JP2017111183A - Hand tremor correction device - Google Patents

Hand tremor correction device Download PDF

Info

Publication number
JP2017111183A
JP2017111183A JP2015243126A JP2015243126A JP2017111183A JP 2017111183 A JP2017111183 A JP 2017111183A JP 2015243126 A JP2015243126 A JP 2015243126A JP 2015243126 A JP2015243126 A JP 2015243126A JP 2017111183 A JP2017111183 A JP 2017111183A
Authority
JP
Japan
Prior art keywords
magnet
movable
optical axis
detection
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015243126A
Other languages
Japanese (ja)
Inventor
春山 哲也
Tetsuya Haruyama
哲也 春山
祐介 北田
Yusuke Kitada
祐介 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS-TOKKI Inc
Original Assignee
PS-TOKKI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS-TOKKI Inc filed Critical PS-TOKKI Inc
Priority to JP2015243126A priority Critical patent/JP2017111183A/en
Publication of JP2017111183A publication Critical patent/JP2017111183A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hand tremor correction device that can highly accurately move a movable member to a prescribed position, and can be downsized and light-weighted.SOLUTION: A hand tremor correction device includes: a first stationary part 2; a second stationary part 5 that is assembled to the first stationary part 2; a movable unit 3 that is arranged between the first stationary part 2 and the second stationary part 5 along an optical axis direction, is rotatably supported in an in-plane orthogonal to n optical axis, and holds a correction lens; and a plurality of voice coil motors 6a, 6b and 6c that have three drive magnets 61a, 61b and 61c with a Halbach array to be installed in the first stationary part 2 (or may be the movable unit 3), and drive coils 62a, 62b and 62c. The first stationary part 2 includes a first stationary frame 20 that abuts against a part of an outer peripheral side of the drive magnets 61a, 61b and 61c when viewing from the optical axis direction, and has wall parts 25a, 25b and 25c thinner than the drive magnet. The first stationary frame 20 includes adhesive accumulations 26a, 26b and 26c on an upper part of each wall part.SELECTED DRAWING: Figure 1

Description

本発明は、固定部に対して可動部を移動させるボイスコイルモータと磁界検出素子を含む位置検出部材を備えた手振れ補正装置に関する。   The present invention relates to a camera shake correction apparatus including a voice coil motor that moves a movable portion relative to a fixed portion and a position detection member that includes a magnetic field detection element.

精密機器、例えばデジタルカメラなどの撮像用光学機器では、撮影レンズの長焦点化や高倍率ズーム化に伴い、高画質の写真を撮影するために、カメラボディーや交換レンズに例えば光学式手振れ補正装置を搭載することが一般的になっている。光学式手振れ補正装置では、光軸と垂直な平面上で補正レンズ又は撮像素子をボイスコイルモータ(以下「VCM」という。)により二次元方向に移動させるとともに、位置検出装置を搭載して、サーボ制御することが一般的である。   In precision instruments such as digital cameras, such as digital cameras, for example, optical camera shake correction devices are attached to camera bodies and interchangeable lenses in order to take high-quality pictures as the taking lens becomes longer in focus or zoomed in at a higher magnification. It has become common to install. In an optical camera shake correction device, a correction lens or an image sensor is moved in a two-dimensional direction by a voice coil motor (hereinafter referred to as “VCM”) on a plane perpendicular to the optical axis, and a position detection device is mounted on the servo. It is common to control.

例えば特許文献1には、振れ補正レンズを保持するシフト枠とシフトベースとの間に転動可能なボールを挟持し、可動コイル形のボイスコイルモータにより、シフト枠を光軸直交面内でピッチ方向及びヨー方向に駆動し、ボイスコイルモータを構成する磁石とヨークとの間に作用する磁気的な吸引力により、シフト枠をベース側へ付勢するとともに、シフト枠に固定された検出用磁石とシフトベースに固定されたホール素子を含む位置検出手段を備えた像振れ補正装置が記載されている。   For example, in Patent Document 1, a ball that can roll is sandwiched between a shift frame that holds a shake correction lens and a shift base, and the shift frame is pitched in a plane orthogonal to the optical axis by a moving coil type voice coil motor. And a magnet for detection fixed to the shift frame while urging the shift frame toward the base side by a magnetic attraction acting between the magnet and the yoke constituting the voice coil motor. And an image blur correction device including position detection means including a Hall element fixed to the shift base.

ただ特許文献1に記載された像振れ補正装置は、光軸方向から見てボイスコイルモータのコイルと検出用磁石が重なるように配置されているので、コイルの磁界の影響を受けて、位置検出精度が低下するといった問題がある。又、光軸方向で位置検出磁石と駆動磁石は重なるように配置されており、可動する位置検出磁石と固定側の駆動磁石の間には常に磁気的吸引力が働いており、その磁気的吸引力は可動部の位置を光軸中心位置に保持しようとする力であり、像振れ補正する本来の制御動作の際には可動部の動きを阻害するといった問題もある。更に、磁石同士の吸引力は非常に強いため、可動部のシフトベースに対する吸引保持力を調整する場合には、位置検出磁石と駆動磁石の光軸方向の距離は遠ざけざるを得ず、その結果厚み方向の寸法が大きくなり、小型化できないといった問題も生じ得る。   However, since the image blur correction apparatus described in Patent Document 1 is arranged so that the coil of the voice coil motor and the magnet for detection overlap when viewed from the optical axis direction, the position detection is performed under the influence of the magnetic field of the coil. There is a problem that accuracy decreases. Also, the position detection magnet and the drive magnet are arranged so as to overlap in the optical axis direction, and a magnetic attraction force always acts between the movable position detection magnet and the fixed-side drive magnet. The force is a force that tries to hold the position of the movable part at the center position of the optical axis, and there is a problem that the movement of the movable part is hindered during the original control operation for correcting the image blur. Furthermore, since the attractive force between the magnets is very strong, when adjusting the attractive force of the movable part to the shift base, the distance between the position detection magnet and the drive magnet in the optical axis direction must be increased, and as a result There may be a problem that the size in the thickness direction becomes large and the size cannot be reduced.

最近の手振れ補正装置では、補正効果(シャッター速度の段数)の向上と大口径レンズの使用及び小型化が必要となる。しかるに単純にVCMを使用しても推力の向上は困難で、小型ができない。そこで、レンズ駆動手段として、ハルバッハ配列を有する磁気回路構造を有するVCMを使用することが考えられる。ハルバッハ配列を有する駆動手段は、例えば特許文献2に記載されている。   In recent camera shake correction apparatuses, it is necessary to improve the correction effect (the number of steps of the shutter speed), use a large-diameter lens, and reduce the size. However, even if VCM is simply used, it is difficult to improve thrust and it cannot be downsized. Therefore, it is conceivable to use a VCM having a magnetic circuit structure having a Halbach array as lens driving means. A driving means having a Halbach array is described in Patent Document 2, for example.

