JP2017112313A - Ultraviolet light-emitting device and method of manufacturing ultraviolet light-emitting device - Google Patents

Ultraviolet light-emitting device and method of manufacturing ultraviolet light-emitting device Download PDF

Info

Publication number
JP2017112313A
JP2017112313A JP2015247478A JP2015247478A JP2017112313A JP 2017112313 A JP2017112313 A JP 2017112313A JP 2015247478 A JP2015247478 A JP 2015247478A JP 2015247478 A JP2015247478 A JP 2015247478A JP 2017112313 A JP2017112313 A JP 2017112313A
Authority
JP
Japan
Prior art keywords
semiconductor layer
type nitride
nitride semiconductor
light emitting
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015247478A
Other languages
Japanese (ja)
Inventor
好人 萩原
Yoshihito Hagiwara
好人 萩原
朋浩 森下
Tomohiro Morishita
朋浩 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2015247478A priority Critical patent/JP2017112313A/en
Publication of JP2017112313A publication Critical patent/JP2017112313A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an ultraviolet light-emitting device capable of reducing contact resistance between an n-type nitride semiconductor layer and a first electrode part, and a method of manufacturing the same.SOLUTION: The ultraviolet light-emitting device includes: an n-type nitride semiconductor layer 20; a first electrode part 30 containing Ti, Al, Ni and Au as constituent elements, having an AlNi alloy part, and provided on the n-type nitride semiconductor layer 20; a p-type nitride semiconductor layer 50; and a light-emitting layer 40 positioned between the n-type nitride semiconductor layer 20 and the p-type nitride semiconductor layer 50. When a portion including the AlNi alloy part of the first electrode part 30 is viewed cross-sectionally, the average distance between the n-type nitride semiconductor layer 20 and the AlNi alloy part is 20 nm or more.SELECTED DRAWING: Figure 1

Description

本発明は、紫外光発光装置、紫外光発光装置の製造方法に関する。   The present invention relates to an ultraviolet light emitting device and a method for manufacturing the ultraviolet light emitting device.

紫外光発光素子は、小型、低消費電力の特徴を生かして様々な分野で応用されている。特許文献1に開示されている通り、一般に紫外光発光装置は、n型窒化物半導体層と、発光層と、p型窒化物半導体層とを有する積層部、を備える。この紫外光発光装置は、n型窒化物半導体層上の一方の電極部と、p型窒化物半導体層上の他方の電極部とを介して供給された電力によって発光層から紫外光が発光される。   Ultraviolet light emitting devices are applied in various fields by taking advantage of their small size and low power consumption. As disclosed in Patent Document 1, generally, an ultraviolet light emitting device includes an n-type nitride semiconductor layer, a light emitting layer, and a stacked portion having a p-type nitride semiconductor layer. In this ultraviolet light emitting device, ultraviolet light is emitted from the light emitting layer by electric power supplied via one electrode portion on the n-type nitride semiconductor layer and the other electrode portion on the p-type nitride semiconductor layer. The

国際公開2012/144046号パンフレットInternational Publication 2012/144046 Pamphlet 特開2015−43468号公報JP 2015-43468 A

順方向電圧Vfを低減させて、さらなる低消費電力化を図る観点から、積層部とその上の電極部との間のコンタクト抵抗を低減させることは重要である。しかし、従来の紫外光発光装置においてはコンタクト抵抗の低減は十分ではない。特に、n型窒化物半導体層とその上の電極部との間のコンタクト抵抗については、ほとんど着目されていないのが実情である。例えば、特許文献1には、Ti/Al/Ti/Auの4層金属層を、順に20nm/100nm/50nm/100nmの膜厚で蒸着し、RTA(瞬間熱アニール)等により熱処理を加えて、n型窒化物半導体層上にn電極を形成する方法が開示されている。特許文献2には、Tl/Al/Ti/Auの4層金属層を、順に20nm/100nm/20nm/200nmの膜厚で蒸着し、RTA処理(900℃、1分)による熱処理を加えて、n電極を形成する方法が開示されている。   From the viewpoint of further reducing power consumption by reducing the forward voltage Vf, it is important to reduce the contact resistance between the stacked portion and the electrode portion thereon. However, in the conventional ultraviolet light emitting device, the contact resistance is not sufficiently reduced. In particular, the fact is that little attention has been paid to the contact resistance between the n-type nitride semiconductor layer and the electrode portion thereon. For example, in Patent Document 1, a four-layer metal layer of Ti / Al / Ti / Au is sequentially deposited with a film thickness of 20 nm / 100 nm / 50 nm / 100 nm, and heat treatment is applied by RTA (instantaneous thermal annealing) or the like, A method for forming an n-electrode on an n-type nitride semiconductor layer is disclosed. In Patent Document 2, a four-layer metal layer of Tl / Al / Ti / Au is sequentially deposited with a film thickness of 20 nm / 100 nm / 20 nm / 200 nm, and a heat treatment by RTA treatment (900 ° C., 1 minute) is added, A method for forming an n-electrode is disclosed.

しかし、後述の参考例からもわかるとおり、この方法で得られた紫外光発光装置のn型窒化物半導体層とn電極とのコンタクト抵抗は、十分に低いものとは言えない。
そこで、本発明は、このような事情に鑑みてなされたものであって、n型窒化物半導体層と第1電極部との間のコンタクト抵抗を低減可能な紫外光発光装置およびその製造方法を提供することを目的とする。
However, as can be seen from the reference examples described later, it cannot be said that the contact resistance between the n-type nitride semiconductor layer and the n electrode of the ultraviolet light emitting device obtained by this method is sufficiently low.
Therefore, the present invention has been made in view of such circumstances, and an ultraviolet light emitting device capable of reducing the contact resistance between the n-type nitride semiconductor layer and the first electrode portion, and a method for manufacturing the same. The purpose is to provide.

本発明の一態様に係る紫外光発光装置は、n型窒化物半導体層と、Ti,Al,Ni,Auを構成元素として含み、AlNi合金部を有し、前記n型窒化物半導体層上に設けられた第1電極部と、p型窒化物半導体層と、前記n型窒化物半導体層と前記p型窒化物半導体層との間に位置する発光層と、を備え、前記第1電極部の前記AlNi合金部を含む部位を断面視したときに、前記n型窒化物半導体層と前記AlNi合金部との平均距離は20nm以上であることを特徴とする。   An ultraviolet light emitting device according to an aspect of the present invention includes an n-type nitride semiconductor layer, Ti, Al, Ni, and Au as constituent elements, an AlNi alloy portion, and on the n-type nitride semiconductor layer. A first electrode portion provided; a p-type nitride semiconductor layer; and a light-emitting layer positioned between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer, the first electrode portion When the portion including the AlNi alloy part is viewed in cross section, an average distance between the n-type nitride semiconductor layer and the AlNi alloy part is 20 nm or more.

本発明の別の態様に係る紫外光発光装置は、n型窒化物半導体層と、Ti,Al,Ni,Auを構成元素として含み、AlNi合金部を有し、前記n型窒化物半導体層上に設けられた第1電極部と、p型窒化物半導体層と、前記n型窒化物半導体層と前記p型窒化物半導体層との間に設けられた発光層と、を備え、前記第1電極部の前記AlNi合金部を含む部位を断面視したときに、前記AlNi合金部間の平均間隔は100nm以上2500nm以下であることを特徴とする。   An ultraviolet light emitting device according to another aspect of the present invention includes an n-type nitride semiconductor layer, Ti, Al, Ni, and Au as constituent elements, an AlNi alloy portion, and on the n-type nitride semiconductor layer. A first electrode portion provided on the first electrode portion; a p-type nitride semiconductor layer; and a light emitting layer provided between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer. An average interval between the AlNi alloy parts is 100 nm or more and 2500 nm or less when a portion of the electrode part including the AlNi alloy part is viewed in cross section.

本発明の一態様に係る紫外光発光装置の製造方法は、n型窒化物半導体層と、p型窒化物半導体層と、前記n型窒化物半導体層と前記p型窒化物半導体層との間に位置する発光層とを備える半導体ウエハの前記n型窒化物半導体層上に、Tiを5nm以上40nm以下の厚さに形成し、前記Ti上にAlを160nm以上270nm以下の厚さに形成し、前記Al上にNiを5nm以上50nm以下の厚さに形成し、前記Ni上にAuを40nm以上100nm以下の厚さに形成する堆積工程と、前記堆積工程の後で、熱処理するアニール工程と、を備えることを特徴とする。   The manufacturing method of the ultraviolet light-emitting device which concerns on 1 aspect of this invention WHEREIN: Between an n-type nitride semiconductor layer, a p-type nitride semiconductor layer, the said n-type nitride semiconductor layer, and the said p-type nitride semiconductor layer Ti is formed to a thickness of 5 nm or more and 40 nm or less on the n-type nitride semiconductor layer of the semiconductor wafer including a light emitting layer positioned on the substrate, and Al is formed to a thickness of 160 nm or more and 270 nm or less on the Ti. A deposition step of forming Ni on the Al to a thickness of 5 nm to 50 nm and forming Au on the Ni to a thickness of 40 nm to 100 nm; and an annealing step for heat treatment after the deposition step; It is characterized by providing.

本発明の別の態様に係る紫外光発光装置の製造方法は、n型窒化物半導体層と、p型窒化物半導体層と、前記n型窒化物半導体層と前記p型窒化物半導体層との間に位置する発光層とを備える半導体ウエハの前記n型窒化物半導体層上に、Tiを5nm以上40nm以下の厚さに形成し、前記Ti上にAlを形成し、前記Al上にNiを形成し、前記Ni上にAuを40nm以上100nm以下の厚さに形成する堆積工程と、前記堆積工程の後で、熱処理するアニール工程と、を備え、前記堆積工程では、前記Alと前記Niの膜厚比(Al膜厚/Ni膜厚)が5以上9.4以下を満たすように前記Alと前記Niをそれぞれ形成することを特徴とする。   An ultraviolet light emitting device manufacturing method according to another aspect of the present invention includes an n-type nitride semiconductor layer, a p-type nitride semiconductor layer, the n-type nitride semiconductor layer, and the p-type nitride semiconductor layer. Ti is formed to a thickness of 5 nm to 40 nm on the n-type nitride semiconductor layer of the semiconductor wafer having a light emitting layer positioned therebetween, Al is formed on the Ti, and Ni is formed on the Al. A deposition step of forming Au on the Ni to a thickness of 40 nm or more and 100 nm or less, and an annealing step of performing a heat treatment after the deposition step. In the deposition step, the Al and Ni The Al and the Ni are formed so that the film thickness ratio (Al film thickness / Ni film thickness) satisfies 5 or more and 9.4 or less.

本発明のさらに別の態様に係る紫外光発光装置の製造方法は、n型窒化物半導体層と、p型窒化物半導体層と、前記n型窒化物半導体層と前記p型窒化物半導体層との間に位置する発光層とを備える半導体ウエハの前記n型窒化物半導体層上に、Tiを5nm以上40nm以下の厚さに形成し、前記Ti上にAlを形成し、前記Al上にNiを5nm以上50nm以下の厚さに形成し、前記Ni上にAuを形成する堆積工程と、前記堆積工程の後で、熱処理するアニール工程と、を備え、前記堆積工程では、前記Alと前記Auの膜厚比(Al膜厚/Au膜厚)が2.8以上5以下を満たすように前記Alと前記Auをそれぞれ形成することを特徴とする。
なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
An ultraviolet light emitting device manufacturing method according to yet another aspect of the present invention includes an n-type nitride semiconductor layer, a p-type nitride semiconductor layer, the n-type nitride semiconductor layer, and the p-type nitride semiconductor layer. Ti is formed to a thickness of 5 nm or more and 40 nm or less on the n-type nitride semiconductor layer of the semiconductor wafer including a light emitting layer positioned between the layers, Al is formed on the Ti, and Ni is formed on the Al. Is deposited to a thickness of 5 nm to 50 nm and Au is formed on the Ni, and an annealing process is performed after the deposition process, and in the deposition process, the Al and Au The Al and the Au are formed so that the film thickness ratio (Al film thickness / Au film thickness) satisfies 2.8 or more and 5 or less.
The summary of the invention does not enumerate all the features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.

本発明の一態様によれば、n型窒化物半導体層と第1電極部との間のコンタクト抵抗を低減可能な紫外光発光装置およびその製造方法を提供することができる。   According to one embodiment of the present invention, it is possible to provide an ultraviolet light emitting device capable of reducing contact resistance between an n-type nitride semiconductor layer and a first electrode portion, and a method for manufacturing the same.

本発明の実施形態に係る紫外光発光装置100の構成例を模式的に示す断面図である。It is sectional drawing which shows typically the structural example of the ultraviolet-light-emitting device 100 which concerns on embodiment of this invention. 第1電極部の断面TEM画像である。It is a cross-sectional TEM image of a 1st electrode part. 図2の面分析結果に基づいて各構成元素を示した断面TEM画像である。3 is a cross-sectional TEM image showing each constituent element based on the surface analysis result of FIG. 2. 実施例1で得られた第1電極部の断面TEM画像である。2 is a cross-sectional TEM image of a first electrode portion obtained in Example 1. FIG. 実施例1で得られた第1電極部の断面TEM画像である。2 is a cross-sectional TEM image of a first electrode portion obtained in Example 1. FIG. 実施例1で得られた第1電極部の断面TEM画像である。2 is a cross-sectional TEM image of a first electrode portion obtained in Example 1. FIG. 実施例2で得られた第1電極部の断面TEMである。4 is a cross-sectional TEM of a first electrode portion obtained in Example 2. 実施例2で得られた第1電極部の断面TEMである。4 is a cross-sectional TEM of a first electrode portion obtained in Example 2. 実施例2で得られた第1電極部の断面TEMである。4 is a cross-sectional TEM of a first electrode portion obtained in Example 2. 参考例1で得られた第1電極部の断面TEM画像である。2 is a cross-sectional TEM image of a first electrode portion obtained in Reference Example 1. 参考例1で得られた第1電極部の断面TEM画像である。2 is a cross-sectional TEM image of a first electrode portion obtained in Reference Example 1. 参考例1で得られた第1電極部の断面TEM画像である。2 is a cross-sectional TEM image of a first electrode portion obtained in Reference Example 1. 参考例2で得られた第1電極部の断面TEM画像である。6 is a cross-sectional TEM image of a first electrode portion obtained in Reference Example 2. 図13の面分析結果に基づいて各構成元素を示した断面TEM画像である。14 is a cross-sectional TEM image showing each constituent element based on the surface analysis result of FIG. 13.

以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.

<紫外光発光装置>
図1は、本発明の実施形態に係る紫外光発光装置100の構成例を模式的に示す断面図である。図1に示すように、紫外光発光装置100は、n型窒化物半導体層20と、n型窒化物半導体層20上に設けられた第1電極部30と、p型窒化物半導体層50と、n型窒化物半導体層20とp型窒化物半導体層50との間に位置する発光層40と、を備える。第1電極部30は、Ti,Al,Ni,Auを構成元素として含み、AlNi合金部を有する。
この紫外光発光装置100では、後で図4を参照しながら説明するように、第1電極部30のAlNi合金部を含む部位を断面視したときに、n型窒化物半導体層20とAlNi合金部との平均距離は20nm以上である。
また、この紫外光発光装置100では、後で図5を参照しながら説明するように、第1電極部30のAlNi合金部を含む部位を断面視したときに、AlNi合金部間の平均間隔は100nm以上2500nm以下である。
<Ultraviolet light emitting device>
FIG. 1 is a cross-sectional view schematically showing a configuration example of an ultraviolet light emitting device 100 according to an embodiment of the present invention. As shown in FIG. 1, the ultraviolet light emitting device 100 includes an n-type nitride semiconductor layer 20, a first electrode unit 30 provided on the n-type nitride semiconductor layer 20, a p-type nitride semiconductor layer 50, and A light emitting layer 40 located between the n-type nitride semiconductor layer 20 and the p-type nitride semiconductor layer 50. The first electrode unit 30 includes Ti, Al, Ni, and Au as constituent elements and has an AlNi alloy part.
In the ultraviolet light emitting device 100, as will be described later with reference to FIG. 4, the n-type nitride semiconductor layer 20 and the AlNi alloy when the portion including the AlNi alloy portion of the first electrode portion 30 is viewed in cross section. The average distance from the part is 20 nm or more.
Further, in this ultraviolet light emitting device 100, as will be described later with reference to FIG. 5, when the part including the AlNi alloy part of the first electrode part 30 is viewed in cross section, the average interval between the AlNi alloy parts is It is 100 nm or more and 2500 nm or less.

なお、図1に示す実施形態では、基板10側からn型窒化物半導体層20、発光層40、p型窒化物半導体層50の順で積層されているが、本発明はこれに限られない。本発明では、例えば基板10側からp型窒化物半導体層50、発光層40、n型窒化物半導体層20の順で積層されていてもよい。また、図1に示す実施形態は、n型窒化物半導体層20の一部、発光層40、p型窒化物半導体層50がメサ構造の横型の紫外光発光装置であるが、本発明はこれに限られない。本発明は、例えば縦型の紫外光発光装置であってもよい。縦型の紫外光発光装置とする場合は、基板を剥離した構造とすることが発光効率向上の観点から好ましい。
以下、紫外光発光装置100を構成する各構成部について、具体例を挙げて説明する。
In the embodiment shown in FIG. 1, the n-type nitride semiconductor layer 20, the light emitting layer 40, and the p-type nitride semiconductor layer 50 are stacked in this order from the substrate 10 side, but the present invention is not limited to this. . In the present invention, for example, the p-type nitride semiconductor layer 50, the light emitting layer 40, and the n-type nitride semiconductor layer 20 may be stacked in this order from the substrate 10 side. The embodiment shown in FIG. 1 is a horizontal ultraviolet light emitting device in which a part of the n-type nitride semiconductor layer 20, the light emitting layer 40, and the p type nitride semiconductor layer 50 have a mesa structure. Not limited to. The present invention may be, for example, a vertical ultraviolet light emitting device. In the case of a vertical ultraviolet light emitting device, it is preferable from the viewpoint of improving luminous efficiency that the substrate is peeled off.
Hereinafter, each component constituting the ultraviolet light emitting device 100 will be described with specific examples.

<基板>
基板10としては、その上にn型窒化物半導体層を形成可能なものであれば特に制限されない。基板10として、具体的にはサファイア、Si、SiC、MgO、Ga、ZnO、GaN、InN、AlN、あるいはこれらの混晶基板等が挙げられる。基板10の上層側に形成するn型窒化物半導体層との格子定数差が小さく、格子整合系で成長させることで貫通転位を少なくできる観点や、ホールガス発生のための格子歪みを大きくできる観点から、GaN、AlN、AlGaN等の窒化物半導体をバルクとする単結晶基板や、ある材料上に成長されたGaN、AlN、AlGaN等の窒化物半導体層(テンプレートとも称される)を基板10として用いることが好ましい。また、基板10は不純物が混入していてもよい。
<Board>
The substrate 10 is not particularly limited as long as an n-type nitride semiconductor layer can be formed thereon. Specific examples of the substrate 10 include sapphire, Si, SiC, MgO, Ga 2 O 3 , ZnO, GaN, InN, AlN, and mixed crystal substrates thereof. Difference in lattice constant with the n-type nitride semiconductor layer formed on the upper layer side of the substrate 10 is small, so that the threading dislocation can be reduced by growing in a lattice matching system, and the lattice strain for generating the hole gas can be increased. The substrate 10 is a single crystal substrate having a bulk of a nitride semiconductor such as GaN, AlN, or AlGaN, or a nitride semiconductor layer (also referred to as a template) of GaN, AlN, AlGaN, or the like grown on a certain material. It is preferable to use it. Further, the substrate 10 may be mixed with impurities.

<n型窒化物半導体層>
n型窒化物半導体層20は、図1に示すように基板10上に直接形成されていてもよい。また、基板10上にn型窒化物半導体層20以外の層が形成され、その上にn型窒化物半導体層20が形成されていてもよい。例えば、基板10上にバッファ層が形成され、このバッファ層の上にn型窒化物半導体層20としてn型AlGaN層が形成され、その上に発光層40が形成されていてもよい。また、他の形態では、発光層40上に直接または間接的にn型窒化物半導体層20が形成されていてもよい。
n型窒化物半導体層20は、導電型がn型の窒化物半導体であれば特に制限はされないが、高い発光効率を実現する観点からAlN,GaN,InNの混晶であることが望ましい。n型窒化物半導体層20には、n型ドーパントの他にP、As、Sbといった他のV族元素や、C、H、F、O、Mg、Siといった不純物が混入していてもよい。
<N-type nitride semiconductor layer>
The n-type nitride semiconductor layer 20 may be formed directly on the substrate 10 as shown in FIG. Further, a layer other than the n-type nitride semiconductor layer 20 may be formed on the substrate 10, and the n-type nitride semiconductor layer 20 may be formed thereon. For example, a buffer layer may be formed on the substrate 10, an n-type AlGaN layer may be formed as the n-type nitride semiconductor layer 20 on the buffer layer, and the light emitting layer 40 may be formed thereon. In another form, the n-type nitride semiconductor layer 20 may be formed directly or indirectly on the light emitting layer 40.
The n-type nitride semiconductor layer 20 is not particularly limited as long as the conductivity type is an n-type nitride semiconductor, but is preferably a mixed crystal of AlN, GaN, and InN from the viewpoint of realizing high luminous efficiency. In addition to the n-type dopant, the n-type nitride semiconductor layer 20 may be mixed with other group V elements such as P, As, and Sb, and impurities such as C, H, F, O, Mg, and Si.

