JP2017111725A - Electronic device - Google Patents

Electronic device Download PDF

Info

Publication number
JP2017111725A
JP2017111725A JP2015247232A JP2015247232A JP2017111725A JP 2017111725 A JP2017111725 A JP 2017111725A JP 2015247232 A JP2015247232 A JP 2015247232A JP 2015247232 A JP2015247232 A JP 2015247232A JP 2017111725 A JP2017111725 A JP 2017111725A
Authority
JP
Japan
Prior art keywords
power supply
power
supply unit
lithium ion
cpu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015247232A
Other languages
Japanese (ja)
Inventor
修 植田
Osamu Ueda
修 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2015247232A priority Critical patent/JP2017111725A/en
Priority to KR1020160170490A priority patent/KR20170073503A/en
Priority to CN201611159300.XA priority patent/CN106898490A/en
Publication of JP2017111725A publication Critical patent/JP2017111725A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide an electronic device that enables more efficient discharging of a power storage device and minimizes deterioration of the power storage device itself.SOLUTION: An electronic device 1 includes: a power supply unit 11 for supplying power; a CPU 13 that operates on the power supplied from the power supply unit; a suck-out fan 16 that operates on the power supplied from the power supply unit to suck in exhaust heat from the CPU, and is configured to stop when the power from the power supply unit is cut off; and a lithium ion capacitor 17 that is disposed at a position to receive the exhaust heat from the CPU when the power supplied from the power supply unit is cut off, and is configured to charge itself with the power supplied from the power supply unit and to discharge power to the CPU when the power supplied from the power supply unit is cut off.SELECTED DRAWING: Figure 1

Description

この発明は、蓄電デバイスを有する電子機器に関するものである。   The present invention relates to an electronic device having an electricity storage device.

近年、リチウムイオンバッテリと電気二重層キャパシタの蓄電原理を組み合わせたリチウムイオンキャパシタと呼ばれる蓄電デバイスが、あらゆる場面で利用されている(例えば特許文献1参照)。このリチウムイオンキャパシタは、例えば、サーバ等の電子機器の瞬停時のバックアップのために使用されている。   In recent years, a power storage device called a lithium ion capacitor that combines a power storage principle of a lithium ion battery and an electric double layer capacitor has been used in various situations (for example, see Patent Document 1). This lithium ion capacitor is used, for example, for backup at the time of an instantaneous power failure of an electronic device such as a server.

特開2014−112534号公報JP 2014-112534 A

ところで、リチウムイオンキャパシタは、自身が低温の場合には内部抵抗が高くなり、図3,4に示すように充電及び放電の効率が悪くなるが、リチウムイオンキャパシタ自身は劣化し難い。一方で、リチウムイオンキャパシタは、自身が高温の場合には内部抵抗が低くなり、図3,4に示すように充電及び放電の効率が良くなるが、リチウムイオンキャパシタ自身の劣化は加速する。なお、このような特性は、その他の蓄電デバイス(例えば、リチウムイオンバッテリ、電気二重層キャパシタ、ニッケル水素電池、ニッカド電池)にもみられる。よって、従来の蓄電デバイスを有する電子機器では、蓄電デバイスの放電の効率化を図りつつ、蓄電デバイス自身の劣化を抑制することは困難であるという課題があった。   By the way, when the lithium ion capacitor itself is at a low temperature, the internal resistance becomes high, and the efficiency of charging and discharging deteriorates as shown in FIGS. 3 and 4, but the lithium ion capacitor itself is hardly deteriorated. On the other hand, when the lithium ion capacitor itself is at a high temperature, the internal resistance is low, and the charging and discharging efficiency is improved as shown in FIGS. 3 and 4, but the deterioration of the lithium ion capacitor itself is accelerated. Such characteristics are also observed in other power storage devices (for example, lithium ion batteries, electric double layer capacitors, nickel metal hydride batteries, and nickel cadmium batteries). Therefore, in an electronic device having a conventional power storage device, there is a problem that it is difficult to suppress deterioration of the power storage device itself while improving the efficiency of discharging of the power storage device.