特許文献2には、バックヨークやハブ等の磁石固定部材を不要とし、ムービングマグネット形のリニアモータの可動子を軽量化することために、可動子は、固定子に垂直な方向に磁化された直方体状の主磁極永久磁石と可動子の移動方向に磁化されて磁束を流通させる直方体状の補磁極永久磁石とを、移動方向に沿って交互に配列するハルバック配列により、少なくとも3個以上の奇数個配列した平盤状の多極界磁磁極と、平盤状の多極界磁磁極の側面及び移動方向端面を保持する非磁性ホルダと、を備え、平盤状の多極界磁磁極には、移動方向端面間を貫通する複数の貫通孔が形成され、非磁性ホルダには、複数の貫通孔に対向する夫々の穴が形成され、多極界磁磁極の前記貫通孔を貫通して移動方向端面から突出する締結棒の端部が、非磁性ホルダの穴に嵌合されていることが記載されている。   In Patent Document 2, a magnet fixing member such as a back yoke or a hub is not required, and the moving element is magnetized in a direction perpendicular to the stator in order to reduce the weight of the moving magnet type linear motor. A cuboid main magnetic pole permanent magnet and a rectangular parallelepiped auxiliary magnetic pole permanent magnet which is magnetized in the moving direction of the mover and circulates the magnetic flux are arranged in an odd number of at least three by a Hullback arrangement alternately arranged along the moving direction. A flat plate-shaped multipole field magnetic pole and a nonmagnetic holder that holds the side surface and the end surface in the moving direction of the flat plate-shaped multipole field magnetic pole. Are formed with a plurality of through-holes penetrating between the end faces in the moving direction, and the non-magnetic holder is formed with respective holes facing the plurality of through-holes, penetrating the through-holes of the multipole field magnetic poles. The end of the fastening rod protruding from the end face in the moving direction is not It is described that is fitted into the hole of sexual holder.

特許第4006178号公報Japanese Patent No. 4006178 特許第5300325号公報Japanese Patent No. 5300325

しかるにハルバッハ配列形の磁気回路を構成しようとすると、磁化方向が異なる永久磁石を組み合わせるために、同極反発作用に起因して永久磁石が磁石固定部からが浮き上がるという不具合がある。半導体製造装置のように大型のリニアモータでは、治具などを用いて磁気回路を組み立てることができるので、磁石の浮き上がりを防止できるが、手振れ補正装置のような小型の精密機器では磁石の浮き上がり防止は困難となる。   However, if a Halbach array type magnetic circuit is to be constructed, there is a problem that the permanent magnets are lifted from the magnet fixing portion due to the same-polarity repulsive action because the permanent magnets having different magnetization directions are combined. Large linear motors, such as semiconductor manufacturing equipment, can assemble magnetic circuits using jigs, etc., so that they can prevent the magnets from floating, but small precision equipment such as image stabilization devices can prevent the magnets from floating. Will be difficult.

したがって本発明の目的は、推力を向上しかつ可動部を高精度で所定位置まで直線的に移動することが可能で、かつ小型・軽量化が可能な手振れ補正装置を提供することである。   Accordingly, an object of the present invention is to provide a camera shake correction device that can improve thrust and linearly move a movable part to a predetermined position with high accuracy, and can be reduced in size and weight.

本発明の手振れ補正装置は、
固定部と、光軸方向に沿って前記固定部と対向して配置され、光軸と直交する面内で回動可能に支持される、補正レンズを保持する可動部と、前記固定部又は前記可動部に設置されるハルバッハ配列を有する3個の駆動用磁石及び駆動用コイルを有する、複数のボイスコイルモータを有し、
前記固定部又は前記可動部は、光軸方向から見て前記駆動用磁石の外周側の一部に当設し、前記駆動用磁石より薄い壁部を有すると共に、前記壁部の上部に接着剤溜を有する、
ことを特徴とするものである。
The camera shake correction device of the present invention is
A fixed portion, a movable portion that is disposed to face the fixed portion along the optical axis direction and is rotatably supported in a plane orthogonal to the optical axis, and the fixed portion or the fixed portion or A plurality of voice coil motors having three drive magnets and a drive coil having a Halbach array installed in the movable part;
The fixed part or the movable part is provided in contact with a part of the outer peripheral side of the driving magnet when viewed from the optical axis direction, has a wall part thinner than the driving magnet, and has an adhesive on the upper part of the wall part. Having a reservoir,
It is characterized by this.

本発明において、前記接着剤溜の少なくとも一部にアクリル系接着剤(より好ましくは嫌気性接着剤)を充填することが好ましい。   In the present invention, it is preferable that at least a part of the adhesive reservoir is filled with an acrylic adhesive (more preferably an anaerobic adhesive).

本発明において、前記固定部及び前記可動部に複数の位置検出部を構成する部材を設け、前記位置検出部は検出用磁石及びそれに対向する磁界検出素子を有することができる。   In the present invention, the fixed part and the movable part may be provided with members constituting a plurality of position detection parts, and the position detection part may have a detection magnet and a magnetic field detection element opposed thereto.

本発明において、前記固定部は、バックヨークを介して前記駆動用磁石と前記磁界検出素子が設置される第1の固定枠とこの固定枠との間に前記可動部が配置される第2の固定枠を含み、前記可動部は、前記駆動用コイルと前記検出用磁石を有することができる。   In the present invention, the fixed portion includes a first fixed frame in which the driving magnet and the magnetic field detecting element are installed via a back yoke, and a second portion in which the movable portion is disposed between the fixed frame. A movable frame may be included, and the movable part may include the driving coil and the detection magnet.

本発明において、前記位置検出用磁石及び前記磁界検出素子は軸方向から見て、円周方向に沿って等角度間隔で配置することが好ましい。   In the present invention, it is preferable that the position detecting magnet and the magnetic field detecting element are arranged at equiangular intervals along the circumferential direction when viewed from the axial direction.

本発明において、前記球状体は、軸方向からみて、前記駆動用磁石と重ならない位置に設置されることが好ましい。   In this invention, it is preferable that the said spherical body is installed in the position which does not overlap with the said magnet for a drive seeing from an axial direction.

本発明において、前記第2の固定部に固設され、前記駆動用磁石から発生する磁束が流入する対向ヨークと前記検出用磁石から発生する磁束が流入する吸引ヨークとを設けることができる。   In the present invention, it is possible to provide an opposing yoke fixed to the second fixing portion and into which a magnetic flux generated from the driving magnet flows and a suction yoke into which a magnetic flux generated from the detection magnet flows.

本発明によれば、可動部材を高速で所定の位置まで移動できるとともに、小型・軽量化が可能な手振れ補正装置を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to move a movable member to a predetermined position at high speed, the camera-shake correction apparatus which can be reduced in size and weight can be obtained.

本発明の実施の形態に係わる手振れ補正装置の分解斜視図である。る1 is an exploded perspective view of a camera shake correction apparatus according to an embodiment of the present invention. Ru 図1に示す手振れ補正装置における第1の固定部を示す分解斜視図である。It is a disassembled perspective view which shows the 1st fixing | fixed part in the camera-shake correction apparatus shown in FIG. 図1に示す手振れ補正装置における可動部を示す分解斜視図である。It is a disassembled perspective view which shows the movable part in the camera-shake correction apparatus shown in FIG. 図1に示す手振れ補正装置における第2の固定部を示す分解斜視図である。It is a disassembled perspective view which shows the 2nd fixing | fixed part in the camera-shake correction apparatus shown in FIG. 図1に示す手振れ補正装置の主要部材の位置関係を示すための概略平面図である。It is a schematic plan view for showing the positional relationship of the main members of the camera shake correction apparatus shown in FIG. 図1に示す手振れ補正装置の断面図(図2のA−A線断面図に相当)である。It is sectional drawing (equivalent to the sectional view on the AA line of FIG. 2) of the camera-shake correction apparatus shown in FIG. 図6の拡大図である。FIG. 7 is an enlarged view of FIG. 6. 比較例に係わる手振れ補正装置の断面図(図6の一部を変更)である。It is sectional drawing of the camera-shake correction apparatus concerning a comparative example (a part of FIG. 6 is changed).

本発明の詳細を添付図面により説明する。   The details of the present invention will be described with reference to the accompanying drawings.

