JP2017110254A - Method for forming self-fluxing alloy coating layer - Google Patents

Method for forming self-fluxing alloy coating layer Download PDF

Info

Publication number
JP2017110254A
JP2017110254A JP2015244633A JP2015244633A JP2017110254A JP 2017110254 A JP2017110254 A JP 2017110254A JP 2015244633 A JP2015244633 A JP 2015244633A JP 2015244633 A JP2015244633 A JP 2015244633A JP 2017110254 A JP2017110254 A JP 2017110254A
Authority
JP
Japan
Prior art keywords
powder
self
fluxing alloy
coating layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015244633A
Other languages
Japanese (ja)
Other versions
JP6718644B2 (en
Inventor
賢一郎 奥津
Kenichiro Okutsu
賢一郎 奥津
孝 古吟
Takashi Kogin
孝 古吟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP2015244633A priority Critical patent/JP6718644B2/en
Publication of JP2017110254A publication Critical patent/JP2017110254A/en
Application granted granted Critical
Publication of JP6718644B2 publication Critical patent/JP6718644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a self-fluxing alloy coating layer capable of forming the uniform and close self-fluxing alloy coating layer on a substrate surface even when a heating treatment of a powder layer containing the self-fluxing alloy coating layer formed on the substrate surface is conducted by a process of short time quick heating by induction heating.SOLUTION: A method includes a powder mixing process for preparing a mixed powder by mixing a self-fluxing alloy powder and a borax powder, a powder layer forming process for forming a powder layer by supplying the resulting mixed powder to a substrate surface, a sintering process for forming a self-fluxing alloy coating layer consisting of a sintered body on the substrate surface by sintering the self-fluxing alloy powder in the powder layer by heating the formed powder layer to 1000 to 1200°C with induction heating means.SELECTED DRAWING: Figure 1

Description

本発明は、鋼材などの基材表面に自溶合金被覆層を形成する方法に関する。   The present invention relates to a method for forming a self-fluxing alloy coating layer on the surface of a substrate such as a steel material.

苛酷な環境で使用される鋼材などの基材表面を自溶合金で被覆して良好な耐熱性、耐腐食性および耐摩耗性を付与することが一般的に行われている。   Generally, it is common practice to provide a good heat resistance, corrosion resistance and wear resistance by coating the surface of a base material such as steel used in a harsh environment with a self-fluxing alloy.

鋼材などの基材の表面に自溶合金被覆層を形成する方法として、下記特許文献1には、ブラスト処理された基材表面に、耐摩耗性を有する自溶合金粉末を載置し、この粉末層を所定の厚さに整えた後に、加熱炉内に搬入して加熱し、粉末層を焼結させるとともに基材表面に溶着させる方法が記載されている。   As a method for forming a self-fluxing alloy coating layer on the surface of a base material such as a steel material, in Patent Document 1 below, a self-fluxing alloy powder having wear resistance is placed on the surface of the base material subjected to blasting, A method is described in which after a powder layer is adjusted to a predetermined thickness, it is carried into a heating furnace and heated to sinter the powder layer and weld it to the substrate surface.

しかして、自溶合金被覆層を基材表面に形成するに際しては、生産性の向上を図るなどの観点から、焼結して自溶合金被覆層となる粉末層の加熱処理を、特許文献1に記載されているような加熱炉内で実施するよりも、短時間・急速加熱のプロセスによって実施することが望ましい。   Thus, when the self-fluxing alloy coating layer is formed on the surface of the base material, the heat treatment of the powder layer that is sintered to form the self-fluxing alloy coating layer is performed from the viewpoint of improving productivity. It is desirable to carry out by a short time and rapid heating process rather than in a heating furnace as described in the above.

ここに、短時間・急速加熱のプロセスとして高周波誘導加熱が知られており、例えば、下記特許文献2には、基材表面に自溶合金を溶射後、高周波誘導加熱によって再溶融処理することが紹介されている。   Here, high-frequency induction heating is known as a short-time and rapid heating process. For example, in Patent Document 2 below, a self-fluxing alloy is sprayed on the surface of a base material and then re-melted by high-frequency induction heating. It has been introduced.

