JP2017108484A - Power storage state adjustment device, battery pack, load system and power storage state adjustment method - Google Patents
Power storage state adjustment device, battery pack, load system and power storage state adjustment method Download PDFInfo
- Publication number
- JP2017108484A JP2017108484A JP2015238485A JP2015238485A JP2017108484A JP 2017108484 A JP2017108484 A JP 2017108484A JP 2015238485 A JP2015238485 A JP 2015238485A JP 2015238485 A JP2015238485 A JP 2015238485A JP 2017108484 A JP2017108484 A JP 2017108484A
- Authority
- JP
- Japan
- Prior art keywords
- current
- storage batteries
- voltage
- storage
- storage state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 34
- 238000005259 measurement Methods 0.000 claims abstract description 8
- 238000007599 discharging Methods 0.000 claims description 24
- 238000004904 shortening Methods 0.000 abstract description 2
- 238000001514 detection method Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 102100024016 G patch domain and ankyrin repeat-containing protein 1 Human genes 0.000 description 4
- 101000904261 Homo sapiens G patch domain and ankyrin repeat-containing protein 1 Proteins 0.000 description 4
- 101000908580 Homo sapiens Spliceosome RNA helicase DDX39B Proteins 0.000 description 4
- 102100021298 b(0,+)-type amino acid transporter 1 Human genes 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
Description
本発明は、蓄電状態調整装置、電池パック、負荷システム及び蓄電状態調整方法に関する。 The present invention relates to a storage state adjustment device, a battery pack, a load system, and a storage state adjustment method.
近年、複数の蓄電池が直列に接続された組電池を充放電する技術の開発が盛んに行われている。 In recent years, technology for charging / discharging an assembled battery in which a plurality of storage batteries are connected in series has been actively developed.
例えば特許文献1には、組電池の充放電中に各蓄電池のセル電圧(電池電圧)を同一にする(セルバランスする)ために充電電流や放電電流を調整するセルバランス処理が開示されている。
For example,
しかしながら、特許文献1に開示されている技術では、セルバランス処理に要する時間を短縮することに関して改良の余地があった。
However, the technique disclosed in
本発明は、複数の蓄電池が直列に接続された組電池の充放電中の蓄電状態を調整する蓄電状態調整装置であって、前記複数の蓄電池それぞれに並列に接続される複数の電流加算器と、前記複数の蓄電池それぞれに並列に接続される複数の電流減算器と、を備える蓄電状態調整装置である。 The present invention is a storage state adjustment device for adjusting a storage state during charging / discharging of an assembled battery in which a plurality of storage batteries are connected in series, and a plurality of current adders connected in parallel to each of the plurality of storage batteries; And a plurality of current subtractors connected in parallel to each of the plurality of storage batteries.
本発明によれば、セルバランス処理に要する時間を短縮することができる。 According to the present invention, the time required for the cell balance process can be shortened.
以下に、本発明の一実施形態の電池パック1について図面を参照して説明する。
Below, the
電池パック1は、図1に示されるように、組電池10、電流加算回路20A、電流減算回路20B、電圧検出手段30、制御回路40、充電器/負荷接続検知部50などを備えている。
As shown in FIG. 1, the
組電池10は、直列に接続された複数(例えば4つ)の蓄電池B1〜B4(二次電池やバッテリーとも呼ぶ)を含む。蓄電池B1の正極はP+端子に接続され、蓄電池B4の負極はP−端子に接続される。P+端子とP端子は、充電器や負荷に接続される。
The assembled
電流加算回路20Aは、複数(例えば4つ)の蓄電池B1〜B4それぞれと並列に接続された複数(例えば4つ)の電流加算器21a〜21dを含む。
The
各電流加算器は、図2に示されるように、複数(例えば2つの)可変定電流回路21−1、21−2を含む。なお、図2において、2つの可変定電流回路21−1、21−2は、蓄電池B1にのみ並列に接続されているかの如く図示されているが、実際には、蓄電池B2〜B4それぞれにも並列に接続されている。ここでは、電流加算器20aの2つの可変定電流回路21−1、21−2のみを代表的に図示している。
As shown in FIG. 2, each current adder includes a plurality (for example, two) of variable constant current circuits 21-1 and 21-2. In FIG. 2, the two variable constant current circuits 21-1 and 21-2 are illustrated as if they are connected in parallel only to the storage battery B <b> 1, but actually, each of the storage batteries B <b> 2 to B <b> 4 is also illustrated. Connected in parallel. Here, only two variable constant current circuits 21-1 and 21-2 of the
可変定電流回路21−1は、一次側コイルL1、二次側コイルL2及びダイオードDを含むフライバックトランスFBTと、一次側コイルL1の一端にドレインが接続され、抵抗R1の一端にソースが接続されたトランジスタTR1(例えばFET)と、出力端がトランジスタTR1のゲートに接続され、+側の入力端が可変電流源AE1の正極に接続され、−側の入力端がトランジスタTR1のソースに接続されたオペアンプOA1と、を有する。 The variable constant current circuit 21-1 includes a flyback transformer FBT including a primary side coil L1, a secondary side coil L2, and a diode D, a drain connected to one end of the primary side coil L1, and a source connected to one end of the resistor R1. Transistor TR1 (for example, FET), an output terminal is connected to the gate of the transistor TR1, a positive input terminal is connected to the positive electrode of the variable current source AE1, and a negative input terminal is connected to the source of the transistor TR1. And an operational amplifier OA1.
可変定電流回路21−2は、ゲート同士が接続された2つのトランジスタTR2、TR3(例えばFET)を含むカレントミラー回路CMCと、トランジスタTR2のソースにドレインが接続され、抵抗R2の一端にソースが接続されたトランジスタTR4(例えばFET)と、出力端がトランジスタTR4のゲートに接続され、+側の入力端が可変電流源AE2の正極に接続され、−側の入力端がトランジスタTR4のソースに接続されたオペアンプOAと、を有する。 The variable constant current circuit 21-2 includes a current mirror circuit CMC including two transistors TR2 and TR3 (for example, FETs) whose gates are connected to each other, a drain connected to the source of the transistor TR2, and a source connected to one end of the resistor R2. The connected transistor TR4 (eg, FET), the output terminal is connected to the gate of the transistor TR4, the positive input terminal is connected to the positive electrode of the variable current source AE2, and the negative input terminal is connected to the source of the transistor TR4. Operational amplifier OA.
なお、トランジスタTR1〜TR4としてFET(例えばMOSFETや接合型FET)が用いられているが、バイポーラトランジスタを用いても良い。 Note that FETs (eg, MOSFETs or junction FETs) are used as the transistors TR1 to TR4, but bipolar transistors may be used.
電流減算回路20Bは、複数の蓄電池B1〜B4それぞれと並列に接続された複数(例えば4つ)の電流減算器22a〜22dを含む。
The current
各電流減算器は、抵抗Rと、該抵抗Rの両端と対応する蓄電池の両極の接続、遮断を行うためのスイッチSWと、を含む。ここでは、スイッチSWとしてリレーが用いられているが、トランジスタを用いても良い。 Each current subtractor includes a resistor R and a switch SW for connecting and blocking both ends of the storage battery corresponding to both ends of the resistor R. Here, a relay is used as the switch SW, but a transistor may be used.
電圧検出回路30は、複数の蓄電池B1〜B4それぞれのセル電圧(電池電圧)を計測する複数(例えば4つ)の電圧センサVS1〜VS4を含む。
The
制御回路40は、複数の電圧センサVS1〜VS4の出力(計測値)に基づいて、複数の電流加算器21a〜21d及び複数の電流減算器22a〜22dを制御する。
The control circuit 40 controls the plurality of
詳述すると、制御回路40は、図3に示されるように、組電池10を充放電中の所定の時刻t1(組電池10の充電開始時を時刻0とする)における各電圧センサの計測値と予め設定されたバランス電圧BVの差分ΔVをとり、該差分ΔVに基づいて対応する蓄電池に対する電流加減算値及び電流加減算時間を算出し、対応する電流加算器又は電流減算器に出力する。
More specifically, as shown in FIG. 3, the control circuit 40 measures each voltage sensor at a predetermined time t <b> 1 during charging / discharging of the assembled battery 10 (the charging start time of the assembled
具体的には、制御回路40は、ある蓄電池に対応する電圧センサにおける差分ΔVが正の場合に、該差分ΔVを、電流減算値(−ΔI/Δt)×電流減算時間(t2−t1)×抵抗Rの抵抗値に換算し、該蓄電池に対応する電流減算器に電流減算値を電流減算時間中供給する。すなわち、制御回路40は、時刻t1から電流減算時間、スイッチSWをオンとして該蓄電池の両極と抵抗Rの両端を接続することにより、該蓄電池に対して電流減算値で電流減算を行う。 Specifically, when the difference ΔV in the voltage sensor corresponding to a certain storage battery is positive, the control circuit 40 calculates the difference ΔV by subtracting the current subtraction value (−ΔI / Δt) × the current subtraction time (t2−t1) ×. It converts into the resistance value of resistance R, and supplies a current subtraction value to the current subtracter corresponding to the storage battery during the current subtraction time. That is, the control circuit 40 performs current subtraction with respect to the storage battery by the current subtraction value by connecting the both poles of the storage battery and both ends of the resistor R by turning on the switch SW from time t1 and turning on the switch SW.
一方、制御回路40は、ある蓄電池に対応する電圧センサにおける差分ΔVが負の場合に、該差分ΔVに対する電流加算値(+ΔI/Δt)を算出し、該蓄電池に対応する電流加算器に上記電流減算時間中出力する。すなわち、制御回路40は、電流加算値をパルス振幅とし、上記電流減算時間をパルス幅とし、時刻t1を立ち上がりタイミングとし、時刻t2を立下りタイミングとするパルス信号を駆動信号として2つの可変定電流回路21−1、21−2の可変電流源AE1、AE2に出力する。このとき、可変電流源AE1、AE2は、上記電流減算時間中オンとなり、該蓄電池に対して電流加算値で電流加算を行うことができる。 On the other hand, when the difference ΔV in the voltage sensor corresponding to a certain storage battery is negative, the control circuit 40 calculates a current addition value (+ ΔI / Δt) with respect to the difference ΔV and supplies the current adder corresponding to the storage battery to the current adder. Output during subtraction time. In other words, the control circuit 40 uses the current addition value as the pulse amplitude, the current subtraction time as the pulse width, the time t1 as the rise timing, and the pulse signal having the time t2 as the fall timing as the drive signal as two drive constant currents. Output to the variable current sources AE1 and AE2 of the circuits 21-1 and 21-2. At this time, the variable current sources AE1 and AE2 are turned on during the current subtraction time, and current can be added to the storage battery using the current addition value.
以上のように、電流減算器の抵抗Rによる電流減算値が一定であるため、電流加算器の可変定電流回路による電流加算時間を抵抗Rによる電流減算時間(t2−t1)に合わせることで、複数の蓄電池のセル電圧を同時刻t2にバランス電圧BVで略一致させることができる。 As described above, since the current subtraction value by the resistor R of the current subtractor is constant, the current addition time by the variable constant current circuit of the current adder is matched with the current subtraction time (t2-t1) by the resistor R. The cell voltages of the plurality of storage batteries can be substantially matched with the balance voltage BV at the same time t2.
以上の説明から分かるように、制御回路40は、組電池10の充放電中に複数の蓄電池のセル電圧がバランス(略一致)するように複数の電流加算器21a〜21d及び複数の電流減算器22a〜22dを制御する。
As can be seen from the above description, the control circuit 40 includes a plurality of
なお、バランス電圧BVが大きいほど、複数の蓄電池のセル電圧がバランスするバランス時間t2が遅くなる。 In addition, the balance time t2 in which the cell voltage of a some storage battery balances becomes late, so that the balance voltage BV is large.
ここで、制御回路40には、充電器/負荷接続検知部50からの検知信号又は非検知信号が送信されるようになっている。充電器/負荷接続検知部50は、P+端子とP−端子との間の電圧の変化によって、電池パック1に対する充電器や負荷の接続の有無を検知する。すなわち、P+端子とP−端子との間の電圧の変化が大きい場合には充電器の接続の有無を検知でき、小さい場合には負荷の接続の有無を検知できる。
Here, a detection signal or a non-detection signal from the charger / load
次に、本実施形態の蓄電状態調整装置100を用いる蓄電状態調整処理(セルバランス処理とも呼ぶ)について図4を参照して説明する。図4のフローチャートは、制御回路40の処理アルゴリズムに基づいている。この蓄電状態調整処理は、電池パック1に充電器又は負荷(機器)が接続されたときに開始される。ここでは、一例として充電器に接続されたとき(充電時)のフローを説明するが、負荷に接続されたとき(放電時)も、同様のフローが成立する。なお、負荷としての機器には、組電池10に蓄えられた電力(エネルギ)を消費するあらゆる機器が含まれる。
Next, a storage state adjustment process (also referred to as a cell balance process) using the storage
最初のステップS1では、時刻t1(充電開始時を時刻0とする)における4つの蓄電池BAT1〜BAT4のセル電圧V1〜V4(図3参照)を取得する。 In the first step S1, the cell voltages V1 to V4 (see FIG. 3) of the four storage batteries BAT1 to BAT4 at time t1 (the time when charging is started is time 0) are acquired.
次のステップS2では、取得された4つの蓄電池のセル電圧V1〜V4とバランス電圧BVの差ΔV1〜ΔV4を算出する。 In the next step S2, differences ΔV1 to ΔV4 between the obtained cell voltages V1 to V4 of the four storage batteries and the balance voltage BV are calculated.
次のステップS3では、算出されたΔV1〜ΔV4に基づいて、4つの蓄電池に対する電流加減算値及び電流加減算時間(t2−t1)を算出する。 In the next step S3, current addition / subtraction values and current addition / subtraction times (t2-t1) for the four storage batteries are calculated based on the calculated ΔV1 to ΔV4.
次のステップS4では、各蓄電池に対する電流加減算値(+ΔI/Δt又は−ΔI/Δt)及び電流減算時間(t2−t1)に基づいて、該蓄電池に対応する電流加算器又は電流減算器を制御する。ステップS4が実行されると、フローは終了する。 In the next step S4, based on the current addition / subtraction value (+ ΔI / Δt or −ΔI / Δt) and the current subtraction time (t2-t1) for each storage battery, the current adder or current subtracter corresponding to the storage battery is controlled. . When step S4 is executed, the flow ends.
以上説明した本実施形態の蓄電状態調整装置100は、複数の蓄電池BAT1〜BAT4が直列に接続された組電池10の充放電中の蓄電状態を調整する蓄電状態調整装置であって、複数の蓄電池それぞれに並列に接続される複数の電流加算器21a〜21dと、複数の蓄電池それぞれに並列に接続される複数の電流減算器22a〜22dと、を備えている。
The storage
この場合、複数の蓄電池に対して電流を個別に加減算できるため、複数の蓄電池の電圧(セル電圧)を高速でバランスさせることができる。 In this case, since the current can be individually added to or subtracted from the plurality of storage batteries, the voltages (cell voltages) of the plurality of storage batteries can be balanced at high speed.
この結果、セルバランス処理に要する時間を短縮することができる。 As a result, the time required for the cell balance process can be shortened.
また、蓄電状態調整装置100は、複数の蓄電池それぞれの電圧を計測する複数(例えば4つ)の電圧センサVS1〜VS4と、複数の電圧センサの計測値に基づいて、組電池10の充放電中に複数の蓄電池の電圧がバランスするように複数の電流加算器及び複数の電流減算器を制御する制御回路40と、を更に備えることが好ましい。
In addition, the storage
この場合、組電池10を充放電中の任意の短い時間帯にセルバランス処理を実施することができる。
In this case, the cell balance process can be performed in any short time zone during charging and discharging of the assembled
また、制御回路40は、組電池10の充放電中に、複数の蓄電池の一部に対しては対応する電流加算器のみをONにするとともに複数の蓄電池の他の一部に対しては対応する電流減算器のみをONにすることが好ましい。
In addition, during charging / discharging of the
この場合、複数の蓄電池の一部に対する電流加算と複数の蓄電池の他の一部に対する電流減算を並行して行うことでき、セルバランス処理に要する時間を確実に短縮できる。 In this case, the current addition for a part of the plurality of storage batteries and the current subtraction for the other part of the plurality of storage batteries can be performed in parallel, and the time required for the cell balance process can be reliably shortened.
また、複数の蓄電池の一部の電圧が複数の蓄電池の電圧のうち最大の電圧と最小の電圧の間の所定電圧(例えばバランス電圧BV)を下回り、複数の蓄電池の他の一部の電圧が所定電圧(例えばバランス電圧BV)を上回る場合には、セルバランス処理に要する時間をより確実に短縮できる。 Moreover, the voltage of a part of the plurality of storage batteries is lower than a predetermined voltage (for example, the balance voltage BV) between the maximum voltage and the minimum voltage among the voltages of the plurality of storage batteries, and the other part of the voltages of the plurality of storage batteries is When the voltage exceeds a predetermined voltage (for example, the balance voltage BV), the time required for the cell balance process can be more reliably reduced.
また、各電流加算器が2つの可変定電流回路21−1、21−2を含む場合には、対応する蓄電池に対して、より高速で電流加算を行うことができる。 Further, when each current adder includes two variable constant current circuits 21-1 and 21-2, current addition can be performed at a higher speed for the corresponding storage battery.
要は、電流加算器は、少なくとも1つの可変定電流回路を含むことが好ましい。また、電流減算器が少なくとも1つの可変定電流回路を含んでも良い。 In short, the current adder preferably includes at least one variable constant current circuit. The current subtractor may include at least one variable constant current circuit.
また、本実施形態の電池パック1は、複数の蓄電池が直列に接続された組電池10と、該組電池10の蓄電状態を調整する蓄電状態調整装置100と、を備えているため、充放電を高速に安定して行うことができる。
Moreover, since the
また、電池パック1と、電池パック1に接続される充電器と、電池パック1に接続される負荷と、を備える負荷システムによれば、安定した電力をコンスタントに確保できる負荷システムを提供できる。
Moreover, according to the load system provided with the
また、本実施形態の蓄電状態調整方法は、第1の観点からすると、複数(例えば4つ)の蓄電池BAT1〜BAT4が直列に接続された組電池10の充放電中の蓄電状態を調整する蓄電状態調整方法であって、複数の蓄電池と複数の電流加算器を並列に接続する工程と、複数の蓄電池と複数の電流減算器を並列に接続する工程と、複数の蓄電池それぞれの電圧を計測する工程と、該計測する工程での計測結果に基づいて、複数の電流加算器と複数の電流減算器を制御する工程と、を含む。
Further, from the first viewpoint, the power storage state adjustment method of the present embodiment adjusts the power storage state during charging / discharging of the assembled
この場合、複数の蓄電池に対して電流を個別に加減算できるため、複数の蓄電池の電圧(セル電圧)を高速でバランスさせることができる。 In this case, since the current can be individually added to or subtracted from the plurality of storage batteries, the voltages (cell voltages) of the plurality of storage batteries can be balanced at high speed.
この結果、セルバランス処理に要する時間を短縮することができる。 As a result, the time required for the cell balance process can be shortened.
また、上記制御する工程では、複数の蓄電池の電圧がバランスするように複数の電流加算器及び複数の電流減算器を制御することが好ましい。 In the controlling step, it is preferable to control the plurality of current adders and the plurality of current subtractors so that the voltages of the plurality of storage batteries are balanced.
この場合、組電池10を充放電中の任意の短い時間帯にセルバランス処理を実施することができる。
In this case, the cell balance process can be performed in any short time zone during charging and discharging of the assembled
また、上記制御する工程では、組電池10の充放電中に、複数の蓄電池の一部に対して対応する電流加算器のみをONにするとともに複数の蓄電池の他の一部に対して対応する電流減算器のみをONにすることが好ましい。
Further, in the control step, during charging / discharging of the assembled
この場合、複数の蓄電池の一部に対する電流加算と複数の蓄電池の他の一部に対する電流減算を並行して行うことでき、セルバランス処理に要する時間を確実に短縮できる。 In this case, the current addition for a part of the plurality of storage batteries and the current subtraction for the other part of the plurality of storage batteries can be performed in parallel, and the time required for the cell balance process can be reliably shortened.
また、本実施形態の蓄電状態調整方法は、第2の観点からすると、複数(例えば4つ)の蓄電池BAT1〜BAT4が直列に接続された組電池10の充放電中の蓄電状態を調整する蓄電状態調整方法であって、複数の蓄電池それぞれの電圧を計測する工程と、該計測する工程での計測結果に基づいて、複数の蓄電池の一部に対して電流を加算するとともに複数の蓄電池の他の一部に対して電流を減算する工程と、を含む。
Further, from the second viewpoint, the power storage state adjustment method according to the present embodiment adjusts the power storage state during charging / discharging of the assembled
この場合、複数の蓄電池に対して電流を個別に加減算できるため、複数の蓄電池の電圧(セル電圧)を高速でバランス(一致)させることができる。 In this case, since currents can be individually added to or subtracted from the plurality of storage batteries, the voltages (cell voltages) of the plurality of storage batteries can be balanced (matched) at high speed.
また、複数の蓄電池の一部の電圧が複数の蓄電池の電圧のうち最大の電圧と最小の電圧の間の所定電圧(例えばバランス電圧BV)を下回り、複数の蓄電池の他の一部の電圧が所定電圧(例えばバランス電圧BV)を上回る場合には、セルバランス処理に要する時間をより確実に短縮できる。 Moreover, the voltage of a part of the plurality of storage batteries is lower than a predetermined voltage (for example, the balance voltage BV) between the maximum voltage and the minimum voltage among the voltages of the plurality of storage batteries, and the other part of the voltages of the plurality of storage batteries is When the voltage exceeds a predetermined voltage (for example, the balance voltage BV), the time required for the cell balance process can be more reliably reduced.
なお、上記実施形態では、電流加算器は、2つの可変定電流回路21−1、21−2を有しているが、図5に示される変形例1の電流加算器のように可変定電流回路21−2のみを有していても良いし、図6に示される電流加算器のように可変定電流回路21−1のみを有していても良いし、図8に示される電流加算器のように可変定電流回路21−2を簡略化した可変定電流回路21−2´のみを有していても良い。
In the above embodiment, the current adder includes the two variable constant current circuits 21-1 and 21-2. However, the current adder has a variable constant current as in the current adder of
また、上記実施形態では、各電流減算器は、単一の抵抗器から成るが、少なくとも1つの電流減算器は、例えば、抵抗値を切り替え可能な抵抗回路や可変抵抗を含んでも良い。 In the above-described embodiment, each current subtractor includes a single resistor. However, at least one current subtractor may include, for example, a resistor circuit or a variable resistor that can switch a resistance value.
また、上記実施形態において、組電池を構成する蓄電池の個数、各蓄電池に並列に接続される電流加算器や電流減算器の個数、電圧センサの個数は、適宜変更可能である。 Moreover, in the said embodiment, the number of the storage batteries which comprise an assembled battery, the number of the current adders and current subtractors connected in parallel with each storage battery, and the number of voltage sensors can be changed suitably.
以下に、発明者らが、上記実施形態及び各変形例を発案するに至った思考プロセスを説明する。 Below, the thought process which the inventors came to invent the said embodiment and each modification is demonstrated.
従来、複数の蓄電池セルが直列に接続された組電池を含む蓄電モジュール(電池パック)の充電効率を改善するセルバランス方式が知られている。 2. Description of the Related Art Conventionally, a cell balance method that improves the charging efficiency of a power storage module (battery pack) including an assembled battery in which a plurality of storage battery cells are connected in series is known.
しかし、蓄電池の重要なニーズとして、蓄電モジュールの蓄電量を、蓄電池セル間の容量のばらつきにより、蓄電モジュール全体のエネルギを効率よく使えないといった欠点がある。 However, as an important need for a storage battery, there is a drawback in that the energy stored in the storage module cannot be used efficiently due to variations in capacity between storage battery cells.
この問題の対策として、蓄電モジュールの複数の蓄電池セル間のセルバランス電流を制御する方法がある。 As a countermeasure for this problem, there is a method of controlling a cell balance current between a plurality of storage battery cells of a power storage module.
例えば、特許4931354号公報には、蓄電モジュールにおいて複数の直列に接続される蓄電池のセル電圧を、充電時に同一電圧にする目的で、セルをバランスする回路が開示されている。 For example, Japanese Patent No. 4931354 discloses a circuit that balances cells for the purpose of setting the cell voltages of a plurality of storage batteries connected in series in a power storage module to the same voltage during charging.
また、特許文献1には、蓄電モジュールにおいて複数の直列に接続される蓄電池のセル電圧を、充電時に同一電圧にする目的で、充電電流を調整するセルバランス方式が開示されている。
また、特開2013−223320号公報には、蓄電モジュールにおいて複数の直列に接続される蓄電池のセル電圧を、トランスを使用することで損失を少なくする目的で、充電電流を調整するセルバランス方式が開示されている。 Japanese Patent Laid-Open No. 2013-223320 discloses a cell balance method for adjusting the charging current in order to reduce the cell voltage of a plurality of storage batteries connected in series in a power storage module by using a transformer. It is disclosed.
また、特開2005−151720号公報には、蓄電モジュールにおいて複数の直列に接続される蓄電池のセル電圧を定電流回路を使用することでセルバランスを行なう目的で、充電電流を調整するセルバランス方式が開示されている。 Japanese Patent Application Laid-Open No. 2005-151720 discloses a cell balance method for adjusting a charging current for the purpose of performing cell balancing of cell voltages of a plurality of storage batteries connected in series in a power storage module by using a constant current circuit. Is disclosed.
しかし、これらのセルバランス電流を制御する方法では、急速にセルバランスを行なうことに関して改良の余地があった。 However, these methods for controlling the cell balance current have room for improvement with respect to rapid cell balance.
ところで、高速充放電時には通常より大きな電流を流す必要がある。例えば5分間で蓄電池を満充電させるには、1時間かけて蓄電池を充電させる場合の12倍の速度で充放電させる必要がある。電流値では12倍の電流を流す必要があり、急速にセルバランスを完了させるためには、蓄電モジュールを構成する個々のセル電流を個別に簡易な回路で電流を制御する必要がある。 By the way, it is necessary to flow a larger current than usual during high-speed charging / discharging. For example, in order to fully charge a storage battery in 5 minutes, it is necessary to charge / discharge at a rate 12 times as fast as charging a storage battery over 1 hour. The current value needs to flow 12 times as much current, and in order to complete the cell balance rapidly, it is necessary to individually control the individual cell currents constituting the power storage module with a simple circuit.
そこで、発明者は、低コストで高速にセルバランスをすることを目的として、上記実施形態及び各変形例を発案するに至った。 Therefore, the inventor has come up with the above-described embodiment and each modification for the purpose of cell balancing at low cost and at high speed.
1…電池パック、10…組電池、21a〜21d…電流加算器、22a〜22d…電流減算器、40…制御回路、100…蓄電状態調整装置、VS1〜VS4…電圧センサ、BAT1〜BAT4…蓄電池、R…抵抗(抵抗器)。
DESCRIPTION OF
Claims (13)
前記複数の蓄電池それぞれに並列に接続される複数の電流加算器と、
前記複数の蓄電池それぞれに並列に接続される複数の電流減算器と、を備える蓄電状態調整装置。 A storage state adjusting device that adjusts a storage state during charging / discharging of a battery pack in which a plurality of storage batteries are connected in series,
A plurality of current adders connected in parallel to each of the plurality of storage batteries;
And a plurality of current subtractors connected in parallel to each of the plurality of storage batteries.
前記複数の電圧センサの計測値に基づいて、前記組電池の充放電中に前記複数の蓄電池の電圧がバランスするように前記複数の電流加算器及び前記複数の電流減算器を制御する制御回路と、を更に備えることを特徴とする請求項1に記載の蓄電状態調整装置。 A plurality of voltage sensors for measuring the voltage of each of the plurality of storage batteries;
A control circuit for controlling the plurality of current adders and the plurality of current subtractors so that the voltages of the plurality of storage batteries are balanced during charging / discharging of the assembled battery based on measurement values of the plurality of voltage sensors; The power storage state adjusting device according to claim 1, further comprising:
前記複数の蓄電池の他の一部の電圧は、前記所定電圧を上回ることを特徴とする請求項3に記載の蓄電状態調整装置。 The voltage of a part of the plurality of storage batteries is lower than a predetermined voltage between the maximum voltage and the minimum voltage among the voltages of the plurality of storage batteries,
The other part of the plurality of storage batteries has a voltage that exceeds the predetermined voltage.
前記組電池の蓄電状態を調整する請求項1〜6のいずれか一項に記載の蓄電状態調整装置と、を備える電池パック。 An assembled battery in which a plurality of storage batteries are connected in series;
A battery pack provided with the electrical storage state adjustment apparatus as described in any one of Claims 1-6 which adjusts the electrical storage state of the said assembled battery.
前記電池パックに接続される充電器と、
前記電池パックに接続される負荷と、を備える負荷システム。 The battery pack according to claim 7;
A charger connected to the battery pack;
And a load connected to the battery pack.
前記複数の蓄電池と複数の電流加算器を並列に接続する工程と、
前記複数の蓄電池と複数の電流減算器を並列に接続する工程と、
前記複数の蓄電池それぞれの電圧を計測する工程と、
前記計測する工程での計測結果に基づいて、前記複数の電流加算器と前記複数の電流減算器を制御する工程と、を含む蓄電状態調整方法。 A storage state adjustment method for adjusting a storage state during charging / discharging of an assembled battery in which a plurality of storage batteries are connected in series,
Connecting the plurality of storage batteries and a plurality of current adders in parallel;
Connecting the plurality of storage batteries and a plurality of current subtractors in parallel;
Measuring a voltage of each of the plurality of storage batteries;
And a step of controlling the plurality of current adders and the plurality of current subtractors based on a measurement result in the measuring step.
前記複数の蓄電池それぞれの電圧を計測する工程と、
前記計測する工程での計測結果に基づいて、前記複数の蓄電池の一部に対して電流を加算するとともに前記複数の蓄電池の他の一部に対して電流を減算する工程と、を含む蓄電状態調整方法。 A storage state adjustment method for adjusting a storage state during charging / discharging of an assembled battery in which a plurality of storage batteries are connected in series,
Measuring a voltage of each of the plurality of storage batteries;
A step of adding a current to a part of the plurality of storage batteries and subtracting a current from the other part of the plurality of storage batteries based on a measurement result in the measuring step. Adjustment method.
前記複数の蓄電池の他の一部の電圧は、前記所定電圧を上回ることを特徴とする請求項11又は12に記載の蓄電状態調整方法。 The voltage of a part of the plurality of storage batteries is lower than a predetermined voltage between the maximum voltage and the minimum voltage among the voltages of the plurality of storage batteries,
The other part of the plurality of storage batteries has a voltage exceeding the predetermined voltage, and the state of charge adjustment method according to claim 11 or 12.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015238485A JP6727532B2 (en) | 2015-12-07 | 2015-12-07 | Electric storage state adjusting device, battery pack, load system, and electric storage state adjusting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015238485A JP6727532B2 (en) | 2015-12-07 | 2015-12-07 | Electric storage state adjusting device, battery pack, load system, and electric storage state adjusting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017108484A true JP2017108484A (en) | 2017-06-15 |
JP6727532B2 JP6727532B2 (en) | 2020-07-22 |
Family
ID=59060111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015238485A Active JP6727532B2 (en) | 2015-12-07 | 2015-12-07 | Electric storage state adjusting device, battery pack, load system, and electric storage state adjusting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6727532B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108574326A (en) * | 2018-05-05 | 2018-09-25 | 刘铭新 | Batteries in parallel connection group broad sense current-sharing control method and the discharge control method based on this method |
CN110970988A (en) * | 2019-12-24 | 2020-04-07 | 滁州安瑞电力自动化有限公司 | Direct current screen capable of outputting multiple paths of voltage grades |
WO2023101170A1 (en) * | 2021-11-30 | 2023-06-08 | 주식회사 엘지에너지솔루션 | Battery device and balancing method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0564377A (en) * | 1991-02-08 | 1993-03-12 | Honda Motor Co Ltd | Set battery charger |
JPH09117068A (en) * | 1995-10-18 | 1997-05-02 | Nemic Lambda Kk | Charging/discharging power module |
JP2007250521A (en) * | 2006-02-16 | 2007-09-27 | Denso Corp | Voltage regulator of battery pack |
JP2009131060A (en) * | 2007-11-26 | 2009-06-11 | Honda Motor Co Ltd | Control system charge/discharge circuit |
JP2009165206A (en) * | 2007-12-28 | 2009-07-23 | Honda Motor Co Ltd | Charge and discharge apparatus |
-
2015
- 2015-12-07 JP JP2015238485A patent/JP6727532B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0564377A (en) * | 1991-02-08 | 1993-03-12 | Honda Motor Co Ltd | Set battery charger |
JPH09117068A (en) * | 1995-10-18 | 1997-05-02 | Nemic Lambda Kk | Charging/discharging power module |
JP2007250521A (en) * | 2006-02-16 | 2007-09-27 | Denso Corp | Voltage regulator of battery pack |
JP2009131060A (en) * | 2007-11-26 | 2009-06-11 | Honda Motor Co Ltd | Control system charge/discharge circuit |
JP2009165206A (en) * | 2007-12-28 | 2009-07-23 | Honda Motor Co Ltd | Charge and discharge apparatus |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108574326A (en) * | 2018-05-05 | 2018-09-25 | 刘铭新 | Batteries in parallel connection group broad sense current-sharing control method and the discharge control method based on this method |
CN110970988A (en) * | 2019-12-24 | 2020-04-07 | 滁州安瑞电力自动化有限公司 | Direct current screen capable of outputting multiple paths of voltage grades |
WO2023101170A1 (en) * | 2021-11-30 | 2023-06-08 | 주식회사 엘지에너지솔루션 | Battery device and balancing method |
Also Published As
Publication number | Publication date |
---|---|
JP6727532B2 (en) | 2020-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9525289B2 (en) | Battery control system and battery pack | |
US7719231B2 (en) | Equilibrated charging method for a lithium-ion or lithium-polymer battery | |
JP5714975B2 (en) | Charger | |
US7880444B2 (en) | Process for balanced charging of a lithium ion or lithium polymer battery | |
US9013147B2 (en) | Circuit and method for cell balancing | |
TWI571030B (en) | Balance correcting device and electricity accumulation system | |
US20130057224A1 (en) | Control system of battery pack and method of charging and discharging using the same | |
US9472960B2 (en) | Regulating device, battery assembly device and regulating method | |
JP2011101572A (en) | Charging system with cell balancing function | |
JP2010032412A (en) | Power supply for vehicle | |
WO2013161512A1 (en) | Charge control apparatus and charge control method | |
JP5324381B2 (en) | CHARGE CONTROL DEVICE AND CHARGE CONTROL METHOD IN THE CHARGE CONTROL DEVICE | |
JP6727532B2 (en) | Electric storage state adjusting device, battery pack, load system, and electric storage state adjusting method | |
JP2008236991A (en) | Voltage balance circuit, battery unit, and battery unit control method | |
KR20190048526A (en) | Cell balancing apparatus and method | |
JP2012050228A (en) | Battery control device | |
US10027136B2 (en) | Battery and electric bicycle | |
KR20130061019A (en) | Battery pack | |
JP6641665B2 (en) | Power storage state adjustment device, battery pack, load system, and power storage state adjustment method | |
JP2016040999A (en) | Charged state equalization method of storage battery device | |
JP2011061947A (en) | Device and method for charge control | |
US11764590B2 (en) | Battery management system for adjusting cell balancing current | |
WO2013140904A1 (en) | Setting device, battery assembly and setting method | |
US20220149836A1 (en) | Fet controlling apparatus and method | |
KR101572612B1 (en) | Device for controlling circulating current for batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181108 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190904 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191029 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200304 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200428 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200601 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200614 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6727532 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |