異なる2種類の攪拌部7a,7b(7)を用いた。   The cylindrical container 2 is a bottomed cylindrical container, and contains water 8 imitating hot metal inside. The diameter of the bottom of the inner surface of the cylindrical container 2 was 350 mm. The rotating shaft 3 is a rod-like body that extends in the height direction of the cylindrical container 2 (vertical direction with respect to the paper surface of FIG. 1). The rotation motor 4 is a motor connected to the upper end side of the rotary shaft 3, and rotates the connected rotary shaft 3 around the axis of the rotary shaft 3. The rotation speed control panel 5 is a control device that is electrically connected to the rotation motor 4 and controls the rotation speed of the rotary shaft 3 by controlling the rotation motor 4. The torque meter 6 is provided on the upper end side of the rotating shaft 3 and measures the torque of the rotating rotating shaft 3. The stirring unit 7 is connected and fixed to the lower end of the rotating shaft 3 concentrically with the rotating shaft 3. In the water model experiment, two types of stirring sections 7a and 7b (7) having different shapes as shown in FIGS.

図2に示す攪拌部7は、インペラ7aであり、機械攪拌式脱硫装置に一般的に用いられる形状を模したものとなる。インペラ7aは、回転軸3の下端と穴状の接続部9が接続されることで回転軸3に固定される。また、インペラ7aは、図2に示すように、回転軸3が延在する高さ方向に延び、且つ回転軸3から高さ方向に垂直な方向にそれぞれ突出する4枚の同形状の羽根10を有する。4枚の羽根10は、隣接する羽根10同士が直角に交わる。また、インペラ7aの寸法を、高さ方向の長さが50mm、対向する2枚の羽根10の高さ方向に垂直な方向おける一端から他端までの長さが100mmおよび羽根10の厚みが25mmとした。   The stirring unit 7 shown in FIG. 2 is an impeller 7a, and imitates a shape generally used in a mechanical stirring type desulfurization apparatus. The impeller 7 a is fixed to the rotating shaft 3 by connecting the lower end of the rotating shaft 3 and the hole-shaped connecting portion 9. Further, as shown in FIG. 2, the impeller 7 a includes four blades 10 having the same shape that extend in the height direction in which the rotation shaft 3 extends and project from the rotation shaft 3 in a direction perpendicular to the height direction. Have Four blades 10 are adjacent to each other at right angles. The impeller 7a has a length of 50 mm in the height direction, a length from one end to the other end in the direction perpendicular to the height direction of the two facing blades 10, and a thickness of the blade 10 of 25 mm. It was.

図3および図4に示す攪拌部7は、本発明の一実施形態における回転体7bである。回転体7bは、円柱状の形状を有し、高さ方向の上端となる上面中央にインペラ7a同様に回転軸3の下端と接続される穴状の接続部11が形成される。また、インペラ7aは、吸入口12と、8個の吐出口13a〜13hとを有する。吸入口12は、回転体7bの上面に、接続部11を中心に環状に形成される。さらに、回転体7bには、吸入口12から高さ方向に延在する溝が形成される。8個の吐出口13a〜13hは、回転体7bの上下端となる上下面の間の側面に、回転体7bの周方向に等間隔に並んで円形にそれぞれ形成される。また、8個の吐出口13a〜13hは、回転体7bの側面から接続部11に向かって伸び、吸入口12の溝に連通する。つまり、吸入口12と8個の吐出口13a〜13hとは、回転体7bの内部で連通する。また、回転体7bの寸法を、高さ方向の長さが30mm、高さ方向に垂直な直径の長さが120mmおよび8個の吐出口13a〜13hの断面における直径が20mmとした。   3 and 4 is a rotating body 7b according to an embodiment of the present invention. The rotating body 7b has a cylindrical shape, and a hole-like connecting portion 11 connected to the lower end of the rotating shaft 3 is formed at the center of the upper surface, which is the upper end in the height direction, like the impeller 7a. Further, the impeller 7a has a suction port 12 and eight discharge ports 13a to 13h. The suction port 12 is formed in an annular shape around the connection portion 11 on the upper surface of the rotating body 7b. Furthermore, a groove extending in the height direction from the suction port 12 is formed in the rotating body 7b. The eight discharge ports 13a to 13h are respectively formed in a circle on the side surface between the upper and lower surfaces, which are the upper and lower ends of the rotating body 7b, at equal intervals in the circumferential direction of the rotating body 7b. The eight discharge ports 13 a to 13 h extend from the side surface of the rotating body 7 b toward the connection portion 11 and communicate with the groove of the suction port 12. That is, the suction port 12 and the eight discharge ports 13a to 13h communicate with each other inside the rotating body 7b. The dimensions of the rotating body 7b were 30 mm in the height direction, 120 mm in length perpendicular to the height direction, and 20 mm in diameter in the cross section of the eight discharge ports 13a to 13h.

水モデル実験では、円筒容器2に収容された水8に攪拌部7を浸漬させ、水8の浴面に溶融金属の精錬剤を模した塩化ビニル製の直径2mmの球体を水8に浮かべておいた。なお、静止状態における円筒容器2の底から水8の浴面までの深さd1(mm)としたき、この深さd1における浴面から攪拌部7の上端までの浸漬深さh(mm)が100mmまたは200mmとなるように攪拌部7を浸漬させた。そして、回転数を50rpm〜400rpmに変化させながら回転軸3および攪拌部7を回転させることで水8を攪拌させた。この際、攪拌開始から15秒毎に5枚の写真を撮影し、水8の中に侵入している球体の個数を数え、5枚の写真における球体の個数の平均値を巻き込み個数とした。また、静止状態における深さd1から、撮影した写真から測定された攪拌時の浴面の中央部の深さd2(mm)を差し引いた渦の凹み深さH(mm)を算出した。さらに、トルク計6を用いて、攪拌中に回転用モータ4に掛かるトルクを測定した。   In the water model experiment, the stirring unit 7 is immersed in the water 8 accommodated in the cylindrical container 2, and a 2 mm diameter sphere made of vinyl chloride imitating a molten metal refining agent is floated on the water 8 on the surface of the water 8. Oita. The depth d1 (mm) from the bottom of the cylindrical container 2 to the bath surface of water 8 in a stationary state, and the immersion depth h (mm) from the bath surface to the upper end of the stirring unit 7 at this depth d1. The stirrer 7 was immersed so as to be 100 mm or 200 mm. And the water 8 was stirred by rotating the rotating shaft 3 and the stirring part 7 changing the rotation speed into 50 rpm-400 rpm. At this time, five photographs were taken every 15 seconds from the start of stirring, the number of spheres invading into the water 8 was counted, and the average number of spheres in the five photographs was taken as the number of entrainment. Further, from the depth d1 in a stationary state, a vortex recess depth H (mm) obtained by subtracting the depth d2 (mm) of the central portion of the bath surface during stirring measured from the photographed photo was calculated. Further, the torque applied to the rotation motor 4 during stirring was measured using a torque meter 6.

