JP2017103219A - Current limiting structure and lithium ion battery - Google Patents

Current limiting structure and lithium ion battery Download PDF

Info

Publication number
JP2017103219A
JP2017103219A JP2016223965A JP2016223965A JP2017103219A JP 2017103219 A JP2017103219 A JP 2017103219A JP 2016223965 A JP2016223965 A JP 2016223965A JP 2016223965 A JP2016223965 A JP 2016223965A JP 2017103219 A JP2017103219 A JP 2017103219A
Authority
JP
Japan
Prior art keywords
current collector
current
container
ion battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016223965A
Other languages
Japanese (ja)
Other versions
JP6861016B2 (en
Inventor
水野 雄介
Yusuke Mizuno
雄介 水野
浩志 福本
Hiroshi Fukumoto
浩志 福本
健一 川北
Kenichi Kawakita
健一 川北
康裕 進藤
Yasuhiro Shindo
康裕 進藤
大澤 康彦
Yasuhiko Osawa
康彦 大澤
雄樹 草地
Takeki Kusachi
雄樹 草地
佐藤 一
Hajime Sato
一 佐藤
赤間 弘
Hiroshi Akama
弘 赤間
堀江 英明
Hideaki Horie
英明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Sanyo Chemical Industries Ltd
Original Assignee
Nissan Motor Co Ltd
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Sanyo Chemical Industries Ltd filed Critical Nissan Motor Co Ltd
Publication of JP2017103219A publication Critical patent/JP2017103219A/en
Application granted granted Critical
Publication of JP6861016B2 publication Critical patent/JP6861016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a current limiting structure for preventing heat evolution of a lithium ion battery under occurrence of internal short-circuiting with a simple configuration.SOLUTION: In the current limiting structure applied to a lamination type lithium ion battery in which a lamination type battery module is housed and sealed under reduced-pressure in a container, the lamination type battery module being configured by laminating lithium secondary single batteries in series so that the first and second surfaces of a pair of adjacent lithium secondary single batteries are adjacent to each other, and each lithium secondary single battery having a current collector of a first pole on the first surface and a current collector of a second pole on the second surface, the current collector of the first pole and/or the current collector of the second pole and the container on the outside of the lamination type battery module have contact surfaces that are in contact with one another, at least a part of the contact surface is a current drawing part to the outside of the lamination type lithium ion battery, the current drawing part has conductivity and flexibility, and when the pressure inside the container rises, the current drawing part is deformed by the pressure, whereby the current collector of the first pole and/or the current collector of the second pole and the current drawing part are spatially separated from each other.SELECTED DRAWING: Figure 4

Description

本発明は、電流制限構造及びリチウムイオン電池に関する。   The present invention relates to a current limiting structure and a lithium ion battery.

リチウムイオン(二次)電池は、高容量で小型軽量な二次電池として、近年様々な用途に多用されている。一般的なリチウムイオン電池は、正極及び負極を構成する略平板状の集電体の一面に正極活物質及び負極活物質をそれぞれ設けた後で熱処理してこれら正極活物質及び負極活物質を乾燥させ、正極活物質と負極活物質との間に必要であればセパレータを挾んでこれら正極活物質と負極活物質を積層することで略平板状のリチウム二次単電池を製造し、この単電池を複数層積層して構成していた。   Lithium ion (secondary) batteries have been widely used in various applications in recent years as high-capacity, small and lightweight secondary batteries. In general lithium ion batteries, a positive electrode active material and a negative electrode active material are respectively provided on one surface of a substantially flat current collector constituting the positive electrode and the negative electrode, and then heat-treated to dry the positive electrode active material and the negative electrode active material. If necessary, a separator is interposed between the positive electrode active material and the negative electrode active material, and the positive electrode active material and the negative electrode active material are laminated to produce a substantially flat lithium secondary cell. Was configured by laminating a plurality of layers.

このような、単電池を複数層積層してなるリチウムイオン電池において、内部短絡等が発生すると、内部短絡を生じた部分に電流が集中し、リチウムイオン電池が発熱する可能性があり、かかる内部短絡時におけるリチウムイオン電池の発熱を抑制する目的で、集電体に、その積層方向において空間的に離れうる第一及び第二の層状部分を設けた技術が開示されている(特許文献1参照)。   In such a lithium ion battery formed by laminating a plurality of single cells, when an internal short circuit occurs, current may concentrate on the part where the internal short circuit occurs, and the lithium ion battery may generate heat. For the purpose of suppressing the heat generation of the lithium ion battery during a short circuit, a technique is disclosed in which a current collector is provided with first and second layer portions that can be spatially separated in the stacking direction (see Patent Document 1). ).

特開2013−69549号公報JP 2013-69549 A

しかしながら、上述した従来の技術では、集電体に第一及び第二の層状部分を設けているので、リチウムイオン電池全体の構成が複雑になる可能性があった。   However, in the conventional technique described above, the first and second layered portions are provided on the current collector, so that the configuration of the entire lithium ion battery may be complicated.

本発明は上述した課題に鑑みてなされたものであり、簡易な構成によって内部短絡があった場合においてリチウムイオン電池が発熱することを防止する電流制限構造及びリチウムイオン電池の提供を、その目的の一つとしている。   The present invention has been made in view of the above-described problems, and provides a current limiting structure and a lithium ion battery that prevent the lithium ion battery from generating heat when there is an internal short circuit with a simple configuration. It is one.

本発明は、第1面に第1極の集電体を有し、第2面に第2極の集電体を有するリチウム二次単電池を、隣り合う一対のリチウム二次単電池の第1面及び第2面が隣接するように直列に積層してなる積層型電池モジュールが容器内に収納されてなる積層型リチウムイオン電池に適用される電流制限構造に適用される。そして、積層型電池モジュールの外側にある第1極の集電体及び第2極の集電体のそれぞれに、容器と互いに接触する接触面を設け、前記容器が有する接触面の少なくとも一部を積層型リチウムイオン電池外部への電流引き出し部とし、この電流引き出し部が導電性と可撓性とを有し、容器内部の圧力が上昇した際にその圧力で電流引き出し部が変形することにより積層型電池モジュールの第1極の集電体及び/又は第2極の集電体と電流引き出し部とが空間的に離れることにより、上述の課題の少なくとも一つを解決している。   The present invention provides a lithium secondary cell having a current collector of a first electrode on a first surface and a current collector of a second electrode on a second surface. The present invention is applied to a current limiting structure applied to a stacked lithium ion battery in which a stacked battery module formed by stacking in series so that the first surface and the second surface are adjacent to each other is housed in a container. A contact surface that contacts the container is provided on each of the current collector of the first electrode and the current collector of the second electrode outside the stacked battery module, and at least a part of the contact surface of the container is provided. As a current drawing part to the outside of the laminated lithium ion battery, this current drawing part has conductivity and flexibility, and when the pressure inside the container rises, the current drawing part is deformed by the pressure, and the current drawing part is laminated. At least one of the above-described problems is solved by spatially separating the current collector and the current collector of the first electrode and / or the second electrode of the battery module.

ここで、電流引き出し部が、金属又は導電性高分子からなるフィルム状基材からなることが好ましい。   Here, it is preferable that the current drawing portion is made of a film-like substrate made of a metal or a conductive polymer.

また、本発明は、上述の電流制限構造を有するリチウムイオン電池により、上述の課題の少なくとも一つを解決している。   In addition, the present invention solves at least one of the above-described problems by a lithium ion battery having the above-described current limiting structure.

ここで、リチウム二次単電池は全体として略平板状に形成されていることが好ましい。   Here, the lithium secondary cell is preferably formed in a substantially flat plate shape as a whole.

さらに、電流引き出し部は容器が第1極の集電体及び/又は第2極の集電体に接する接触面に略等しいことが好ましい。   Furthermore, it is preferable that the current drawing portion is substantially equal to a contact surface where the container is in contact with the current collector of the first pole and / or the current collector of the second pole.

本発明によれば、簡易な構成によって内部短絡があった場合においてリチウムイオン電池が発熱することを防止する電流制限構造及びリチウムイオン電池を提供することができる。   According to the present invention, it is possible to provide a current limiting structure and a lithium ion battery that prevent the lithium ion battery from generating heat when there is an internal short circuit with a simple configuration.

本発明の第1実施形態に適用されるリチウム二次単電池を示す断面図及び一部破断斜視図である。It is sectional drawing and the partially broken perspective view which show the lithium secondary cell applied to 1st Embodiment of this invention. 本発明の第1実施形態である電流制限構造を有するリチウムイオン電池を示す分解図である。1 is an exploded view showing a lithium ion battery having a current limiting structure according to a first embodiment of the present invention. 第1実施形態のリチウムイオン電池を示す断面図及び一部破断斜視図である。It is sectional drawing and the partially broken perspective view which show the lithium ion battery of 1st Embodiment. 電流制限構造が機能した状態における第1実施形態のリチウムイオン電池を示す断面図及び一部破断斜視図である。It is sectional drawing and the partially broken perspective view which show the lithium ion battery of 1st Embodiment in the state which the current limiting structure functioned. 第1実施形態のリチウムイオン電池の電流引き出し部の構造の例を示す断面図である。It is sectional drawing which shows the example of the structure of the electric current extraction part of the lithium ion battery of 1st Embodiment. 本発明の第2実施形態である電流制限構造を有するリチウムイオン電池を示す斜視図である。It is a perspective view which shows the lithium ion battery which has the current limiting structure which is 2nd Embodiment of this invention.

(第1実施形態)
図1〜図3を参照して、本発明の第1実施形態であるリチウムイオン電池について説明する。図1(a)は、本発明の第1実施形態に適用されるリチウム二次単電池を示す断面図、図1(b)は、第1実施形態に適用されるリチウム二次単電池を示す一部破断斜視図、図2は本発明の第1実施形態である電流制限構造を有するリチウムイオン電池を示す分解図、図3(a)は第1実施形態のリチウムイオン電池を示す断面図、及び図3(b)は第1実施形態のリチウムイオン電池を示す一部破断斜視図である。
(First embodiment)
With reference to FIGS. 1-3, the lithium ion battery which is 1st Embodiment of this invention is demonstrated. FIG. 1A is a cross-sectional view showing a lithium secondary cell applied to the first embodiment of the present invention, and FIG. 1B shows a lithium secondary cell applied to the first embodiment. FIG. 2 is an exploded view showing a lithium ion battery having a current limiting structure according to the first embodiment of the present invention, FIG. 3A is a sectional view showing the lithium ion battery according to the first embodiment, FIG. 3B is a partially broken perspective view showing the lithium ion battery of the first embodiment.

これら図において、本実施形態のリチウムイオン電池Lは、リチウムイオン電池Lの外殻をなす中空の容器20内に外形略平板状の単電池1が直列に複数積層された積層型電池モジュール21が収納されて構成されている。   In these drawings, the lithium ion battery L of the present embodiment includes a stacked battery module 21 in which a plurality of substantially flat unit cells 1 are stacked in series in a hollow container 20 that forms the outer shell of the lithium ion battery L. It is housed and configured.

単電池1は、図1(a)、(b)に詳細を示すように、略平板状の第1極の集電体である正極集電体7の表面に正極電極活物質と電解液とを含む略平板状の正極電極組成物層5が形成された正極2と、同様に略平板状の第2極の集電体である負極集電体8の表面に負極電極活物質と電解液とを含む略平板状の負極電極組成物層6が形成された負極3とが、同様に略平板状のセパレータ4を介して積層されて構成され、全体として略平板状に形成されている。これにより、対向する正極集電体7及び負極集電体8を図中上面及び下面にそれぞれ有する単電池1が構成される。   As shown in detail in FIGS. 1A and 1B, the unit cell 1 has a positive electrode active material, an electrolytic solution, and a positive electrode current collector 7 on the surface of a substantially flat plate-shaped first electrode current collector. A negative electrode active material and an electrolyte solution on the surface of a negative electrode current collector 8 that is a substantially flat plate-like second electrode current collector, and a positive electrode 2 on which a substantially flat positive electrode composition layer 5 containing And a negative electrode 3 having a substantially flat negative electrode composition layer 6 formed thereon are similarly laminated with a substantially flat separator 4 interposed therebetween, and is formed in a substantially flat shape as a whole. Thereby, the unit cell 1 having the positive electrode current collector 7 and the negative electrode current collector 8 facing each other on the upper surface and the lower surface in the drawing is formed.

図1(a)に最もよく示されるように、正極集電体7及び負極集電体8は、単電池1の端部に形成されたシール部材9により所定間隔をもって対向するように位置決めされている。また、セパレータ4の端部がこのシール部材9内に埋め込まれることで、このセパレータ4が支持されるとともに、セパレータ4と正極集電体7及び負極集電体8との位置関係が定められている。   As best shown in FIG. 1A, the positive electrode current collector 7 and the negative electrode current collector 8 are positioned so as to face each other at a predetermined interval by a seal member 9 formed at the end of the unit cell 1. Yes. Further, since the end portion of the separator 4 is embedded in the seal member 9, the separator 4 is supported and the positional relationship between the separator 4, the positive electrode current collector 7, and the negative electrode current collector 8 is determined. Yes.

正極集電体7とセパレータ4との間の間隔、及び、負極集電体8とセパレータ4との間の間隔はリチウムイオン電池Lの容量に応じて調整され、これら正極集電体7、負極集電体8及びセパレータ4の位置関係は必要な間隔が得られるように定められている。   The distance between the positive electrode current collector 7 and the separator 4 and the distance between the negative electrode current collector 8 and the separator 4 are adjusted according to the capacity of the lithium ion battery L. The positive electrode current collector 7, the negative electrode The positional relationship between the current collector 8 and the separator 4 is determined so that a necessary interval is obtained.

図1(a)、(b)に示す単電池1は、図2に示すように、隣り合う単電池1の正極集電体7の上面と負極集電体8の下面とが隣接するように直列に積層されて積層型電池モジュール21が形成され、そして、この積層型電池モジュール21が容器20に減圧封止されて収納されて、図3(a)、(b)に示す本実施形態のリチウムイオン電池Lが構成されている。   As shown in FIG. 2, the unit cell 1 shown in FIGS. 1A and 1B has an upper surface of the positive electrode current collector 7 and a lower surface of the negative electrode current collector 8 of the adjacent unit cells 1 adjacent to each other. A stacked battery module 21 is formed by stacking in series, and the stacked battery module 21 is sealed in a container 20 under reduced pressure and stored in the container 20 according to the present embodiment shown in FIGS. A lithium ion battery L is configured.

本実施形態のリチウムイオン電池Lを構成する容器20は、図2に詳細を示すように、上容器20a及び下容器20bに分割されて構成されている。下容器20bは、上面が開口した略中空箱形の下容器本体20cと、この下容器本体20cの上部周縁部に形成された略矩形額縁状の下容器縁部20dとを備える。一方、上容器20aは、この下容器20bの下容器縁部20dと略同じ大きさの略矩形板状に形成され、下容器20bの下容器本体20cの開口を覆うように配置されている。   As shown in detail in FIG. 2, the container 20 constituting the lithium ion battery L of the present embodiment is divided into an upper container 20a and a lower container 20b. The lower container 20b includes a substantially hollow box-shaped lower container body 20c whose upper surface is open, and a substantially rectangular frame-shaped lower container edge 20d formed on the upper peripheral edge of the lower container body 20c. On the other hand, the upper container 20a is formed in a substantially rectangular plate shape having the same size as the lower container edge 20d of the lower container 20b, and is arranged so as to cover the opening of the lower container body 20c of the lower container 20b.