この発明は、上記のような課題を解決するためになされたもので、蓄電デバイスを有する電子機器において、蓄電デバイスの放電の効率化を図り、且つ、蓄電デバイス自身の劣化を抑制することができる電子機器を提供することを目的としている。   The present invention has been made to solve the above-described problems, and in an electronic device having an electricity storage device, it is possible to improve the efficiency of discharging the electricity storage device and to suppress deterioration of the electricity storage device itself. The purpose is to provide electronic devices.

この発明に係る電子機器は、電力を供給する電源部と、電源部から供給された電力により動作するプロセッサと、電源部から供給された電力により動作してプロセッサからの排熱を吸出し、当該電源部からの電力供給の遮断により停止する吸出しファンと、電源部からの電力供給が遮断されている場合にプロセッサからの排熱を受ける位置に設置され、当該電源部から供給された電力を充電し、当該電源部からの電力供給の遮断により当該プロセッサに対して放電を行う蓄電デバイスとを備えたものである。   An electronic apparatus according to the present invention includes a power supply unit that supplies electric power, a processor that operates with the electric power supplied from the power supply unit, operates with the electric power supplied from the power supply unit, and sucks exhaust heat from the processor. A suction fan that stops when the power supply from the power supply is cut off, and a position that receives exhaust heat from the processor when the power supply from the power supply is cut off, and charges the power supplied from the power supply part. And an electricity storage device that discharges the processor when the power supply from the power supply unit is cut off.

この発明によれば、上記のように構成したので、蓄電デバイスを有する電子機器において、蓄電デバイスの放電の効率化を図り、且つ、蓄電デバイス自身の劣化を抑制することができる。   According to this invention, since it comprised as mentioned above, in the electronic device which has an electrical storage device, efficiency improvement of the discharge of an electrical storage device can be achieved, and degradation of electrical storage device itself can be suppressed.

この発明の実施の形態1に係る電子機器の構成例を示す図である。It is a figure which shows the structural example of the electronic device which concerns on Embodiment 1 of this invention. 図2A、図2Bは、図1に示す電子機器における電流経路を説明する図であり、通常状態での電流経路を示す図であり、バックアップ状態での電流経路を示す図である。2A and 2B are diagrams illustrating a current path in the electronic device illustrated in FIG. 1, a diagram illustrating a current path in a normal state, and a diagram illustrating a current path in a backup state. リチウムイオンキャパシタの充電特性の一例を示す図である。It is a figure which shows an example of the charge characteristic of a lithium ion capacitor. リチウムイオンキャパシタの放電特性の一例を示す図である。It is a figure which shows an example of the discharge characteristic of a lithium ion capacitor.

以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
図1はこの発明の実施の形態1に係る電子機器1の構成例を示す図である。
電子機器1は、蓄電デバイスを用いたバックアップ機能を有するものである。なお以下では、蓄電デバイスとしてリチウムイオンキャパシタ17を用いた場合を例に説明を行う。この電子機器1は、図1に示すように、電源部11、電力遮断検出部12、CPU(プロセッサ)13、揮発性メモリ14、不揮発性メモリ15、吸出しファン16、リチウムイオンキャパシタ17及びダイオード18,19を備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration example of an electronic apparatus 1 according to Embodiment 1 of the present invention.
The electronic device 1 has a backup function using an electricity storage device. In the following description, a case where the lithium ion capacitor 17 is used as an electricity storage device will be described as an example. As shown in FIG. 1, the electronic device 1 includes a power supply unit 11, a power interruption detection unit 12, a CPU (processor) 13, a volatile memory 14, a nonvolatile memory 15, a suction fan 16, a lithium ion capacitor 17, and a diode 18. , 19 are provided.

電源部11は、外部の主電源から供給された電力に対して電力変換を行い、電子機器1内の各部に供給するものである。例えば、電源部11は、主電源からAC100−240Vの電力を入力し、内部でDC12Vの電力に変換して電子機器1内の各部に供給する。   The power supply unit 11 performs power conversion on the power supplied from the external main power supply and supplies the power to each unit in the electronic device 1. For example, the power supply unit 11 receives AC 100-240V power from the main power supply, converts it into DC 12V power, and supplies it to each unit in the electronic device 1.