また、円筒容器2内の水8が均一に混ざるのに要する時間(以下、均一混合時間)を測定するため、円筒容器2の底部の内壁側に電気伝導度検出用セルを固定し、水8の浴面の電気伝導度検出用セルから直線距離で最も遠い場所に20%KCl溶液60mlを添加した。そして、KCl溶液の添加時点を測定開始とし、電気伝導度が平衡に到達した時点までの時間を均一混合時間として測定した。   Further, in order to measure the time required for the water 8 in the cylindrical container 2 to be uniformly mixed (hereinafter, uniform mixing time), an electric conductivity detection cell is fixed on the inner wall side of the bottom of the cylindrical container 2, and the water 8 60 ml of a 20% KCl solution was added to a place farthest away from the cell for detecting electric conductivity on the bath surface at a linear distance. Then, the measurement was started from the time when the KCl solution was added, and the time until the time when the electrical conductivity reached equilibrium was measured as the uniform mixing time.

図5に、攪拌部7が異なる2条件における、トルクと均一混合時間との関係を示す。図5に示すように、同一のトルクにおいては、回転体7bを用いた方が、均一混合時間が減少することを確認した。これは、回転体7b本体により物理的に押し出される力、あるいは回転体7bの表面の抵抗により水が攪拌される力に加え、回転体7bの内部に侵入した水に遠心力が働くことで、回転体7bの方がインペラ7aに比べ攪拌能力が向上していることを示す。また、同じ攪拌部7を用いた場合において、浸漬深さhが大きいほど均一混合が短いことが確認された。これは、攪拌部7が形成する水平方向の流れが浴壁に衝突して鉛直方向の流れに変わることで、攪拌部7よりも下側の水8を攪拌する際に、攪拌部7の浸漬深さが大きいほど容器底部の攪拌が改善されるためである。   FIG. 5 shows the relationship between torque and uniform mixing time under two conditions where the stirring unit 7 is different. As shown in FIG. 5, it was confirmed that the uniform mixing time was reduced when the rotating body 7b was used with the same torque. This is because, in addition to the force physically pushed out by the main body of the rotating body 7b or the force of stirring the water by the resistance of the surface of the rotating body 7b, centrifugal force acts on the water that has entered the inside of the rotating body 7b. It shows that the rotating body 7b has improved stirring ability compared to the impeller 7a. Moreover, when the same stirring part 7 was used, it was confirmed that uniform mixing is short, so that the immersion depth h is large. This is because the horizontal flow formed by the stirring unit 7 collides with the bath wall and changes to a vertical flow, so that when the water 8 below the stirring unit 7 is stirred, the stirring unit 7 is immersed. This is because the larger the depth, the better the stirring at the bottom of the container.

次に、回転体7bを用いた結果のなかでも、渦の凹み深さHが回転体7bの浸漬深さhよりも大きくなることで、巻き込み個数がより大きくなることを確認した。これは、渦の凹み深さHが大きくなることで、浴面に浮かぶ球体が吸入口12に吸い込まれ易くなり、さらに吐出口13a〜13hからの吐出流が浴面に近づくことで浴面での攪拌力が大きくなり、球体が水の中に巻き込まれ易くなるためである。   Next, among the results of using the rotating body 7b, it was confirmed that the number of entrainment was increased when the dent depth H of the vortex was larger than the immersion depth h of the rotating body 7b. This is because the vortex dent depth H increases, so that the sphere floating on the bath surface is easily sucked into the suction port 12, and the discharge flow from the discharge ports 13 a to 13 h approaches the bath surface. This is because the agitation force increases and the sphere is easily caught in water.

図6に、回転体7bを使った場合における、吐出流量と渦の凹み深さHとの関係を示す。なお、図6において、縦軸を円筒容器2の直径である浴の径で渦の凹み深さHを除した値とし、横軸を吐出流量Qとした。吐出流量Q(Nm/s)は、下記(1)式で算出される。(1)式において、aは吐出口13a〜13hの直径(mm)、nは吐出口13a〜13hの数(個)、ωは角速度(rad/s)、Nは回転軸3の回転数(rpm)をそれぞれ示す。 FIG. 6 shows the relationship between the discharge flow rate and the vortex recess depth H when the rotating body 7b is used. In FIG. 6, the vertical axis is a value obtained by dividing the vortex recess depth H by the bath diameter which is the diameter of the cylindrical container 2, and the horizontal axis is the discharge flow rate Q. The discharge flow rate Q (Nm 3 / s) is calculated by the following equation (1). In the formula (1), a is the diameter (mm) of the discharge ports 13a to 13h, n p is the number (pieces) of the discharge ports 13a to 13h, ω is the angular velocity (rad / s), and N is the number of rotations of the rotating shaft 3. (Rpm) is shown respectively.

Figure 2017115243
Figure 2017115243

図6より、回転体7bの形状から決まる吐出流量と渦の凹み深さHとは、下記(2)式で示される関係を有することが確認された。なお、(2)式において、dは回転体7bの直径(mm)、Hは渦の凹み深さ(mm)、Dは円筒容器2の直径(mm)をそれぞれ示す。   From FIG. 6, it was confirmed that the discharge flow rate determined from the shape of the rotating body 7 b and the vortex recess depth H have a relationship represented by the following equation (2). In the equation (2), d represents the diameter (mm) of the rotating body 7b, H represents the dent depth (mm), and D represents the diameter (mm) of the cylindrical container 2.

Figure 2017115243
Figure 2017115243

さらに、上述のように渦の凹み深さHを回転体7bの浸漬深さhよりも大きくすることで、攪拌能力をより向上させることができる。図7に、a・d・n・N−0.62×H/Dを横軸とし、球体巻き込み個数を縦軸に取ったグラフを示す。図7に示すように、横軸の値が0以上となる条件において球体巻き込み個数が増加することが確認された。すなわち、回転体7bの形状や攪拌条件等の各種条件について、下記(3)式を満たすようにすることで、渦の凹み深さHが浸漬深さhよりも大きくなり、より高い攪拌能力を得ることができることが確認された。 Furthermore, the stirrability can be further improved by making the dent depth H of the vortex larger than the immersion depth h of the rotating body 7b as described above. FIG. 7 shows a graph in which a 2 · d · n P · N−0.62 × H / D is taken as the horizontal axis and the number of spheres involved is taken as the vertical axis. As shown in FIG. 7, it was confirmed that the number of spheres involved increased under the condition that the value on the horizontal axis was 0 or more. That is, by satisfying the following formula (3) for various conditions such as the shape of the rotating body 7b and the stirring conditions, the dent depth H of the vortex becomes larger than the immersion depth h, and higher stirring ability is achieved. It was confirmed that it can be obtained.