<第1の実施の形態> <First Embodiment>

手振れ補正装置1は、図1に示すように、第1の固定部2と、そこに固定された第2の固定部5を含む固定部10と、第1の固定部2と第2の固定部5との間に介装された円環状の可動部3と、可動部3を中心軸と直交する面内で摺動自在に支持する複数(例えば3つ)の球状体(例えば鋼球)4a、4b、4cを有する。この手振れ補正装置1は、図示しない光学素子(例えば補正レンズ)を有する可動部3を中心軸(Z軸、本例では光軸)に対して垂直な面内で駆動するために、駆動用磁石61a、61b、61c及び駆動用コイル(空心コイル)62a、62b、62cを有する3つの可動コイル形のボイスコイルモータ(以下「VCM」という)6a、6b、6cを有する。駆動用コイル62a、62b、62cはフレキシブルプリント基板(以下「FPC」という)9(図3参照)を介して制御回路(不図示)に接続されている。VCMは可動磁石形でもよく、また2個でもよい。   As shown in FIG. 1, the camera shake correction apparatus 1 includes a first fixing unit 2, a fixing unit 10 including a second fixing unit 5 fixed thereto, a first fixing unit 2, and a second fixing unit. An annular movable part 3 interposed between the part 5 and a plurality of (for example, three) spherical bodies (for example, steel balls) that slidably support the movable part 3 in a plane orthogonal to the central axis. 4a, 4b, 4c. The camera shake correction apparatus 1 is configured to drive a movable unit 3 having an optical element (for example, a correction lens) (not shown) in a plane perpendicular to a central axis (Z axis, in this example, an optical axis). Three movable coil type voice coil motors (hereinafter referred to as “VCM”) 6a, 6b, 6c having 61a, 61b, 61c and driving coils (air-core coils) 62a, 62b, 62c are provided. The driving coils 62a, 62b, and 62c are connected to a control circuit (not shown) through a flexible printed circuit board (hereinafter referred to as “FPC”) 9 (see FIG. 3). The VCM may be a movable magnet type or two.

この手振れ補正装置1は、可動部3の移動量を検出するために、磁界検出素子80a、80b、80c及び検出用磁石81a、81b、81cを有する位置検出部8a、8b、8c(図3参照)を有する。磁界検出素子80a、80b、80cはFPC7を介して制御回路(不図示)に接続されている。検出用磁石は省略することができる(駆動用磁石で兼用してもよい)。   In order to detect the movement amount of the movable part 3, the camera shake correction apparatus 1 includes position detection parts 8a, 8b, 8c having magnetic field detection elements 80a, 80b, 80c and detection magnets 81a, 81b, 81c (see FIG. 3). ). The magnetic field detection elements 80a, 80b, and 80c are connected to a control circuit (not shown) through the FPC 7. The detection magnet can be omitted (the drive magnet may also be used).

図5に示すように、上記の手振れ補正装置1においては、VCM6a、6b、6cは、軸方向から見て、円周方向に沿って等角度間隔(120°)をおいて配置されるとともに、位置検出部8a、8b、8cは、円周方向に沿って各VCMの中間に位置しかつ等角度間隔(120°)をおいて配置される。本例では、球状体4a、4b、4cは、軸方向から見て駆動用磁石と重ならない位置(VCMと位置検出部の間)に配置される。   As shown in FIG. 5, in the above-described camera shake correction device 1, the VCMs 6a, 6b, and 6c are arranged at equiangular intervals (120 °) along the circumferential direction when viewed from the axial direction. The position detectors 8a, 8b, and 8c are located in the middle of the respective VCMs along the circumferential direction and are arranged at equal angular intervals (120 °). In this example, the spherical bodies 4a, 4b, and 4c are arranged at a position (between the VCM and the position detection unit) that does not overlap with the driving magnet when viewed from the axial direction.

図2〜8も含めて手振れ補正装置1の各部の詳細を説明する。   Details of each part of the camera shake correction apparatus 1 will be described including FIGS.

図2に示すように(図5も参照)、第1の固定部2は、支持板部21と、第2の固定部5を支持するためのフランジ部22からなる円環状の固定枠20を有する。支持板部21は、円周方向に沿って等角度間隔(120°)をおいて形成された、駆動用磁石保持部23a、23b、23c及び球状体4a、4b、4cの一部が入り込む深さを有する円環部24a、24b、24cを有する。駆動用磁石保持部23a、23b、23cには、強磁性体(例えば鉄鋼材料)からなるバックヨーク63a、63b、63c及び駆動用磁石61a、61b、61cが設置される。駆動用磁石は、公知の永久磁石で形成することができるが、少ない消費電力で高推力を得るために、希土類焼結磁石(例えば希土類・鉄・ボロン系磁石)で形成することが好ましい。FPC7は、円環部から放射状に延出する受部70a、70b,70cを有する。磁界検出素子80a、80b、80cは、受部70a、70b,70cに実装された状態で支持板部21に設置される。   As shown in FIG. 2 (see also FIG. 5), the first fixing portion 2 includes an annular fixing frame 20 including a support plate portion 21 and a flange portion 22 for supporting the second fixing portion 5. Have. The support plate portion 21 is formed at an equal angle interval (120 °) along the circumferential direction, and a depth into which a part of the drive magnet holding portions 23a, 23b, 23c and the spherical bodies 4a, 4b, 4c enter. It has the annular part 24a, 24b, 24c which has thickness. Back yokes 63a, 63b, 63c and driving magnets 61a, 61b, 61c made of a ferromagnetic material (for example, a steel material) are installed in the driving magnet holding portions 23a, 23b, 23c. The drive magnet can be formed of a known permanent magnet, but is preferably formed of a rare earth sintered magnet (for example, a rare earth / iron / boron magnet) in order to obtain high thrust with low power consumption. The FPC 7 includes receiving portions 70a, 70b, and 70c that extend radially from the annular portion. The magnetic field detection elements 80a, 80b, and 80c are installed on the support plate 21 in a state of being mounted on the receiving portions 70a, 70b, and 70c.

本発明では、図5及び図6に示すように、各磁石は、厚さ方向に磁化された一対の永久磁石と、これらの永久磁石と磁化方向が異なる(例えば直交)永久磁石からなる、ハルバッハ配列の磁気回路を構成する。すなわち一対の永久磁石は、異なる極性の磁極が駆動用磁石の表面に対向するとともに、磁化方向が異なる他の永久磁石は、同極性の磁極が一対の永久磁石を構成する永久磁石の磁極と隣接するように配置される。このハルバッハ配列により、駆動用磁石の表面(駆動用コイルに対向する側)では、各磁極に磁束が集中するので、磁気ギャップの磁束密度が向上し、もってVCMの推力を向上することができる。   In the present invention, as shown in FIG. 5 and FIG. 6, each magnet is composed of a pair of permanent magnets magnetized in the thickness direction, and a permanent magnet having a magnetization direction different from (for example, orthogonal to) these permanent magnets. Configure the magnetic circuit of the array. That is, a pair of permanent magnets have magnetic poles with different polarities facing the surface of the drive magnet, and other permanent magnets with different magnetization directions are adjacent to the magnetic poles of the permanent magnets that have the same polarity. To be arranged. With this Halbach arrangement, magnetic flux concentrates on each magnetic pole on the surface of the driving magnet (on the side facing the driving coil), so that the magnetic flux density of the magnetic gap can be improved, and thus the thrust of the VCM can be improved.