<第1電極部>
第1電極部30は、n型窒化物半導体層20の一部上に形成され、Ti,Al,Ni,Auを構成元素として含み、AlNi合金部を有するものである。特に制限されないが、紫外光発光装置100は、第1電極部30上にさらにAuやAl等を主成分とするパッド電極を有していてもよい。
図2は、第1電極部の断面TEM画像である。図2(a)はオリジナルのTEM画像である。図2(b)〜(h)は図2(a)と同じ視野におけるTEM−EDXによる主要元素の面分析結果(順に、Al,Ga,N,Ti,O,Ni,Au)をグレースケール化した画像である。図3は図2(b)〜(h)の元素の面分析結果に基づき、図2(a)の構成元素を付記した断面TEM画像である。この例では、n型窒化物半導体層としてAlGaNが形成され、その上に、Ti部、AlAu部、AlNi部、AlO部、Ti部からなる第1電極部が配置され、第1電極部上にAuからなるパッド電極が配置された構造であることが理解される。詳細は後述するが、AlNi部が、n型窒化物半導体層であるAlGaN層から離れた位置に形成されていることがわかる。
<First electrode part>
The first electrode part 30 is formed on a part of the n-type nitride semiconductor layer 20 and includes Ti, Al, Ni, Au as constituent elements and has an AlNi alloy part. Although not particularly limited, the ultraviolet light emitting device 100 may further include a pad electrode mainly composed of Au, Al, or the like on the first electrode unit 30.
FIG. 2 is a cross-sectional TEM image of the first electrode portion. FIG. 2A is an original TEM image. 2 (b) to 2 (h) are gray scales of the surface analysis results (in order, Al, Ga, N, Ti, O, Ni, Au) of main elements by TEM-EDX in the same field of view as FIG. 2 (a). It is an image. FIG. 3 is a cross-sectional TEM image in which the constituent elements in FIG. 2A are added based on the surface analysis results of the elements in FIGS. 2B to 2H. In this example, AlGaN is formed as an n-type nitride semiconductor layer, and a first electrode portion including a Ti portion, an AlAu portion, an AlNi portion, an AlO portion, and a Ti portion is disposed thereon, and the first electrode portion is disposed on the first electrode portion. It is understood that this is a structure in which pad electrodes made of Au are arranged. Although details will be described later, it can be seen that the AlNi portion is formed at a position away from the AlGaN layer which is the n-type nitride semiconductor layer.

本発明の第1の様態としては、第1電極部のAlNi合金部を含む部位を断面視したときに、n型窒化物半導体層とAlNi合金部との平均距離Dv(ave)は20nm以上である。すなわち、第1電極部30の厚さ方向に平行で、かつAlNi合金部を通る平面で第1電極部30を切断したときの切断面において、n型窒化物半導体層20とAlNi合金部との平均距離Dv(ave)は20nm以上である。
ここで、n型窒化物半導体層とAlNi合金部との平均距離Dv(ave)とは、n型窒化物半導体層とAlNi合金部との距離Dv(図3参照)を10点計測した結果の平均を意味する。平均距離Dv(ave)は、好ましくは30nm以上、より好ましくは40nm以上である。また、Dv(ave)の上限は特にないが、製造効率の観点から、Dv(ave)は400nm以下であることが好ましく、300nm以下であることがより好ましく、200nm以下であることがより更に好ましい。
As a first aspect of the present invention, when the portion including the AlNi alloy portion of the first electrode portion is viewed in cross section, the average distance Dv (ave) between the n-type nitride semiconductor layer and the AlNi alloy portion is 20 nm or more. is there. That is, the n-type nitride semiconductor layer 20 and the AlNi alloy part are cut at a cut surface when the first electrode part 30 is cut in a plane parallel to the thickness direction of the first electrode part 30 and passing through the AlNi alloy part. The average distance Dv (ave) is 20 nm or more.
Here, the average distance Dv (ave) between the n-type nitride semiconductor layer and the AlNi alloy part is the result of measuring the distance Dv (see FIG. 3) between the n-type nitride semiconductor layer and the AlNi alloy part at 10 points. Mean means. The average distance Dv (ave) is preferably 30 nm or more, more preferably 40 nm or more. Further, although there is no particular upper limit for Dv (ave), from the viewpoint of production efficiency, Dv (ave) is preferably 400 nm or less, more preferably 300 nm or less, and even more preferably 200 nm or less. .

本発明の第2の様態としては、第1電極部のAlNi合金部を含む部位を断面視したときに、AlNi合金部間の平均間隔Dh(ave)が100nm以上2500nm以下である。すなわち、第1電極部30の厚さ方向に平行で、かつAlNi合金部を通る平面で第1電極部30を切断したときの切断面において、AlNi合金部間の平均間隔Dh(ave)は100nm以上2500nm以下である。ここで、AlNi合金部間の平均間隔Dh(ave)とは、AlNi合金部間の間隔Dhを10点計測した結果の平均を意味する。平均間隔Dh(ave)は2300nm以下であることが好ましく、2000nm以下であることがより好ましい。   As a second aspect of the present invention, the average distance Dh (ave) between the AlNi alloy portions is 100 nm or more and 2500 nm or less when the portion of the first electrode portion including the AlNi alloy portion is viewed in cross section. That is, the average distance Dh (ave) between the AlNi alloy parts is 100 nm on the cut surface when the first electrode part 30 is cut in a plane parallel to the thickness direction of the first electrode part 30 and passing through the AlNi alloy part. The thickness is 2500 nm or less. Here, the average distance Dh (ave) between the AlNi alloy parts means the average of the results of measuring the distance Dh between the AlNi alloy parts at 10 points. The average distance Dh (ave) is preferably 2300 nm or less, and more preferably 2000 nm or less.

<発光層>
発光層40は、図1に示すようにn型窒化物半導体層20上に直接形成されていてもよい。また、n型窒化物半導体上に発光層40以外の層が形成され、その上に発光層40が形成されていてもよい。発光層40の形成位置は特に限定はされない。具体的には、n型窒化物半導体層20上にアンドープAlGaN層が形成され、その上に発光層40が形成されていてもよい。また、他の形態ではp型窒化物半導体層50上に発光層40が形成されていてもよい。発光層40は窒化物半導体であれば特に制限はされないが、高い発光効率を実現する観点からAlN,GaN,InNの混晶であることが望ましい。発光層40には、Nの他にP、As、Sbといった他のV族元素や、C、H、F、O、Mg、Siといった不純物が混入していてもよい。また、発光層40は、量子井戸構造でも単層構造でもよいが、高い発光効率を実現する観点から少なくとも1つの井戸構造を有していることが望ましい。
<Light emitting layer>
The light emitting layer 40 may be formed directly on the n-type nitride semiconductor layer 20 as shown in FIG. Further, a layer other than the light emitting layer 40 may be formed on the n-type nitride semiconductor, and the light emitting layer 40 may be formed thereon. The formation position of the light emitting layer 40 is not particularly limited. Specifically, an undoped AlGaN layer may be formed on the n-type nitride semiconductor layer 20, and the light emitting layer 40 may be formed thereon. In another form, the light emitting layer 40 may be formed on the p-type nitride semiconductor layer 50. The light emitting layer 40 is not particularly limited as long as it is a nitride semiconductor, but is preferably a mixed crystal of AlN, GaN, and InN from the viewpoint of realizing high light emission efficiency. In addition to N, the light emitting layer 40 may be mixed with other group V elements such as P, As, and Sb, and impurities such as C, H, F, O, Mg, and Si. The light emitting layer 40 may have a quantum well structure or a single layer structure, but preferably has at least one well structure from the viewpoint of realizing high light emission efficiency.

<p型窒化物半導体層>
p型窒化物半導体層50は、図1に示すように発光層40上に直接形成されていてもよい。また、発光層40上にp型窒化物半導体層50以外の層が形成され、その上にp型窒化物半導体層50が形成されていてもよい。例えば、発光層40上に構成元素の比率が連続的または離散的に変化する傾斜組成層が形成され、その上にp型窒化物半導体層50が形成されていてもよい。p型窒化物半導体層50の形成位置は特に限定はされない。紫外光発光装置100は、発光層40と傾斜組成層との間に相対的にバンドギャップの大きいバリア層を更に有していてもよい。また、他の形態では、基板10上に直接または間接的にp型窒化物半導体層50が形成されていてもよい。
<P-type nitride semiconductor layer>
The p-type nitride semiconductor layer 50 may be formed directly on the light emitting layer 40 as shown in FIG. Further, a layer other than the p-type nitride semiconductor layer 50 may be formed on the light emitting layer 40, and the p-type nitride semiconductor layer 50 may be formed thereon. For example, a gradient composition layer in which the ratio of constituent elements changes continuously or discretely may be formed on the light emitting layer 40, and the p-type nitride semiconductor layer 50 may be formed thereon. The formation position of the p-type nitride semiconductor layer 50 is not particularly limited. The ultraviolet light emitting device 100 may further include a barrier layer having a relatively large band gap between the light emitting layer 40 and the gradient composition layer. In other forms, p-type nitride semiconductor layer 50 may be formed directly or indirectly on substrate 10.

二次元ホールガスを発生させる観点から、p型窒化物半導体層50は組成傾斜層上に直接形成され、かつp型窒化物半導体層(AlGa1−yN)の組成は組成傾斜層の最表面の組成AlGa1−xNと0≦y<x≦1の関係にあり、かつp型窒化物半導体層50の厚さが1nm以上20nm未満であることが好ましい。組成傾斜層とp型窒化物半導体層50の二次元ホールガスを効率良く発生させる観点から、(y−x)は0.1以上0.8以下が好ましく、さらに0.2以上0.5以下が好ましい。組成傾斜層とp型窒化物半導体層50の二次元ホールガスを効率良く発生させる観点から、p型窒化物半導体層50を歪ませる(つまり緩和率を低くする)ために、p型窒化物半導体層50の厚さは1nmから10nmが好ましく、さらに1nmから5nmが好ましい。 From the viewpoint of generating a two-dimensional hole gas, the p-type nitride semiconductor layer 50 is formed directly on the composition gradient layer, and the composition of the p-type nitride semiconductor layer (Al y Ga 1-y N) is that of the composition gradient layer. It is preferable that the outermost surface composition Al x Ga 1-x N has a relationship of 0 ≦ y <x ≦ 1, and the thickness of the p-type nitride semiconductor layer 50 is 1 nm or more and less than 20 nm. From the viewpoint of efficiently generating the two-dimensional hole gas of the composition gradient layer and the p-type nitride semiconductor layer 50, (yx) is preferably 0.1 or more and 0.8 or less, and more preferably 0.2 or more and 0.5 or less. Is preferred. In order to efficiently generate the two-dimensional hole gas between the composition gradient layer and the p-type nitride semiconductor layer 50, the p-type nitride semiconductor is used to distort the p-type nitride semiconductor layer 50 (that is, to reduce the relaxation rate). The thickness of the layer 50 is preferably 1 nm to 10 nm, and more preferably 1 nm to 5 nm.

p型窒化物半導体層の上に直接電極が接触していてもよい。また、p型窒化物半導体層は多層構造でもよく、その場合は、その多層構造の最上面に電極が接していてもよい。p型窒化物半導体層50は薄膜内部でホールを発生させる観点からp型ドーパントを含んでいてもよく、あるいは電極から直接界面の二次元ホールガスにホールを注入するためドーパントを含んでいなくてもよい。p型ドーパントとしてはMgが一般的に用いられるが、ホールを発生させる不純物であればBe、Zn等も用いることができる。
p型窒化物半導体層50と傾斜組成層の最表面との組成差の確認方法としてはXRD(X線回折)、EDX(エネルギー分散型X線分光)、XRF(蛍光X線分析),AES(オージェ電子分光)、SIMS(二次イオン質量分析)、EELS(電子エネルギー損失分光)等各種分析手法で同定が可能である。
The electrode may be in direct contact with the p-type nitride semiconductor layer. Further, the p-type nitride semiconductor layer may have a multilayer structure, and in that case, the electrode may be in contact with the uppermost surface of the multilayer structure. The p-type nitride semiconductor layer 50 may contain a p-type dopant from the viewpoint of generating holes in the thin film, or may not contain a dopant in order to inject holes directly into the two-dimensional hole gas at the interface from the electrode. Also good. Mg is generally used as the p-type dopant, but Be, Zn, and the like can be used as long as they are impurities that generate holes.
XRD (X-ray diffraction), EDX (energy dispersive X-ray spectroscopy), XRF (fluorescence X-ray analysis), AES (AES) can be used to confirm the compositional difference between the p-type nitride semiconductor layer 50 and the outermost surface of the graded composition layer. Identification is possible by various analysis methods such as Auger electron spectroscopy, SIMS (secondary ion mass spectrometry), and EELS (electron energy loss spectroscopy).