Figure 2017115243
Figure 2017115243

<脱硫装置(攪拌装置)>
本発明は、上記の水モデル実験等の検討結果に基づいてなされたものであり、以下、本発明の一実施形態に係る溶融金属の脱硫装置14の構成について説明する。本実施形態に係る溶融金属の脱硫装置14は、溶融金属である溶銑15から硫黄成分を除去する精錬装置であり、溶銑15を攪拌させる攪拌装置でもある。脱硫装置14は、図7に示すように、回転軸3と、攪拌部7である回転体7bと、容器16と、台車17と、投入シュート18とを備える。
<Desulfurization equipment (stirring equipment)>
The present invention has been made based on the examination results of the water model experiment and the like. Hereinafter, the configuration of the molten metal desulfurization apparatus 14 according to an embodiment of the present invention will be described. The molten metal desulfurization apparatus 14 according to this embodiment is a refining apparatus that removes sulfur components from the molten metal 15 that is a molten metal, and is also a stirring apparatus that agitates the molten metal 15. As shown in FIG. 7, the desulfurization device 14 includes a rotating shaft 3, a rotating body 7 b that is a stirring unit 7, a container 16, a carriage 17, and a charging chute 18.

回転軸3および回転体7bは、図1〜図3に示す水モデル実験のものと寸法は異なるものの、同様な形状を有する部材である。つまり、回転軸3は、容器16の高さ方向に延在して配され、下端に回転体7bが接続される。また、回転体7bは、上面に設けられた吸入口12と、吸入口12に内部で連通する8個の吐出口13a〜13hとを有する。また、回転軸3および回転体7bは、表面には耐火物がライニングされる。   The rotating shaft 3 and the rotating body 7b are members having similar shapes, although the dimensions are different from those of the water model experiment shown in FIGS. That is, the rotating shaft 3 extends in the height direction of the container 16, and the rotating body 7b is connected to the lower end. The rotating body 7b includes a suction port 12 provided on the upper surface and eight discharge ports 13a to 13h communicating with the suction port 12 inside. The rotary shaft 3 and the rotating body 7b are lined with a refractory material on the surface.

容器16は、内面が耐火物でライニングされた鉄製の溶銑鍋等の容器である。投入シュート18は、先端が溶銑15の浴面上方に配され、不図示の原料ホッパーから切り出されるCaO系脱硫剤19や不図示の使用済み耐火物等の副原料を浴面へと上置き添加する投入手段である。使用済み耐火物は、予め破砕され、粒度調整された耐火物である。
さらに、脱硫装置14は、不図示の昇降装置や回転装置、集塵フード、排気ダクト、集塵器等の設備を有する。昇降装置は、回転軸3を高さ方向に昇降させる。回転装置は、回転軸3を回転軸3の長手方向の軸を中心に回転させることで、回転軸3および回転体7bを所定の回転数で回転させる。集塵フードは、容器16の上方に、容器16の高さ方向上端の開口部を覆って設けられる。集塵器は、処理中の排ガスやダストを、集塵フードを貫通して設けられた排気ダクトを介して吸引する。
The container 16 is a container such as an iron hot metal ladle whose inner surface is lined with a refractory. The charging chute 18 has a tip arranged above the bath surface of the hot metal 15 and is added with auxiliary materials such as a CaO-based desulfurizing agent 19 cut out from a raw material hopper (not shown) and used refractories (not shown) on the bath surface. This is the input means. A used refractory is a refractory that has been previously crushed and adjusted in particle size.
Furthermore, the desulfurization device 14 includes equipment such as an elevator (not shown), a rotation device, a dust collection hood, an exhaust duct, and a dust collector. The lifting device lifts and lowers the rotating shaft 3 in the height direction. The rotating device rotates the rotating shaft 3 and the rotating body 7b at a predetermined rotational speed by rotating the rotating shaft 3 about the longitudinal axis of the rotating shaft 3. The dust collection hood is provided above the container 16 so as to cover the opening at the upper end in the height direction of the container 16. The dust collector sucks the exhaust gas and dust being processed through an exhaust duct provided through the dust collection hood.

<脱硫方法(攪拌方法)>
上記構成の脱硫装置14では、以下の攪拌方法および脱硫方法を用いて溶銑15の脱硫処理が行われる。まず、溶銑15が収容された容器16が台車17に載せられる。次いで、容器16と回転軸3とが同心となる位置まで、台車17が移動する。さらに、昇降装置によって、回転体7bが所定の浸漬深さhとなるまで、回転軸3および回転体7bが降下し、溶銑15に浸漬する。その後、回転装置によって、回転軸3および回転体7bが回転することで、溶銑15が攪拌される。次いで、回転体7bによって攪拌されている溶銑15に、投入シュート18を介してCaO系脱硫剤19や使用済み耐火物等の副原料が投入される。さらに、回転体7bによる攪拌が所定時間行われることで、脱硫処理が完了する。
このような脱硫方法において、本実施形態では、回転体7bで溶銑15を攪拌する際に、攪拌能力を高めるため、(3)式を満たす条件で攪拌が行われることが好ましい。
<Desulfurization method (stirring method)>
In the desulfurization apparatus 14 having the above configuration, the hot metal 15 is desulfurized using the following stirring method and desulfurization method. First, the container 16 containing the hot metal 15 is placed on the carriage 17. Next, the carriage 17 moves to a position where the container 16 and the rotation shaft 3 are concentric. Furthermore, the rotating shaft 3 and the rotating body 7b are lowered and immersed in the hot metal 15 until the rotating body 7b reaches a predetermined immersion depth h by the lifting device. Thereafter, the rotating shaft 3 and the rotating body 7b are rotated by the rotating device, whereby the hot metal 15 is stirred. Next, auxiliary materials such as a CaO-based desulfurizing agent 19 and used refractory are charged into the hot metal 15 being stirred by the rotating body 7b through the charging chute 18. Furthermore, the desulfurization process is completed by stirring the rotating body 7b for a predetermined time.
In such a desulfurization method, in this embodiment, when the hot metal 15 is agitated by the rotating body 7b, it is preferable that the agitation is performed under conditions satisfying the expression (3) in order to increase the agitation ability.

<変形例>
以上で、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態の種々の変形例とともに本発明の別の実施形態も明らかである。従って、特許請求の範囲は、本発明の範囲及び要旨に含まれるこれらの変形例または実施形態も網羅すると解すべきである
<Modification>
Although the present invention has been described above with reference to specific embodiments, it is not intended that the present invention be limited by these descriptions. From the description of the invention, other embodiments of the invention will be apparent to persons skilled in the art, along with various variations of the disclosed embodiments. Therefore, it is to be understood that the claims encompass these modifications and embodiments that fall within the scope and spirit of the present invention.