さらに本発明では、各永久磁石は、特定の接着剤を用いて、かつ特定の構造で固定枠20に固着される。図7のハルバッハ配列では、永久磁石611bのN極と永久磁石613bのN極(永久磁石613bのS極と永久磁石612bのS極)とが反発するので、この反発力を抑えこむことが必要となる。そこでアクリル系で好ましくは嫌気性を有する(紫外線硬化型でもよい)接着剤を使用することにより、接着強度を向上することができる。また図7に示すように、各駆動用磁石を構成する時に、厚さ方向に磁化した永久磁石611b及び612bの外側に壁部25bを当接し、壁部25bの厚さ(t2)を永久磁石の厚さ(t1)の1/2程度とすることに加え、壁部の上に接着剤溜り26bを設けてそこの少なくとも1部に接着剤を充填し、各永久磁石とバックヨーク63bの間にも接着剤を介在させる。接着剤溜り26bの厚さt3は、駆動用磁石61bの厚さt1の半分以下でよい。これにより、永久磁石611b及び612bが浮き上がるのを防止することができる。   Further, in the present invention, each permanent magnet is fixed to the fixed frame 20 using a specific adhesive and with a specific structure. In the Halbach arrangement of FIG. 7, the N pole of the permanent magnet 611b and the N pole of the permanent magnet 613b (the S pole of the permanent magnet 613b and the S pole of the permanent magnet 612b) repel each other, and it is necessary to suppress this repulsive force. It becomes. Therefore, the adhesive strength can be improved by using an acrylic adhesive which is preferably anaerobic (or may be an ultraviolet curable type). As shown in FIG. 7, when each drive magnet is constructed, the wall portion 25b is brought into contact with the outside of the permanent magnets 611b and 612b magnetized in the thickness direction, and the thickness (t2) of the wall portion 25b is set to the permanent magnet. In addition, the adhesive reservoir 26b is provided on the wall portion and at least one portion thereof is filled with the adhesive, and between each permanent magnet and the back yoke 63b. Also, an adhesive is interposed. The thickness t3 of the adhesive reservoir 26b may be less than or equal to half the thickness t1 of the drive magnet 61b. Thereby, it is possible to prevent the permanent magnets 611b and 612b from floating.

図3(図1を下から見た図)に示すように、可動部3は、光学素子(例えば補正レンズ、図示を省略)の外周縁を保持する円筒部31を含む可動枠30を有する。可動枠30は、平板部の外周側に形成された各一対のコイル保持部32a、32b、32cと球状体の一部が入り込む深さを有する円環部33a、33b、33cと検出用磁石81a、81b、81c及びバックヨーク82a、82b、82cを保持する検出用磁石保持部34a、34b、34cを有する。各検出用磁石は、厚さ方向に磁化されかつ半径方向に沿って異極性の磁極が並ぶように配置される。コイル保持部、円環部及び検出用磁石保持部はいずれも、軸方向から見て等角度間隔(120°)をおいてかつ検出用磁石81a、81b、81cと円環部33a、33b、33cが円周方向に沿って交互に並ぶように構成されている。各円環部33a、33b、33cは、球状体4a、4b、4cが所定範囲で転動できるような大きさに形成される。また各コイル保持部32a、32b、32cには、VCM6a、6b、6cの可動子を構成する、偏平な空芯コイルである駆動用コイル62a、62b、62cの空心部が嵌装される。   As shown in FIG. 3 (viewed from the bottom of FIG. 1), the movable portion 3 includes a movable frame 30 including a cylindrical portion 31 that holds the outer periphery of an optical element (for example, a correction lens, not shown). The movable frame 30 includes a pair of coil holding portions 32a, 32b, 32c formed on the outer peripheral side of the flat plate portion, and annular portions 33a, 33b, 33c having a depth into which a part of the spherical body enters and a detection magnet 81a. 81b, 81c and detection magnet holding portions 34a, 34b, 34c for holding the back yokes 82a, 82b, 82c. Each of the detection magnets is magnetized in the thickness direction and arranged so that magnetic poles of different polarity are aligned along the radial direction. The coil holding portion, the annular portion, and the detection magnet holding portion are all equiangularly spaced (120 °) when viewed from the axial direction, and the detection magnets 81a, 81b, 81c and the annular portions 33a, 33b, 33c. Are arranged alternately along the circumferential direction. Each annular part 33a, 33b, 33c is formed in a size that allows the spherical bodies 4a, 4b, 4c to roll within a predetermined range. The coil holding portions 32a, 32b, and 32c are fitted with air core portions of driving coils 62a, 62b, and 62c, which are flat air-core coils, constituting the movers of the VCMs 6a, 6b, and 6c.

検出用磁石としては、公知の永久磁石を使用することができるが、可動部に設置されるので、軽量化を図るために、永久磁石粉末(表面を樹脂で被覆してもよい)と、この希土類磁石粉末を樹脂又はゴム等の高分子材料で結合した希土類ボンド磁石を使用してもよい。但し磁界検出素子(例えばホール素子)の出力電圧は低下するので、電気的に増幅すればよい。検出用磁石の材質は可動部質量の軽量化を図るために希土類ボンド磁石の方が望ましいが、可動部材の質量が大きい場合には、小型の希土類系焼結磁石でも可動部の軽量化を実質的に阻害しないため、実用上の問題はない。   As the detection magnet, a known permanent magnet can be used, but since it is installed on the movable part, in order to reduce the weight, permanent magnet powder (the surface may be coated with resin) and this You may use the rare earth bond magnet which couple | bonded the rare earth magnet powder with polymer materials, such as resin or rubber | gum. However, since the output voltage of the magnetic field detection element (for example, Hall element) decreases, it may be amplified electrically. The material of the detection magnet is preferably a rare earth bonded magnet in order to reduce the weight of the movable part. However, if the mass of the movable member is large, even a small rare earth sintered magnet can substantially reduce the weight of the movable part. There is no practical problem because it does not hinder it.

図4に示すように、第2の固定部5は、中空円板状の第2の固定枠50と、そこに形成されたヨーク保持部52a、52b、52cに設置された、強磁性体(SS材等の鉄鋼材料)からなる対向ヨーク51a、51b、51cを有する。対向ヨークは、厚さが例えば、1〜2mmの範囲に設定され、また吸引ヨーク27a,27b,27cと同一の大きさとすることができ、大きさが同じであればプレス抜き金型を共用でき、もって製造コストを低減できる。   As shown in FIG. 4, the second fixing portion 5 includes a ferromagnetic disk (secondary frame-like second fixing frame 50) and yokes 52 a, 52 b, 52 c formed therein. Opposite yokes 51a, 51b, 51c made of a steel material such as an SS material. The opposing yoke has a thickness in the range of, for example, 1 to 2 mm, and can have the same size as the suction yokes 27a, 27b, and 27c. Therefore, the manufacturing cost can be reduced.