<第2電極部>
紫外光発光装置100は、p型窒化物半導体層50へのホール注入効率を高める観点から第2電極部をさらに備えていてもよい。p型窒化物半導体層50に効率的にホールを注入する観点から、第2電極部にはNi,Au,Pt,Ag,Rh,Pd等の仕事関数の大きな金属、あるいはこれらの合金や、ITO等の酸化物電極等が望ましいがこの限りではない。
第2電極部は、平面視したときに、コンタクト電極が接していないp型窒化物半導体層の領域と少なくとも重複するように配置される形態であることが好ましい。また、この形態に加え、第2電極部は、発光層40からの光に対する反射率がコンタクト電極よりも高い反射層を含む形態であることも好ましい。反射層は、発光を反射する観点から、特定の波長に高い反射率を有するAg,Rh,Al等の金属や、誘電体多層膜を用いた反射膜、フッ素樹脂等が構成されることが望ましいがこの限りではない。また、反射層はp型窒化物半導体層50と直接接していてもよいし、p型窒化物半導体層50と反射層との間に発光波長に対して透明や半透明な層が挟まれていてもよい。例えば、波長400nmの発光波長に対して、p型窒化物半導体層50に透明なITOが接しており、ITO上に反射率の高いAgが反射層として接していてもよい。
<Second electrode part>
The ultraviolet light emitting device 100 may further include a second electrode unit from the viewpoint of increasing hole injection efficiency into the p-type nitride semiconductor layer 50. From the viewpoint of efficiently injecting holes into the p-type nitride semiconductor layer 50, the second electrode portion has a metal having a large work function such as Ni, Au, Pt, Ag, Rh, Pd, or an alloy thereof, ITO, An oxide electrode such as is desirable but not limited thereto.
It is preferable that the second electrode portion is arranged so as to overlap at least with the region of the p-type nitride semiconductor layer that is not in contact with the contact electrode when seen in a plan view. In addition to this form, the second electrode part preferably includes a reflective layer that has a higher reflectance with respect to light from the light emitting layer 40 than the contact electrode. The reflective layer is preferably made of a metal such as Ag, Rh, or Al having a high reflectance at a specific wavelength, a reflective film using a dielectric multilayer film, a fluororesin, or the like from the viewpoint of reflecting light emission. However, this is not the case. The reflective layer may be in direct contact with the p-type nitride semiconductor layer 50, or a transparent or semi-transparent layer with respect to the emission wavelength is sandwiched between the p-type nitride semiconductor layer 50 and the reflective layer. May be. For example, transparent ITO may be in contact with the p-type nitride semiconductor layer 50 with respect to the emission wavelength of 400 nm, and Ag having a high reflectance may be in contact with the ITO as a reflective layer.

反射率の定義としては、測定対象となるコンタクト電極、あるいは反射層の材料を透明材料上に形成し、反射率測定機器で透明材料側から素子発光のピーク波長となる光を入射、反射させた際に得られる垂直反射率のことを指す。例えば、コンタクト電極としてNiAu積層電極、反射層としてAlを用い、波長265nmの紫外光発光装置を用いた場合の「反射層」の確認手法は、次の通りである。すなわち、波長265nmの光を透過するサファイア基板上にNiAu積層電極を形成しサファイア側から光を入射させた場合の垂直反射率よりも、サファイア基板上に同じ膜厚でAlを形成しサファイア側から光を入射させた場合の垂直反射率が高ければ、Alは反射層であると確認できる。   The definition of reflectivity is that a contact electrode or reflection layer material to be measured is formed on a transparent material, and light having a peak wavelength of element emission is incident and reflected from the transparent material side with a reflectivity measuring instrument. It refers to the vertical reflectance obtained at the time. For example, a method for confirming a “reflection layer” when a NiAu laminated electrode is used as a contact electrode, Al is used as a reflection layer, and an ultraviolet light emitting device having a wavelength of 265 nm is used is as follows. That is, Al is formed on the sapphire substrate with the same film thickness from the sapphire side when the NiAu laminated electrode is formed on the sapphire substrate that transmits light with a wavelength of 265 nm and light is incident from the sapphire side. If the vertical reflectance when light is incident is high, it can be confirmed that Al is a reflective layer.

本発明の実施形態に係る紫外光発光装置の製造方法は特に制限されないが、後述する紫外光発光装置の製造方法により得ることができる。
本発明の紫外光発光装置は、各種の装置に適用可能である。
本発明の紫外光発光装置は、紫外線ランプが用いられている既存のすべての装置に適用・置換可能である。特に、波長280nm以下の深紫外線を用いている装置に適用可能である。
本発明の紫外光発光素子は、例えば、医療・ライフサイエンス分野、環境分野、産業・工業分野、生活・家電分野、農業分野、その他分野の装置に適用可能である。
本発明の紫外光発光素子は、薬品や化学物質の合成・分解装置、液体・気体・固体(容器、食品、医療機器等)殺菌装置、半導体等の洗浄装置、フィルム・ガラス・金属等の表面改質装置、半導体・FPD・PCB・その他電子品製造用の露光装置、印刷・コーティング装置、接着・シール装置、フィルム・パターン・モックアップ等の転写・成形装置、紙幣・傷・血液・化学物質等の測定・検査装置に適用可能である。
Although the manufacturing method of the ultraviolet light-emitting device which concerns on embodiment of this invention is not restrict | limited in particular, It can obtain by the manufacturing method of the ultraviolet light-emitting device mentioned later.
The ultraviolet light emitting device of the present invention can be applied to various devices.
The ultraviolet light emitting device of the present invention can be applied to and replaced by all existing devices in which an ultraviolet lamp is used. In particular, the present invention can be applied to an apparatus using deep ultraviolet light having a wavelength of 280 nm or less.
The ultraviolet light emitting device of the present invention can be applied to, for example, devices in the medical / life science field, the environmental field, the industrial / industrial field, the life / home appliance field, the agricultural field, and other fields.
The ultraviolet light-emitting device of the present invention is a chemical / chemical substance synthesis / decomposition device, liquid / gas / solid (container, food, medical equipment, etc.) sterilizer, semiconductor cleaning device, film / glass / metal surface, etc. Reforming equipment, exposure equipment for manufacturing semiconductors, FPDs, PCBs and other electronic products, printing / coating equipment, adhesion / sealing equipment, transfer / molding equipment for films / patterns / mockups, banknotes / scratches / blood / chemical substances It can be applied to measurement / inspection equipment.

液体殺菌装置の例としては、冷蔵庫内の自動製氷装置・製氷皿および貯氷容器・製氷機用の給水タンク、冷凍庫、製氷機、加湿器、除湿器、ウォーターサーバの冷水タンク・温水タンク・流路配管、据置型浄水器、携帯型浄水器、給水器、給湯器、排水処理装置、ディスポーザ、便器の排水トラップ、洗濯機、透析用水殺菌モジュール、腹膜透析のコネクタ殺菌器、災害用貯水システム等が挙げられるがこの限りではない。
気体殺菌装置の例としては、空気清浄器、エアコン、天井扇、床面用や寝具用の掃除機、布団乾燥機、靴乾燥機、洗濯機、衣類乾燥機、室内殺菌灯、保管庫の換気システム、靴箱、タンス等が挙げられるがこの限りではない。
固体殺菌装置(表面殺菌装置を含む)の例としては、真空パック器、ベルトコンベヤ、医科用・歯科用・床屋用・美容院用のハンドツール殺菌装置、歯ブラシ、歯ブラシ入れ、箸箱、化粧ポーチ、排水溝のふた、便器の局部洗浄器、便器フタ等が挙げられるがこの限りではない。
Examples of liquid sterilizers include automatic ice making equipment, ice trays, ice storage containers, water storage tanks for ice making machines, ice making machines, freezers, ice making machines, humidifiers, dehumidifiers, water server cold water tanks, hot water tanks, flow paths Pipes, stationary water purifiers, portable water purifiers, water heaters, water heaters, wastewater treatment devices, disposers, toilet drainage traps, washing machines, dialysis water sterilization modules, peritoneal dialysis connector sterilizers, disaster water storage systems, etc. This is not the case.
Examples of gas sterilizers include air purifiers, air conditioners, ceiling fans, floor and bedding vacuum cleaners, futon dryers, shoe dryers, washing machines, clothes dryers, indoor sterilization lights, and storage ventilation. Examples include, but are not limited to, systems, shoe boxes, and chests.
Examples of solid sterilizers (including surface sterilizers) include vacuum packers, belt conveyors, medical / dental / barber / beauty salon hand tool sterilizers, toothbrushes, toothbrush holders, chopstick boxes, cosmetic pouches, Examples include, but are not limited to, drainage lids, toilet bowl cleaners, toilet lids, and the like.

<紫外光発光装置の製造方法>
本発明の第3の様態は、基板10と、n型窒化物半導体層20と、p型窒化物半導体層50と、n型窒化物半導体層20とp型窒化物半導体層50との間に位置する発光層40とを備える半導体ウエハのn型窒化物半導体層20上に、Tiを5nm以上40nm以下の厚さに形成し、Ti上にAlを160nm以上270nm以下の厚さに形成し、Al上にNiを5nm以上50nm以下の厚さに形成し、Ni上にAuを40nm以上100nm以下の厚さに形成する堆積工程と、堆積工程の後で、熱処理するアニール工程と、を備える紫外光発光装置の製造方法である。
<Method for manufacturing ultraviolet light emitting device>
In the third aspect of the present invention, the substrate 10, the n-type nitride semiconductor layer 20, the p-type nitride semiconductor layer 50, and the n-type nitride semiconductor layer 20 and the p-type nitride semiconductor layer 50 are interposed. Ti is formed to a thickness of 5 nm to 40 nm on the n-type nitride semiconductor layer 20 of the semiconductor wafer including the light emitting layer 40 positioned, and Al is formed to a thickness of 160 nm to 270 nm on Ti. An ultraviolet ray comprising: a deposition step of forming Ni on Al to a thickness of 5 nm to 50 nm; and forming Au on Ni to a thickness of 40 nm to 100 nm; and an annealing step for heat treatment after the deposition step. It is a manufacturing method of a light-emitting device.