例えば、上記実施形態では、図3に示す配置で、吸入口12および吐出口13a〜13hが円柱状の回転体7bに設けられるとしたが、本発明はかかる例に限定されない。回転体7bは、自身の回転動作によって、吸入口12から溶銑15が吸入され、吸入した溶銑15が吐出口13a〜13hから吐出される構成であれば、他の形状であってもよい。この場合、吐出口13a〜13hは、回転体7bが回転する軸に対して吸入口12よりも外側に配される必要がある。このため、例えば、図9に示すように、吸入口12が回転体7bの下面側に設けられる構成であってもよい。また、吸入口12および吐出口の数やその形状・寸法は、十分な攪拌能力および実用に耐え得る強度を有していれば、上記実施形態の例に限定されない。   For example, in the above embodiment, the suction port 12 and the discharge ports 13a to 13h are provided in the columnar rotating body 7b in the arrangement shown in FIG. 3, but the present invention is not limited to such an example. The rotator 7b may have another shape as long as the molten iron 15 is sucked from the suction port 12 and the sucked molten metal 15 is discharged from the discharge ports 13a to 13h by its own rotating operation. In this case, the discharge ports 13a to 13h need to be arranged outside the suction port 12 with respect to the axis around which the rotating body 7b rotates. Therefore, for example, as shown in FIG. 9, the suction port 12 may be provided on the lower surface side of the rotating body 7 b. Further, the number of suction ports 12 and the discharge ports, and the shapes and dimensions thereof are not limited to the above-described embodiment as long as they have sufficient stirring ability and strength that can withstand practical use.

また、上記実施形態では、溶融金属は溶銑15であるとしたが、本発明はかかる例に限定されない。例えば、脱硫処理を目的とする場合には、溶融金属は溶鋼であってもよい。さらに、攪拌を目的とする場合には、溶融金属は鉄以外の金属であってもよい。本発明によれば、他の金属であっても、攪拌能力を向上させることができるため、攪拌による反応促進や均一混合時間の短縮化などの効果を得ることができる。   In the above embodiment, the molten metal is the hot metal 15. However, the present invention is not limited to this example. For example, when the purpose is desulfurization treatment, the molten metal may be molten steel. Furthermore, when aiming at stirring, the molten metal may be a metal other than iron. According to the present invention, even if other metals are used, the stirring ability can be improved. Therefore, effects such as reaction promotion by stirring and shortening of uniform mixing time can be obtained.

さらに、上記実施形態では、脱硫処理を行う際にCaO系脱硫剤等の副原料を上添加するとしたが、本発明はかかる例に限定されない。例えば、CaO系脱硫剤等の副原料を投入する投入手段としては、搬送ガスと共に副原料を溶銑15に吹きつけることで、副原料を添加する投入装置が用いられてもよい。
さらに、上記実施形態では、回転体7bは、回転軸3の下端と穴状の接続部9とが接続されることで回転軸3に固定されるとしたが、本発明はかかる例に限定されない。例えば、回転体7bは、回転軸3の下端と上端との間に接続されることで回転軸3に固定されてもよい。この際、回転体7bは、孔状の接続部9を有し、回転軸3の下端側が回転体7bの下面から突出した状態で、回転軸3に固定されてもよい。
Furthermore, in the said embodiment, when performing desulfurization process, it was supposed that auxiliary materials, such as a CaO type | system | group desulfurization agent, were added, but this invention is not limited to this example. For example, as a charging means for charging a secondary raw material such as a CaO-based desulfurizing agent, a charging device for adding the secondary raw material by blowing the secondary raw material together with the carrier gas to the hot metal 15 may be used.
Furthermore, in the said embodiment, although the rotary body 7b was fixed to the rotating shaft 3 by connecting the lower end of the rotating shaft 3, and the hole-shaped connection part 9, this invention is not limited to this example. . For example, the rotating body 7 b may be fixed to the rotating shaft 3 by being connected between the lower end and the upper end of the rotating shaft 3. At this time, the rotating body 7b may have a hole-shaped connecting portion 9, and may be fixed to the rotating shaft 3 with the lower end side of the rotating shaft 3 protruding from the lower surface of the rotating body 7b.

<実施形態の効果>
(1)本発明の一態様に係る溶融金属の攪拌方法は、溶融金属を収容する容器16の高さ方向に延在して配され、高さ方向の自身の軸を中心に回転可能に設けられる回転軸3と、回転軸3の延在する方向の下端または下端と上端との間に回転軸3と同心に接続され、回転軸3の回転によって回転し、吸入口12と、吸入口12と内部で連通し、回転軸3が回転する軸に対して吸入口12よりも外側に設けられる吐出口13a〜13hとを表面に有する回転体7bとを備える攪拌装置(例えば、脱硫装置14)を用いて、容器16に収容された溶融金属に回転体7bを浸漬させ、回転軸3を回転することで回転体7bを回転させて溶融金属を攪拌する。
<Effect of embodiment>
(1) The molten metal stirring method according to one aspect of the present invention is arranged to extend in the height direction of the container 16 containing the molten metal, and is provided to be rotatable about its own axis in the height direction. The rotating shaft 3 is connected to the rotating shaft 3 concentrically between the rotating shaft 3 and the lower end or the lower end and the upper end in the extending direction of the rotating shaft 3, and is rotated by the rotation of the rotating shaft 3. And a rotating body 7b having discharge ports 13a to 13h provided outside the suction port 12 with respect to the axis around which the rotary shaft 3 rotates, and a stirring device (for example, a desulfurization device 14). The rotating body 7b is immersed in the molten metal accommodated in the container 16 and the rotating shaft 3 is rotated to rotate the rotating body 7b to stir the molten metal.

上記構成によれば、回転体7b本体により物理的に押し出される力、あるいは回転体7bの表面の抵抗により溶融金属が攪拌される力に加え、回転体7bの内部に侵入した溶融金属に遠心力が働く。これにより、溶融金属に浮かぶ副原料の溶融金属への巻き込み性の向上や、浴面近傍や浴内全体における攪拌強度の向上といった効果が得られるため、例えばインペラ形状の攪拌部7を用いる場合に比べ攪拌能力を高めることができる。   According to the above configuration, in addition to the force that is physically pushed out by the main body of the rotating body 7b or the force that the molten metal is stirred by the resistance of the surface of the rotating body 7b, the centrifugal force is applied to the molten metal that has entered the inside of the rotating body 7b. Work. As a result, the effect of improving the entrainment property of the auxiliary material floating in the molten metal into the molten metal and the improvement of the stirring strength in the vicinity of the bath surface or in the entire bath can be obtained. For example, when the impeller-shaped stirring unit 7 is used. Compared with this, the stirring ability can be increased.