図6に示すように、対向ヨーク51b(51a、51c)は、駆動用磁石61b(61a、61c)から発生する磁束が流入する位置に設けられる。対向ヨーク51b(51a、51c)と駆動用磁石61b(61a、61c)とのギャップを狭くすることにより、漏洩磁束が低減され、且つパーミアンス係数の向上にもなり、VCMの推力を向上できる。吸引ヨーク27a(27b、27c)は、検出用磁石81a(81b、81c)から流出する磁束が流入する位置に設けられるので、可動部3は、軸方向に沿って固定部2から遠ざかる方向に磁気的に吸引される。検出用磁石81a(81b、81b)と吸引ヨーク27a(27b、27c)とのギャップは、例えば検出用磁石の設置位置を変更することにより調整できる。検出用磁石81a(81b、81c)と磁界検出素子80a(80b、80c)とのギャップは、例えば磁界検出素子の設置位置を変更することにより調整できる。   As shown in FIG. 6, the opposing yoke 51b (51a, 51c) is provided at a position where the magnetic flux generated from the driving magnet 61b (61a, 61c) flows. By narrowing the gap between the opposing yoke 51b (51a, 51c) and the driving magnet 61b (61a, 61c), the leakage magnetic flux is reduced and the permeance coefficient is improved, and the thrust of the VCM can be improved. Since the suction yoke 27a (27b, 27c) is provided at a position where the magnetic flux flowing out from the detection magnet 81a (81b, 81c) flows, the movable portion 3 is magnetically moved away from the fixed portion 2 along the axial direction. Is aspirated. The gap between the detection magnet 81a (81b, 81b) and the suction yoke 27a (27b, 27c) can be adjusted, for example, by changing the installation position of the detection magnet. The gap between the detection magnet 81a (81b, 81c) and the magnetic field detection element 80a (80b, 80c) can be adjusted, for example, by changing the installation position of the magnetic field detection element.

可動枠30は、光軸方向から見て第1の固定枠との間に、複数の球状体が介装されるため、可動枠30は光軸に対して垂直な平面な位置精度を確保することが可能となる。第1の固定枠20、可動枠30及び第2の固定枠50は、非磁性体(例えばエンジニアリングプラスチック)で形成される。   Since the movable frame 30 has a plurality of spherical bodies interposed between the movable frame 30 and the first fixed frame when viewed from the optical axis direction, the movable frame 30 ensures a planar positional accuracy perpendicular to the optical axis. It becomes possible. The first fixed frame 20, the movable frame 30, and the second fixed frame 50 are formed of a non-magnetic material (for example, engineering plastic).

本実施の形態のように、磁界検出素子の中心が推力中心と反転した位置にあると、現在位置の演算が容易となるため、可動部材を目標位置まで速やかに移動させることが可能である。また、磁界検出素子80a、80b、80cは、駆動用コイル62a、62b、62cから大きく離れた位置に存在するため、コイルから発生する磁束の影響を受けず(ノイズを伴わずに)、高精度の位置検出が可能となる。   As in the present embodiment, when the center of the magnetic field detection element is at a position reversed from the center of thrust, calculation of the current position is facilitated, and the movable member can be quickly moved to the target position. Further, since the magnetic field detection elements 80a, 80b, and 80c are located far from the driving coils 62a, 62b, and 62c, the magnetic field detection elements 80a, 80b, and 80c are not affected by the magnetic flux generated from the coils (without noise) and are highly accurate. Can be detected.

上記の手振れ補正装置1では、各駆動用コイルに供給する電流の極性及び/又は大きさを変えることにより、推力の大きさと向きを調整することができるので、各VCMに発生する推力を合成することにより、可動部3を中心軸と垂直な面内で任意の方向に駆動することができる。この駆動量を制御回路にフィードバックして、目標位置に可動部材を移動させるサーボ制御を行うことができる。   In the above-described camera shake correction apparatus 1, the magnitude and direction of the thrust can be adjusted by changing the polarity and / or magnitude of the current supplied to each driving coil, so that the thrust generated in each VCM is synthesized. Thus, the movable part 3 can be driven in an arbitrary direction within a plane perpendicular to the central axis. This drive amount is fed back to the control circuit, and servo control for moving the movable member to the target position can be performed.

上記のVCMで可動部材を駆動する場合、可動部3の移動量を検出する位置検出部材8a、8b、8cが設けられており、可動部3に設置された検出用磁石81a、81b、81cから発生する磁界を磁界検出素子80a、80b、80cで検出するので、可動部3の移動量に基づいてフィードバック制御を行うことができる。また第1の固定枠20には、吸引ヨーク27a、27b、27cが設けられており、検出磁石から発生する磁束が流入して、検出用磁石と吸引ヨークとの間に磁気吸引力が発生して、可動部3は第1の固定部2側に引きつけられる。即ち、本実施の形態では、検出用磁石81a、81b、81cは位置検出を行うための磁界発生手段と共に、可動部3を第1の固定部2側に引きつけるための磁界発生手段としての機能も兼ね備えている。   When the movable member is driven by the VCM described above, position detection members 8a, 8b, and 8c for detecting the moving amount of the movable portion 3 are provided, and detection magnets 81a, 81b, and 81c installed on the movable portion 3 are provided. Since the generated magnetic field is detected by the magnetic field detection elements 80a, 80b, and 80c, feedback control can be performed based on the amount of movement of the movable portion 3. The first fixed frame 20 is provided with suction yokes 27a, 27b, and 27c, so that magnetic flux generated from the detection magnet flows and a magnetic attraction force is generated between the detection magnet and the suction yoke. Thus, the movable part 3 is attracted to the first fixed part 2 side. That is, in the present embodiment, the detection magnets 81a, 81b, 81c function as magnetic field generating means for attracting the movable part 3 to the first fixed part 2 side as well as magnetic field generating means for performing position detection. Have both.

上記の検出用磁石(駆動用磁石も同様)は、厚さ方向に磁化した(単極着磁を施した)一対の平板状の永久磁石であるが、一対の平板状の永久磁石の代りに、厚さ方向に磁化しかつ異極性の磁極が隣接する単一の平板状の永久磁石を使用することができる。   The above detection magnets (same for the drive magnets) are a pair of flat permanent magnets magnetized in the thickness direction (single-pole magnetized), but instead of a pair of flat permanent magnets It is possible to use a single flat permanent magnet that is magnetized in the thickness direction and has adjacent magnetic poles of different polarities.

磁界検出素子80a、80b、80cは各々、可動部3がセンタリングされている初期位置では、その中心が可動部3に固定された検出用磁石81a、81b、81cの中間(磁極が反転する位置:磁束密度がほぼゼロ)に一致する。したがって各磁界検出素子80a、80b、80cの表面において、各検出用磁石81a、81b、81cの一端から他端に向って磁束密度は、検出磁石の中間(ゼロクロス点)を挟んで所定長さの範囲で、磁束密度が直線的に変化する。磁界検出素子は磁束密度に比例した電圧を出力するので、磁石部の寸法及び磁界検出素子と磁石部との距離を適切に設定しておけば、検出用磁石の移動量(磁力変化)に比例した電圧を制御回路に出力することができ、さらに出力電圧のリニアリティーを向上することができるので、高精度の位置決めを行うことができる。   In the initial position where the movable part 3 is centered, the magnetic field detection elements 80a, 80b, 80c are respectively intermediate between the detection magnets 81a, 81b, 81c whose centers are fixed to the movable part 3 (positions where the magnetic poles are reversed: The magnetic flux density is almost zero). Therefore, on the surface of each magnetic field detection element 80a, 80b, 80c, the magnetic flux density from the one end to the other end of each detection magnet 81a, 81b, 81c has a predetermined length across the middle (zero cross point) of the detection magnets. Within a range, the magnetic flux density varies linearly. Since the magnetic field detection element outputs a voltage proportional to the magnetic flux density, if the size of the magnet part and the distance between the magnetic field detection element and the magnet part are set appropriately, it is proportional to the amount of movement of the detection magnet (change in magnetic force). Since the output voltage can be output to the control circuit and the linearity of the output voltage can be improved, highly accurate positioning can be performed.