特開平6−240307号公報JP-A-6-240307 特開平7−188892号公報Japanese Patent Laid-Open No. 7-188882

しかしながら、粉末どうしが結合していない状態の粉末層は熱伝導性に劣るとともに、溶融時において粉末表面の酸化が起こりやすいため、基材表面に形成された粉末層の加熱処理を誘導加熱による短時間・急速加熱のプロセスによって実施すると、粉末層中の自溶合金粉末が均一に溶融されず、形成される自溶合金被覆層において溶融されていない部分が生じたり、基材表面が露出したりすることがあり、均一な自溶合金被覆層を形成することができない、という問題がある。   However, a powder layer in a state where the powders are not bonded is inferior in thermal conductivity, and oxidation of the powder surface easily occurs at the time of melting. Therefore, the heat treatment of the powder layer formed on the substrate surface is short by induction heating. When implemented by the time and rapid heating process, the self-fluxing alloy powder in the powder layer is not uniformly melted, resulting in unmelted portions in the formed self-fluxing alloy coating layer, and the substrate surface being exposed. There is a problem that a uniform self-fluxing alloy coating layer cannot be formed.

本発明は以上のような事情に基いてなされたものである。
本発明の目的は、基材表面に形成された自溶合金粉末を含む粉末層の加熱処理を、誘導加熱による短時間・急速加熱のプロセスにより実施しても、均一で緻密な自溶合金被覆層を基材表面に形成することができる自溶合金被覆層の形成方法を提供することにある。
The present invention has been made based on the above situation.
The object of the present invention is to provide a uniform and dense self-fluxing alloy coating even when the heat treatment of the powder layer containing the self-fluxing alloy powder formed on the substrate surface is carried out by a short time and rapid heating process by induction heating. It is providing the formation method of the self-fluxing alloy coating layer which can form a layer in the base-material surface.

本発明の自溶合金被覆層の形成方法は、自溶合金粉末とホウ砂粉末とを混合して混合粉末を調製する工程(以下、「粉末混合工程」ともいう)と、
前記混合粉末を基材表面に供給して粉末層を形成する工程(以下、「粉末層形成工程」ともいう)と、
前記粉末層を誘導加熱手段で1000〜1200℃に加熱して前記粉末層中の前記自溶合金粉末を焼結させることにより、焼結体からなる自溶合金被覆層を前記基材表面に形成する工程(以下、「焼結工程」ともいう)とを含むことを特徴とする。
The method for forming a self-fluxing alloy coating layer of the present invention includes a step of mixing a self-fluxing alloy powder and a borax powder to prepare a mixed powder (hereinafter also referred to as “powder mixing step”),
Supplying the mixed powder to the substrate surface to form a powder layer (hereinafter also referred to as “powder layer forming step”);
A self-fluxing alloy coating layer made of a sintered body is formed on the surface of the base material by heating the powder layer to 1000 to 1200 ° C. by induction heating means to sinter the self-fluxing alloy powder in the powder layer. And a step (hereinafter also referred to as “sintering step”).

このような形成方法によれば、ホウ砂粉末が混合されていることによって粉末層(混合粉末)の溶融性が格段に向上し、当該粉末層の加熱処理を、誘導加熱による短時間・急速加熱のプロセスによって実施しても、均一で緻密な自溶合金被覆層を基材表面に形成することができる。   According to such a forming method, the meltability of the powder layer (mixed powder) is remarkably improved by mixing the borax powder, and the heat treatment of the powder layer is performed in a short time and rapidly by induction heating. Even with this process, a uniform and dense self-fluxing alloy coating layer can be formed on the substrate surface.

前記粉末層形成工程において、自溶合金粉末100質量部に対してホウ砂粉末0.05〜1.0質量部を混合して前記混合粉末を調製することが好ましい。   In the powder layer forming step, it is preferable that 0.05 to 1.0 parts by mass of borax powder is mixed with 100 parts by mass of self-fluxing alloy powder to prepare the mixed powder.

また、前記粉末混合工程において、自溶合金粉末とホウ砂粉末とともにセラミック粒子を混合して前記混合粉末を調製してもよい。   In the powder mixing step, the mixed powder may be prepared by mixing ceramic particles together with self-fluxing alloy powder and borax powder.

本発明の自溶合金被覆層の形成方法によれば、誘導加熱による短時間・急速加熱のプロセスによって自溶合金粉末を含む粉末層の加熱処理を実施するものでありながら、均一で緻密な自溶合金被覆層を基材表面に形成することができる。
そして、誘導加熱による短時間・急速加熱のプロセスによって粉末層の加熱処理を実施することにより、加熱炉内で粉末層を加熱処理する従来の形成方法と比較して、生産性の向上を図ることができる。
According to the method for forming a self-fluxing alloy coating layer of the present invention, the heat treatment of the powder layer containing the self-fluxing alloy powder is performed by a short-time and rapid heating process by induction heating, and the uniform and dense self-heating is performed. A molten alloy coating layer can be formed on the substrate surface.
And, by carrying out the heat treatment of the powder layer by a short-time and rapid heating process by induction heating, the productivity can be improved compared with the conventional forming method in which the powder layer is heat-treated in a heating furnace. Can do.