本発明の第4の様態は、基板10と、n型窒化物半導体層20と、p型窒化物半導体層50と、n型窒化物半導体層20とp型窒化物半導体層50との間に位置する発光層40とを備える半導体ウエハのn型窒化物半導体層20上に、Tiを5nm以上40nm以下の厚さに形成し、Ti上にAlを形成し、Al上にNiを形成し、Ni上にAuを40nm以上100nm以下の厚さに形成する堆積工程と、堆積工程の後で、熱処理するアニール工程と、を備え、堆積工程では、AlとNiの膜厚比(Al膜厚/Ni膜厚)が5以上9.4以下を満たすようにAlとNiをそれぞれ形成する、紫外光発光装置の製造方法である。   In the fourth aspect of the present invention, the substrate 10, the n-type nitride semiconductor layer 20, the p-type nitride semiconductor layer 50, and the n-type nitride semiconductor layer 20 and the p-type nitride semiconductor layer 50 are interposed. Ti is formed to a thickness of 5 nm to 40 nm on the n-type nitride semiconductor layer 20 of the semiconductor wafer including the light emitting layer 40 positioned, Al is formed on Ti, Ni is formed on Al, A deposition process for forming Au on Ni to a thickness of 40 nm to 100 nm; and an annealing process for heat treatment after the deposition process. In the deposition process, a film thickness ratio between Al and Ni (Al film thickness / This is a method for manufacturing an ultraviolet light emitting device, in which Al and Ni are formed so that the Ni film thickness satisfies 5 or more and 9.4 or less.

本発明の第5の様態は、基板10と、n型窒化物半導体層20と、p型窒化物半導体層50と、n型窒化物半導体層20とp型窒化物半導体層50との間に位置する発光層40とを備える半導体ウエハのn型窒化物半導体層20上に、Tiを5nm以上40nm以下の厚さに形成し、Ti上にAlを形成し、Al上にNiを5nm以上50nm以下の厚さに形成し、Ni上にAuを形成する堆積工程と、堆積工程の後で、熱処理するアニール工程と、を備え、堆積工程では、AlとAuの膜厚比(Al膜厚/Au膜厚)が2.8以上5以下を満たすようにAlとAuをそれぞれ形成する、紫外光発光装置の製造方法である。   In the fifth aspect of the present invention, the substrate 10, the n-type nitride semiconductor layer 20, the p-type nitride semiconductor layer 50, and the n-type nitride semiconductor layer 20 and the p-type nitride semiconductor layer 50 are interposed. Ti is formed to a thickness of 5 nm to 40 nm on the n-type nitride semiconductor layer 20 of the semiconductor wafer including the light emitting layer 40 positioned, Al is formed on Ti, and Ni is formed to 5 nm to 50 nm on Al. A deposition step of forming Au on Ni, and an annealing step of heat treatment after the deposition step. In the deposition step, a film thickness ratio of Al to Au (Al film thickness / This is a method for manufacturing an ultraviolet light emitting device, in which Al and Au are formed so that the Au film thickness satisfies 2.8 or more and 5 or less.

第3〜第5の様態の紫外光発光装置の製造方法のいずれにおいても、各成分を形成する方法は特に制限されないが、例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法などが挙げられる。
第3〜第5の様態の紫外光発光装置の製造方法のいずれにおいても、堆積工程前に、n型窒化物半導体層20の一部を露出するためのエッチング工程を更に有していてもよい。エッチング工程はドライエッチングでもよいし、ウェットエッチングでもよい。エッチング工程は所望のパターンで形成されたレジストをマスクに用いることで、n型窒化物半導体層20の所望の領域を露出することが可能である。
第3〜第5の様態の紫外光発光装置の製造方法のいずれにおいても、熱処理するアニール工程の温度は、特に制限されないが600℃以上1200℃以下で熱処理することが例示される。また熱処理するアニール工程の時間は、特に制限されないが5秒以上900秒以下加熱することが例示される。
In any of the manufacturing methods of the ultraviolet light emitting devices of the third to fifth aspects, the method for forming each component is not particularly limited, and examples thereof include a resistance heating vapor deposition method, an electron beam vapor deposition method, and a sputtering method. .
Any of the third to fifth aspects of the method for manufacturing an ultraviolet light emitting device may further include an etching step for exposing a part of the n-type nitride semiconductor layer 20 before the deposition step. . The etching process may be dry etching or wet etching. The etching step can expose a desired region of n-type nitride semiconductor layer 20 by using a resist formed in a desired pattern as a mask.
In any of the third to fifth aspects of the method for manufacturing an ultraviolet light emitting device, the temperature of the annealing step for heat treatment is not particularly limited, but the heat treatment is exemplified at 600 ° C. or more and 1200 ° C. or less. Further, the time for the annealing step for heat treatment is not particularly limited, but examples include heating for 5 seconds or more and 900 seconds or less.

<実施形態の効果>
前述の特許文献1,2にも記載されている通り、Ti/Al/Ti/Auの4層金属層を蒸着し、RTA等により熱処理を加えてn型窒化物半導体層上にn電極を形成する方法は知られていた。しかし、いずれの文献にもn電極の材料としてNiを採用することは記載されておらず、またAlの膜厚については100nm程度を採用することが常識であった。
しかし本発明者らはそのような常識にとらわれることなく鋭意検討した。その結果、例えば上述の第3〜第5の様態の紫外光発光装置の製造方法により、n型窒化物半導体層20と第1電極部30との間のコンタクト抵抗が従来よりも小さく、その結果順方向電圧Vfが小さい紫外光発光装置を得ることを可能にした。
このように、本発明の実施形態によれば、n型窒化物半導体層と第1電極部との間のコンタクト抵抗を低減可能な紫外光発光装置およびその製造方法を提供することができる。n型窒化物半導体層と第1電極部との間のコンタクト抵抗を低減することにより、順方向電圧Vfを低減することができる。これにより、紫外光発光装置のさらなる低消費電力化を実現することができる。
<Effect of embodiment>
As described in the aforementioned Patent Documents 1 and 2, a four-layer metal layer of Ti / Al / Ti / Au is deposited, and heat treatment is performed by RTA or the like to form an n-electrode on the n-type nitride semiconductor layer. How to do was known. However, none of the documents describes the use of Ni as the material for the n-electrode, and it is common knowledge that the film thickness of Al is about 100 nm.
However, the present inventors diligently studied without being bound by such common sense. As a result, for example, the contact resistance between the n-type nitride semiconductor layer 20 and the first electrode unit 30 is smaller than in the conventional method by the method for manufacturing the ultraviolet light emitting device of the third to fifth aspects described above. An ultraviolet light emitting device having a small forward voltage Vf can be obtained.
Thus, according to the embodiment of the present invention, it is possible to provide an ultraviolet light emitting device capable of reducing the contact resistance between the n-type nitride semiconductor layer and the first electrode portion, and a method for manufacturing the same. The forward voltage Vf can be reduced by reducing the contact resistance between the n-type nitride semiconductor layer and the first electrode portion. Thereby, further reduction in power consumption of the ultraviolet light emitting device can be realized.

<実施例1>
AlN単結晶から得られたAlN基板上に、AlNバッファ層、n−AlGaN層、発光層としてのAlGaNの多重量子井戸構造、p−GaN層を、有機金属気相成長法(MOCVD法)により、この順で製膜した。
次いで、フォトリソグラフィー法で形成したレジストパターンを用いて、塩素系ガスでp−GaN層及びAlGaNのドライエッチングを行い、n−AlGaN層の一部を露出させた。
露出したn−AlGaNの一部上に、Tiを19nm、Alを210nm、Niを34nm、Auを57nm、をこの順に堆積した。次いで880℃120秒の熱処理をして第1電極部を形成した。AlとNiの膜厚比(Al膜厚/Ni膜厚)は6.2であり、AlとAuの膜厚比(Al膜厚/Au膜厚)は3.7である。
<Example 1>
On an AlN substrate obtained from an AlN single crystal, an AlN buffer layer, an n-AlGaN layer, an AlGaN multiple quantum well structure as a light emitting layer, and a p-GaN layer are formed by metal organic vapor phase epitaxy (MOCVD method). Films were formed in this order.
Next, using the resist pattern formed by the photolithography method, dry etching of the p-GaN layer and AlGaN was performed with a chlorine-based gas to expose a part of the n-AlGaN layer.
On a part of the exposed n-AlGaN, Ti 19 nm, Al 210 nm, Ni 34 nm and Au 57 nm were deposited in this order. Subsequently, the 1st electrode part was formed by heat processing for 880 degreeC 120 second. The film thickness ratio between Al and Ni (Al film thickness / Ni film thickness) is 6.2, and the film thickness ratio between Al and Au (Al film thickness / Au film thickness) is 3.7.

実施例1で得られた第1電極部の断面TEM画像を図4〜図6に示す。図4は、TEM−EDXにより確認したAlNi合金部(矢印が指す9箇所)を示している。図5は、各AlNi合金部におけるn−AlGaN層とAlNi合金部との距離を示している。図6は、AlNi合金部間の間隔を示している。なお、平均距離Dv(ave)およびDh(ave)を10点平均により算出するため、不足分は他の断面TEM画像を用いた(図示せず)。
結果、n型窒化物半導体層であるn−AlGaN層と第1電極部に含まれるAlNi合金部との平均距離Dv(ave)は57nmであった。また、AlNi合金部間の平均間隔Dh(ave)は1052nmであった。
Cross-sectional TEM images of the first electrode portion obtained in Example 1 are shown in FIGS. FIG. 4 shows AlNi alloy parts (9 points indicated by arrows) confirmed by TEM-EDX. FIG. 5 shows the distance between the n-AlGaN layer and the AlNi alloy part in each AlNi alloy part. FIG. 6 shows the spacing between the AlNi alloy parts. Since the average distances Dv (ave) and Dh (ave) are calculated based on an average of 10 points, another cross-sectional TEM image is used for the shortage (not shown).
As a result, the average distance Dv (ave) between the n-AlGaN layer, which is an n-type nitride semiconductor layer, and the AlNi alloy part included in the first electrode part was 57 nm. The average distance Dh (ave) between the AlNi alloy parts was 1052 nm.