本実施の形態においては、上述したように、中心軸方向に沿って吸引ヨーク、磁界検出素子、検出用磁石、の順に配置されるとともに、中心軸を挟んで、磁界検出素子と点対称となる位置で、バックヨーク、駆動用磁石、可動コイル及び対向ヨークの順に配置されている。このように磁界検出素子は可動コイルに対向せずに、可動コイルから離間した位置に配置されているので、可動コイルから発生する磁束は、磁界検出素子に影響を与えることはない。また吸引ヨークは、検出用磁石から発生する磁束が流入する位置に配置されているので、可動部3はこのヨークに向って磁気的に吸引される。磁気吸引力を可動部の質量に応じた適切な値に設定することにより、可動部2を中心軸と直交する面内で円滑に支持することができる。磁気吸引力の値としては、可動部材の質量の2倍程度であることが好ましく、例えば可動部の質量が約25〜30gの場合で、50〜60gfの範囲にあることが好ましい。   In the present embodiment, as described above, the suction yoke, the magnetic field detection element, and the detection magnet are arranged in this order along the central axis direction, and are symmetrical with respect to the magnetic field detection element across the central axis. In position, the back yoke, the driving magnet, the movable coil, and the opposing yoke are arranged in this order. As described above, the magnetic field detection element is not opposed to the movable coil and is disposed at a position away from the movable coil, so that the magnetic flux generated from the movable coil does not affect the magnetic field detection element. Further, since the attraction yoke is disposed at a position where the magnetic flux generated from the detection magnet flows, the movable portion 3 is magnetically attracted toward the yoke. By setting the magnetic attraction force to an appropriate value according to the mass of the movable part, the movable part 2 can be smoothly supported in a plane orthogonal to the central axis. The value of the magnetic attractive force is preferably about twice the mass of the movable member. For example, when the mass of the movable part is about 25-30 g, it is preferably in the range of 50-60 gf.

本発明の手振れ補正装置は、例えば、可動部材5の質量が20〜30gの場合で、推力質量比(最大推力/可動部材の質量)を例えば3.0〜4.0の範囲に収まるように構成することができる。但し推力質量比は4.0以上であってもよい。   The camera shake correction apparatus of the present invention is, for example, in the case where the mass of the movable member 5 is 20 to 30 g, so that the thrust mass ratio (maximum thrust / mass of the movable member) falls within the range of, for example, 3.0 to 4.0. Can be configured. However, the thrust mass ratio may be 4.0 or more.

可動部をVCMで駆動し、かつ位置検出素子としてホール素子を使用した場合、可動部材の最大移動距離は、例えば初期位置から±(0.5〜1.0)mmの範囲に設定することができる。この移動範囲で、実際の移動量と磁界検出素子の出力電圧に対応する移動量との差(理論直線に対する誤差量)が少ない(リニアリティーが高い)ことが必要であり、例えば磁界検出素子としてホール素子を使用した場合で、理論直線に対する誤差量が0.04mm以内に収まることができる。   When the movable part is driven by VCM and a Hall element is used as the position detection element, the maximum moving distance of the movable member can be set within a range of ± (0.5 to 1.0) mm from the initial position, for example. it can. In this movement range, it is necessary that the difference between the actual movement amount and the movement amount corresponding to the output voltage of the magnetic field detection element (the error amount with respect to the theoretical line) is small (high linearity). When the element is used, the error amount with respect to the theoretical straight line can be within 0.04 mm.

本実施の形態では、各対向ヨーク51a、51b、51c、各吸引ヨーク27a、27b、27c及び各磁界検出素子80a、80b、80cの軸方向(Z軸方向)の位置を独立して調整できる。したがって、高い推力が得られながら、しかも推力とは無関係に、検出用磁石による磁気吸引力及び磁界検出素子の出力の直線性をそれぞれ最適な値に調整することができる。   In the present embodiment, the positions of the opposing yokes 51a, 51b, 51c, the suction yokes 27a, 27b, 27c and the magnetic field detection elements 80a, 80b, 80c in the axial direction (Z-axis direction) can be adjusted independently. Therefore, it is possible to adjust the magnetic attraction force by the detection magnet and the linearity of the output of the magnetic field detection element to optimum values while obtaining a high thrust, irrespective of the thrust.

上述した通り、本実施の形態によれば、
(1)ハルバッハ配列を有する3個の永久磁石により、駆動磁石を形成するので、推力が向上するとともに、永久磁石を特定の接着剤を用いてかつ特定の構造で固定枠に固着するので、駆動磁石を固定枠に強固に保持できる。
As described above, according to the present embodiment,
(1) Since the drive magnet is formed by three permanent magnets having the Halbach array, the thrust is improved and the permanent magnet is fixed to the fixed frame with a specific structure using a specific adhesive. The magnet can be firmly held on the fixed frame.

(2)軸方向に沿って、駆動用磁石、駆動用コイル及び対向ヨークを配置して磁気回路を形成するので、消費電力の増大を伴わずに、磁気特性の大なる固定磁石を使用できることになり、推力質量比の増大を図ることができること、及び駆動用磁石とは別に検出用磁石を用いるので、磁界検出素子の出力電圧の直進性を優先して検出用磁石の寸法を設定できるとともに、磁界検出素子を駆動用コイルから発生する磁束が及ばない位置に配置することが可能で、駆動用コイルにより磁界検出素子に与える影響を無くすことができることに加えて、特に次のような効果を奏し得る。 (2) Since the magnetic circuit is formed by arranging the driving magnet, the driving coil, and the opposing yoke along the axial direction, it is possible to use a fixed magnet having large magnetic characteristics without increasing power consumption. Therefore, the thrust mass ratio can be increased, and since the detection magnet is used separately from the drive magnet, the dimension of the detection magnet can be set giving priority to the straightness of the output voltage of the magnetic field detection element, In addition to being able to dispose the magnetic field detection element at a position where the magnetic flux generated from the driving coil does not reach, and eliminating the influence of the driving coil on the magnetic field detection element, the following effects are achieved. obtain.

(3)固定部に2つのヨークを駆動用磁石及び検出用磁石に対向する位置に設けるので、可動部材を駆動するためのVCMの発生推力と、可動部材を固定側部材に吸引するための磁気吸引力並びに磁界検出素子の出力の直線性をいずれも独立して(最適な値に)調整することができる。 (3) Since the two yokes are provided in the fixed portion at positions facing the drive magnet and the detection magnet, the thrust generated by the VCM for driving the movable member and the magnetism for attracting the movable member to the fixed side member Both the attractive force and the linearity of the output of the magnetic field detecting element can be adjusted independently (to an optimum value).

<実験例1>
図6に示す本発明の磁気回路構造と、図8に示す従来の磁気回路構造について、表面磁束密度及び最大推力の比較を行った。図8は、3個の永久磁石をハルバッハ配列から通常の2極配列(厚さ方向に磁化した2個の永久磁石を異極性の磁極は隣接するように配置)に変更した以外は、図6と同様の構造である。実験条件は、駆動用コイルと駆動用磁石との間隔を0.3mmに設定し、線径φ0.14mm、250ターン、抵抗13.9Ωのコイルに5Vの直流電圧を印加し、図6では、幅(w1)3.0mm、長さ(l1:図2参照)16mm、厚さ(t1)3mmの希土類焼結磁石(Nd−Fe−B系、(BH)max=48MGOe、Br=1.35〜1.41T)を3個(幅は合計で9mm)使用し、図8では、幅(w2)4.5mm、長さ(図6と同様)16mm、厚さ(t4)3mmの上記と同様の希土類焼結磁石を2個(幅は合計で9mm)使用した。図8は、3個の永久磁石をハルバッハ配列から通常の2極配列(厚さ方向に磁化した2個の永久磁石を異極性の磁極が隣接するように配置)に変更した以外は、図6と同様の構造である。
<Experimental example 1>
The surface magnetic flux density and the maximum thrust were compared for the magnetic circuit structure of the present invention shown in FIG. 6 and the conventional magnetic circuit structure shown in FIG. FIG. 8 is the same as FIG. 6 except that the three permanent magnets are changed from the Halbach arrangement to the normal two-pole arrangement (two permanent magnets magnetized in the thickness direction are arranged so that magnetic poles of different polarities are adjacent to each other). It is the same structure as. The experimental condition is that the distance between the driving coil and the driving magnet is set to 0.3 mm, a DC voltage of 5 V is applied to a coil having a wire diameter of 0.14 mm, 250 turns, and a resistance of 13.9 Ω. Rare earth sintered magnet having a width (w1) of 3.0 mm, a length (l1: refer to FIG. 2) of 16 mm, and a thickness (t1) of 3 mm (Nd—Fe—B system, (BH) max = 48 MGOe, Br = 1.35 ~ 1.41T) (the width is 9 mm in total), and in FIG. 8, the width (w2) is 4.5 mm, the length (same as FIG. 6) is 16 mm, and the thickness (t4) is 3 mm. Two rare earth sintered magnets (total width: 9 mm) were used. FIG. 8 shows a configuration other than that in which the three permanent magnets are changed from the Halbach arrangement to the normal two-pole arrangement (two permanent magnets magnetized in the thickness direction are arranged so that magnetic poles of different polarities are adjacent to each other). It is the same structure as.