電力遮断検出部12は、電源部11からの電力供給の遮断を検出(Power Fail検出)するものである。この際、例えば、電力遮断検出部12は、電源部11から印加された電圧が電子機器1のプリント板に実装されたICの動作仕様を満たすかを判断することで、電力供給の遮断有無を検出する。そして、電力遮断検出部12は、電力供給の遮断有無の検出結果を示す信号をCPU13に出力する。   The power interruption detection unit 12 detects an interruption of power supply from the power supply unit 11 (Power Fail detection). At this time, for example, the power interruption detection unit 12 determines whether or not the electric power supply is interrupted by determining whether the voltage applied from the power supply unit 11 satisfies the operation specifications of the IC mounted on the printed board of the electronic device 1. To detect. Then, the power interruption detection unit 12 outputs a signal indicating the detection result of whether or not the electric power supply is interrupted to the CPU 13.

CPU13は、電源部11から供給された電力により動作し、揮発性メモリ14に記憶された各種のプログラムを実行するものである。そして、CPU13は、当該プログラムの実行結果を示すデータを揮発性メモリ14に出力する。また、CPU13は、電力遮断検出部12により電力供給の遮断が検出された場合には、揮発性メモリ14に記憶されたデータのうちの少なくとも一部(必要最小限)のデータを読み出して、不揮発性メモリ15に転送する(バックアップ機能)。なお、CPU13によるバックアップ動作において揮発性メモリ14から不揮発性メモリ15へ転送するデータは予め設定されている。   The CPU 13 operates with the power supplied from the power supply unit 11 and executes various programs stored in the volatile memory 14. Then, the CPU 13 outputs data indicating the execution result of the program to the volatile memory 14. Further, the CPU 13 reads at least a part (minimum necessary) of the data stored in the volatile memory 14 when the power interruption detection unit 12 detects the interruption of the power supply, and the nonvolatile memory Transfer to the memory 15 (backup function). Note that data to be transferred from the volatile memory 14 to the nonvolatile memory 15 in the backup operation by the CPU 13 is set in advance.

揮発性メモリ14は、CPU13が実行する各種のプログラム及び、CPU13から出力されたプログラムの実行結果を示すデータを記憶するものである。
不揮発性メモリ15は、CPU13から転送されたデータを記憶するものである。この不揮発性メモリ15としては、例えばSSD(Solid State Drive)が用いられる。
The volatile memory 14 stores various programs executed by the CPU 13 and data indicating the execution results of the programs output from the CPU 13.
The nonvolatile memory 15 stores data transferred from the CPU 13. For example, an SSD (Solid State Drive) is used as the nonvolatile memory 15.

吸出しファン16は、電源部11から供給された電力により羽根を回転させ、CPU13からの排熱を吸出すものである。また、吸出しファン16は、電源部11からの電力供給が遮断されると停止する。   The suction fan 16 rotates the blades with the electric power supplied from the power supply unit 11 and sucks the exhaust heat from the CPU 13. The suction fan 16 stops when the power supply from the power supply unit 11 is cut off.

リチウムイオンキャパシタ17は、電源部11から供給された電力を充電し、当該電源部11からの電力供給の遮断によりCPU13に対して放電を行うものである。このリチウムイオンキャパシタ17は、電源部11からの電力供給が遮断されている場合にCPU13からの排熱を受ける位置に設置されている。
なお、CPU13、吸出しファン16及びリチウムイオンキャパシタ17は、電子機器1の同じケーシング内に収納されている。
The lithium ion capacitor 17 charges the power supplied from the power supply unit 11 and discharges the CPU 13 by cutting off the power supply from the power supply unit 11. The lithium ion capacitor 17 is installed at a position where it receives exhaust heat from the CPU 13 when power supply from the power supply unit 11 is interrupted.
The CPU 13, the suction fan 16 and the lithium ion capacitor 17 are housed in the same casing of the electronic device 1.