実施例1で基板表面に形成された自溶合金被覆層の表面状態を示す写真である。2 is a photograph showing a surface state of a self-fluxing alloy coating layer formed on a substrate surface in Example 1. FIG. 実施例2で基板表面に形成された自溶合金被覆層の表面状態を示す写真である。4 is a photograph showing a surface state of a self-fluxing alloy coating layer formed on a substrate surface in Example 2. FIG. 比較例1で基板表面に形成された自溶合金被覆層の表面状態を示す写真である。4 is a photograph showing a surface state of a self-fluxing alloy coating layer formed on a substrate surface in Comparative Example 1. 比較例2で基板表面に形成された自溶合金被覆層の表面状態を示す写真である。6 is a photograph showing a surface state of a self-fluxing alloy coating layer formed on a substrate surface in Comparative Example 2.

以下、本発明について詳細に説明する。
本発明の自溶合金被覆層の形成方法は、粉末混合工程と、粉末層形成工程と、粉末焼結工程とを含む。
Hereinafter, the present invention will be described in detail.
The method for forming a self-fluxing alloy coating layer of the present invention includes a powder mixing step, a powder layer forming step, and a powder sintering step.

<粉末混合工程>
本発明の形成方法の粉末混合工程は、自溶合金粉末とホウ砂粉末とを混合して混合粉末を調製する工程である。
<Powder mixing process>
The powder mixing step of the forming method of the present invention is a step of preparing a mixed powder by mixing self-fluxing alloy powder and borax powder.

本発明の形成方法で使用する自溶合金粉末としては、JIS H 8260(溶射用粉末材料)に規定されているものを挙げることができる。
自溶合金粉末の粒径としては、ふるい分け法で測定される粒径が250μm以下であることが好ましく、更に好ましくは45〜125μmとされる。
Examples of the self-fluxing alloy powder used in the forming method of the present invention include those specified in JIS H 8260 (powder material for thermal spraying).
The particle size of the self-fluxing alloy powder is preferably 250 μm or less, more preferably 45 to 125 μm, as measured by a sieving method.

本発明の形成方法で使用するホウ砂粉末は、四ホウ酸ナトリウムの水和物または無水物からなる。
ホウ砂粉末の粒径としては、ふるい分け法で測定される粒径が125μm以下であることが好ましい。粒径が過大なホウ砂粉末は、自溶合金粉末の間に入り込むことができないため溶融性の向上に十分に寄与することができず、また、得られる自溶合金被覆層の表面にガラス系の化合物が点在して外観不良を招くことがある。
The borax powder used in the forming method of the present invention comprises a hydrate or an anhydride of sodium tetraborate.
As the particle diameter of the borax powder, the particle diameter measured by a sieving method is preferably 125 μm or less. Borax powder with an excessively large particle size cannot penetrate between the self-fluxing alloy powders, and thus cannot sufficiently contribute to the improvement of the meltability, and the surface of the resulting self-fluxing alloy coating layer is made of glass. In some cases, these compounds are scattered, resulting in poor appearance.

自溶合金粉末とホウ砂粉末とを混合してなる混合粉末(粉末層)の溶融性は、自溶合金粉末のみの溶融性と比較して格段に優れている。
そのような理由としては明らかではないが、相対的に融点の低いホウ砂粉末は、自溶合金粉末の溶融前に溶融して粉末層の熱伝導性を向上させるとともに、ホウ砂中に含まれるホウ素が、粉末層中の酸素および基材表面の酸素と結合して粉末表面等の酸化を抑制するからであると推測される。
The meltability of the mixed powder (powder layer) formed by mixing the self-fluxing alloy powder and the borax powder is remarkably superior to that of the self-fluxing alloy powder alone.
Although it is not clear as such a reason, the borax powder having a relatively low melting point is melted before melting the self-fluxing alloy powder to improve the thermal conductivity of the powder layer and is contained in the borax. This is presumed to be because boron combines with oxygen in the powder layer and oxygen on the surface of the substrate to suppress oxidation of the powder surface and the like.

自溶合金粉末にホウ砂粉末を直接混合することにより、粉末層(混合粉末)の溶融性を格段に向上させることができることから、後述する焼結工程(誘導加熱による加熱処理)において、粉末層全体が均一に溶融され、この結果、均一で緻密な自溶合金被覆層を形成することができる。   By directly mixing the borax powder with the self-fluxing alloy powder, the meltability of the powder layer (mixed powder) can be significantly improved. Therefore, in the sintering step (heat treatment by induction heating) described later, the powder layer The whole is uniformly melted, and as a result, a uniform and dense self-fluxing alloy coating layer can be formed.

なお、自溶合金粉末に直接混合すること以外の態様でホウ砂を自溶合金粉末に添加しても(例えば、自溶合金粉末からなる粉末層にホウ砂を含有する液状組成物を塗布しても)、粉末の溶融性を向上させることができない(後述する比較例2参照)。   Even if borax is added to the self-fluxing alloy powder in a mode other than directly mixing with the self-fluxing alloy powder (for example, a liquid composition containing borax is applied to a powder layer made of the self-fluxing alloy powder). However, the meltability of the powder cannot be improved (see Comparative Example 2 described later).

混合粉末中のホウ砂の含有割合としては、自溶合金粉末100質量部あたり0.05〜1.0質量部(四ホウ酸ナトリウムの十水和物における質量部)であることが好ましく、好適な一例を示せば0.2質量部とされる。   The content ratio of borax in the mixed powder is preferably 0.05 to 1.0 part by mass (parts by mass in sodium tetraborate decahydrate) per 100 parts by mass of the self-fluxing alloy powder. If an example is shown, it will be 0.2 mass part.

ホウ砂の含有割合が過少である場合には、混合粉末の溶融性を十分に向上させることができず、均一で緻密な自溶合金被覆層を形成することが困難となる。
一方、ホウ砂の含有割合が過剰である場合には、得られる自溶合金被覆層の表面にガラス系の化合物が点在するなどして外観不良を招くことがある。
When the content ratio of borax is too small, the meltability of the mixed powder cannot be sufficiently improved, and it becomes difficult to form a uniform and dense self-fluxing alloy coating layer.
On the other hand, when the content ratio of borax is excessive, an appearance defect may be caused due to, for example, glass-based compounds scattered on the surface of the obtained self-fluxing alloy coating layer.

この粉末混合工程において、自溶合金粉末とホウ砂粉末とともにセラミック粒子を混合して混合粉末を調製してもよい。これにより、耐摩耗性の更なる向上を図ることができる。   In this powder mixing step, mixed powder may be prepared by mixing ceramic particles together with self-fluxing alloy powder and borax powder. Thereby, the further improvement of abrasion resistance can be aimed at.

<粉末層形成工程>
本発明の形成方法の粉末層形成工程は、粉末混合工程で調製された混合粉末を基材表面に供給して粉末層を形成する工程である。
具体的には、基材表面に混合粉末を載置して所定の厚さに調整することにより、粉末層を形成する。
<Powder layer forming step>
The powder layer forming step of the forming method of the present invention is a step of forming the powder layer by supplying the mixed powder prepared in the powder mixing step to the substrate surface.
Specifically, the powder mixture is formed by placing the mixed powder on the surface of the substrate and adjusting it to a predetermined thickness.

ここに、粉末層が表面に形成される基材(被処理物)としては、通常、鋼材(軟鋼・SUS)などの金属からなる。基材の形状としては特に限定されるものではないが、板状であることが好ましい。
なお、粉末層を形成する基材表面はブラスト処理によって粗面化されていることが好ましい。
Here, the base material (processed object) on which the powder layer is formed is usually made of a metal such as a steel material (soft steel / SUS). Although it does not specifically limit as a shape of a base material, It is preferable that it is plate shape.
In addition, it is preferable that the base material surface which forms a powder layer is roughened by the blast process.

混合粉末を基材表面に供給する方法としては特に限定されるものではなく、例えば、基材表面に外枠を設けて枠内に混合粉末を流入させる方法を挙げることができる。   The method for supplying the mixed powder to the surface of the substrate is not particularly limited, and examples thereof include a method of providing an outer frame on the surface of the substrate and allowing the mixed powder to flow into the frame.

粉末層の厚さとしては、焼結による厚さ変化(目減り)を考慮して、形成する自溶合金被覆層の厚さの1.4〜2.0倍程度であることが好ましい。
粉末層の厚さの調整方法としては、例えば、基材表面に設けた上記の外枠内に過剰量の混合粉末を流入させた後、余分な混合粉末を適宜の厚さ規制部材(例えばブレード)で掻き落とす方法を挙げることができる。
The thickness of the powder layer is preferably about 1.4 to 2.0 times the thickness of the self-fluxing alloy coating layer to be formed in consideration of thickness change (loss) due to sintering.
As a method for adjusting the thickness of the powder layer, for example, an excessive amount of mixed powder is allowed to flow into the outer frame provided on the surface of the base material, and then the excess mixed powder is added to an appropriate thickness regulating member (for example, a blade). ) To scrape off.

本発明の形成方法においては、自溶合金粉末とホウ砂粉末とを含む混合粉末を、粉末の状態を維持した粉末層として基材表面に形成する。
これにより、生産性の向上・生産コストの低減を図ることができるとともに、基材の形状によって発生することが懸念される当該基材の熱ひずみを回避することができる。また、混合粉末におけるセラミック粒子の配合も可能となる。
粉末層に代えて溶射法により溶射皮膜を形成する場合には、2回の加熱処理を実施することにより生産性の低下・生産コストの上昇を招き、基材の形状によって(例えば薄板状の場合に)熱ひずみを招くことがある。
In the forming method of the present invention, a mixed powder containing self-fluxing alloy powder and borax powder is formed on the surface of the substrate as a powder layer that maintains the powder state.
As a result, productivity can be improved and production cost can be reduced, and thermal strain of the base material, which may be caused by the shape of the base material, can be avoided. Further, it is possible to mix ceramic particles in the mixed powder.
When a thermal spray coating is formed by a thermal spraying method instead of a powder layer, a decrease in productivity and an increase in production cost are caused by performing heat treatment twice, depending on the shape of the substrate (for example, in the case of a thin plate) B) may cause thermal distortion.

<焼結工程>
本発明の形成方法の焼結工程は、基材表面に形成された粉末層を誘導加熱手段で1000〜1200℃に加熱し、粉末層中の前記自溶合金粉末を焼結させることにより、焼結体からなる自溶合金被覆層を形成する工程である。
<Sintering process>
In the sintering process of the forming method of the present invention, the powder layer formed on the surface of the substrate is heated to 1000 to 1200 ° C. by induction heating means, and the self-fluxing alloy powder in the powder layer is sintered. This is a step of forming a self-fluxing alloy coating layer comprising a ligation.

この焼結工程では、誘導加熱(移動加熱)による短時間・急速加熱のプロセスによって粉末層の加熱処理が実施される点に特徴を有する。
誘導加熱による短時間・急速加熱のプロセスによって粉末層の加熱処理を実施することにより、加熱炉内で粉末層を加熱処理する従来の形成方法と比較して生産性の向上を図ることができる。
This sintering step is characterized in that the heat treatment of the powder layer is performed by a short time and rapid heating process by induction heating (moving heating).
By performing the heat treatment of the powder layer by a short-time and rapid heating process by induction heating, productivity can be improved as compared with the conventional forming method in which the powder layer is heat-treated in a heating furnace.

粉末層の加熱温度は1000〜1200℃とされ、好ましくは1050〜1150℃とされる。
加熱温度が1000℃未満であると、粉末が十分に溶融しないため、緻密な皮膜(自溶合金被覆層)を形成することができない。他方、加熱温度が1200℃を超えると、過剰に溶融して被覆層の形状を維持できなかったり、過加熱によって被覆層の硬さが低下したりする。
The heating temperature of a powder layer shall be 1000-1200 degreeC, Preferably you may be 1050-1150 degreeC.
When the heating temperature is less than 1000 ° C., the powder is not sufficiently melted, so that a dense film (self-fluxing alloy coating layer) cannot be formed. On the other hand, when the heating temperature exceeds 1200 ° C., it is excessively melted and the shape of the coating layer cannot be maintained, or the hardness of the coating layer is reduced by overheating.

粉末層に対する誘導加熱手段の移動速度としては0.5〜5mm/sとされ、好ましくは1〜3mm/sとされる。   The moving speed of the induction heating means relative to the powder layer is 0.5 to 5 mm / s, preferably 1 to 3 mm / s.

この焼結工程により、基材表面に形成されている粉末層(自溶合金粉末にホウ砂粉末が直接混合されてなる混合粉末)は、その全体が均一に溶融され、均一で緻密な焼結体(自溶合金被覆層)を基材表面に形成することができる。
本発明の方法により形成される自溶合金被覆層の厚さとしては、例えば0.5〜5mmとされ、好ましくは1.0〜2.0mm、好適な一例を示せば2.0mmとされる。
By this sintering process, the powder layer formed on the substrate surface (mixed powder obtained by directly mixing borax powder with self-fluxing alloy powder) is uniformly melted as a whole, resulting in uniform and dense sintering. A body (self-fluxing alloy coating layer) can be formed on the substrate surface.
The thickness of the self-fluxing alloy coating layer formed by the method of the present invention is, for example, 0.5 to 5 mm, preferably 1.0 to 2.0 mm, and 2.0 mm if a suitable example is shown. .

本発明の形成方法により基材表面に自溶合金被覆層が形成されてなる複合部材は、良好な耐熱性、耐腐食性および耐摩耗性が付与され、特に耐摩耗部材であるサイクロン・攪拌機・ダクト・スクリュー・各種レールなどの用途に適用され、また、耐熱・耐食性部材である炉壁材・各種高温配管などの用途に適用される。   The composite member in which the self-fluxing alloy coating layer is formed on the surface of the substrate by the forming method of the present invention is imparted with good heat resistance, corrosion resistance and wear resistance. It is applied to applications such as ducts, screws, and various rails, and is also applied to applications such as furnace wall materials and various high-temperature pipes that are heat and corrosion resistant members.

以下、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。
なお、以下の実施例および比較例で使用された粉末の粒径はふるい分け法で測定された値である。
Examples of the present invention will be described below, but the present invention is not limited thereto.
In addition, the particle size of the powder used in the following Examples and Comparative Examples is a value measured by a sieving method.

<実施例1>
(1)粉末混合工程:
JIS H 8303 2.14Aに相当する、粒径45〜125μmのNi系自溶合金粉末「13017」(Eutectic Canada Inc.製)100質量部と、粒径が125μm以下のホウ砂粉末「四ほう酸ナトリウム十水和物」(関東化学 (株) 製)0.2質量部とを均一に混合して混合粉末を調製した。
<Example 1>
(1) Powder mixing step:
100 parts by mass of Ni-based self-fluxing alloy powder “13017” (manufactured by Electronic Canada Inc.) corresponding to JIS H 8303 2.14A and a borax powder “sodium tetraborate” having a particle size of 125 μm or less “Decahydrate” (manufactured by Kanto Chemical Co., Ltd.) 0.2 parts by mass was uniformly mixed to prepare a mixed powder.

(2)粉末層形成工程:
上記(1)で得られた混合粉末を、ブラスト処理が施された一般構造用圧延鋼材SS400からなる基板(幅150mm×長さ800mm×厚さ4.5mm)の表面に供給し、当該基板表面に厚さ3.5mmに調整して粉末層を形成した。
(2) Powder layer forming step:
The mixed powder obtained in the above (1) is supplied to the surface of a substrate (width 150 mm × length 800 mm × thickness 4.5 mm) made of a general structural rolled steel SS400 subjected to blasting, and the substrate surface The thickness was adjusted to 3.5 mm to form a powder layer.

(3)焼結工程:
上記(2)により基板表面に形成された粉末層に対して、高周波誘導加熱装置を基板の長さ方向に移動させて誘導加熱を行い、粉末層中の自溶合金粉末を焼結させることにより、焼結体からなる自溶合金被覆層を基板表面に形成した。ここに、誘導加熱装置の移動速度(送り量)は1mm/sとした。
(3) Sintering process:
By subjecting the powder layer formed on the substrate surface according to (2) above to induction heating by moving the high-frequency induction heating device in the length direction of the substrate, and sintering the self-fluxing alloy powder in the powder layer Then, a self-fluxing alloy coating layer made of a sintered body was formed on the substrate surface. Here, the moving speed (feed amount) of the induction heating apparatus was 1 mm / s.

<実施例2>
粉末混合工程において、JIS H 8303 2.29Bに相当する、粒径45〜125μmのNi系自溶合金粉末とWC粉末との混合物「23005」(Eutectic Canada Inc.製)100質量部と、粒径が125μm以下のホウ砂粉末「四ほう酸ナトリウム十水和物」(関東化学 (株) 製)0.2質量部とを均一に混合して混合粉末を調製したこと以外は実施例1と同様にして、焼結体からなる自溶合金被覆層を基板表面に形成した。
<Example 2>
In the powder mixing step, 100 parts by mass of a mixture “23005” (manufactured by Electronic Canada Inc.) of a Ni-based self-fluxing alloy powder having a particle size of 45 to 125 μm and WC powder corresponding to JIS H 8303 2.29B; Except that a mixed powder was prepared by uniformly mixing 0.2 parts by mass of borax powder “sodium tetraborate decahydrate” (manufactured by Kanto Chemical Co., Inc.) with a particle size of 125 μm or less. Then, a self-fluxing alloy coating layer made of a sintered body was formed on the substrate surface.

<比較例1>
実施例1の粉末混合工程を実施せずに、粉末層形成工程において、JIS H 8303 2.14Aに相当する、粒径45〜125μmの自溶合金粉末を基板表面に供給して、厚さ3.5mmに調整して粉末層(自溶合金粉末のみからなる粉末層)を形成したこと以外は実施例1と同様にして、焼結体からなる自溶合金被覆層を基板表面に形成した。
得られた自溶合金被覆層は、不均一で、一部において基板表面が露出していた。
<Comparative Example 1>
Without carrying out the powder mixing step of Example 1, in the powder layer forming step, self-fluxing alloy powder having a particle size of 45 to 125 μm corresponding to JIS H 8303 2.14A was supplied to the substrate surface to obtain a thickness of 3 A self-fluxing alloy coating layer made of a sintered body was formed on the substrate surface in the same manner as in Example 1 except that the powder layer (powder layer consisting only of self-fluxing alloy powder) was formed by adjusting to 0.5 mm.
The obtained self-fluxing alloy coating layer was non-uniform and the substrate surface was partially exposed.

<比較例2>
比較例1の粉末層形成工程終了後、ホウ砂粉末「四ほう酸ナトリウム十水和物」(関東化学 (株) 製)5質量部とエタノール(溶剤)95質量部とを含むホウ砂粉末のアルコール溶液約80gを、基板表面に形成された粉末層にスプレーにより塗布し、乾燥後、比較例1と同様にして焼結工程を実施して、焼結体からなる自溶合金被覆層を基板表面に形成した。
<Comparative example 2>
After completion of the powder layer forming step of Comparative Example 1, borax powder alcohol containing 5 parts by mass of borax powder “sodium tetraborate decahydrate” (manufactured by Kanto Chemical Co., Ltd.) and 95 parts by mass of ethanol (solvent) About 80 g of the solution is applied to the powder layer formed on the substrate surface by spraying, and after drying, a sintering process is performed in the same manner as in Comparative Example 1 to form a self-fluxing alloy coating layer made of a sintered body on the substrate surface. Formed.

<被覆層の評価>
実施例1〜2および比較例1〜2によって形成された自溶合金被覆層の各々について、下記項目(1)〜(4)の評価を行った。評価方法(評価基準)は下記のとおりである。結果を図1および下記表1に示す。
<Evaluation of coating layer>
The following items (1) to (4) were evaluated for each of the self-fluxing alloy coating layers formed in Examples 1-2 and Comparative Examples 1-2. The evaluation method (evaluation criteria) is as follows. The results are shown in FIG. 1 and Table 1 below.

(1)外観検査:
自溶合金被覆層の表面状態を目視により観察して下記の基準に従って評価した。
「○」:全面にわたり均一に溶融され、表面にしわなどがなく、均一で緻密な表面状態である。
「△」:溶融むらに起因するしわが表面に認められる。
「×」:大きな割れまたはしわが発生し、基板表面が露出している部位がある。
(1) Appearance inspection:
The surface state of the self-fluxing alloy coating layer was visually observed and evaluated according to the following criteria.
“◯”: The surface is melted uniformly over the entire surface, the surface is free of wrinkles, and the surface is uniform and dense.
“Δ”: Wrinkles due to uneven melting are observed on the surface.
“X”: There is a site where a large crack or wrinkle is generated and the substrate surface is exposed.

(2)膜厚の測定:
形成された自溶合金被覆層の膜厚をマイクロメーター[参考(被覆層+基板)−基板=被覆層]により測定した。
(2) Measurement of film thickness:
The film thickness of the formed self-fluxing alloy coating layer was measured with a micrometer [reference (coating layer + substrate) −substrate = coating layer].

(3)硬度:
形成された自溶合金被覆層を基板とともに切断し、JIS Z 2244(ビッカース硬さ試験―試験方法)に準拠して、被覆層断面のビッカース硬さを測定した。
(3) Hardness:
The formed self-fluxing alloy coating layer was cut together with the substrate, and the Vickers hardness of the coating layer cross section was measured in accordance with JIS Z 2244 (Vickers hardness test-test method).

(4)気孔率の測定(緻密性の評価)方法:
形成された自溶合金被覆層の断面を光学顕微鏡により観察し、画像解析により気孔率を測定した。ここで、緻密性が良好であるというためには、その気孔率は10%以下であることが必要である。
(4) Porosity measurement (dense evaluation) method:
The cross section of the formed self-fluxing alloy coating layer was observed with an optical microscope, and the porosity was measured by image analysis. Here, in order to say that the denseness is good, the porosity needs to be 10% or less.


Claims (3)

自溶合金粉末とホウ砂粉末とを混合して混合粉末を調製する工程と、
前記混合粉末を基材表面に供給して粉末層を形成する工程と、
前記粉末層を誘導加熱手段で1000〜1200℃に加熱して前記粉末層中の前記自溶合金粉末を焼結させることにより、焼結体からなる自溶合金被覆層を前記基材表面に形成する工程とを含む自溶合金被覆層の形成方法。
A step of preparing a mixed powder by mixing self-fluxing alloy powder and borax powder;
Supplying the mixed powder to a substrate surface to form a powder layer;
A self-fluxing alloy coating layer made of a sintered body is formed on the surface of the base material by heating the powder layer to 1000 to 1200 ° C. by induction heating means to sinter the self-fluxing alloy powder in the powder layer. Forming a self-fluxing alloy coating layer.
自溶合金粉末100質量部に対してホウ砂粉末0.05〜1.0質量部を混合して前記混合粉末を調製する工程を含む請求項1に記載の自溶合金被覆層の形成方法。   The method for forming a self-fluxing alloy coating layer according to claim 1, comprising a step of mixing 0.05 to 1.0 parts by mass of borax powder with respect to 100 parts by mass of self-fluxing alloy powder to prepare the mixed powder. 自溶合金粉末とホウ砂粉末とともにセラミック粒子を混合して前記混合粉末を調製する工程を含む請求項1または請求項2に記載の複合部材の製造方法。   The manufacturing method of the composite member of Claim 1 or Claim 2 including the process of mixing a ceramic particle with self-fluxing alloy powder and borax powder, and preparing the said mixed powder.
JP2015244633A 2015-12-15 2015-12-15 Method for forming self-fluxing alloy coating layer Active JP6718644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015244633A JP6718644B2 (en) 2015-12-15 2015-12-15 Method for forming self-fluxing alloy coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015244633A JP6718644B2 (en) 2015-12-15 2015-12-15 Method for forming self-fluxing alloy coating layer

Publications (2)

Publication Number Publication Date
JP2017110254A true JP2017110254A (en) 2017-06-22
JP6718644B2 JP6718644B2 (en) 2020-07-08

Family

ID=59080451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015244633A Active JP6718644B2 (en) 2015-12-15 2015-12-15 Method for forming self-fluxing alloy coating layer

Country Status (1)

Country Link
JP (1) JP6718644B2 (en)

Also Published As

Publication number Publication date
JP6718644B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
Lassègue et al. Laser powder bed fusion (L-PBF) of Cu and CuCrZr parts: Influence of an absorptive physical vapor deposition (PVD) coating on the printing process
Feng et al. Oxidation and ablation resistance of the ZrB2–CrSi2–Si/SiC coating for C/C composites at high temperature
Gupta et al. Development and microstructural characterization of microwave cladding on austenitic stainless steel
JP6763441B2 (en) A method for forming an intermetallic compound sprayed coating, the sprayed coating, a method for manufacturing a metal product having the sprayed coating, and a roll for transporting glass.
CN112281157B (en) Preparation method of laser cladding in-situ synthesized ceramic phase reinforced copper-based cladding layer
CN104911586A (en) Method for cladding tungsten carbide coating on surface of metal substrate
CN104195548A (en) Zinc-corrosion-resistant coating cobalt-based alloy powder for laser cladding
CN110090961B (en) Processing technology of bearing steel product
JP5292588B2 (en) Cermet sprayed powder material for coating high temperature materials and method for producing the same
Hebbale Microstructural characterization of Ni based cladding on SS-304 developed through microwave energy
CN108411298B (en) A kind of method of laser melting coating nano metal composite coating
JP5269341B2 (en) Lubricant composition for hot extrusion
JP2016089206A (en) Powder for thermal spraying, thermal spray coating, coating, and roll in molten metal bath
JP6718644B2 (en) Method for forming self-fluxing alloy coating layer
CN108796498A (en) A kind of method that laser melting coating aluminum alloy surface autoreaction generates ceramic phase
JP2016035092A (en) Formation method of functional self-fluxing alloy coating layer
JP2012112012A (en) Powder for hvaf thermal spraying, and method for forming thermal-sprayed film
CN114672805B (en) Preparation method of high-temperature oxidation resistant coating on surface of niobium alloy
JP2014100730A (en) Method of repairing cermet-coated member
JPWO2013058376A1 (en) Mo powder for thermal spraying, Mo sprayed film using the same, and Mo sprayed film parts
JP5719399B2 (en) Mold for molding molten glass lump and method for producing the same
JP5326121B2 (en) Mold for molding molten glass lump and method for producing the same
CN104213000A (en) Laser-cladding-used nickel base alloy powder for producing high-temperature oxidation resistant coating layer
JP4862125B2 (en) Method for reforming material with thermal spray coating
WO2019092894A1 (en) Firing setter and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200612

R150 Certificate of patent or registration of utility model

Ref document number: 6718644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250