図8の磁気回路では、表面磁束密度は0.48T、最大推力が740mNであるの対し、図6の磁気回路では、表面磁束密度は0.64T、最大推力が950mNと、大幅な向上が認められた。   In the magnetic circuit of FIG. 8, the surface magnetic flux density is 0.48 T and the maximum thrust is 740 mN, whereas in the magnetic circuit of FIG. 6, the surface magnetic flux density is 0.64 T and the maximum thrust is 950 mN, which is a significant improvement. It was.

<実験例2>
図6及び図7に示す磁気回路を組み立てるために、4種類の市販の接着剤[(1)アクリル系瞬間接着剤 ロックタイト4204、(2)常温湿気硬化型シリコーン系接着剤 セメダインSX720B、(3)2液性自然硬化型エポキシ系接着剤 スリーボンドE90-EL、(4)紫外線硬化性アクリル系瞬間接着剤 スリーボンドTB3177、(5)嫌気性紫外線硬化性アクリル系接着剤 スリーボンド 1359G]を使用し、接着強度の評価を行った。
<Experimental example 2>
To assemble the magnetic circuit shown in FIG. 6 and FIG. 7, four types of commercially available adhesives [(1) acrylic instantaneous adhesive Loctite 4204, (2) room temperature moisture curable silicone adhesive Cemedine SX720B, (3) Adhesive strength using two-component self-curing epoxy adhesive ThreeBond E90-EL, (4) UV curable acrylic instant adhesive ThreeBond TB3177, (5) Anaerobic UV curable acrylic adhesive ThreeBond 1359G] Was evaluated.

(例1)
各接着剤を塗布後24時間、自然放置した結果、上記(1)及び(2)の接着剤では永久磁石の剥離が発生したが、上記(3)、(4)及び(5)の接着剤では永久磁石の剥離が発生せず、また接着前後の永久磁石の表面磁束密度の変化を±5%以内に収めることができた。
(例2)
上記(3)、(4)、及び(5)の各接着剤を塗布後、70℃、90%RHの高温高湿環境下に168時間放置した結果、(3)及び(4)で永久磁石の剥離が発生し、(5)の接着剤では永久磁石の剥離は発生せず、また接着前後の永久磁石の表面磁束密度の変化を±5%以内に収めることができた。
(例3)
上記(3)、(4)、及び(5)の各接着剤を塗布後、−30°に30分間放置後、70℃に30分間放置を、合計で168時間放置した結果、(3)及び(4)で永久磁石の剥離が発生し、(5)の接着剤では永久磁石の剥離は発生せず、また接着前後の永久磁石の表面磁束密度の変化を±5%以内に収めることができた。
(例4)
上記(4)及び(5)の各接着剤を塗布後24時間、自然放置した後に、振動試験(20〜60Hz、振幅1.0mm、20min.を行った結果、いずれも上記(4)及び(5)の接着剤では永久磁石(3面)の剥離が発生せず、また接着前後の永久磁石の表面磁束密度の変化を±5%以内に収めることができた。
(Example 1)
As a result of natural standing for 24 hours after applying each adhesive, peeling of permanent magnets occurred in the adhesives of (1) and (2) above, but the adhesives of (3), (4) and (5) above The permanent magnet did not peel off, and the change in the surface magnetic flux density of the permanent magnet before and after bonding could be kept within ± 5%.
(Example 2)
After applying the adhesives of (3), (4), and (5) above, it was left in a high-temperature and high-humidity environment of 70 ° C and 90% RH for 168 hours. In the adhesive (5), no permanent magnet peeling occurred, and the change in the surface magnetic flux density of the permanent magnet before and after bonding could be kept within ± 5%.
(Example 3)
After applying the adhesives of (3), (4), and (5) above, after leaving at −30 ° for 30 minutes and then leaving at 70 ° C. for 30 minutes, a total of 168 hours was left as a result. Permanent magnet peeling occurs in (4), permanent magnet peeling does not occur in the adhesive of (5), and the change in surface magnetic flux density of the permanent magnet before and after bonding can be kept within ± 5%. It was.
(Example 4)
As a result of conducting a vibration test (20-60 Hz, amplitude 1.0 mm, 20 min.) After 24 hours after the application of each adhesive of the above (4) and (5), both of the above (4) and (5 ) Did not peel off the permanent magnet (3 surfaces), and the change in surface magnetic flux density of the permanent magnet before and after bonding could be kept within ± 5%.

(例5)
上記(4)及び(5)の各接着剤を塗布後24時間、自然放置した後に、落下衝撃試験(重力加速度100G 6面、+200G6面)を行った結果、いずれも上記の接着剤では永久磁石(3面)の剥離が発生せず、また接着前後の永久磁石の表面磁束密度の変化を±5%以内に収めることができた。
上記の全ての試験結果から、本発明では、嫌気性アクリル系接着剤を使用することが好ましく、さらに紫外線硬化型接着剤でもよいことがわかる。
(Example 5)
As a result of performing a drop impact test (gravity acceleration 100G 6 surface, +200 G 6 surface) after 24 hours after applying each adhesive of the above (4) and (5), it is permanent with the above adhesive. Separation of the magnet (3 sides) did not occur, and the change in the surface magnetic flux density of the permanent magnet before and after bonding could be kept within ± 5%.
From all the above test results, it is understood that an anaerobic acrylic adhesive is preferably used in the present invention, and an ultraviolet curable adhesive may be used.