<実施例2>
Tiを20nm、Alを191nm、Niを32nm、Auを58nmとした以外は実施例1と同様の方法で第1電極部を形成した。AlとNiの膜厚比(Al膜厚/Ni膜厚)は6.0であり、AlとAuの膜厚比(Al膜厚/Au膜厚)は3.3である。
実施例2で得られた第1電極部の断面TEM画像を図7〜図9に示す。図7は、TEM−EDXにより確認したAlNi合金部(矢印が指す7箇所)を示している。図8は、各AlNi合金部におけるn−AlGaN層とAlNi合金部との距離を示している。図9は、AlNi合金部間の間隔を示している。なお、平均距離Dv(ave)およびDh(ave)を10点平均により算出するため、不足分は他の断面TEM画像を用いた。
結果、n型窒化物半導体層であるn−AlGaN層と第1電極部に含まれるAlNi合金部との平均距離Dv(ave)は101nmであった。また、AlNi合金部間の平均間隔Dh(ave)は337nmであった。
<Example 2>
A first electrode portion was formed in the same manner as in Example 1 except that Ti was 20 nm, Al was 191 nm, Ni was 32 nm, and Au was 58 nm. The film thickness ratio between Al and Ni (Al film thickness / Ni film thickness) is 6.0, and the film thickness ratio between Al and Au (Al film thickness / Au film thickness) is 3.3.
Sectional TEM images of the first electrode portion obtained in Example 2 are shown in FIGS. FIG. 7 shows AlNi alloy parts (seven points indicated by arrows) confirmed by TEM-EDX. FIG. 8 shows the distance between the n-AlGaN layer and the AlNi alloy part in each AlNi alloy part. FIG. 9 shows the spacing between the AlNi alloy parts. Since the average distances Dv (ave) and Dh (ave) are calculated by an average of 10 points, other cross-sectional TEM images were used for the shortage.
As a result, the average distance Dv (ave) between the n-AlGaN layer, which is an n-type nitride semiconductor layer, and the AlNi alloy part included in the first electrode part was 101 nm. Further, the average distance Dh (ave) between the AlNi alloy parts was 337 nm.

<参考例1>
Tiを19nm、Alを142nm、Niを36nm、Auを71nmとした以外は実施例1と同様の方法で第1電極部を形成した。AlとNiの膜厚比(Al膜厚/Ni膜厚)は3.9であり、AlとAuの膜厚比(Al膜厚/Au膜厚)は2.0である。
参考例1で得られた第1電極部の断面TEM画像を図10〜図12に示す。図10は、TEM−EDXにより確認したAlNi合金部(矢印が指す3箇所)を示している。図11は、各AlNi合金部におけるn−AlGaN層とAlNi合金部との距離を示している。図12は、AlNi合金部間の間隔を示している。なお、平均距離Dv(ave)およびDh(ave)を10点平均により算出するため、不足分は他の断面TEM画像を用いた。
結果、n型窒化物半導体層であるn−AlGaN層と、第1電極部に含まれるAlNi合金部は、いずれも10nmのTi層のみを介して隣り合っているため、平均距離Dv(ave)は10nmであった。また、AlNi合金部間の平均間隔Dh(ave)は、2805nmであった。
<Reference Example 1>
A first electrode portion was formed in the same manner as in Example 1 except that Ti was 19 nm, Al was 142 nm, Ni was 36 nm, and Au was 71 nm. The film thickness ratio between Al and Ni (Al film thickness / Ni film thickness) is 3.9, and the film thickness ratio between Al and Au (Al film thickness / Au film thickness) is 2.0.
Cross-sectional TEM images of the first electrode portion obtained in Reference Example 1 are shown in FIGS. FIG. 10 shows AlNi alloy parts (three points indicated by arrows) confirmed by TEM-EDX. FIG. 11 shows the distance between the n-AlGaN layer and the AlNi alloy part in each AlNi alloy part. FIG. 12 shows the spacing between the AlNi alloy parts. Since the average distances Dv (ave) and Dh (ave) are calculated by an average of 10 points, other cross-sectional TEM images were used for the shortage.
As a result, the n-AlGaN layer, which is an n-type nitride semiconductor layer, and the AlNi alloy part included in the first electrode part are adjacent to each other via only the 10 nm Ti layer, and therefore the average distance Dv (ave) Was 10 nm. The average distance Dh (ave) between AlNi alloy parts was 2805 nm.

<参考例2>
Tiを20nm、Alを286nm以上、Niを30nm、Auを57nmとした以外は実施例1と同様の方法で第1電極部を形成した。AlとNiの膜厚比(Al膜厚/Ni膜厚)は9.5であり、AlとAuの膜厚比(Al膜厚/Au膜厚)は5.0である。
図13は、参考例2で得られた第1電極部の断面TEM画像である。図13(a)はオリジナルのTEM画像である。図13(b)〜(h)は図13(a)と同じ視野におけるTEM−EDXによる主要元素の面分析結果(順に、Al,Ga,N,Ti,O,Ni,Au)をグレースケール化した画像である。図14は図13(b)〜(h)の元素の面分析結果に基づき図13(a)の構成元素を示した断面TEM画像である。
結果、第1電極部はこれまでのAlNi合金状態と異なり、AlとNiとAuとを含むAlNiAu合金部が形成された。また、n型窒化物半導体層であるn−AlGaN層と第1電極部に含まれるAlNiAu合金部は接触しており、平均距離Dv(ave)は0nmであった。また、AlNiAu合金部間の平均間隔Dh(ave)は2724nmであった。
<Reference Example 2>
A first electrode portion was formed in the same manner as in Example 1 except that Ti was 20 nm, Al was 286 nm or more, Ni was 30 nm, and Au was 57 nm. The film thickness ratio between Al and Ni (Al film thickness / Ni film thickness) is 9.5, and the film thickness ratio between Al and Au (Al film thickness / Au film thickness) is 5.0.
FIG. 13 is a cross-sectional TEM image of the first electrode portion obtained in Reference Example 2. FIG. 13A is an original TEM image. FIGS. 13B to 13H are gray scales of surface analysis results (in order, Al, Ga, N, Ti, O, Ni, Au) of main elements by TEM-EDX in the same field of view as FIG. 13A. It is an image. FIG. 14 is a cross-sectional TEM image showing the constituent elements of FIG. 13A based on the surface analysis results of the elements of FIGS. 13B to 13H.
As a result, the first electrode portion was different from the AlNi alloy state so far, and an AlNiAu alloy portion containing Al, Ni, and Au was formed. In addition, the n-AlGaN layer, which is an n-type nitride semiconductor layer, and the AlNiAu alloy part included in the first electrode part were in contact with each other, and the average distance Dv (ave) was 0 nm. The average distance Dh (ave) between the AlNiAu alloy parts was 2724 nm.

<実施例3>
Tiを20nm、Alを202nm、Niを32nm、Auを60nmとした以外は実施例1と同様の方法で第1電極部を形成した。AlとNiの膜厚比(Al膜厚/Ni膜厚)は6.3であり、AlとAuの膜厚比(Al膜厚/Au膜厚)は3.4である。n−AlGaN層とAlNi合金部との平均距離Dv(ave)は85nmであった。AlNi合金部間の平均間隔Dh(ave)は560nmであった。
<Example 3>
A first electrode portion was formed in the same manner as in Example 1 except that Ti was 20 nm, Al was 202 nm, Ni was 32 nm, and Au was 60 nm. The film thickness ratio between Al and Ni (Al film thickness / Ni film thickness) is 6.3, and the film thickness ratio between Al and Au (Al film thickness / Au film thickness) is 3.4. The average distance Dv (ave) between the n-AlGaN layer and the AlNi alloy part was 85 nm. The average distance Dh (ave) between the AlNi alloy parts was 560 nm.

<実施例4>
Tiを21nm、Alを177nm、Niを34nm、Auを52nmとした以外は実施例1と同様の方法で第1電極部を形成した。AlとNiの膜厚比(Al膜厚/Ni膜厚)は5.3であり、AlとAuの膜厚比(Al膜厚/Au膜厚)は3.4である。n−AlGaN層とAlNi合金部との平均距離Dv(ave)は150nmであった。AlNi合金部間の平均間隔Dh(ave)は340nmであった。
<Example 4>
A first electrode portion was formed in the same manner as in Example 1 except that Ti was 21 nm, Al was 177 nm, Ni was 34 nm, and Au was 52 nm. The film thickness ratio between Al and Ni (Al film thickness / Ni film thickness) is 5.3, and the film thickness ratio between Al and Au (Al film thickness / Au film thickness) is 3.4. The average distance Dv (ave) between the n-AlGaN layer and the AlNi alloy part was 150 nm. The average distance Dh (ave) between the AlNi alloy parts was 340 nm.

<実施例5>
Tiを20nm、Alを170nm、Niを35nm、Auを59nmとした以外は実施例1と同様の方法で第1電極部を形成した。AlとNiの膜厚比(Al膜厚/Ni膜厚)は4.8であり、AlとAuの膜厚比(Al膜厚/Au膜厚)は3.5である。n−AlGaN層とAlNi合金部との平均距離Dv(ave)は130nmであった。AlNi合金部間の平均間隔Dh(ave)は110nmであった。
<Example 5>
A first electrode portion was formed in the same manner as in Example 1 except that Ti was 20 nm, Al was 170 nm, Ni was 35 nm, and Au was 59 nm. The film thickness ratio between Al and Ni (Al film thickness / Ni film thickness) is 4.8, and the film thickness ratio between Al and Au (Al film thickness / Au film thickness) is 3.5. The average distance Dv (ave) between the n-AlGaN layer and the AlNi alloy part was 130 nm. The average distance Dh (ave) between the AlNi alloy parts was 110 nm.

<実施例6>
Tiを20nm、Alを191nm、Niを32nm、Auを58nmとした以外は実施例1と同様の方法で第1電極部を形成した。AlとNiの膜厚比(Al膜厚/Ni膜厚)は6.0であり、AlとAuの膜厚比(Al膜厚/Au膜厚)は3.3である。n−AlGaN層とAlNi合金部との平均距離Dv(ave)は102nmであった。AlNi合金部間の平均間隔Dh(ave)は337nmであった。
<Example 6>
A first electrode portion was formed in the same manner as in Example 1 except that Ti was 20 nm, Al was 191 nm, Ni was 32 nm, and Au was 58 nm. The film thickness ratio between Al and Ni (Al film thickness / Ni film thickness) is 6.0, and the film thickness ratio between Al and Au (Al film thickness / Au film thickness) is 3.3. The average distance Dv (ave) between the n-AlGaN layer and the AlNi alloy part was 102 nm. The average distance Dh (ave) between the AlNi alloy parts was 337 nm.

<実施例7>
Tiを20nm、Alを212nm、Niを32nm、Auを75nmとした以外は実施例1と同様の方法で第1電極部を形成した。AlとNiの膜厚比(Al膜厚/Ni膜厚)は6.7であり、AlとAuの膜厚比(Al膜厚/Au膜厚)は2.8である。n−AlGaN層とAlNi合金部との平均距離Dv(ave)は55nmであった。AlNi合金部間の平均間隔Dh(ave)は1009nmであった。
<Example 7>
A first electrode portion was formed in the same manner as in Example 1 except that Ti was 20 nm, Al was 212 nm, Ni was 32 nm, and Au was 75 nm. The film thickness ratio between Al and Ni (Al film thickness / Ni film thickness) is 6.7, and the film thickness ratio between Al and Au (Al film thickness / Au film thickness) is 2.8. The average distance Dv (ave) between the n-AlGaN layer and the AlNi alloy part was 55 nm. The average distance Dh (ave) between the AlNi alloy parts was 1009 nm.