そして、下容器本体20c内に積層型電池モジュール21が収納され、下容器本体20c内が減圧された状態で、上容器20a及び下容器20bが図略のシール部材により封止されることで、本実施形態のリチウムイオン電池Lが構成される。   Then, the stacked battery module 21 is housed in the lower container body 20c, and the upper container 20a and the lower container 20b are sealed with a seal member (not shown) in a state where the lower container body 20c is decompressed. The lithium ion battery L of the present embodiment is configured.

ここで、上容器20a及び下容器本体20cの図2及び図3における下面には、可撓性及び導電性を有する矩形板状の電流引き出し部22a、22bがそれぞれ形成されている。この電流引き出し部22a、22bは、積層型電池モジュール21の最上部及び最下部に位置する単電池1の正極集電体7及び負極集電体8と略同一形状に形成されている。そして、積層型電池モジュール21は容器20内に減圧封止されて収納されていることから、図3に示すように、積層型電池モジュール21の最上部及び最下部に位置する単電池1の正極集電体7及び負極集電体8の上面及び下面は、それぞれ電流引き出し部22a、22bに密着することで電気的に接触している。   Here, on the lower surfaces of the upper container 20a and the lower container body 20c in FIG. 2 and FIG. 3, rectangular plate-shaped current extraction portions 22a and 22b having flexibility and conductivity are formed, respectively. The current drawing portions 22 a and 22 b are formed in substantially the same shape as the positive electrode current collector 7 and the negative electrode current collector 8 of the unit cell 1 located at the uppermost and lowermost portions of the stacked battery module 21. Since the stacked battery module 21 is housed in the container 20 under reduced pressure sealing, as shown in FIG. 3, the positive electrode of the unit cell 1 positioned at the top and bottom of the stacked battery module 21. The upper surface and the lower surface of the current collector 7 and the negative electrode current collector 8 are in electrical contact with each other by being in close contact with the current drawing portions 22a and 22b, respectively.

加えて、電流引き出し部22a、22bが可撓性を有することから、容器20の内圧が上昇して大気圧以上になった場合、電流引き出し部22a、22bを含む容器20が外方に膨張することで、単電池1の正極集電体7及び負極集電体8の上面及び下面から空間的に離れるように構成されている。   In addition, since the current drawing portions 22a and 22b have flexibility, when the internal pressure of the container 20 rises to be equal to or higher than the atmospheric pressure, the container 20 including the current drawing portions 22a and 22b expands outward. Thus, the positive electrode current collector 7 and the negative electrode current collector 8 of the unit cell 1 are configured to be spatially separated from the upper surface and the lower surface.

正極電極活物質は正極活物質粒子を含んでなり、正極活物質粒子としては、リチウムと遷移金属との複合酸化物(例えばLiCoO2、LiNiO2、LiMnO2及びLiMn24)、遷移金属酸化物(例えばMnO2及びV25)、遷移金属硫化物(例えばMoS2及びTiS2)及び導電性高分子(例えばポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリ−p−フェニレン及びポリカルバゾール)等が挙げられる。 The positive electrode active material includes positive electrode active material particles. As the positive electrode active material particles, composite oxides of lithium and transition metals (for example, LiCoO 2 , LiNiO 2 , LiMnO 2, and LiMn 2 O 4 ), transition metal oxides are used. Products (eg MnO 2 and V 2 O 5 ), transition metal sulfides (eg MoS 2 and TiS 2 ) and conductive polymers (eg polyaniline, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene and polycarbazole), etc. Can be mentioned.

また、負極電極活物質は負極活物質粒子を含んでなり、負極活物質粒子としては、黒鉛、難黒鉛化性炭素、アモルファス炭素、高分子化合物焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)、炭素繊維、導電性高分子(例えばポリアセチレン及びポリキノリン等)、スズ、シリコン、及び金属合金(例えばリチウム−スズ合金、リチウム−シリコン合金、リチウム−アルミニウム合金及びリチウム−アルミニウム−マンガン合金等)、リチウムと遷移金属との複合酸化物(例えばLi4Ti512等)等が挙げられる。 The negative electrode active material includes negative electrode active material particles. As the negative electrode active material particles, graphite, non-graphitizable carbon, amorphous carbon, a polymer compound fired body (for example, a phenol resin, a furan resin, or the like is fired). Carbonized, etc.), cokes (eg, pitch coke, needle coke, petroleum coke, etc.), carbon fibers, conductive polymers (eg, polyacetylene, polyquinoline, etc.), tin, silicon, and metal alloys (eg, lithium-tin alloys) , Lithium-silicon alloys, lithium-aluminum alloys, lithium-aluminum-manganese alloys, etc.), composite oxides of lithium and transition metals (for example, Li 4 Ti 5 O 12, etc.).

単電池1においては、正極活物質粒子及び/又は負極活物質粒子は、表面の少なくとも一部が被覆用樹脂を含む被覆剤で被覆されてなる被覆活物質粒子であることが好ましい。   In the unit cell 1, the positive electrode active material particles and / or the negative electrode active material particles are preferably coated active material particles in which at least a part of the surface is coated with a coating agent containing a coating resin.

被覆剤は被覆用樹脂を含んでおり、活物質粒子の周囲が被覆剤で被覆されていると、充放電時に生じる活物質粒子の膨張に伴う電極の体積変化が緩和され、電極の膨脹を抑制することができる。被覆用樹脂の例としては、ビニル樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリイミド樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、アニリン樹脂、アイオノマー樹脂、ポリカーボネート等が挙げられる。これらの中ではビニル樹脂、ウレタン樹脂、ポリエステル樹脂又はポリアミド樹脂が好ましい。   The coating material contains a coating resin. If the periphery of the active material particles is coated with the coating material, the volume change of the electrode accompanying the expansion of the active material particles that occurs during charge and discharge is alleviated, and the expansion of the electrode is suppressed. can do. Examples of the coating resin include vinyl resin, urethane resin, polyester resin, polyamide resin, epoxy resin, polyimide resin, silicone resin, phenol resin, melamine resin, urea resin, aniline resin, ionomer resin, polycarbonate, and the like. Among these, vinyl resin, urethane resin, polyester resin or polyamide resin is preferable.

被覆剤はさらに導電助剤を含んでも良く、被覆剤に含まれる導電助剤としては、導電性を有する材料から選択される。   The coating agent may further contain a conductive auxiliary agent, and the conductive auxiliary agent contained in the coating agent is selected from materials having conductivity.

具体的には、金属[アルミニウム、ステンレス(SUS)、銀、金、銅及びチタン等]、カーボン[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック、単層カーボンナノチューブ及び多層カーボンナノチューブ等)等]、及びこれらの混合物等が挙げられるが、これらに限定されるわけではない。   Specifically, metal [aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], carbon [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, single layer Carbon nanotubes and multi-walled carbon nanotubes, etc.)], and mixtures thereof, but are not limited thereto.

これらの導電助剤は1種単独で用いられてもよいし、2種以上併用してもよい。また、これらの合金又は金属酸化物が用いられてもよい。電気的安定性の観点から、好ましくはアルミニウム、ステンレス、カーボン、銀、金、銅、チタン及びこれらの混合物であり、より好ましくは銀、金、アルミニウム、ステンレス及びカーボンであり、さらに好ましくはカーボンである。またこれらの導電助剤とは、粒子系セラミック材料や樹脂材料の周りに導電性材料(上記した導電助剤の材料のうち金属のもの)をメッキ等でコーティングしたものでもよい。   These conductive assistants may be used alone or in combination of two or more. Moreover, these alloys or metal oxides may be used. From the viewpoint of electrical stability, aluminum, stainless steel, carbon, silver, gold, copper, titanium and mixtures thereof are preferred, silver, gold, aluminum, stainless steel and carbon are more preferred, and carbon is more preferred. is there. These conductive assistants may be those obtained by coating a particulate ceramic material or resin material with a conductive material (metal among the conductive auxiliary materials described above) by plating or the like.