また、上述のように、特許文献1に記載の方法では、反応容器の特殊な形状を用いるため、長期間に亘って攪拌能力を高めることが難しかった。さらに、特許文献1に記載の方法の場合、この問題を解決するために反応容器底部の高低差をより大きくすることが考えられるが、これにより床に施工される耐火物が厚くなり反応容器の収容能力が低下することが問題となる。一方、容器16自体に特殊な加工をする必要がないため、長期間に渡って攪拌能力を安定的に高めることができる。さらに、容器16の収容能力を低下させることなく、攪拌能力を高めることができる。
さらに、上記構成によれば、攪拌部7である回転体7bの挿入位置を偏心させなくても、攪拌能力を高めることができる。このため、特許文献2に記載の方法に比べ、容器16を精度よく設置する必要がなくなり、攪拌能力を安定的に高めることができる。
Further, as described above, in the method described in Patent Document 1, since a special shape of the reaction vessel is used, it is difficult to increase the stirring ability over a long period of time. Furthermore, in the case of the method described in Patent Document 1, it is conceivable to increase the difference in height of the bottom of the reaction vessel in order to solve this problem. The problem is that the capacity is reduced. On the other hand, since it is not necessary to specially process the container 16 itself, the stirring ability can be stably increased over a long period of time. Furthermore, the stirring ability can be increased without reducing the accommodation capacity of the container 16.
Furthermore, according to the said structure, even if it does not decenter the insertion position of the rotary body 7b which is the stirring part 7, stirring ability can be improved. For this reason, compared with the method described in Patent Document 2, it is not necessary to install the container 16 with high accuracy, and the stirring ability can be stably increased.

(2)上記(1)の構成において、吸入口12が高さ方向に対向する回転体7bの上面または下面に設けられ、吐出口13a〜13bが回転体の上面と下面との間の側面に設けられた攪拌装置を用いる。
上記構成によれば、簡易な構成で攪拌能力の向上効果を得ることができるようになる。また、吸入口12を回転体7bの上面に設ける構成においては、浴面近傍の溶融金属や浴面に浮かぶ副原料に対して、吸入口12へと向かう流れが生じるため、副原料の巻き込みの促進を図ることができる。
(3)上記(1)または(2)の構成において、攪拌装置を(3)式の条件で用いる。
上記構成によれば、溶融金属浴面の渦の凹み深さHを回転体7bの浸漬深さhよりも大きくすることができるようになるため、攪拌能力をより高めることができる。
(2) In the configuration of (1), the suction port 12 is provided on the upper surface or the lower surface of the rotating body 7b facing in the height direction, and the discharge ports 13a to 13b are provided on the side surface between the upper surface and the lower surface of the rotating body. Use the stirrer provided.
According to the said structure, the improvement effect of stirring ability can be acquired with a simple structure. Further, in the configuration in which the suction port 12 is provided on the upper surface of the rotator 7b, a flow toward the suction port 12 occurs with respect to the molten metal near the bath surface and the auxiliary material floating on the bath surface. Promotion can be aimed at.
(3) In the above configuration (1) or (2), the stirring device is used under the condition of the formula (3).
According to the above configuration, the vortex recess depth H of the molten metal bath surface can be made larger than the immersion depth h of the rotating body 7b, so that the stirring ability can be further increased.

(4)本発明の一態様に係る溶融金属の攪拌装置(例えば、脱硫装置14)は、溶融金属を収容する容器16の高さ方向に延在して配され、高さ方向の自身の軸を中心に回転可能に設けられる回転軸3と、回転軸3の延在する方向の下端または下端と上端との間に回転軸3と同心に接続され、回転軸3の回転によって回転し、吸入口12と、吸入口12と内部で連通し、回転軸3が回転する軸に対して吸入口12よりも外側に設けられる吐出口13a〜13hとを表面に有する回転体7bとを備える。
上記構成によれば、上記(1)の構成と同様な効果を得ることができる。
(4) The molten metal stirring device (for example, the desulfurization device 14) according to one aspect of the present invention is arranged extending in the height direction of the container 16 containing the molten metal, and has its own axis in the height direction. The rotary shaft 3 is provided so as to be rotatable around the rotary shaft 3 and is connected concentrically with the rotary shaft 3 between the lower end or the lower end and the upper end in the direction in which the rotary shaft 3 extends. And a rotary body 7b that communicates with the inside of the inlet 12 and the inside of the inlet 12 and has discharge ports 13a to 13h provided outside the inlet 12 with respect to the axis around which the rotary shaft 3 rotates.
According to the said structure, the effect similar to the structure of said (1) can be acquired.

(5)本発明の一態様に係る溶融金属の脱硫方法は、溶融金属を収容する容器16の高さ方向に延在して配され、高さ方向の自身の軸を中心に回転可能に設けられる回転軸3と、回転軸3の延在する方向の下端または下端と上端との間に回転軸3と同心に接続され、回転軸3の回転によって回転し、吸入口12と、吸入口12と内部で連通し、回転軸3が回転する軸に対して吸入口12よりも外側に設けられる吐出口13a〜13hとを表面に有する回転体7bとを備える攪拌装置(例えば、脱硫装置14)を用いて、容器16に収容された溶融金属に回転体7bを浸漬させ、回転軸3を回転することで回転体7bを回転させて溶融金属を攪拌し、攪拌装置を用いた溶融金属の攪拌中に、溶融金属にCaO系脱硫剤19を投入する。   (5) The molten metal desulfurization method according to one aspect of the present invention is arranged to extend in the height direction of the container 16 containing the molten metal, and is provided to be rotatable around its own axis in the height direction. The rotating shaft 3 is connected to the rotating shaft 3 concentrically between the rotating shaft 3 and the lower end or the lower end and the upper end in the extending direction of the rotating shaft 3, and is rotated by the rotation of the rotating shaft 3. And a rotating body 7b having discharge ports 13a to 13h provided outside the suction port 12 with respect to the axis around which the rotary shaft 3 rotates, and a stirring device (for example, a desulfurization device 14). The rotating body 7b is immersed in the molten metal accommodated in the container 16 and the rotating body 3 is rotated by rotating the rotating shaft 3 to stir the molten metal, and the molten metal is stirred using the stirring device. The CaO-based desulfurization agent 19 is put into the molten metal.

上記構成によれば、上記(1)の構成と同様な効果を得ることができる。また、この効果により、副原料であるCaO系脱硫剤19の溶融金属への巻き込み性を向上させることができるようになるため、脱硫反応効率を安定的に高めることができる。さらに、脱硫反応効率を安定的に高めることができるため、脱硫処理に掛かる時間を短縮することができるため、製鋼工程における生産性の向上を図ることができる。   According to the said structure, the effect similar to the structure of said (1) can be acquired. Further, this effect makes it possible to improve the entrainment property of the CaO-based desulfurization agent 19 as an auxiliary material into the molten metal, so that the desulfurization reaction efficiency can be stably increased. Furthermore, since the desulfurization reaction efficiency can be stably increased, the time required for the desulfurization treatment can be shortened, so that the productivity in the steelmaking process can be improved.