1:手振れ補正装置、
10:固定部
2:第1の固定部、
20:固定枠、21:支持板部、22:フランジ部、23a、23b、23c:駆動用磁石保持部、24a、24b、24c:円環部、25a、25b、25c:壁部、26a、26b、26c:接着溜、27a、27b、27c:吸引ヨーク
3:可動部、
30:可動枠、31:円筒部、32a、32b、32c:コイル保持部、33a、33b、33c:円環部、34a、34b、34c:検出用磁石保持部、
4a、4b、4c:球状体、
5:第2の固定部、
50:第2の固定枠、51a、51b、51c:対向ヨーク、52a、52b、52c:ヨーク保持部
6a、6b、6c:ボイスコイルモータ、
61a、61b、61c:駆動用磁石、62a、62b、62c:駆動用コイル、63a、63b、63c:バックヨーク、
611a、611b、611c:駆動用磁石(ハルバッハ配列用)
7、9:フレキシブルプリント基板、
8a、8b、8c:位置検出部、
80a、80b、80c:磁界検出素子、
81a、81b、81c:検出用磁石、82a、82b、82c:検出磁石用バックヨーク
1: Camera shake correction device,
10: fixed part 2: first fixed part,
20: fixed frame, 21: support plate part, 22: flange part, 23a, 23b, 23c: driving magnet holding part, 24a, 24b, 24c: ring part, 25a, 25b, 25c: wall part, 26a, 26b , 26c: adhesion reservoir, 27a, 27b, 27c: suction yoke 3: movable part,
30: Movable frame, 31: Cylindrical part, 32a, 32b, 32c: Coil holding part, 33a, 33b, 33c: Ring part, 34a, 34b, 34c: Magnet holding part for detection,
4a, 4b, 4c: spherical bodies,
5: 2nd fixing | fixed part,
50: second fixed frame, 51a, 51b, 51c: opposing yoke, 52a, 52b, 52c: yoke holding portions 6a, 6b, 6c: voice coil motor,
61a, 61b, 61c: driving magnet, 62a, 62b, 62c: driving coil, 63a, 63b, 63c: back yoke,
611a, 611b, 611c: Driving magnet (for Halbach array)
7, 9: flexible printed circuit board,
8a, 8b, 8c: position detection unit,
80a, 80b, 80c: magnetic field detection element,
81a, 81b, 81c: detection magnet, 82a, 82b, 82c: detection magnet back yoke

Claims (3)

固定部と、光軸方向に沿って固定部と配置され、光軸と直交する面内で回動可能に支持される、補正レンズを保持する可動部と、前記固定部又は前記可動部に設置されるハルバッハ配列を有する3個の駆動用磁石及び駆動用コイルを有する、複数のボイスコイルモータを有し、
前記固定部又は前記可動部は、光軸方向から見て前記駆動磁石の外周側の一部に当設し、前記駆動用磁石より薄い壁部を有すると共に、前記壁部の上部に接着剤溜を有する、ことを特徴とする手振れ補正装置。
A fixed portion, a movable portion that is disposed along the optical axis direction and is supported rotatably in a plane orthogonal to the optical axis, and is installed in the fixed portion or the movable portion. A plurality of voice coil motors having three drive magnets having a Halbach array and a drive coil;
The fixed part or the movable part is provided in contact with a part of the outer peripheral side of the drive magnet when viewed from the optical axis direction, has a wall part thinner than the drive magnet, and has an adhesive reservoir on the upper part of the wall part. A camera shake correction device characterized by comprising:
前記接着剤溜にアクリル系接着剤(より好ましくは嫌気性接着剤)を充填することを特徴とする請求項1に記載の手振れ補正装置。   The camera shake correction apparatus according to claim 1, wherein the adhesive reservoir is filled with an acrylic adhesive (more preferably an anaerobic adhesive). 前記固定部又は前記可動部に設置される、光軸方向から見て前記各ボイスコイルモータの中間に設置される複数の検出用磁石と、前記検出用磁石に対向する磁界検出素子を有する複数の位置検出部を有することを特徴とする請求項1又は2に記載の手振れ補正装置。   A plurality of detection magnets installed in the middle of each of the voice coil motors as viewed from the optical axis direction and installed in the fixed part or the movable part, and a plurality of magnetic field detection elements facing the detection magnets The camera shake correction apparatus according to claim 1, further comprising a position detection unit.
JP2015243126A 2015-12-14 2015-12-14 Hand tremor correction device Pending JP2017111183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015243126A JP2017111183A (en) 2015-12-14 2015-12-14 Hand tremor correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015243126A JP2017111183A (en) 2015-12-14 2015-12-14 Hand tremor correction device

Publications (1)

Publication Number Publication Date
JP2017111183A true JP2017111183A (en) 2017-06-22

Family

ID=59080150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015243126A Pending JP2017111183A (en) 2015-12-14 2015-12-14 Hand tremor correction device

Country Status (1)

Country Link
JP (1) JP2017111183A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225627A1 (en) 2017-06-05 2018-12-13 Agc株式会社 Tempered glass
CN109426047A (en) * 2017-08-28 2019-03-05 佳能株式会社 Driving equipment with the driving unit for using magnetic loop
JP2019040130A (en) * 2017-08-28 2019-03-14 キヤノン株式会社 Vibration-proof device and optical device including vibration-proof device
JP2019095540A (en) * 2017-11-21 2019-06-20 オリンパス株式会社 Tremor correction device
JP2019152785A (en) * 2018-03-05 2019-09-12 キヤノン株式会社 Stage device and imaging device equipped with stage device
US10819909B2 (en) 2018-04-11 2020-10-27 Canon Kabushiki Kaisha Driving apparatus capable of satisfactorily detecting position of movable unit and ensuring large driving thrust, image blur correction apparatus, and image pickup apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225627A1 (en) 2017-06-05 2018-12-13 Agc株式会社 Tempered glass
CN109426047A (en) * 2017-08-28 2019-03-05 佳能株式会社 Driving equipment with the driving unit for using magnetic loop
JP2019040130A (en) * 2017-08-28 2019-03-14 キヤノン株式会社 Vibration-proof device and optical device including vibration-proof device
CN109426047B (en) * 2017-08-28 2021-08-17 佳能株式会社 Drive device with drive unit using magnetic circuit
US11165325B2 (en) * 2017-08-28 2021-11-02 Canon Kabushiki Kaisha Drive apparatus having drive unit using magnetic circuit
JP2019095540A (en) * 2017-11-21 2019-06-20 オリンパス株式会社 Tremor correction device
JP2019152785A (en) * 2018-03-05 2019-09-12 キヤノン株式会社 Stage device and imaging device equipped with stage device
JP7086646B2 (en) 2018-03-05 2022-06-20 キヤノン株式会社 A stage device, and an image pickup device and a lens device provided with the stage device.
US10819909B2 (en) 2018-04-11 2020-10-27 Canon Kabushiki Kaisha Driving apparatus capable of satisfactorily detecting position of movable unit and ensuring large driving thrust, image blur correction apparatus, and image pickup apparatus

Similar Documents

Publication Publication Date Title
JP2017111183A (en) Hand tremor correction device
US9042042B2 (en) Lens drive device
US9459464B2 (en) Lens drive device
JP5308457B2 (en) Voice coil motor for driving correction lens, camera shake correction device, interchangeable lens and optical device
JP5639161B2 (en) Image stabilization unit
JP5513834B2 (en) Lens drive device
JP2012118517A (en) Camera shake correction unit
JP5417127B2 (en) Lens drive device
JP5620672B2 (en) Lens drive device
US20110273789A1 (en) Linear motor with integral position sensor
JP2017032965A (en) Lens drive device
JP2008045919A5 (en)
CN109661613B (en) Imaging element driving device, method for manufacturing imaging element driving device, and imaging device
JP5266091B2 (en) Optical correction unit, lens barrel and imaging device
JP6235450B2 (en) Image stabilization unit
JP2014191092A (en) Sensorless linear motor and camera shake correction unit
KR20110007839A (en) Driving assembly for image stabilization of digital camera
JP2008152034A (en) Actuator, lens unit equipped therewith, and camera
JP2009251474A (en) Lens unit and imaging apparatus
JP2015064547A (en) Hand tremor correction unit
JP2016144257A (en) Magnet device
JP2011242680A (en) Camera shake correction unit
JP2011053600A (en) Lens driving device
JP2013109248A (en) Anti-vibration actuator
JP2014089357A (en) Camera shake correction device