被覆剤に含まれる導電助剤として導電性繊維を用いることも可能である。導電性繊維としては、PAN系炭素繊維、ピッチ系炭素繊維等の炭素繊維、合成繊維の中に導電性のよい金属や黒鉛を均一に分散させてなる導電性繊維、ステンレス鋼のような金属を繊維化した金属繊維、有機物繊維の表面を金属で被覆した導電性繊維、有機物繊維の表面を導電性物質を含む樹脂で被覆した導電性繊維等が挙げられる。これらの導電性繊維の中では炭素繊維が好ましい。   It is also possible to use conductive fibers as the conductive auxiliary agent contained in the coating agent. Examples of conductive fibers include carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers, conductive fibers obtained by uniformly dispersing highly conductive metal and graphite in synthetic fibers, and metals such as stainless steel. Examples thereof include fiberized metal fibers, conductive fibers in which the surface of organic fiber is coated with metal, and conductive fibers in which the surface of organic fiber is coated with a resin containing a conductive substance. Among these conductive fibers, carbon fibers are preferable.

被覆活物質粒子は、例えば、活物質粒子を万能混合機に入れて30〜500rpmで撹拌した状態で、被覆用樹脂を含む樹脂溶液を1〜90分かけて滴下混合し、さらに導電助剤を混合し、撹拌したまま50〜200℃に昇温し、0.007〜0.04MPaまで減圧した後に10〜150分保持することにより得ることができる。   The coated active material particles are, for example, dropped into and mixed with a resin solution containing a coating resin over a period of 1 to 90 minutes in a state where the active material particles are put in a universal mixer and stirred at 30 to 500 rpm. It can be obtained by mixing, raising the temperature to 50 to 200 ° C. with stirring, reducing the pressure to 0.007 to 0.04 MPa, and holding for 10 to 150 minutes.

電解液としては、リチウムイオン電池の製造に用いられる、電解質及び非水溶媒を含有する電解液を使用することができる。   As the electrolytic solution, an electrolytic solution containing an electrolyte and a non-aqueous solvent used for manufacturing a lithium ion battery can be used.

電解質としては、通常の電解液に用いられているもの等が使用でき、例えば、LiPF6、LiBF4、LiSbF6、LiAsF6及びLiClO4等の無機酸のリチウム塩、LiN(CF3SO22、LiN(C25SO22及びLiC(CF3SO23等の有機酸のリチウム塩等が挙げられる。これらの内、電池出力及び充放電サイクル特性の観点から好ましいのはLiPF6である。 As the electrolyte, those used in ordinary electrolytic solutions can be used. For example, lithium salts of inorganic acids such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 and LiClO 4 , LiN (CF 3 SO 2 ) 2 and lithium salts of organic acids such as LiN (C 2 F 5 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 . Among these, LiPF 6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.

非水溶媒としては、通常の電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等及びこれらの混合物を用いることができる。   As the non-aqueous solvent, those used in ordinary electrolytic solutions can be used, for example, lactone compounds, cyclic or chain carbonates, chain carboxylates, cyclic or chain ethers, phosphates, nitriles. Compounds, amide compounds, sulfones, sulfolanes and the like and mixtures thereof can be used.

非水溶媒は1種を単独で用いてもよいし、2種以上を併用してもよい。   A non-aqueous solvent may be used individually by 1 type, and may use 2 or more types together.

非水溶媒の内、電池出力及び充放電サイクル特性の観点から好ましいのは、ラクトン化合物、環状炭酸エステル、鎖状炭酸エステル及びリン酸エステルであり、より好ましいのはラクトン化合物、環状炭酸エステル及び鎖状炭酸エステルであり、さらに好ましいのは環状炭酸エステルと鎖状炭酸エステルの混合液である。特に好ましいのはプロピレンカーボネート(PC)、またはエチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合液である。   Among the nonaqueous solvents, lactone compounds, cyclic carbonates, chain carbonates and phosphates are preferred from the viewpoint of battery output and charge / discharge cycle characteristics, and more preferred are lactone compounds, cyclic carbonates and chains. A carbonic acid ester is more preferable, and a mixed liquid of a cyclic carbonate and a chain carbonate is more preferable. Particularly preferred is propylene carbonate (PC) or a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC).

正極電極活物質と電解液とを含む正極電極組成物層5及び負極電極活物質と電解液とを含む負極電極組成物層6は、導電性が良好になる等の観点から、それぞれ更に繊維状導電性物質を含むことが好ましい。繊維状導電性物質としては、被覆剤に含まれる導電助剤として例示した導電性繊維と同じものを用いることができる。   The positive electrode composition layer 5 containing the positive electrode active material and the electrolytic solution and the negative electrode composition layer 6 containing the negative electrode active material and the electrolytic solution are each further in the form of a fiber from the viewpoint of improving the conductivity. It is preferable to include a conductive substance. As the fibrous conductive substance, the same conductive fibers as exemplified as the conductive auxiliary agent contained in the coating agent can be used.

正極電極組成物層5及び負極電極組成物層6は、それぞれ正極活物質粒子又は負極活物質粒子と必要により用いる繊維状導電性物質とを電解液又は非水溶媒の重量に基づいて10〜60重量%の濃度で電解液と混合分散して得られる混合物による層を正極集電体7及び負極集電体8の表面に設けることで得ることができる。   The positive electrode composition layer 5 and the negative electrode composition layer 6 are each composed of positive electrode active material particles or negative electrode active material particles and a fibrous conductive material to be used as necessary, based on the weight of the electrolytic solution or nonaqueous solvent. It can be obtained by providing a layer of a mixture obtained by mixing and dispersing with an electrolytic solution at a concentration of% by weight on the surfaces of the positive electrode current collector 7 and the negative electrode current collector 8.

セパレータ4としては、ポリエチレン、ポリプロピレン等、ポリオレフィン製の微多孔膜フィルム、多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルム、ポリエステル繊維、アラミド繊維、ガラス繊維等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等が挙げられる。   As the separator 4, polyethylene, polypropylene, etc., microporous membrane film made of polyolefin, multilayer film of porous polyethylene film and polypropylene, non-woven fabric made of polyester fiber, aramid fiber, glass fiber, etc., and silica on the surface thereof, Examples include those having ceramic fine particles such as alumina and titania attached thereto.

正極集電体7及び負極集電体8としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル及びこれらの合金等の金属材料、並びに導電性高分子材料等からなるフィルム状基材等を用いることができ、なかでも電解液を透過しない無孔質のフィルム状基材が好ましく挙げられる。なかでも、金属材料としては、軽量化、耐食性、高導電性の観点から、好ましくはアルミニウム及び銅であり、さらに好ましくは正極集電体7がアルミニウムで、負極集電体8が銅である。   As the positive electrode current collector 7 and the negative electrode current collector 8, a film-like base material made of a metal material such as copper, aluminum, titanium, stainless steel, nickel, and an alloy thereof, a conductive polymer material, or the like is used. Among them, a nonporous film-like substrate that does not transmit an electrolyte solution is preferable. Among them, the metal material is preferably aluminum and copper from the viewpoint of weight reduction, corrosion resistance, and high conductivity, and more preferably, the positive electrode current collector 7 is aluminum and the negative electrode current collector 8 is copper.

正極集電体7及び負極集電体8が導電性高分子材料からなる樹脂集電体である場合、導電性高分子材料の基材となる高分子材料は、導電性高分子であってもよいし、導電性を有さない高分子であってもよい。   When the positive electrode current collector 7 and the negative electrode current collector 8 are resin current collectors made of a conductive polymer material, the polymer material serving as the base material of the conductive polymer material may be a conductive polymer. It may be a polymer that does not have conductivity.

高分子材料のうち、導電性高分子としては、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、およびポリオキサジアゾール等が挙げられる。導電性を有さない高分子材料としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂又はこれらの混合物等が挙げられる。   Among the polymer materials, examples of the conductive polymer include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, and polyoxadiazole. Examples of the polymer material having no electrical conductivity include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyether nitrile (PEN), poly Tetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin or mixtures thereof Etc.

導電性を有さない高分子材料のうち、電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)及びポリシクロオレフィン(PCO)が好ましく、さらに好ましくはポリエチレン(PE)、ポリプロピレン(PP)及びポリメチルペンテン(PMP)である。   Among polymer materials having no electrical conductivity, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferable from the viewpoint of electrical stability, and polyethylene is more preferable. (PE), polypropylene (PP) and polymethylpentene (PMP).

また、正極集電体7及び負極集電体8が導電性高分子材料からなる樹脂集電体である場合、導電性の高分子材料を含む樹脂集電体の導電性を向上させる目的、あるいは、導電性を有さない高分子材料を含む樹脂集電体に導電性を付与する目的から、導電性フィラーを含んでいると好ましい。導電性フィラーは、導電性を有する材料から選択される。好ましくは、集電体内のイオン透過を抑制する観点から、電荷移動媒体として用いられるイオンに関して伝導性を有さない材料を用いるのが好ましい。具体的には、カーボン材料、アルミニウム、金、銀、銅、鉄、白金、クロム、スズ、インジウム、アンチモン、チタン、ニッケルなどが挙げられるが、これらに限定されるものではない。これらの導電性フィラーは1種単独で用いられてもよいし、2種以上併用してもよい。また、ステンレス(SUS)等のこれらの合金材が用いられてもよい。耐食性の観点から、好ましくはアルミニウム、ステンレス、カーボン材料、ニッケル、より好ましくはカーボン材料である。また、これらの導電性フィラーは、粒子系セラミック材料や樹脂材料の周りに、上記で示される金属をメッキ等でコーティングしたものであってもよい。   When the positive electrode current collector 7 and the negative electrode current collector 8 are resin current collectors made of a conductive polymer material, the purpose is to improve the conductivity of the resin current collector containing the conductive polymer material, or For the purpose of imparting conductivity to a resin current collector containing a polymer material having no conductivity, it is preferable that a conductive filler is contained. The conductive filler is selected from materials having conductivity. Preferably, from the viewpoint of suppressing ion permeation in the current collector, it is preferable to use a material that does not have conductivity with respect to ions used as the charge transfer medium. Specific examples include, but are not limited to, carbon materials, aluminum, gold, silver, copper, iron, platinum, chromium, tin, indium, antimony, titanium, nickel, and the like. These conductive fillers may be used alone or in combination of two or more. Moreover, these alloy materials, such as stainless steel (SUS), may be used. From the viewpoint of corrosion resistance, aluminum, stainless steel, carbon material, nickel, and more preferably carbon material are preferred. In addition, these conductive fillers may be those obtained by coating the metal shown above with a plating or the like around a particulate ceramic material or resin material.

導電性を有さない高分子を基材とする樹脂集電体の具体例としては、ポリプロピレンに導電性フィラーとしてアセチレンブラックを5〜20部分散させた後、熱プレス機で圧延したものが挙げられる。また、その厚みも特に制限されず、公知のものと同様、あるいは適宜変更して適用することができる。   Specific examples of the resin current collector based on a polymer having no conductivity include those obtained by dispersing 5 to 20 parts of acetylene black as a conductive filler in polypropylene and then rolling with a hot press. It is done. Moreover, the thickness is not particularly limited, and can be applied in the same manner as known ones or with appropriate changes.

シール部材9を構成する材料としては、正極、負極集電体7、8との接着性を有し、電解液に対して耐久性のある材料であれば特に限定されないが、高分子材料、特に熱硬化性樹脂が好ましい。具体的には、エポキシ系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリフッ化ビニデン樹脂等が挙げられ、耐久性が高く取り扱いが容易であることからエポキシ系樹脂が好ましい。   The material constituting the seal member 9 is not particularly limited as long as it is a material that has adhesiveness to the positive electrode and the negative electrode current collectors 7 and 8 and is durable to the electrolytic solution. A thermosetting resin is preferred. Specific examples include epoxy resins, polyolefin resins, polyurethane resins, and polyvinylidene fluoride resins. Epoxy resins are preferable because they are highly durable and easy to handle.

容器20を構成する材料は、容器20内に積層型電池モジュール21を収納しうる材料であれば、任意の材料が好適に適用可能である。但し、単電池1と容器20とが接触する可能性があることを考慮して、容器20を構成する材料は絶縁性を有する材料であることが好ましい。加えて、容器20は、積層型電池モジュール21を内部に収納した状態で減圧封止することから、容器20を構成する材料は可撓性及び気密性を有する材料であることが好ましい。このような材料としては、ラミネートフィルムと呼ばれる、一例として、金属箔の両面を高分子フィルムで覆ったフィルムや、気密性が付与された不織布等が挙げられるリチウムイオン電池用の外装材として公知のラミネートフィルムを用いることができる。   As long as the material which comprises the container 20 is a material which can accommodate the laminated battery module 21 in the container 20, arbitrary materials are applicable suitably. However, in consideration of the possibility that the unit cell 1 and the container 20 are in contact with each other, the material constituting the container 20 is preferably an insulating material. In addition, since the container 20 is sealed under reduced pressure in a state where the stacked battery module 21 is housed therein, the material constituting the container 20 is preferably a material having flexibility and airtightness. As such a material, a laminate film, which is known as an exterior material for a lithium ion battery, for example, a film in which both sides of a metal foil are covered with a polymer film, a non-woven fabric imparted with airtightness, etc. A laminate film can be used.

電流引き出し部22a、22bを構成する材料は、容器内部の圧力が上昇した際にその圧力で変形できる可撓性及び積層型電池モジュールで発生した電流を外部に取り出せる導電性を有する材料であれば特段の限定はない。この様な材料としては、前記の正極集電体7及び負極集電体8として用いることができる材料として説明したものと同じフィルム状基材と同じものを好ましく用いることができる。これらの材料は導電性を有し、可撓性を有するが、電流制限能力等の観点から、なかでも厚さが20〜80μmのフィルムを用いることが好ましい。   If the material which comprises the current drawing parts 22a and 22b is the material which has the electroconductivity which can extract the electric current which generate | occur | produced to the exterior which can deform | transform with the pressure when the pressure inside a container rises with the pressure, and the laminated battery module There is no special limitation. As such a material, the same thing as the same film-like base material as what was demonstrated as a material which can be used as the said positive electrode collector 7 and the negative electrode collector 8 can be used preferably. These materials have conductivity and flexibility, but it is preferable to use a film having a thickness of 20 to 80 μm from the viewpoint of current limiting ability.

電流引き出し部22a、22bを配置する位置は、前記の容器20と接触する接触面を有する位置に配置されていれば特段の制限はないが、一例として、図5(a)に示すように、不織布でできた容器20の該当部分に導電性材料をドーピング等して容器20の一部に導電性を付与してもよく、また、図5(b)に示すように、ラミネートフィルムでできた容器20に開口部を設けて、可撓性を有する導電板である電流引き出し部22aを貼付してもよい。なお、容器20に開口部を設けて、可撓性を有する導電板である電流引き出し部22aを貼付する場合、図5(b)にある様に電流引き出し部22aを容器20の内側に貼付してもよく、電流引き出し部22aを容器20の外側に貼付してもよい。   The position where the current drawing portions 22a and 22b are arranged is not particularly limited as long as the current drawing portions 22a and 22b are arranged at a position having a contact surface in contact with the container 20, but as an example, as shown in FIG. Conductive material may be doped into the corresponding part of the container 20 made of nonwoven fabric to impart conductivity to a part of the container 20, and as shown in FIG. 5B, the container 20 was made of a laminate film. The container 20 may be provided with an opening, and the current drawing portion 22a, which is a flexible conductive plate, may be attached. In addition, when providing the opening part in the container 20 and sticking the current drawing part 22a which is a flexible conductive plate, the current drawing part 22a is stuck inside the container 20 as shown in FIG. Alternatively, the current drawing portion 22a may be attached to the outside of the container 20.

ここで、電流引き出し部22aを容器20の外側に貼付した場合、容器20と積層型電池モジュール21との間には容器20の厚みに由来する隙間が生じるが、積層型電池モジュール21を容器20の内部に収納して減圧封止した場合には、可撓性のある電流引き出し部22aが変形することで隙間が埋まり、正極集電体7と電流引き出し部22aとが電気的に接触することができる。そして、容器内部の圧力が上昇すると容器内部から押されて電流引き出し部22aが外側に膨らむが、同時に変形していた電流引き出し部22aは正極集電体7との隙間があった、もとの形状に戻ろうとする応力が発生する。そのため、電流引き出し部22aを容器20の外側に貼付した場合には、電流引き出し部22aを容器20の内側に貼付した場合に比べて内部の圧力変化による電流制限能力がさらに良好になるものと考えられる。   Here, when the current drawing portion 22 a is attached to the outside of the container 20, a gap derived from the thickness of the container 20 is generated between the container 20 and the stacked battery module 21, but the stacked battery module 21 is connected to the container 20. In the case of being housed inside and sealed under reduced pressure, the flexible current extraction portion 22a is deformed to fill the gap, and the positive electrode current collector 7 and the current extraction portion 22a are in electrical contact with each other. Can do. When the pressure inside the container rises, the current drawing part 22a is pushed outward from the inside of the container and bulges outside, but the current drawing part 22a that has been deformed at the same time has a gap with the positive electrode current collector 7, Stress is generated to return to the shape. Therefore, when the current drawing portion 22a is affixed to the outside of the container 20, it is considered that the current limiting ability due to the internal pressure change is further improved as compared with the case where the current drawing portion 22a is affixed to the inside of the container 20. It is done.

なお、可撓性のある電流引き出し部22aは正極側のみならず負極側に設置されていてもよく、その場合、電流引き出し部22aと負極集電体8が電気的に接触する。   In addition, the flexible current extraction part 22a may be installed not only on the positive electrode side but also on the negative electrode side. In this case, the current extraction part 22a and the negative electrode current collector 8 are in electrical contact.

以上の構成の単電池1は、正極集電体7及び負極集電体8のそれぞれの表面に、正極電極活物質と電解液とを含む正極電極組成物5、及び負極電極活物質と電解液とを含む負極電極組成物6を形成して正極2及び負極3を形成する。正極2及び負極3を形成する手法は任意であり、正極集電体7及び負極集電体8のそれぞれの表面に正極電極組成物5及び負極電極組成物6を塗布する、正極集電体7及び負極集電体8のそれぞれの表面に、ノズル等を介して正極電極組成物5及び負極電極組成物6を載置した後に所定厚になるようにヘラ等で均す、など、種々の手法が挙げられる。その後、セパレータ4を介して正極2及び負極3を積層し、正極集電体7及び負極集電体8の端部、さらにセパレータ4の端部をシール部材9により封止することで単電池1を製造することができる。   The unit cell 1 having the above configuration includes a positive electrode composition 5 containing a positive electrode active material and an electrolytic solution on each surface of the positive electrode current collector 7 and the negative electrode current collector 8, and a negative electrode active material and an electrolytic solution. A negative electrode composition 6 containing the positive electrode 2 and the negative electrode 3 is formed. The method of forming the positive electrode 2 and the negative electrode 3 is arbitrary, and the positive electrode current collector 7 is formed by applying the positive electrode composition 5 and the negative electrode composition 6 to the surfaces of the positive electrode current collector 7 and the negative electrode current collector 8, respectively. And various methods such as leveling with a spatula or the like so as to have a predetermined thickness after the positive electrode composition 5 and the negative electrode composition 6 are placed on the respective surfaces of the negative electrode current collector 8 through a nozzle or the like. Is mentioned. Then, the positive electrode 2 and the negative electrode 3 are laminated | stacked through the separator 4, the edge part of the positive electrode electrical power collector 7 and the negative electrode current collector 8, and also the edge part of the separator 4 are sealed with the sealing member 9, and the cell 1 is obtained. Can be manufactured.

次いで、上述の工程により製造された単電池1を、隣り合う単電池1の正極集電体7の上面と負極集電体8の下面とが隣接するように直列に積層して積層型電池モジュール21を形成し、さらに、この積層型電池モジュール21を容器20内に収納し、容器20内を減圧脱気した後にシール部材で封止することで、本実施形態のリチウムイオン電池Lを製造することができる。   Next, the unit cell 1 manufactured by the above-described process is stacked in series so that the upper surface of the positive electrode current collector 7 and the lower surface of the negative electrode current collector 8 of the adjacent unit cell 1 are adjacent to each other, and the stacked battery module 21 is further formed, and the laminated battery module 21 is housed in the container 20, and the container 20 is degassed under reduced pressure and then sealed with a sealing member, whereby the lithium ion battery L of the present embodiment is manufactured. be able to.

このような構成のリチウムイオン電池Lは、電流引き出し部22a、22bの上面及び下面に、例えば帯状の金属箔からなる図略の電極端子の一端が導電性接着剤等により固着されて接続されて、リチウムイオン電池Lからの電源電圧が外部に供給される。   In the lithium ion battery L having such a configuration, one end of an unillustrated electrode terminal made of, for example, a strip-shaped metal foil is fixedly connected to the upper and lower surfaces of the current drawing portions 22a and 22b with a conductive adhesive or the like. The power supply voltage from the lithium ion battery L is supplied to the outside.

そして、本実施形態のリチウムイオン電池Lにおいて、内部短絡等が発生した場合、いずれかの単電池1から経時で微量のガスが発生することがある。この際、結果として電流引き出し部22a、22bを含む容器20の内圧が上昇して大気圧以上になると、図4(a)、(b)に示すように、電流引き出し部22a、22bを含む容器20が外方に膨張する。この結果、電流引き出し部22a、22bと、積層型電池モジュール21の最上部及び最下部に位置する単電池1の正極集電体7及び負極集電体8の上面及び下面との少なくとも一部が離間して電流引き出し部22a、22bと正極集電体7及び負極集電体8との接触面積が減少することで、これらの間の電気抵抗が増加する。従って、単電池1に流れる電流が抑制、好ましくは遮断され、リチウムイオン電池L全体の発熱が抑制される。   And in the lithium ion battery L of this embodiment, when an internal short circuit etc. generate | occur | produce, a trace amount gas may generate | occur | produce from one of the single cells 1 with time. At this time, as a result, when the internal pressure of the container 20 including the current drawing parts 22a and 22b rises to be equal to or higher than the atmospheric pressure, the container including the current drawing parts 22a and 22b as shown in FIGS. 20 expands outward. As a result, at least a part of the current drawing portions 22a and 22b and the upper and lower surfaces of the positive electrode current collector 7 and the negative electrode current collector 8 of the unit cell 1 positioned at the uppermost and lowermost portions of the stacked battery module 21 are provided. The contact area between the current drawing portions 22a and 22b and the positive electrode current collector 7 and the negative electrode current collector 8 is decreased and the electrical resistance therebetween increases. Therefore, the current flowing through the unit cell 1 is suppressed, preferably interrupted, and heat generation of the entire lithium ion battery L is suppressed.

このように、本実施形態によれば、容器20に電流引き出し部22a、22bを設けるという単純な構成により、内部短絡等があった場合においてリチウムイオン電池Lが発熱することを防止するリチウムイオン電池を実現することができる。   Thus, according to this embodiment, the lithium ion battery that prevents the lithium ion battery L from generating heat in the event of an internal short circuit or the like by the simple configuration in which the container 20 is provided with the current drawing portions 22a and 22b. Can be realized.

特に、本実施形態のリチウムイオン電池Lでは、積層型電池モジュール21は容器20内に減圧封止することで積層型電池モジュール21と容器20との密着性を高め、リチウムイオン電池L全体としての剛性を高めることができ、特に、単電池1の正極集電体7及び負極集電体8として樹脂集電体を用いた場合には、積層型電池モジュール21と容器20との密着性を高めることで電流引き出し部22a、22bとの密着性を高め、金属集電体に比較して導電率が高くない樹脂集電体を用いた場合であっても優れた電流取り出し効率を発揮することができる。また、樹脂集電体は、金属集電体に比較して導電率が高くないため、積層型電池モジュール21からリチウムイオン電池Lの外部に電源電圧を効率的に取り出すためには、容器20側に設ける電源電圧取出部である電流引き出し部22a、22bの面積を広く、好ましくは正極集電体7及び負極集電体8と略同一面積にすることが好ましい。本実施形態では、広い面積を有する電流引き出し部22a、22bを、内部短絡時に電流を制御するために用いているので、容器内に別途電極タブを設けるような構成に比較して、構成の簡略化を図ることができる。   In particular, in the lithium ion battery L of the present embodiment, the stacked battery module 21 is sealed in the container 20 under reduced pressure to improve the adhesion between the stacked battery module 21 and the container 20, and as a whole lithium ion battery L Rigidity can be increased. In particular, when a resin current collector is used as the positive electrode current collector 7 and the negative electrode current collector 8 of the unit cell 1, the adhesion between the stacked battery module 21 and the container 20 is increased. This improves the adhesion with the current drawing portions 22a and 22b, and exhibits excellent current extraction efficiency even when using a resin current collector that does not have high conductivity compared to a metal current collector. it can. In addition, since the resin current collector does not have higher conductivity than the metal current collector, in order to efficiently extract the power supply voltage from the stacked battery module 21 to the outside of the lithium ion battery L, the container 20 side It is preferable that the current drawing portions 22a and 22b, which are power supply voltage extraction portions provided in, have a large area, preferably approximately the same area as the positive electrode current collector 7 and the negative electrode current collector 8. In the present embodiment, since the current extraction portions 22a and 22b having a large area are used for controlling the current when an internal short circuit occurs, the configuration is simplified compared to a configuration in which a separate electrode tab is provided in the container. Can be achieved.

(第2実施形態)
次に、図6は、本発明の第2実施形態である電流制限構造を有するリチウムイオン電池を示す斜視図である。
(Second Embodiment)
Next, FIG. 6 is a perspective view showing a lithium ion battery having a current limiting structure according to the second embodiment of the present invention.

本実施形態のリチウムイオン電池と上述の第1実施形態のリチウムイオン電池との相違点は、積層型電池モジュール21が収納された容器20をラミネートフィルムで構成し、この容器20に設けられた電流引き出し部22a、22b(図6では電流引き出し部22aのみ図示している)を、このラミネートフィルムである容器20の内面に貼付された金属箔、または容器20の内面にスパッタリング等により形成された導電部から構成したことである。   The difference between the lithium ion battery of this embodiment and the lithium ion battery of the first embodiment described above is that the container 20 in which the laminated battery module 21 is housed is formed of a laminate film, and the current provided in the container 20 The lead portions 22a and 22b (only the current lead portion 22a is shown in FIG. 6) is a metal foil affixed to the inner surface of the container 20 which is this laminate film, or a conductive film formed on the inner surface of the container 20 by sputtering or the like. It is composed of parts.

本実施形態における電流引き出し部22a、22bも、上述の第1実施形態と同様に、積層型電池モジュール21の最上部及び最下部に位置する単電池1の正極集電体7及び負極集電体8と略同一形状に形成されている。   Similarly to the first embodiment, the current drawing portions 22a and 22b in the present embodiment are also the positive electrode current collector 7 and the negative electrode current collector of the unit cell 1 located at the uppermost and lowermost portions of the stacked battery module 21. 8 and substantially the same shape.

また、本実施形態の容器20を構成する上容器20a及び下容器20bは略同一の形状に形成されており、上面が開口した上容器本体20e及び下容器本体20fと、これら上容器本体20e及び下容器本体20fの図6において左右の端部から側方に突出する一対の上容器縁部20g及び下容器縁部20hとを備える。   Further, the upper container 20a and the lower container 20b constituting the container 20 of the present embodiment are formed in substantially the same shape, and the upper container body 20e and the lower container body 20f whose upper surfaces are opened, the upper container body 20e, In FIG. 6 of the lower container body 20f, a pair of upper container edge 20g and lower container edge 20h projecting laterally from the left and right ends are provided.

そして、上容器20a及び下容器20bが相対向して配置されることで形成される内部空間に積層型電池モジュール21が収納され、この内部空間が減圧された状態で、上容器縁部20g及び下容器縁部20hが図略のシール部材により封止されることで、本実施形態のリチウムイオン電池Lが構成される。   The stacked battery module 21 is housed in an internal space formed by arranging the upper container 20a and the lower container 20b so as to face each other, and the upper container edge 20g and The lower container edge 20h is sealed with a seal member (not shown), whereby the lithium ion battery L of the present embodiment is configured.

上容器縁部20g及び下容器縁部20hは、その一部が側方にさらに延出されるとともに、電流引き出し部22a、22bもこの上容器縁部20g及び下容器縁部20hの延出部に沿って延出し、これらによりリチウムイオン電池Lからの電気を取り出すための電極端子23、24が形成されている。   A part of the upper container edge 20g and the lower container edge 20h is further extended to the side, and the current drawing parts 22a and 22b are also extended to the extended parts of the upper container edge 20g and the lower container edge 20h. The electrode terminals 23 and 24 for taking out electricity from the lithium ion battery L are formed.

従って、本実施形態によっても、上述の第1実施形態と同様の効果を奏することができる。   Therefore, the present embodiment can achieve the same effects as those of the first embodiment described above.

(変形例)
なお、上述の各実施形態では、容器20を構成する上容器20a及び下容器20bにそれぞれ電流引き出し部22a、22bを形成していたが、上容器20a及び下容器20bの少なくとも一方に電流引き出し部22a、22bを形成しても、本発明の目的を達成することができる。また、上述の各実施形態では、電流引き出し部22a、22bは正極集電体7及び負極集電体8と略同一の大きさに形成されていたが、内部短絡時に電流を抑制、好ましくは遮断しうる大きさであれば大きさに限定はない。
(Modification)
In each of the above-described embodiments, the current extraction portions 22a and 22b are formed in the upper container 20a and the lower container 20b constituting the container 20, respectively, but the current extraction portion is provided in at least one of the upper container 20a and the lower container 20b. Even if 22a and 22b are formed, the object of the present invention can be achieved. Further, in each of the above-described embodiments, the current drawing portions 22a and 22b are formed to have substantially the same size as the positive electrode current collector 7 and the negative electrode current collector 8, but the current is suppressed, preferably interrupted when an internal short circuit occurs. There is no limitation on the size as long as it is possible.

L リチウムイオン電池
1 単電池
2 正極
3 負極
4 セパレータ
5 正極電極組成物
6 負極電極組成物
7 正極集電体
8 負極集電体
9 シール部材
20 容器
21 積層型電池モジュール
22a、22b 電流引き出し部

L Lithium ion battery 1 Single cell 2 Positive electrode 3 Negative electrode 4 Separator 5 Positive electrode composition 6 Negative electrode composition 7 Positive electrode current collector 8 Negative electrode current collector 9 Seal member 20 Container 21 Stacked battery module 22a, 22b Current extraction part

Claims (5)

第1面に第1極の集電体を有し、第2面に第2極の集電体を有するリチウム二次単電池を、隣り合う一対の前記リチウム二次単電池の前記第1面及び前記第2面が隣接するように直列に積層してなる積層型電池モジュールが容器内に収納されてなる積層型リチウムイオン電池に適用される電流制限構造であって、
前記積層型電池モジュールの外側にある前記第1極の集電体及び/又は前記第2極の集電体並びに前記容器は互いに接触する接触面をそれぞれ有し、
前記容器が有する前記接触面の少なくとも一部が前記積層型リチウムイオン電池外部への電流引き出し部であり、
前記電流引き出し部が導電性と可撓性を有し、
前記容器内部の圧力が上昇した際にその圧力で前記電流引き出し部が変形することにより前記積層型電池モジュールの前記第1極の集電体及び/又は前記第2極の集電体と前記電流引き出し部とが空間的に離れることを特徴とする電流制限構造。
A lithium secondary cell having a current collector of a first electrode on a first surface and a current collector of a second electrode on a second surface is connected to the first surface of a pair of adjacent lithium secondary cells. And a current limiting structure applied to a stacked lithium-ion battery in which stacked battery modules stacked in series so that the second surface is adjacent are housed in a container,
The current collector of the first electrode and / or the current collector of the second electrode and the container on the outside of the stacked battery module each have a contact surface in contact with each other;
At least a part of the contact surface of the container is a current drawing part to the outside of the stacked lithium ion battery,
The current draw part has conductivity and flexibility,
When the pressure inside the container rises, the current drawing portion is deformed by the pressure, whereby the current collector of the first electrode and / or the current collector of the second electrode and the current of the stacked battery module. A current limiting structure characterized in that the lead part is spatially separated.
前記電流引き出し部が、金属又は導電性高分子からなるフィルム状基材からなる請求項1に記載の電流制限構造。   The current limiting structure according to claim 1, wherein the current drawing portion is made of a film-like substrate made of a metal or a conductive polymer. 請求項1又は2に記載の電流制限構造を有することを特徴とするリチウムイオン電池。   A lithium ion battery comprising the current limiting structure according to claim 1. 請求項3に記載のリチウムイオン電池において、
前記リチウム二次単電池は全体として略平板状に形成されていることを特徴とするリチウムイオン電池。
The lithium ion battery according to claim 3,
The lithium secondary cell is formed in a substantially flat plate shape as a whole.
請求項3または4に記載のリチウムイオン電池において、
前記電流引き出し部は前記容器が前記第1極の集電体及び/又は前記第2極の集電体に接する前記接触面に略等しいリチウムイオン電池。
The lithium ion battery according to claim 3 or 4,
The current drawing part is a lithium ion battery substantially equal to the contact surface where the container contacts the current collector of the first electrode and / or the current collector of the second electrode.
JP2016223965A 2015-11-19 2016-11-17 Lithium ion battery Active JP6861016B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015226509 2015-11-19
JP2015226509 2015-11-19

Publications (2)

Publication Number Publication Date
JP2017103219A true JP2017103219A (en) 2017-06-08
JP6861016B2 JP6861016B2 (en) 2021-04-21

Family

ID=59018125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016223965A Active JP6861016B2 (en) 2015-11-19 2016-11-17 Lithium ion battery

Country Status (1)

Country Link
JP (1) JP6861016B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021506062A (en) * 2017-12-05 2021-02-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Square-pouch hybrid battery module
CN114981907A (en) * 2020-01-09 2022-08-30 株式会社丰田自动织机 Electricity storage device
JP2022155574A (en) * 2021-03-30 2022-10-13 エルジー エナジー ソリューション リミテッド Pouch type secondary battery and battery module including the same
CN115939303A (en) * 2021-09-27 2023-04-07 宁德时代新能源科技股份有限公司 Laminated battery cell, secondary battery, battery module, battery pack and electric device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251548A (en) * 2004-03-04 2005-09-15 Matsushita Electric Ind Co Ltd Square shape secondary battery
WO2012014730A1 (en) * 2010-07-26 2012-02-02 日産自動車株式会社 Bipolar battery
JP2016207592A (en) * 2015-04-28 2016-12-08 昭和電工パッケージング株式会社 Power storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251548A (en) * 2004-03-04 2005-09-15 Matsushita Electric Ind Co Ltd Square shape secondary battery
WO2012014730A1 (en) * 2010-07-26 2012-02-02 日産自動車株式会社 Bipolar battery
JP2016207592A (en) * 2015-04-28 2016-12-08 昭和電工パッケージング株式会社 Power storage device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021506062A (en) * 2017-12-05 2021-02-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Square-pouch hybrid battery module
CN114981907A (en) * 2020-01-09 2022-08-30 株式会社丰田自动织机 Electricity storage device
CN114981907B (en) * 2020-01-09 2023-10-10 株式会社丰田自动织机 Power storage device
JP2022155574A (en) * 2021-03-30 2022-10-13 エルジー エナジー ソリューション リミテッド Pouch type secondary battery and battery module including the same
CN115939303A (en) * 2021-09-27 2023-04-07 宁德时代新能源科技股份有限公司 Laminated battery cell, secondary battery, battery module, battery pack and electric device

Also Published As

Publication number Publication date
JP6861016B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
US9564660B2 (en) Electric core for thin film battery
JP6585964B2 (en) Method for manufacturing lithium ion battery
CN103026534A (en) Bipolar battery
JP6861016B2 (en) Lithium ion battery
JP2010056067A (en) Coin-type lithium secondary battery
JP6731716B2 (en) Lithium-ion battery and manufacturing method thereof
JP2017117729A (en) Manufacturing apparatus of laminated battery
JP2021034141A (en) Lithium ion battery module and battery pack
JP7136592B2 (en) lithium ion battery
JP2015128020A (en) Bipolar secondary battery, bipolar secondary battery module, and method for manufacturing bipolar secondary battery
JP7181752B2 (en) Lithium ion battery and manufacturing method thereof
JP2017041310A (en) Manufacturing method of battery
JP2021082391A (en) Lithium-ion battery module and battery pack
CN111697261A (en) Lithium secondary battery
JP2018067508A (en) Method for manufacturing lithium ion battery
JP6850621B2 (en) Lithium ion battery
JP6652813B2 (en) Stacked battery module
JP6611321B2 (en) Battery module and manufacturing method thereof
JP6549944B2 (en) Lithium ion battery
CN111164782A (en) Film-covered battery, battery pack, and method for manufacturing film-covered battery
JP2017117713A (en) Collector for lithium ion battery and lithium ion battery
JP7016234B2 (en) Lithium ion battery
JP6738701B2 (en) Method for manufacturing lithium-ion battery
JP6714342B2 (en) Battery module
JP2011258435A (en) Electrode for battery, electrode for bipolar battery and bipolar battery

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170517

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170522

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170616

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190409

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R150 Certificate of patent or registration of utility model

Ref document number: 6861016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250