<実施例8>
Tiを20nm、Alを210nm、Niを34nm、Auを57nmとした以外は実施例1と同様の方法で第1電極部を形成した。AlとNiの膜厚比(Al膜厚/Ni膜厚)は6.3であり、AlとAuの膜厚比(Al膜厚/Au膜厚)は3.7である。n−AlGaN層とAlNi合金部との平均距離Dv(ave)は42nmであった。AlNi合金部間の平均間隔Dh(ave)は1900nmであった。
<Example 8>
A first electrode portion was formed in the same manner as in Example 1 except that Ti was 20 nm, Al was 210 nm, Ni was 34 nm, and Au was 57 nm. The film thickness ratio between Al and Ni (Al film thickness / Ni film thickness) is 6.3, and the film thickness ratio between Al and Au (Al film thickness / Au film thickness) is 3.7. The average distance Dv (ave) between the n-AlGaN layer and the AlNi alloy part was 42 nm. The average distance Dh (ave) between the AlNi alloy parts was 1900 nm.

<評価>
次いで、上記実施例1〜8および参考例1,2で得られた各デバイスのp−GaN層上に、Niを20nm、Auを35nmそれぞれ順に蒸着により積層し、600℃180秒の条件で熱処理した。これにより、上記各デバイスのp−GaN層上に第2電極部としてp型電極部を形成し、各デバイスからそれぞれ紫外光発光装置を得た。
得られた各紫外光発光装置について、n型窒化物半導体層であるn−AlGaN層と、第1電極部とのコンタクト抵抗をそれぞれ評価した。また、これらの各紫外光発光装置について、紫外光発光装置の低消費電力化の指標となる順方向電圧Vfをそれぞれ評価した。
具体的には、紫外光発光装置に100mAの定電流を印加した際の、第1電極部と第2電極部との間の電圧測定を実施し、順方向電圧Vfを評価した。
<Evaluation>
Next, on the p-GaN layer of each device obtained in Examples 1 to 8 and Reference Examples 1 and 2, Ni was deposited in a thickness of 20 nm and Au in a thickness of 35 nm in this order, and heat treatment was performed at 600 ° C. for 180 seconds. did. As a result, a p-type electrode portion was formed as the second electrode portion on the p-GaN layer of each device, and an ultraviolet light emitting device was obtained from each device.
About each obtained ultraviolet light-emitting device, the contact resistance of the n-AlGaN layer which is an n-type nitride semiconductor layer, and the 1st electrode part was evaluated, respectively. Further, for each of these ultraviolet light emitting devices, the forward voltage Vf, which is an index for reducing the power consumption of the ultraviolet light emitting device, was evaluated.
Specifically, the voltage between the first electrode part and the second electrode part when a constant current of 100 mA was applied to the ultraviolet light emitting device was measured, and the forward voltage Vf was evaluated.

以上、実施例1〜8および参考例1,2で得られた各デバイスについて、第1電極部のTi,Al,Ni,Au層の厚みと比率、第1電極部の平均距離Dv(ave)および平均間隔Dh(ave)、ならびに順方向電圧Vfを表1にまとめた。   As described above, for each of the devices obtained in Examples 1 to 8 and Reference Examples 1 and 2, the thickness and ratio of the Ti, Al, Ni, Au layer of the first electrode part, the average distance Dv (ave) of the first electrode part Table 1 summarizes the average interval Dh (ave) and the forward voltage Vf.

表1からわかるように、平均距離Dv(ave)が20nm以上である紫外光発光装置は、順方向電圧Vfが低くなることが確認された。また、平均間隔Dh(ave)が100nm以上2500nm以下である紫外光発光装置は、順方向電圧Vfが低くなることが確認された。また、平均距離Dv(ave)が20nm以上である紫外光発光装置または平均間隔Dh(ave)が100nm以上2500nm以下である紫外光発光装置は、Alを160nm以上270nm以下形成することにより実現されることが理解される。同様に5≦Al膜厚/Ni膜厚≦9.4とすることによっても実現されることが理解される。同様に、2.8≦Al膜厚/Au膜厚≦5とすることによっても実現されることが理解される。   As can be seen from Table 1, it was confirmed that the forward voltage Vf of the ultraviolet light emitting device having an average distance Dv (ave) of 20 nm or more is low. Further, it was confirmed that the forward voltage Vf of the ultraviolet light emitting device having an average interval Dh (ave) of 100 nm to 2500 nm is low. An ultraviolet light emitting device having an average distance Dv (ave) of 20 nm or more or an ultraviolet light emitting device having an average distance Dh (ave) of 100 nm to 2500 nm is realized by forming Al from 160 nm to 270 nm. It is understood. Similarly, it is understood that this can also be realized by setting 5 ≦ Al film thickness / Ni film thickness ≦ 9.4. Similarly, it is understood that this can be realized by setting 2.8 ≦ Al film thickness / Au film thickness ≦ 5.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
The order of execution of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior to”. It should be noted that the output can be realized in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for convenience, it means that it is essential to carry out in this order. It is not a thing.

10 基板
20 n型窒化物半導体層
30 第1電極部
40 発光層
50 p型窒化物半導体層
100 紫外光発光装置
DESCRIPTION OF SYMBOLS 10 Substrate 20 N-type nitride semiconductor layer 30 1st electrode part 40 Light emitting layer 50 P-type nitride semiconductor layer 100 Ultraviolet light-emitting device

Claims (6)

n型窒化物半導体層と、
Ti,Al,Ni,Auを構成元素として含み、AlNi合金部を有し、前記n型窒化物半導体層上に設けられた第1電極部と、
p型窒化物半導体層と、
前記n型窒化物半導体層と前記p型窒化物半導体層との間に位置する発光層と、
を備え、
前記第1電極部の前記AlNi合金部を含む部位を断面視したときに、前記n型窒化物半導体層と前記AlNi合金部との平均距離は20nm以上である紫外光発光装置。
an n-type nitride semiconductor layer;
A first electrode part that includes Ti, Al, Ni, Au as constituent elements, has an AlNi alloy part, and is provided on the n-type nitride semiconductor layer;
a p-type nitride semiconductor layer;
A light emitting layer located between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer;
With
The ultraviolet light emitting device in which an average distance between the n-type nitride semiconductor layer and the AlNi alloy part is 20 nm or more when a portion including the AlNi alloy part of the first electrode part is viewed in cross section.
n型窒化物半導体層と、
Ti,Al,Ni,Auを構成元素として含み、AlNi合金部を有し、前記n型窒化物半導体層上に設けられた第1電極部と、
p型窒化物半導体層と、
前記n型窒化物半導体層と前記p型窒化物半導体層との間に設けられた発光層と、
を備え、
前記第1電極部の前記AlNi合金部を含む部位を断面視したときに、前記AlNi合金部間の平均間隔は100nm以上2500nm以下である紫外光発光装置。
an n-type nitride semiconductor layer;
A first electrode part that includes Ti, Al, Ni, Au as constituent elements, has an AlNi alloy part, and is provided on the n-type nitride semiconductor layer;
a p-type nitride semiconductor layer;
A light emitting layer provided between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer;
With
The ultraviolet light emitting device in which an average interval between the AlNi alloy parts is 100 nm or more and 2500 nm or less when the portion including the AlNi alloy part of the first electrode part is viewed in cross section.
n型窒化物半導体層と、p型窒化物半導体層と、前記n型窒化物半導体層と前記p型窒化物半導体層との間に位置する発光層とを備える半導体ウエハの前記n型窒化物半導体層上に、Tiを5nm以上40nm以下の厚さに形成し、前記Ti上にAlを160nm以上270nm以下の厚さに形成し、前記Al上にNiを5nm以上50nm以下の厚さに形成し、前記Ni上にAuを40nm以上100nm以下の厚さに形成する堆積工程と、
前記堆積工程の後で、熱処理するアニール工程と、を備える紫外光発光装置の製造方法。
The n-type nitride of a semiconductor wafer comprising an n-type nitride semiconductor layer, a p-type nitride semiconductor layer, and a light emitting layer located between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer Ti is formed to a thickness of 5 nm to 40 nm on the semiconductor layer, Al is formed to a thickness of 160 nm to 270 nm on the Ti, and Ni is formed to a thickness of 5 nm to 50 nm on the Al. A deposition step of forming Au on the Ni to a thickness of 40 nm to 100 nm;
An ultraviolet light emitting device manufacturing method comprising: an annealing step for heat treatment after the deposition step.
n型窒化物半導体層と、p型窒化物半導体層と、前記n型窒化物半導体層と前記p型窒化物半導体層との間に位置する発光層とを備える半導体ウエハの前記n型窒化物半導体層上に、Tiを5nm以上40nm以下の厚さに形成し、前記Ti上にAlを形成し、前記Al上にNiを形成し、前記Ni上にAuを40nm以上100nm以下の厚さに形成する堆積工程と、
前記堆積工程の後で、熱処理するアニール工程と、を備え、
前記堆積工程では、前記Alと前記Niの膜厚比(Al膜厚/Ni膜厚)が5以上9.4以下を満たすように前記Alと前記Niをそれぞれ形成する、紫外光発光装置の製造方法。
The n-type nitride of a semiconductor wafer comprising an n-type nitride semiconductor layer, a p-type nitride semiconductor layer, and a light emitting layer located between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer Ti is formed to a thickness of 5 nm to 40 nm on the semiconductor layer, Al is formed on the Ti, Ni is formed on the Al, and Au is formed to a thickness of 40 nm to 100 nm on the Ni. A deposition process to form;
An annealing step for heat treatment after the deposition step,
In the deposition step, the Al and Ni are formed so that the film thickness ratio of Al to Ni (Al film thickness / Ni film thickness) satisfies 5 or more and 9.4 or less, respectively. Method.
n型窒化物半導体層と、p型窒化物半導体層と、前記n型窒化物半導体層と前記p型窒化物半導体層との間に位置する発光層とを備える半導体ウエハの前記n型窒化物半導体層上に、Tiを5nm以上40nm以下の厚さに形成し、前記Ti上にAlを形成し、前記Al上にNiを5nm以上50nm以下の厚さに形成し、前記Ni上にAuを形成する堆積工程と、
前記堆積工程の後で、熱処理するアニール工程と、を備え、
前記堆積工程では、前記Alと前記Auの膜厚比(Al膜厚/Au膜厚)が2.8以上5以下を満たすように前記Alと前記Auをそれぞれ形成する、紫外光発光装置の製造方法。
The n-type nitride of a semiconductor wafer comprising an n-type nitride semiconductor layer, a p-type nitride semiconductor layer, and a light emitting layer located between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer On the semiconductor layer, Ti is formed to a thickness of 5 nm to 40 nm, Al is formed on the Ti, Ni is formed on the Al to a thickness of 5 nm to 50 nm, and Au is formed on the Ni. A deposition process to form;
An annealing step for heat treatment after the deposition step,
In the deposition step, the Al and Au are respectively formed so that the film thickness ratio of Al to Au (Al film thickness / Au film thickness) satisfies 2.8 or more and 5 or less. Method.
請求項1又は2に記載の紫外光発光装置を備える装置。   An apparatus comprising the ultraviolet light emitting device according to claim 1.
JP2015247478A 2015-12-18 2015-12-18 Ultraviolet light-emitting device and method of manufacturing ultraviolet light-emitting device Pending JP2017112313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015247478A JP2017112313A (en) 2015-12-18 2015-12-18 Ultraviolet light-emitting device and method of manufacturing ultraviolet light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015247478A JP2017112313A (en) 2015-12-18 2015-12-18 Ultraviolet light-emitting device and method of manufacturing ultraviolet light-emitting device