ダイオード18は、電源部11からCPU13への電力供給ラインに挿入され、アノードが電源部11の出力端に接続され、カソードがCPU13の入力端に接続されたものである。
ダイオード19は、リチウムイオンキャパシタ17からCPU13への電力供給ラインに挿入され、アノードがリチウムイオンキャパシタ17の出力端に接続され、カソードがCPU13の入力端に接続されたものである。
The diode 18 is inserted into a power supply line from the power supply unit 11 to the CPU 13, and has an anode connected to the output end of the power supply unit 11 and a cathode connected to the input end of the CPU 13.
The diode 19 is inserted into the power supply line from the lithium ion capacitor 17 to the CPU 13, the anode is connected to the output terminal of the lithium ion capacitor 17, and the cathode is connected to the input terminal of the CPU 13.

次に、上記のように構成された電子機器1の効果について、図1〜4を用いて説明する。なお図2では、電子機器1の内部構成のうち、電流経路の説明に必要な構成のみを示している。
ここで、リチウムイオンキャパシタ17は、自身が低温の場合には内部抵抗が高くなり、図3,4に示すように充電及び放電の効率が悪くなるが、リチウムイオンキャパシタ17自身は劣化し難くなる。一方、リチウムイオンキャパシタ17は、自身が高温の場合には内部抵抗が低くなり、図3,4に示すように充電及び放電の効率が良くなるが、リチウムイオンキャパシタ17自身の劣化が加速される。
Next, effects of the electronic device 1 configured as described above will be described with reference to FIGS. In FIG. 2, only the configuration necessary for the description of the current path is shown in the internal configuration of the electronic apparatus 1.
Here, when the lithium ion capacitor 17 itself is at a low temperature, the internal resistance becomes high, and as shown in FIGS. 3 and 4, the efficiency of charging and discharging is deteriorated, but the lithium ion capacitor 17 itself is hardly deteriorated. . On the other hand, when the lithium ion capacitor 17 itself is at a high temperature, the internal resistance becomes low and the efficiency of charging and discharging is improved as shown in FIGS. 3 and 4, but the deterioration of the lithium ion capacitor 17 itself is accelerated. .

そこで、実施の形態1では、リチウムイオンキャパシタ17をCPU13の近傍に配置し、また、電源部11からの電力供給が停止した場合に吸出しファン16を停止させるように構成する。これにより、リチウムイオンキャパシタ17の放電時には放電効率を上げるとともに、電子機器1が正常動作時(リチウムイオンキャパシタ17の充電時を含む)にはリチウムイオンキャパシタ17の劣化を考慮して、長寿命化を図る。   Therefore, in the first embodiment, the lithium ion capacitor 17 is disposed in the vicinity of the CPU 13, and the suction fan 16 is stopped when the power supply from the power supply unit 11 is stopped. As a result, the discharge efficiency is increased when the lithium ion capacitor 17 is discharged, and the lifetime is increased in consideration of deterioration of the lithium ion capacitor 17 when the electronic device 1 is operating normally (including when the lithium ion capacitor 17 is charged). Plan.

すなわち、電源部11が正常に動作している場合には、図2Aに示すように、CPU13、吸出しファン16及びリチウムイオンキャパシタ17に電力が供給される。これにより、CPU13は、揮発性メモリ14に記憶されたプログラムを実行し、その実行結果を示すデータを揮発性メモリ14に記憶させる。また、リチウムイオンキャパシタ17は充電を行う。またこの際、吸出しファン16は、CPU13から生じた排熱を吸出すように動作する。この排熱の吸出しによって、動作中に高温となるCPU13を冷却することが可能になるとともに、リチウムイオンキャパシタ17も低温となり、リチウムイオンキャパシタ17自身の劣化を最小限に留めることが可能となる。   That is, when the power supply unit 11 is operating normally, power is supplied to the CPU 13, the suction fan 16, and the lithium ion capacitor 17, as shown in FIG. 2A. As a result, the CPU 13 executes the program stored in the volatile memory 14 and stores data indicating the execution result in the volatile memory 14. The lithium ion capacitor 17 is charged. At this time, the suction fan 16 operates so as to suck the exhaust heat generated from the CPU 13. By sucking out the exhaust heat, it becomes possible to cool the CPU 13 that is at a high temperature during operation, and the lithium ion capacitor 17 is also at a low temperature, so that deterioration of the lithium ion capacitor 17 itself can be minimized.

一方、電源部11から電力が出力されなくなると、図2Bに示すように、CPU13、吸出しファン16及びリチウムイオンキャパシタ17への電力供給が遮断される。すると、吸出しファン16は停止し、また、リチウムイオンキャパシタ17はCPU13への放電を開始する。また、CPU13は、電力遮断検出部12による電力供給の遮断の検出を契機に、揮発性メモリ14に記憶されたデータのうちの少なくとも一部のデータを不揮発性メモリ15に転送して待避させる。この際、吸出しファン16は停止しているため、CPU13から生じた排熱は吸出されずにCPU13の周囲に溜まることになる。この滞留している排熱によってリチウムイオンキャパシタ17は高温となり、放電時の効率を上げることが可能となる。   On the other hand, when power is not output from the power supply unit 11, the power supply to the CPU 13, the suction fan 16, and the lithium ion capacitor 17 is cut off as shown in FIG. 2B. Then, the suction fan 16 stops and the lithium ion capacitor 17 starts discharging to the CPU 13. In addition, the CPU 13 transfers at least a part of the data stored in the volatile memory 14 to the nonvolatile memory 15 to be saved when the power interruption detection unit 12 detects the interruption of the power supply. At this time, since the suction fan 16 is stopped, the exhaust heat generated from the CPU 13 is not sucked and is accumulated around the CPU 13. Due to the accumulated exhaust heat, the lithium ion capacitor 17 becomes a high temperature, and the efficiency during discharge can be increased.

なお、リチウムイオンキャパシタ17は、電子機器1の寿命期間内(例えば10年)において、少なくとも一部のデータを不揮発性メモリ15に待避させるために必要な放電時間(例えば8秒)を確保できる温度となるように、CPU13との配置関係が設計される。   Note that the lithium ion capacitor 17 has a temperature that can secure a discharge time (for example, 8 seconds) necessary to save at least a part of data in the nonvolatile memory 15 within the lifetime of the electronic device 1 (for example, 10 years). Thus, the arrangement relationship with the CPU 13 is designed.

なお上記では、電源部11からCPU13への電力供給ラインにダイオード18を設け、リチウムイオンキャパシタ17からCPU13への電力供給ラインにダイオード19を設けた場合を示した。しかしながら、これに限るものではなく、ダイオード18を半導体スイッチに変更してもよい。この場合には、当該半導体スイッチは、電力遮断検出部12により電力が供給されていることが検出された場合に、電源部11からCPU13への電力供給ラインを接続するように切替える。同様に、ダイオード19を半導体スイッチに変更してもよい。この場合には、当該半導体スイッチは、電力遮断検出部12により電力供給の遮断が検出された場合に、リチウムイオンキャパシタ17からCPU13への電力供給ラインを接続するように切替える。   In the above description, the diode 18 is provided in the power supply line from the power supply unit 11 to the CPU 13, and the diode 19 is provided in the power supply line from the lithium ion capacitor 17 to the CPU 13. However, the present invention is not limited to this, and the diode 18 may be changed to a semiconductor switch. In this case, the semiconductor switch switches to connect the power supply line from the power supply unit 11 to the CPU 13 when the power interruption detection unit 12 detects that power is supplied. Similarly, the diode 19 may be changed to a semiconductor switch. In this case, the semiconductor switch switches so as to connect the power supply line from the lithium ion capacitor 17 to the CPU 13 when the power interruption detection unit 12 detects the interruption of the power supply.

また上記では、吸出しファン16によってCPU13からの排熱を吸出すことで、リチウムイオンキャパシタ17を低温とする場合を示した。これに対して、更に、電源部11から供給された電力により動作してリチウムイオンキャパシタ17に対して送風を行い、当該電源部11からの電力供給の遮断により停止する送風ファンを設けてもよい。この送風ファンによって、電子機器1が正常動作時(リチウムイオンキャパシタ17の充電時を含む)に、リチウムイオンキャパシタ17の温度を直接下げることができ、リチウムイオンキャパシタ17自身の劣化を更に抑制させることができる。   In the above description, the case where the lithium ion capacitor 17 is brought to a low temperature by sucking the exhaust heat from the CPU 13 by the suction fan 16 has been shown. On the other hand, a blower fan that operates by the power supplied from the power supply unit 11 to blow air to the lithium ion capacitor 17 and stops when the power supply from the power supply unit 11 is stopped may be provided. . This blower fan can directly lower the temperature of the lithium ion capacitor 17 when the electronic device 1 is operating normally (including when the lithium ion capacitor 17 is charged), and further suppress deterioration of the lithium ion capacitor 17 itself. Can do.

また上記では、蓄電デバイスとして、リチウムイオンキャパシタ17を用いた場合を示した。しかしながら、これに限るものではなく、その他の蓄電デバイス(例えば、リチウムイオンバッテリ、電気二重層キャパシタ、ニッケル水素電池、ニッカド電池)についても、リチウムイオンキャパシタ17と同様の特性を有しているため、実施の形態1の構成を適用することができる。   Moreover, the case where the lithium ion capacitor 17 was used as an electrical storage device was shown above. However, the present invention is not limited to this, and other power storage devices (for example, a lithium ion battery, an electric double layer capacitor, a nickel metal hydride battery, and a nickel cadmium battery) have the same characteristics as the lithium ion capacitor 17, The configuration of Embodiment 1 can be applied.

以上のように、この実施の形態1によれば、電力を供給する電源部11と、電源部11から供給された電力により動作するCPU13と、電源部11から供給された電力により動作してCPU13からの排熱を吸出し、当該電源部11からの電力供給の遮断により停止する吸出しファン16と、電源部11からの電力供給が遮断されている場合にCPU13からの排熱を受ける位置に設置され、当該電源部11から供給された電力を充電し、当該電源部11からの電力供給の遮断により当該CPU13に対して放電を行う蓄電デバイスとを備えたので、蓄電デバイスを有する電子機器1において、蓄電デバイスの放電の効率化を図り、且つ、蓄電デバイス自身の劣化を抑制することができる。   As described above, according to the first embodiment, the power supply unit 11 that supplies power, the CPU 13 that operates with the power supplied from the power supply unit 11, and the CPU 13 that operates with the power supplied from the power supply unit 11. The suction fan 16 that sucks out the exhaust heat from the power supply and stops when the power supply from the power supply unit 11 is cut off, and is installed at a position that receives the heat exhausted from the CPU 13 when the power supply from the power supply unit 11 is cut off. In the electronic apparatus 1 having the power storage device, the power storage device includes the power storage device that charges the power supplied from the power supply unit 11 and discharges the CPU 13 by cutting off the power supply from the power supply unit 11. The efficiency of discharging of the electricity storage device can be increased, and deterioration of the electricity storage device itself can be suppressed.

なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。   In the present invention, any constituent element of the embodiment can be modified or any constituent element of the embodiment can be omitted within the scope of the invention.

1 電子機器
11 電源部
12 電力遮断検出部
13 CPU(プロセッサ)
14 揮発性メモリ
15 不揮発性メモリ
16 吸出しファン
17 リチウムイオンキャパシタ
18,19 ダイオード
DESCRIPTION OF SYMBOLS 1 Electronic device 11 Power supply part 12 Power interruption | blocking detection part 13 CPU (processor)
14 Volatile memory 15 Non-volatile memory 16 Suction fan 17 Lithium ion capacitor 18, 19 Diode

Claims (4)

電力を供給する電源部と、
前記電源部から供給された電力により動作するプロセッサと、
前記電源部から供給された電力により動作して前記プロセッサからの排熱を吸出し、当該電源部からの電力供給の遮断により停止する吸出しファンと、
前記電源部からの電力供給が遮断されている場合に前記プロセッサからの排熱を受ける位置に設置され、当該電源部から供給された電力を充電し、当該電源部からの電力供給の遮断により当該プロセッサに対して放電を行う蓄電デバイスと
を備えた電子機器。
A power supply for supplying power;
A processor that operates with power supplied from the power supply unit;
A suction fan that operates with the power supplied from the power supply unit and sucks exhaust heat from the processor and stops when the power supply from the power supply unit is cut off;
When the power supply from the power supply unit is cut off, the power supply unit is installed at a position that receives exhaust heat from the processor, charges the power supplied from the power supply unit, and the power supply from the power supply unit cuts off the power supply. An electronic device comprising an electricity storage device that discharges to a processor.
前記蓄電デバイスは、リチウムイオンキャパシタ、リチウムイオンバッテリ、電気二重層キャパシタ、ニッケル水素電池又はニッカド電池のうちのいずれかである
ことを特徴とする請求項1記載の電子機器。
The electronic device according to claim 1, wherein the power storage device is any one of a lithium ion capacitor, a lithium ion battery, an electric double layer capacitor, a nickel metal hydride battery, and a nickel cadmium battery.
前記電源部から供給された電力により動作して前記蓄電デバイスに対して送風を行い、当該電源部からの電力供給の遮断により停止する送風ファンを備えた
ことを特徴とする請求項1又は請求項2記載の電子機器。
The air blower which operates by the electric power supplied from the power supply unit, blows air to the power storage device, and stops when the power supply from the power supply unit is cut off is provided. 2. The electronic device according to 2.
前記電源部からの電力供給の遮断を検出する電力遮断検出部と、
前記プロセッサが実行するプログラム及び当該プロセッサによる当該プログラムの実行結果を示すデータを記憶する揮発性メモリと、
入力されたデータを記憶する不揮発性メモリとを備え、
前記プロセッサは、前記電力遮断検出部により電力供給の遮断が検出された場合に、前記揮発性メモリに記憶されたデータのうちの少なくとも一部を前記不揮発性メモリに転送する
ことを特徴とする請求項1から請求項3のうちのいずれか1項記載の電子機器。
A power cut-off detection unit for detecting a cut-off of power supply from the power supply unit;
A volatile memory for storing a program executed by the processor and data indicating an execution result of the program by the processor;
A nonvolatile memory for storing input data,
The processor transfers at least a part of the data stored in the volatile memory to the non-volatile memory when the power interruption detecting unit detects the interruption of power supply. The electronic device according to any one of claims 1 to 3.
JP2015247232A 2015-12-18 2015-12-18 Electronic device Pending JP2017111725A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015247232A JP2017111725A (en) 2015-12-18 2015-12-18 Electronic device
KR1020160170490A KR20170073503A (en) 2015-12-18 2016-12-14 Electronic device
CN201611159300.XA CN106898490A (en) 2015-12-18 2016-12-15 Electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015247232A JP2017111725A (en) 2015-12-18 2015-12-18 Electronic device

Publications (1)

Publication Number Publication Date
JP2017111725A true JP2017111725A (en) 2017-06-22

Family

ID=59079706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015247232A Pending JP2017111725A (en) 2015-12-18 2015-12-18 Electronic device

Country Status (3)

Country Link
JP (1) JP2017111725A (en)
KR (1) KR20170073503A (en)
CN (1) CN106898490A (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07129286A (en) * 1993-11-05 1995-05-19 Fuji Electric Co Ltd Backup method for computer system at time of power source disconnection
JP2000228594A (en) * 1999-02-04 2000-08-15 Fujitsu Ltd Method for controlling cooling of portable electronic equipment and cooling device
JP2000276259A (en) * 1999-03-23 2000-10-06 Matsushita Electric Ind Co Ltd Portable information processor
JP2000323186A (en) * 1999-05-07 2000-11-24 Sanyo Electric Co Ltd Battery device of electronic apparatus
JP2001236145A (en) * 2000-02-22 2001-08-31 Hitachi Ltd Battery and cooling system to be used as battery charger
US20020033692A1 (en) * 2000-09-20 2002-03-21 Toshiba Battery Co., Ltd. Uninterruptible power supply
JP2002190326A (en) * 2000-12-19 2002-07-05 Toshiba Battery Co Ltd Secondary cell device
JP2006019970A (en) * 2004-06-30 2006-01-19 Toshiba Corp Broadcast receiving device and cooling method thereof
JP2010086448A (en) * 2008-10-02 2010-04-15 Yamatake Corp Device for detecting degradation of backup condenser, and electronic equipment
JP2010124547A (en) * 2008-11-17 2010-06-03 Nippon Telegr & Teleph Corp <Ntt> Apparatus and method for charge control and photovoltaic power generating system
JP2010206055A (en) * 2009-03-05 2010-09-16 Sanyo Electric Co Ltd Electronic equipment cooling device
JP2015138629A (en) * 2014-01-22 2015-07-30 富士通株式会社 Electronic apparatus
JP2015219897A (en) * 2014-05-21 2015-12-07 富士電機株式会社 Data control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370338B1 (en) * 2007-02-23 2014-03-05 삼성전자 주식회사 Computer and power supply method thereof
CN101702114A (en) * 2009-11-18 2010-05-05 成都市华为赛门铁克科技有限公司 Memory module, memory device, memory system and data-processing method
CN103985553A (en) * 2013-02-07 2014-08-13 天津翔驰电子有限公司 Novel super capacitor

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07129286A (en) * 1993-11-05 1995-05-19 Fuji Electric Co Ltd Backup method for computer system at time of power source disconnection
JP2000228594A (en) * 1999-02-04 2000-08-15 Fujitsu Ltd Method for controlling cooling of portable electronic equipment and cooling device
JP2000276259A (en) * 1999-03-23 2000-10-06 Matsushita Electric Ind Co Ltd Portable information processor
JP2000323186A (en) * 1999-05-07 2000-11-24 Sanyo Electric Co Ltd Battery device of electronic apparatus
JP2001236145A (en) * 2000-02-22 2001-08-31 Hitachi Ltd Battery and cooling system to be used as battery charger
US20020033692A1 (en) * 2000-09-20 2002-03-21 Toshiba Battery Co., Ltd. Uninterruptible power supply
JP2002190326A (en) * 2000-12-19 2002-07-05 Toshiba Battery Co Ltd Secondary cell device
JP2006019970A (en) * 2004-06-30 2006-01-19 Toshiba Corp Broadcast receiving device and cooling method thereof
JP2010086448A (en) * 2008-10-02 2010-04-15 Yamatake Corp Device for detecting degradation of backup condenser, and electronic equipment
JP2010124547A (en) * 2008-11-17 2010-06-03 Nippon Telegr & Teleph Corp <Ntt> Apparatus and method for charge control and photovoltaic power generating system
JP2010206055A (en) * 2009-03-05 2010-09-16 Sanyo Electric Co Ltd Electronic equipment cooling device
JP2015138629A (en) * 2014-01-22 2015-07-30 富士通株式会社 Electronic apparatus
JP2015219897A (en) * 2014-05-21 2015-12-07 富士電機株式会社 Data control device

Also Published As

Publication number Publication date
KR20170073503A (en) 2017-06-28
CN106898490A (en) 2017-06-27

Similar Documents

Publication Publication Date Title
US20120268079A1 (en) Discharge control circuit
JP5439000B2 (en) Battery assembly system and battery protection device
US20170170653A1 (en) Explosion-proof circuit, charging circuit and charging/discharging protection circuit of battery
JP5048366B2 (en) Protective device
US20100096928A1 (en) Automatic start-up circuit and uninterruptible power supply apparatus having such automatic start-up circuit
WO2022142036A1 (en) Electric vehicle charging system and control method therefor
TW200931754A (en) Over-voltage protection circuit structure and method thereof
JP2010244844A (en) Battery pack
JP4821691B2 (en) Secondary battery pack
JP2020505899A (en) Battery pack and power system including the same
JP5177843B2 (en) Battery pack
JP2014023271A (en) Power-supply unit
KR102332335B1 (en) Battery pack
JP4999004B2 (en) Secondary battery protection circuit and battery pack provided with the secondary battery protection circuit
JP2017111725A (en) Electronic device
JP2009005451A (en) Backup power supply system
US9634501B2 (en) Protective circuit of unit cell
JP5094129B2 (en) Battery pack
JP5286809B2 (en) Semiconductor integrated circuit
TWI424168B (en) The charging circuit of the mobile device and the contact judgment method between the charging circuit and the charging device
US11695312B2 (en) Electrostatic discharge dissipation structure
CN202798057U (en) Manually switched battery circuit
JP5758222B2 (en) Storage battery overdischarge alarm circuit
JP2016015807A (en) Power supply device, electronic apparatus and program for preventing breakage by short circuit
JP2017112762A (en) Power supply system and power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191001