(6)上記(5)の構成において、攪拌装置を(3)式の条件で用いる。
上記構成によれば、溶融金属浴面の渦の凹み深さHを回転体7bの浸漬深さhよりも大きくすることができるようになるため、攪拌能力をより高めることができる。
(7)本発明の一態様に係る溶融金属の脱硫装置14は、溶融金属を収容する容器16の高さ方向に延在して配され、高さ方向の自身の軸を中心に回転可能に設けられる回転軸3と、回転軸3の延在する方向の下端に回転軸3と同心に接続され、回転軸3の回転によって回転し、吸入口12と、吸入口12と内部で連通し、回転軸3が回転する軸に対して吸入口12よりも外側に設けられる吐出口13a〜13hとを表面に有する回転体7bと、容器16に収容された溶融金属にCaO系脱硫剤19を投入する投入手段(例えば、投入シュート18)とを備える。
上記構成によれば、上記(5)と同様な効果を得ることができる。
(6) In the configuration of the above (5), the stirring device is used under the condition of the formula (3).
According to the above configuration, the vortex recess depth H of the molten metal bath surface can be made larger than the immersion depth h of the rotating body 7b, so that the stirring ability can be further increased.
(7) The molten metal desulfurization apparatus 14 according to one aspect of the present invention is arranged to extend in the height direction of the container 16 containing the molten metal, and is rotatable about its own axis in the height direction. A rotation shaft 3 provided, and a lower end in a direction in which the rotation shaft 3 extends is concentrically connected to the rotation shaft 3, and is rotated by the rotation of the rotation shaft 3, and communicates with the suction port 12 and the suction port 12. A rotating body 7b having discharge ports 13a to 13h provided on the surface outside the suction port 12 with respect to the shaft on which the rotating shaft 3 rotates, and a CaO-based desulfurizing agent 19 are introduced into the molten metal accommodated in the container 16 Charging means (for example, charging chute 18).
According to the said structure, the effect similar to said (5) can be acquired.

次に、本発明者らが行った実施例について説明する。実施例では、図7に示す上記実施形態に係る脱硫装置14を用いて、溶銑15の脱硫処理を行った。溶銑15およびCaO系脱硫剤の条件を、表1に示す。また、実施例では、上端に吸入口12が設けられた回転体7bとして、表2に示す、直径および吐出口の寸法および個数が異なる2種類の回転体Aおよび回転体Bを用いた。ここで、比較例として、従来の機械攪拌式溶銑脱硫プロセスで使用されるものと同様なインペラを用いた溶銑の脱硫処理も行った。インペラの寸法を表2に合わせて示す。さらに、実施例および比較例では、この攪拌部7の種類および回転数を40rpm〜140rpmに変化させた複数の条件で脱硫処理を行い、処理前後における溶銑15中の硫黄濃度の低下率を脱硫率として測定した。また、脱硫処理では、上記実施形態と同様に、攪拌されている溶銑15に対して、投入シュート18からCaO系脱硫剤19を上添加することで投入した。   Next, examples performed by the present inventors will be described. In the examples, the hot metal 15 was desulfurized using the desulfurization apparatus 14 according to the embodiment shown in FIG. Table 1 shows the conditions of the hot metal 15 and the CaO-based desulfurization agent. Further, in the example, as the rotator 7b having the suction port 12 at the upper end, two types of rotators A and Rotators B shown in Table 2 having different diameters and different sizes and numbers of discharge ports were used. Here, as a comparative example, a hot metal desulfurization treatment using an impeller similar to that used in a conventional mechanical stirring hot metal desulfurization process was also performed. The impeller dimensions are shown in Table 2. Further, in the examples and comparative examples, the desulfurization treatment is performed under a plurality of conditions in which the type and the rotation speed of the stirring unit 7 are changed from 40 rpm to 140 rpm, and the reduction rate of the sulfur concentration in the hot metal 15 before and after the treatment is determined as the desulfurization rate. As measured. Further, in the desulfurization treatment, as in the above-described embodiment, the CaO-based desulfurizing agent 19 was added from the charging chute 18 to the molten iron 15 being stirred.

Figure 2017115243
Figure 2017115243

Figure 2017115243
Figure 2017115243

表3に、実施例の各条件における回転体7bの種類、浸漬深さh、回転数、X値、トルク比および脱硫率を示す。ここで、X値は、a・d・n・N−0.62×H/Dで計算される値であり、トルク比は比較例4におけるトルクの値を1.00として規格化した時の値(測定されたトルクの値を比較例4のトルクの値で除した値)である。また、比較例のようなインペラによる凹み深さHの値は、下記(4)式で計算されることが知られている(永田、「攪拌機の選定」、別冊化学工業、化学工業社、1970年、第14巻、7号、p.64)。(4)式は、下記(5)式〜(6)式を用いて算出される。(4)式〜(6)式において、nは羽根枚数(枚)、bはインペラ高さ(m)、Reはレイノルズ数、ρは溶銑の密度(7000kg/mと仮定)、μは溶銑の粘度(0.0065Pa・sと仮定)をそれぞれ示す。 In Table 3, the kind of the rotary body 7b in each condition of an Example, immersion depth h, rotation speed, X value, torque ratio, and a desulfurization rate are shown. Here, the X value is a value calculated by a 2 · d · n P · N−0.62 × H / D, and the torque ratio is normalized by setting the torque value in Comparative Example 4 to 1.00. Time value (value obtained by dividing the measured torque value by the torque value of Comparative Example 4). Moreover, it is known that the value of the dent depth H by the impeller as in the comparative example is calculated by the following equation (4) (Nagata, “Selection of Stirrer”, separate chemical industry, chemical industry, 1970 Year, Vol. 14, No. 7, p. 64). The formula (4) is calculated using the following formulas (5) to (6). In equations (4) to (6), n B is the number of blades (sheets), b is the impeller height (m), Re is the Reynolds number, ρ is the hot metal density (assuming 7000 kg / m 3 ), and μ is The hot metal viscosity (assumed to be 0.0065 Pa · s) is shown.