Publications (1)

Publication Number Publication Date
JP2017112313A true JP2017112313A (en) 2017-06-22

Family

ID=59081022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015247478A Pending JP2017112313A (en) 2015-12-18 2015-12-18 Ultraviolet light-emitting device and method of manufacturing ultraviolet light-emitting device

Country Status (1)

Country Link
JP (1) JP2017112313A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768140A (en) * 2017-11-09 2019-05-17 旭化成株式会社 Nitride semiconductor device, nitride semiconductor luminescent element, ultraviolet ray emitting element
JP2019087750A (en) * 2017-11-09 2019-06-06 旭化成株式会社 Nitride semiconductor element
JP7469150B2 (en) 2020-06-18 2024-04-16 豊田合成株式会社 Light emitting element

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269912A (en) * 2005-03-25 2006-10-05 Matsushita Electric Ind Co Ltd Light emitting device and manufacturing method thereof
JP2007311740A (en) * 2006-04-20 2007-11-29 National Institute Of Advanced Industrial & Technology Nitride semiconductor field-effect transistor
JP2008010803A (en) * 2006-06-02 2008-01-17 National Institute Of Advanced Industrial & Technology Nitride semiconductor field-effect transistor
JP2008091394A (en) * 2006-09-29 2008-04-17 National Institute Of Advanced Industrial & Technology Field effect transistor, and its manufacturing method
JP2009032713A (en) * 2007-07-24 2009-02-12 National Institute Of Advanced Industrial & Technology NITRIDE SEMICONDUCTOR TRANSISTOR IN WHICH GaN IS MADE AS CHANNEL LAYER, AND ITS MANUFACTURING METHOD
JP2010056322A (en) * 2008-08-28 2010-03-11 Toshiba Corp Semiconductor light-emitting element and manufacturing method thereof
JPWO2009113612A1 (en) * 2008-03-12 2011-07-21 日本電気株式会社 Semiconductor device
JP2011204804A (en) * 2010-03-24 2011-10-13 Toshiba Corp Compound semiconductor device and manufacturing method thereof
JP2012142639A (en) * 2012-04-27 2012-07-26 Toshiba Corp Semiconductor light-emitting diode element and semiconductor light-emitting device
JPWO2012026396A1 (en) * 2010-08-25 2013-10-28 日本碍子株式会社 Epitaxial substrate for semiconductor element, semiconductor element, method for producing epitaxial substrate for semiconductor element, and method for producing semiconductor element
JP5734935B2 (en) * 2012-09-20 2015-06-17 株式会社東芝 Semiconductor device and manufacturing method thereof
JP2015192004A (en) * 2014-03-28 2015-11-02 国立大学法人 名古屋工業大学 Mis type normally-off hemt element of recess structure having drain current density/transconductance improved greatly

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269912A (en) * 2005-03-25 2006-10-05 Matsushita Electric Ind Co Ltd Light emitting device and manufacturing method thereof
JP2007311740A (en) * 2006-04-20 2007-11-29 National Institute Of Advanced Industrial & Technology Nitride semiconductor field-effect transistor
JP2008010803A (en) * 2006-06-02 2008-01-17 National Institute Of Advanced Industrial & Technology Nitride semiconductor field-effect transistor
JP2008091394A (en) * 2006-09-29 2008-04-17 National Institute Of Advanced Industrial & Technology Field effect transistor, and its manufacturing method
JP2009032713A (en) * 2007-07-24 2009-02-12 National Institute Of Advanced Industrial & Technology NITRIDE SEMICONDUCTOR TRANSISTOR IN WHICH GaN IS MADE AS CHANNEL LAYER, AND ITS MANUFACTURING METHOD
JPWO2009113612A1 (en) * 2008-03-12 2011-07-21 日本電気株式会社 Semiconductor device
JP2010056322A (en) * 2008-08-28 2010-03-11 Toshiba Corp Semiconductor light-emitting element and manufacturing method thereof
JP2011204804A (en) * 2010-03-24 2011-10-13 Toshiba Corp Compound semiconductor device and manufacturing method thereof
JPWO2012026396A1 (en) * 2010-08-25 2013-10-28 日本碍子株式会社 Epitaxial substrate for semiconductor element, semiconductor element, method for producing epitaxial substrate for semiconductor element, and method for producing semiconductor element
JP2012142639A (en) * 2012-04-27 2012-07-26 Toshiba Corp Semiconductor light-emitting diode element and semiconductor light-emitting device
JP5734935B2 (en) * 2012-09-20 2015-06-17 株式会社東芝 Semiconductor device and manufacturing method thereof
JP2015192004A (en) * 2014-03-28 2015-11-02 国立大学法人 名古屋工業大学 Mis type normally-off hemt element of recess structure having drain current density/transconductance improved greatly

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
A.CHINI ET AL.: "Power and Linearity Characteristics of Field-Plated Recessed-Gate AlGaN-GaN HEMTs", IEEE ELECTRON DEVICE LETTERS, vol. Vol.25, Issue 5, JPN6019041345, 4 May 2004 (2004-05-04), US, pages 229 - 231, ISSN: 0004141252 *
KULDUIP SINGH ET AL.: "Fabrication and Characterization of InGaN/GaN MQWs Blue Light-Emitting Diodes on Sapphire Substrate", 2013 INTERNATIONAL CONFERENCE ON MICROWAVE AND PHOTONICS (ICMAP), JPN6019041348, 10 February 2014 (2014-02-10), US, pages 1 - 2, ISSN: 0004141249 *
LIN ZHOU ET AL.: "Ti/Al/Ni/Au Ohmic contacts for AlInN/AlN/GaN-based heterojunction field-effect transistors", JOURNAL OF APPLIED PHYSICS, vol. 107, JPN6019029164, 8 January 2010 (2010-01-08), US, pages 014508, ISSN: 0004085118 *
QIAN FENG ET AL.: "The improvement of ohmic contanct of Ti/Al/Ni/Au to AlGaN/GaN HEMT by multi-step annealing method", SOLID STATE ELECTRONICS, vol. 53, JPN6019029163, 28 June 2009 (2009-06-28), NL, pages 955 - 958, ISSN: 0004085117 *
S.RUVIMOV ET AL.: "Microstructure of Ti/Al and Ti/Al/Ni/Au Ohmic contacts for n-GaN", APPLIED PHYSICS LETTERS, vol. 69, JPN6019029165, 9 September 1996 (1996-09-09), US, pages 1556 - 1558, XP000628888, ISSN: 0004141248, DOI: 10.1063/1.117060 *
SONACHAND ADHIKARI ET AL.: "Growth and Fabrication of GaN/InGaN Violet Light Emitting Diode on Patterned Sapphire Substrate", JOURNAL OF APPLIED MATHEMATICS AND PHYSICS, vol. 2, no. 12, JPN6019041347, 25 December 2014 (2014-12-25), CN, pages 1113 - 1117, ISSN: 0004141251 *
T.EGAWA ET AL.: "Demonstration of an InGaN-based light-emitting diode on an AlN/sapphire template by metalorganic che", APPLIED PHYSICS LETTERS, vol. 81, no. 2, JPN6019041346, 27 June 2002 (2002-06-27), US, pages 292 - 294, XP001129328, ISSN: 0004141250, DOI: 10.1063/1.1492857 *
ZHIFANG FAN ET AL.: "Very low resistance multilayer Ohmic contact to n-GaN", APPLIED PHYSICS LETTERS, vol. 68, JPN6019029166, 18 March 1996 (1996-03-18), US, pages 1672 - 1674, XP002169527, ISSN: 0004085119, DOI: 10.1063/1.115901 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768140A (en) * 2017-11-09 2019-05-17 旭化成株式会社 Nitride semiconductor device, nitride semiconductor luminescent element, ultraviolet ray emitting element
JP2019087750A (en) * 2017-11-09 2019-06-06 旭化成株式会社 Nitride semiconductor element
US10937928B2 (en) 2017-11-09 2021-03-02 Asahi Kasei Kabushiki Kaisha Nitride semiconductor element, nitride semiconductor light emitting element, ultraviolet light emitting element
CN109768140B (en) * 2017-11-09 2021-08-17 旭化成株式会社 Nitride semiconductor element, nitride semiconductor light-emitting element, and ultraviolet light-emitting element
JP7141803B2 (en) 2017-11-09 2022-09-26 旭化成株式会社 Nitride semiconductor device
US11637221B2 (en) 2017-11-09 2023-04-25 Asahi Kasei Kabushiki Kaisha Nitride semiconductor element, nitride semiconductor light emitting element, ultraviolet light emitting element
JP7469150B2 (en) 2020-06-18 2024-04-16 豊田合成株式会社 Light emitting element

Similar Documents

Publication Publication Date Title
TWI285444B (en) Group III nitride semiconductor light-emitting device
US20150091036A1 (en) Light emitting diode
US20130193471A1 (en) Iii nitride semiconductor light emitting device and method for manufacturing the same
TW201216510A (en) Ultraviolet light emitting element
JP2017112313A (en) Ultraviolet light-emitting device and method of manufacturing ultraviolet light-emitting device
JP2007200932A5 (en)
CN101147269A (en) Zinc oxide compound semiconductor light emitting element
Han et al. Effect of curved graphene oxide in a GaN light-emitting-diode for improving heat dissipation with a patterned sapphire substrate
KR102099440B1 (en) A method of manufacturing a light emitting device
CN104979446A (en) SiC substate GaN-based ultraviolet LED epitaxial wafer, SiC substate GaN-based ultraviolet LED device and preparation method therefor
JP7049823B2 (en) Nitride semiconductor light emitting device
CN109768140B (en) Nitride semiconductor element, nitride semiconductor light-emitting element, and ultraviolet light-emitting element
JP2017139414A (en) Ultraviolet light-emitting element and device including the same
JP2020167321A (en) Nitride semiconductor light-emitting device
CN109309151B (en) Nitride semiconductor light emitting element and ultraviolet light emitting device
JP7335065B2 (en) light receiving and emitting device
JP2017168640A (en) Ultraviolet light-emitting element
Saifaddin Development of deep ultraviolet (UV-C) thin-film light-emitting diodes grown on SiC
JP7470607B2 (en) Nitride semiconductor devices
JP2017139265A (en) Ultraviolet light-emitting element and device including the same
CN102810610A (en) Nitride semiconductor light emitting element and method for manufacturing the same
JP6998146B2 (en) Ultraviolet light emitting element and ultraviolet irradiation module
JP7141803B2 (en) Nitride semiconductor device
JP6711588B2 (en) Nitride semiconductor light emitting device and nitride semiconductor light emitting device
JP2023127193A (en) Ultraviolet light emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191029