Figure 2017115243
Figure 2017115243

Figure 2017115243
Figure 2017115243

実施例および比較例における、トルク比と脱硫率との関係を図10に示す。図10に示すように、同等の高さのインペラ7aに対して、同じトルクでは回転体7bの方が、脱硫率が高くなることが確認された。これは、前述したように、回転体7bにおいて攪拌力が強化される、均一混合時間が短くなったためだと考えられる。また、a・d・n・N−0.62×H/Dで示されるX値と脱硫率との関係を図11に示す。図11に示すように、X値が0以上、即ち(3)式を満たす条件において高い脱硫率が確認された。これは、(3)式を満たすことで、前述のように渦の凹みが回転体7bの浸漬深さよりも大きくなり、浴面上の脱硫剤が巻き込まれる量が多くなったためだと考えられる。 FIG. 10 shows the relationship between the torque ratio and the desulfurization rate in Examples and Comparative Examples. As shown in FIG. 10, it was confirmed that the desulfurization rate of the rotating body 7b was higher with the same torque than the impeller 7a having the same height. As described above, this is considered to be because the uniform mixing time is shortened because the stirring force is strengthened in the rotating body 7b. FIG. 11 shows the relationship between the X value indicated by a 2 · d · n P · N−0.62 × H / D and the desulfurization rate. As shown in FIG. 11, a high desulfurization rate was confirmed under the condition where the X value is 0 or more, that is, the condition satisfying the expression (3) is satisfied. This is considered to be because satisfying the expression (3), the vortex dent becomes larger than the immersion depth of the rotating body 7b as described above, and the amount of desulfurization agent on the bath surface is increased.

1 攪拌装置
2 円筒容器
3 回転軸
4 回転用モータ
5 回転数制御盤
6 トルク計
7 攪拌部
7a インペラ
7b 回転体
8 水
9 接続部
10 羽根
11 接続部
12 吸入口
13a〜13h 吐出口
14 脱硫装置
15 溶銑
16 容器
17 台車
18 投入シュート
19 CaO系脱硫剤
DESCRIPTION OF SYMBOLS 1 Stirring device 2 Cylindrical container 3 Rotating shaft 4 Motor for rotation 5 Rotation speed control panel 6 Torque meter 7 Stirring unit 7a Impeller 7b Rotating body 8 Water 9 Connection unit 10 Blade 11 Connection unit 12 Suction port 13a to 13h Discharge port 14 Desulfurization device 15 Hot metal 16 Container 17 Cart 18 Input chute 19 CaO-based desulfurization agent

Claims (7)

溶融金属を収容する容器の高さ方向に延在して配され、前記高さ方向の自身の軸を中心に回転可能に設けられる回転軸と、
前記回転軸の延在する方向の下端または下端と上端との間に前記回転軸と同心に接続され、前記回転軸の回転によって回転し、吸入口と、前記吸入口と内部で連通し、前記回転軸が回転する軸に対して前記吸入口よりも外側に設けられる吐出口とを表面に有する回転体と
を備える攪拌装置を用いて、
前記容器に収容された溶融金属に前記回転体を浸漬させ、前記回転軸を回転することで前記回転体を回転させて前記溶融金属を攪拌することを特徴とする溶融金属の攪拌方法。
A rotating shaft that extends in the height direction of the container containing the molten metal and is provided so as to be rotatable about its own axis in the height direction;
The rotating shaft extends concentrically with the rotating shaft between the lower end or the lower end and the upper end in the extending direction, and rotates by rotation of the rotating shaft, and communicates with the suction port and the suction port. Using a stirrer comprising: a rotating body having a discharge port provided on an outer surface of the suction port with respect to an axis on which a rotation shaft rotates;
A method for stirring molten metal, comprising: immersing the rotating body in a molten metal accommodated in the container; and rotating the rotating body to rotate the rotating body to stir the molten metal.
前記吸入口が前記高さ方向に対向する前記回転体の上面または下面に設けられ、前記吐出口が前記回転体の前記上面と前記下面との間の側面に設けられた前記攪拌装置を用いることを特徴とする請求項1に記載の溶融金属の攪拌方法。   The agitation device is provided in which the suction port is provided on an upper surface or a lower surface of the rotating body facing the height direction, and the discharge port is provided on a side surface between the upper surface and the lower surface of the rotating body. The method for stirring molten metal according to claim 1. 前記攪拌装置を(3)式の条件で用いることを特徴とする請求項1または2に記載の溶融金属の攪拌方法。
Figure 2017115243
a:吐出口の直径(m)
d:回転する軸に垂直な方向における回転体の直径(m)
p:吐出口の数(個)
N:回転軸の回転数(rpm)
h:回転体の浸漬深さ(m)
D:容器の直径(m)
3. The molten metal stirring method according to claim 1, wherein the stirring device is used under the condition of the formula (3).
Figure 2017115243
a: Diameter of discharge port (m)
d: Diameter of rotating body in the direction perpendicular to the axis of rotation (m)
n p : Number of discharge ports (pieces)
N: Number of rotations of the rotating shaft (rpm)
h: immersion depth of rotating body (m)
D: Diameter of container (m)
溶融金属を収容する容器の高さ方向に延在して配され、前記高さ方向の自身の軸を中心に回転可能に設けられる回転軸と、
前記回転軸の延在する方向の下端または下端と上端との間に前記回転軸と同心に接続され、前記回転軸の回転によって回転し、吸入口と、前記吸入口と内部で連通し、前記回転軸が回転する軸に対して前記吸入口よりも外側に設けられる吐出口とを表面に有する回転体と
を備えることを特徴とする溶融金属の攪拌装置。
A rotating shaft that extends in the height direction of the container containing the molten metal and is provided so as to be rotatable about its own axis in the height direction;
The rotating shaft extends concentrically with the rotating shaft between the lower end or the lower end and the upper end in the extending direction, and rotates by rotation of the rotating shaft, and communicates with the suction port and the suction port. A molten metal stirring device comprising: a rotating body having a discharge port provided on an outer surface of the suction port with respect to an axis on which a rotation shaft rotates.
溶融金属を収容する容器の高さ方向に延在して配され、前記高さ方向の自身の軸を中心に回転可能に設けられる回転軸と、
前記回転軸の延在する方向の下端または下端と上端との間に前記回転軸と同心に接続され、前記回転軸の回転によって回転し、吸入口と、前記吸入口と内部で連通し、前記回転軸が回転する軸に対して前記吸入口よりも外側に設けられる吐出口とを表面に有する回転体とを備える攪拌装置を用いて、
前記容器に収容された溶融金属に前記回転体を浸漬させ、前記回転軸を回転することで前記回転体を回転させて前記溶融金属を攪拌し、
前記攪拌装置を用いた前記溶融金属の攪拌中に、前記溶融金属にCaO系脱硫剤を投入することを特徴とする溶融金属の脱硫方法。
A rotating shaft that extends in the height direction of the container containing the molten metal and is provided so as to be rotatable about its own axis in the height direction;
The rotating shaft extends concentrically with the rotating shaft between the lower end or the lower end and the upper end in the extending direction, and rotates by rotation of the rotating shaft, and communicates with the suction port and the suction port. Using a stirrer comprising a rotating body having a discharge port provided on an outer surface of the suction port with respect to an axis around which the rotation shaft rotates,
The rotating body is immersed in the molten metal accommodated in the container, the rotating body is rotated by rotating the rotating shaft, and the molten metal is stirred.
A molten metal desulfurization method, wherein a CaO-based desulfurization agent is added to the molten metal during the stirring of the molten metal using the stirring device.
前記攪拌装置を(3)式の条件で用いることを特徴とする請求項5に記載の溶融金属の脱硫方法。
Figure 2017115243
a:吐出口の直径(m)
d:回転する軸に垂直な方向における回転体の直径(m)
p:吐出口の数(個)
N:回転軸の回転数(rpm)
h:回転体の浸漬深さ(m)
D:容器の直径(m)
6. The molten metal desulfurization method according to claim 5, wherein the stirring device is used under the condition of the expression (3).
Figure 2017115243
a: Diameter of discharge port (m)
d: Diameter of rotating body in the direction perpendicular to the axis of rotation (m)
n p : Number of discharge ports (pieces)
N: Number of rotations of the rotating shaft (rpm)
h: immersion depth of rotating body (m)
D: Diameter of container (m)
溶融金属を収容する容器の高さ方向に延在して配され、前記高さ方向の自身の軸を中心に回転可能に設けられる回転軸と、
前記回転軸の延在する方向の下端または下端と上端との間に前記回転軸と同心に接続され、前記回転軸の回転によって回転し、吸入口と、前記吸入口と内部で連通し、前記回転軸が回転する軸に対して前記吸入口よりも外側に設けられる吐出口とを表面に有する回転体と、
前記容器に収容された前記溶融金属にCaO系脱硫剤を投入する投入手段と
を備えることを特徴とする溶融金属の脱硫装置。
A rotating shaft that extends in the height direction of the container containing the molten metal and is provided so as to be rotatable about its own axis in the height direction;
The rotating shaft extends concentrically with the rotating shaft between the lower end or the lower end and the upper end in the extending direction, and rotates by rotation of the rotating shaft, and communicates with the suction port and the suction port. A rotating body having on its surface a discharge port provided outside the suction port with respect to an axis on which the rotation shaft rotates;
An apparatus for desulfurizing molten metal, comprising: charging means for charging a CaO-based desulfurizing agent into the molten metal accommodated in the container.
JP2016244582A 2015-12-21 2016-12-16 Molten metal stirring method, stirring device, desulfurization method and desulfurization device Expired - Fee Related JP6489109B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015248525 2015-12-21
JP2015248525 2015-12-21

Publications (2)

Publication Number Publication Date
JP2017115243A true JP2017115243A (en) 2017-06-29
JP6489109B2 JP6489109B2 (en) 2019-03-27

Family

ID=59231510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016244582A Expired - Fee Related JP6489109B2 (en) 2015-12-21 2016-12-16 Molten metal stirring method, stirring device, desulfurization method and desulfurization device

Country Status (1)

Country Link
JP (1) JP6489109B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084502U (en) * 1973-12-10 1975-07-19
JPS60216177A (en) * 1984-01-25 1985-10-29 オ−ダル オグ サンダル ベルク アクチ−セルスカペツト Method and device for heating molten metal
JPS60215720A (en) * 1984-01-25 1985-10-29 オ−ダル オグ サンダル ベルク アクチ−セルスカペツト Treatment of liquid
JPS61133332A (en) * 1984-11-29 1986-06-20 フオセコ・インターナシヨナル・リミテツド Rotary mechanism, apparatus and method for treating molten metal
JPS62109909A (en) * 1985-11-08 1987-05-21 Kawasaki Steel Corp Powerful stirring and refining method for molten metal
JP2007204843A (en) * 2006-02-06 2007-08-16 Kobe Steel Ltd Nozzle device for blowing gas, and gas-blowing facility provided with the same
JP2011042815A (en) * 2009-08-19 2011-03-03 Jfe Steel Corp Method for desulfurizing molten iron
US20130228045A1 (en) * 2010-09-16 2013-09-05 Brunel University Apparatus and method for liquid metals treatment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084502U (en) * 1973-12-10 1975-07-19
JPS60216177A (en) * 1984-01-25 1985-10-29 オ−ダル オグ サンダル ベルク アクチ−セルスカペツト Method and device for heating molten metal
JPS60215720A (en) * 1984-01-25 1985-10-29 オ−ダル オグ サンダル ベルク アクチ−セルスカペツト Treatment of liquid
JPS61133332A (en) * 1984-11-29 1986-06-20 フオセコ・インターナシヨナル・リミテツド Rotary mechanism, apparatus and method for treating molten metal
JPS62109909A (en) * 1985-11-08 1987-05-21 Kawasaki Steel Corp Powerful stirring and refining method for molten metal
JP2007204843A (en) * 2006-02-06 2007-08-16 Kobe Steel Ltd Nozzle device for blowing gas, and gas-blowing facility provided with the same
JP2011042815A (en) * 2009-08-19 2011-03-03 Jfe Steel Corp Method for desulfurizing molten iron
US20130228045A1 (en) * 2010-09-16 2013-09-05 Brunel University Apparatus and method for liquid metals treatment

Also Published As

Publication number Publication date
JP6489109B2 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
CN108588318B (en) Molten iron mechanical stirring efficient low-consume sulfur method
JP5862738B2 (en) Refining vessel for hot metal desulfurization treatment
JP5252670B2 (en) Molten metal stirring impeller and molten metal stirring apparatus including the impeller
JP2007262501A (en) Method for stirring molten metal using impeller
JP5418058B2 (en) Hot metal desulfurization method
JP6489109B2 (en) Molten metal stirring method, stirring device, desulfurization method and desulfurization device
CN206746541U (en) A kind of chemical reaction kettle exchanged beneficial to levels material
JP2009127111A (en) Method for desulfurizing molten iron
JP2005290434A (en) Method for desulfurizing molten pig iron
JP2014177674A (en) Agitator for refinery and method of refining molten iron
JP2010116612A (en) Method for desulfurizing molten iron
CN102703636B (en) Continuous refining method and continuous refining facility
JP2001262212A (en) Method for desulfurizing molten iron and desulfurizing device
JP2014037568A (en) Hot pig iron preliminary processing method and agitation body for hot pig iron preliminary processing
CN202770248U (en) Molted iron stirrer
JP5999054B2 (en) Hot metal desulfurization treatment method
TW201632630A (en) Desulfurizing method of molten iron and desulfurizing device of molten iron
JPWO2014013707A1 (en) Hot metal pretreatment method and stirring body for hot metal pretreatment
JP2003147423A (en) Method and apparatus for refining molten metal in vessel
JP6238019B2 (en) Hot metal desulfurization method with less recuperation
JP5949637B2 (en) Method for preventing hot metal after desulphurization
JP2023133926A (en) Stirring blade and desulfurization method of hot metal
JP6445557B2 (en) Method and apparatus for refining molten metal
JP2009221559A (en) Impeller for mechanical-stirring type desulfurizing apparatus
JP5078318B2 (en) Continuous refining method of blast furnace cast floor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190211

R150 Certificate of patent or registration of utility model

Ref document number: 6489109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees