JP2017102990A - Polishing liquid composition for magnetic disk substrate - Google Patents

Polishing liquid composition for magnetic disk substrate Download PDF

Info

Publication number
JP2017102990A
JP2017102990A JP2015233520A JP2015233520A JP2017102990A JP 2017102990 A JP2017102990 A JP 2017102990A JP 2015233520 A JP2015233520 A JP 2015233520A JP 2015233520 A JP2015233520 A JP 2015233520A JP 2017102990 A JP2017102990 A JP 2017102990A
Authority
JP
Japan
Prior art keywords
polishing
less
particles
magnetic disk
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015233520A
Other languages
Japanese (ja)
Other versions
JP6584936B2 (en
Inventor
哲史 山口
Tetsushi Yamaguchi
哲史 山口
大樹 多久島
Daiki Takushima
大樹 多久島
陽介 木村
Yosuke Kimura
陽介 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2015233520A priority Critical patent/JP6584936B2/en
Publication of JP2017102990A publication Critical patent/JP2017102990A/en
Application granted granted Critical
Publication of JP6584936B2 publication Critical patent/JP6584936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polishing liquid composition for a magnetic disk substrate capable of reducing the long-wavelength waviness on the surface of the roughly-polished substrate without largely damaging a polishing speed in a rough polishing and further without largely deteriorating the roll-off after polishing.SOLUTION: A polishing liquid composition for magnetic disk substrate contains an aspherical silica particle A and water, in which a pH is not less than 0.5 and not more than 6.0, a ratio D2/D1 of an average secondary particle size D2 of an aspherical silica particle A to an average primary particle size D1 is not less than 2.1 and not more than 4.0, and the average secondary particle size D2 of the aspherical silica particle A is 180 nm or more.SELECTED DRAWING: None

Description

本開示は、磁気ディスク基板用研磨液組成物、磁気ディスク基板の製造方法及び基板の研磨方法に関する。   The present disclosure relates to a polishing liquid composition for a magnetic disk substrate, a method for manufacturing a magnetic disk substrate, and a method for polishing a substrate.

近年、磁気ディスクドライブは小型化・大容量化が進み、高記録密度化が求められている。高記録密度化のためには、単位記録面積を縮小し、弱くなった磁気信号の検出感度を向上させる必要がある。そのため、磁気ヘッドの浮上高さをより低くするための技術開発が進められている。磁気ディスク基板には、磁気ヘッドの低浮上化と記録面積の確保に対応するため、平滑性及び平坦性の向上(表面粗さ、うねり、端面ダレの低減)や表面欠陥低減(残留砥粒、スクラッチ、突起、ピット等の低減)が厳しく要求されている。   In recent years, magnetic disk drives have been reduced in size and capacity, and high recording density has been demanded. In order to increase the recording density, it is necessary to reduce the unit recording area and improve the detection sensitivity of the weakened magnetic signal. For this reason, technical development for lowering the flying height of the magnetic head has been underway. For magnetic disk substrates, the smoothness and flatness are improved (reduction of surface roughness, waviness, and edge sagging) and surface defects are reduced (residual abrasive, Reduction of scratches, protrusions, pits, etc.) is strictly demanded.

このような要求に対して、より平滑で、傷が少ないといった表面品質向上と生産性の向上を両立させる観点から、磁気ディスク基板の製造方法においては、2段階以上の研磨工程を有する多段研磨方式が採用されることが多い。一般に、多段研磨方式の最終研磨工程、即ち、仕上げ研磨工程では、表面粗さの低減、スクラッチ、突起、ピット等の傷の低減という要求を満たすために、コロイダルシリカ粒子を含む仕上げ用研磨液組成物が使用され、仕上げ研磨工程より前の研磨工程(粗研磨工程ともいう)では、生産性向上の観点から、アルミナ粒子を砥粒として含む研磨液組成物が使用される。しかしながら、アルミナ粒子を砥粒として使用した場合、アルミナ粒子の基板への突き刺さりによって、磁気ディスク基板や、磁気ディスク基板に磁性層が施された磁気ディスクの欠陥を引き起こすことがある。   In response to such demands, from the viewpoint of achieving both improvement in surface quality and productivity that are smoother and less scratched, a multi-stage polishing method having two or more stages of polishing processes in the method of manufacturing a magnetic disk substrate Is often adopted. In general, in the final polishing step of the multi-stage polishing method, that is, the final polishing step, a polishing composition for finishing that contains colloidal silica particles in order to satisfy the requirements of reducing surface roughness and scratches such as scratches, protrusions, and pits. In a polishing step (also referred to as a rough polishing step) prior to the final polishing step, a polishing liquid composition containing alumina particles as abrasive grains is used from the viewpoint of improving productivity. However, when alumina particles are used as abrasive grains, the piercing of alumina particles into the substrate may cause defects in the magnetic disk substrate or a magnetic disk having a magnetic layer applied to the magnetic disk substrate.

そこで、アルミナ粒子を含まず、シリカ粒子を砥粒として含有する研磨液組成物が提案されている(特許文献1〜3)。   Then, the polishing liquid composition which does not contain alumina particles but contains silica particles as abrasive grains has been proposed (Patent Documents 1 to 3).

特開2014−116057号公報JP 2014-1116057 A 特開2012−111869号公報JP 2012-111869 A 特開2014−29754号公報JP 2014-29754 A

アルミナ粒子に代えてシリカ粒子を砥粒とした従来の研磨液組成物では、アルミナの付着や突き刺さり等によるアルミナの残留が抑制され、研磨後の基板表面の突起欠陥を低減できる。しかし、アルミナ粒子に代えてシリカ粒子を砥粒とした研磨液組成物で粗研磨を行う場合、研磨後の基板表面の長波長うねりが問題となる。そして、粗研磨における長波長うねりを低減させるためには、アルミナ粒子を含む研磨液組成物よりも長時間の研磨時間を要する。そのため、生産性の低下や、ロールオフ(端面ダレ)の増加による基板表面の平坦性の悪化という問題がある。   In a conventional polishing composition in which silica particles are used in place of alumina particles, alumina residue due to alumina adhesion or sticking can be suppressed, and protrusion defects on the substrate surface after polishing can be reduced. However, when rough polishing is performed with a polishing composition comprising silica particles instead of alumina particles, long-wave waviness on the substrate surface after polishing becomes a problem. And in order to reduce the long wavelength wave | undulation in rough | crude grinding | polishing, longer polishing time is required than the polishing liquid composition containing an alumina particle. Therefore, there is a problem that the flatness of the substrate surface is deteriorated due to a decrease in productivity and an increase in roll-off (end face sag).

そこで、本開示は、砥粒としてシリカ粒子を使用した場合でも、粗研磨における研磨速度を大きく損ねることなく、さらに、粗研磨後のロールオフを大きく悪化させることなく、粗研磨後の基板表面の長波長うねりを低減できる磁気ディスク基板用研磨液組成物を提供する。   Therefore, even when silica particles are used as the abrasive grains, the present disclosure does not significantly impair the polishing rate in the rough polishing, and further does not significantly deteriorate the roll-off after the rough polishing. Provided is a polishing composition for a magnetic disk substrate capable of reducing long wavelength waviness.

本開示は、非球状シリカ粒子A及び水を含み、pHが、0.5以上6.0以下であり、前記非球状シリカ粒子Aの平均二次粒子径D2と平均一次粒子径D1との比D2/D1が、2.1以上4.0以下であり、前記非球状シリカ粒子Aの平均二次粒子径D2が、180nm以上である、磁気ディスク基板用研磨液組成物に関する。   The present disclosure includes non-spherical silica particles A and water, and has a pH of 0.5 or more and 6.0 or less, and a ratio between an average secondary particle diameter D2 and an average primary particle diameter D1 of the non-spherical silica particles A. The present invention relates to a polishing composition for a magnetic disk substrate, wherein D2 / D1 is 2.1 or more and 4.0 or less, and the average secondary particle diameter D2 of the non-spherical silica particles A is 180 nm or more.

本開示は、本開示に係る研磨液組成物を用いて被研磨基板を研磨する工程を含む、磁気ディスク基板の製造方法に関する。   The present disclosure relates to a method for manufacturing a magnetic disk substrate, which includes a step of polishing a substrate to be polished using the polishing composition according to the present disclosure.

本開示は、本開示に係る研磨液組成物を用いて被研磨基板を研磨する工程を含み、前記被研磨基板は、磁気ディスク基板の製造に用いられる基板である、基板の研磨方法に関する。   The present disclosure relates to a method for polishing a substrate, including a step of polishing a substrate to be polished using the polishing composition according to the present disclosure, wherein the substrate to be polished is a substrate used for manufacturing a magnetic disk substrate.

本開示によれば、砥粒としてシリカ粒子を使用した場合でも、粗研磨における研磨速度を大きく損ねることなく、さらに、粗研磨後のロールオフを大きく悪化させることなく、粗研磨後の基板表面の長波長うねりを低減できるという効果が奏されうる。その結果、基板品質が向上した磁気ディスク基板の生産性を向上しうる。   According to the present disclosure, even when silica particles are used as the abrasive grains, the polishing rate in the rough polishing is not significantly impaired, and further, the roll-off after the rough polishing is not greatly deteriorated. The effect that long wave waviness can be reduced can be produced. As a result, the productivity of the magnetic disk substrate with improved substrate quality can be improved.

図1は、金平糖型コロイダルシリカ砥粒の透過型電子顕微鏡(以下、「TEM」ともいう)観察写真の一例である。FIG. 1 is an example of a transmission electron microscope (hereinafter also referred to as “TEM”) observation photograph of a confetti type colloidal silica abrasive grain. 図2は、異形型コロイダルシリカ砥粒のTEM観察写真の一例である。FIG. 2 is an example of a TEM observation photograph of deformed colloidal silica abrasive grains. 図3は、ロールオフ測定時の基板の測定位置を示す断面図である。FIG. 3 is a cross-sectional view showing the measurement position of the substrate during the roll-off measurement.

本開示は、特定の非球状シリカ粒子を砥粒として含有する研磨液組成物を粗研磨に用いることにより、研磨速度を大きく低下させることなく、そして、粗研磨後のロールオフを大きく悪化させることなく、長波長うねりを低減できるという知見に基づく。一般に、磁気ディスク基板の製造において、長波長うねりを低減できれば生産性も向上する。   The present disclosure uses a polishing composition containing specific non-spherical silica particles as abrasive grains for rough polishing, without greatly reducing the polishing rate, and greatly aggravating roll-off after rough polishing. And based on the knowledge that long wavelength waviness can be reduced. In general, in the manufacture of a magnetic disk substrate, productivity can be improved if long-wave waviness can be reduced.

特定の非球状シリカ粒子を砥粒として用いることで、研磨速度を大きく低下させることなく、そして、粗研磨後のロールオフを大きく悪化させることなく、長波長うねりを低減できるメカニズムの詳細は明らかではないが、以下のように推察される。被研磨基板は、通常、研磨パッドを貼り付けた定盤で被研磨基板を挟み込み、研磨液組成物を研磨機に供給しながら、定盤や被研磨基板を動かして被研磨基板を研磨する方法により研磨される。被研磨基板を挟み込んだ研磨パッドは被研磨基板の端部で変形しやすいため、基板面の中央部よりも基板面の端部において高い荷重がかかることによりロールオフが発生すると考えられる。これに対し、本開示に係る研磨液組成物では、特定の非球状シリカ粒子を用いることで、基板外周部に比べて基板内周部の研磨速度が向上し、その結果、ロールオフが抑制されると考えられる。さらに、研磨時に研磨パッドと基板との間に起こる振動の大きさを小さくすることができ、長波長うねりを低減できると考えられる。ただし、本開示はこれらのメカニズムに限定して解釈されなくてもよい。   The details of the mechanism that can reduce long-wave waviness without significantly reducing the polishing rate and greatly reducing roll-off after rough polishing by using specific non-spherical silica particles as the abrasive grains are not clear There is not, but it is guessed as follows. The substrate to be polished is usually a method of polishing the substrate to be polished by moving the surface plate or the substrate to be polished while sandwiching the substrate to be polished with a surface plate to which a polishing pad is attached and supplying the polishing composition to the polishing machine. It is polished by. Since the polishing pad sandwiching the substrate to be polished is easily deformed at the end of the substrate to be polished, it is considered that roll-off occurs when a higher load is applied at the end of the substrate surface than at the center of the substrate surface. On the other hand, in the polishing composition according to the present disclosure, by using specific non-spherical silica particles, the polishing rate of the inner peripheral portion of the substrate is improved compared to the outer peripheral portion of the substrate, and as a result, roll-off is suppressed. It is thought. Furthermore, it is considered that the magnitude of vibration that occurs between the polishing pad and the substrate during polishing can be reduced, and long-wave waviness can be reduced. However, the present disclosure need not be interpreted as being limited to these mechanisms.

すなわち、本開示に係る研磨液組成物は、非球状シリカ粒子A及び水を含み、pHが、0.5以上6.0以下であり、前記非球状シリカ粒子Aの平均二次粒子径D2と平均一次粒子径D1との比D2/D1が、2.1以上4.0以下であり、前記非球状シリカ粒子Aの平均二次粒子径D2が、180nm以上である、磁気ディスク基板用研磨液組成物に関する。   That is, the polishing composition according to the present disclosure contains non-spherical silica particles A and water, has a pH of 0.5 or more and 6.0 or less, and an average secondary particle diameter D2 of the non-spherical silica particles A and A polishing liquid for a magnetic disk substrate, wherein the ratio D2 / D1 to the average primary particle diameter D1 is 2.1 or more and 4.0 or less, and the average secondary particle diameter D2 of the non-spherical silica particles A is 180 nm or more. Relates to the composition.

本開示において基板の「うねり」とは、粗さよりも波長の長い基板表面の凹凸をいう。本開示において「長波長うねり」とは、500〜5000μmの波長により観測されるうねりをいう。研磨後の基板表面の長波長うねりが低減されることにより、磁気ディスクドライブにおいて磁気ヘッドの浮上量を低くすることができ、磁気ディスクの記録密度の向上が可能となる。基板表面の長波長うねりは、実施例に記載の方法により測定できる。   In the present disclosure, “undulation” of a substrate refers to irregularities on the surface of the substrate having a wavelength longer than the roughness. In the present disclosure, “long wavelength undulation” refers to undulation observed with a wavelength of 500 to 5000 μm. By reducing long-wave waviness on the substrate surface after polishing, the flying height of the magnetic head in the magnetic disk drive can be reduced, and the recording density of the magnetic disk can be improved. The long wavelength waviness of the substrate surface can be measured by the method described in the examples.

[非球状シリカ粒子A]
本開示に係る研磨液組成物は、上述したように、非球状シリカ粒子A(以下、「粒子Aともいう」)を含有する。
[Non-spherical silica particles A]
As described above, the polishing liquid composition according to the present disclosure contains non-spherical silica particles A (hereinafter also referred to as “particles A”).

粒子Aの平均球形度は、0.60以上が好ましく、0.70以上がより好ましく、そして、0.85以下が好ましく、0.80以下がより好ましく、0.75以下が更に好ましい。本開示において、粒子Aの平均球形度は、少なくとも200個の粒子Aの球形度の平均値である。粒子Aの球形度は、例えばTEMによる観察及び画像解析ソフト等を用いて、粒子Aの投影面積Sと投影周囲長Lとを求め、以下の式から算出できる。
球形度=4π×S/L2
個々の粒子Aの球形度は、前記平均球形度と同様、0.60以上が好ましく、0.70以上がより好ましく、そして、0.85以下が好ましく、0.80以下がより好ましく、0.75以下が更に好ましい。
The average sphericity of the particles A is preferably 0.60 or more, more preferably 0.70 or more, and preferably 0.85 or less, more preferably 0.80 or less, and even more preferably 0.75 or less. In the present disclosure, the average sphericity of the particles A is an average value of the sphericity of at least 200 particles A. The sphericity of the particle A can be calculated from the following equation by obtaining the projected area S and the projected perimeter L of the particle A using, for example, TEM observation and image analysis software.
Sphericality = 4π × S / L 2
The sphericity of the individual particles A is preferably 0.60 or more, more preferably 0.70 or more, and preferably 0.85 or less, more preferably 0.80 or less, like the average sphericity. 75 or less is more preferable.

粒子Aの平均短径は、研磨速度向上、粗研磨後のロールオフ低減、及び長波長うねり低減の観点から、100nm以上が好ましく、150nm以上がより好ましく、180nm以上が更に好ましく、そして、500nm以下が好ましく、450nm以下がより好ましく、400nm以下が更に好ましい。   The average minor axis of the particles A is preferably 100 nm or more, more preferably 150 nm or more, further preferably 180 nm or more, and further 500 nm or less from the viewpoints of improving the polishing rate, reducing roll-off after rough polishing, and reducing long wavelength waviness. Is preferable, 450 nm or less is more preferable, and 400 nm or less is still more preferable.

本開示において、粒子Aの平均短径は、少なくとも200個の粒子Aの短径の平均値である。粒子Aの短径は、例えばTEMによる観察及び画像解析ソフト等を用いて、投影された粒子Aの画像に外接する最小の長方形を描いたときの、前記長方形の短辺の長さである。同様に、粒子Aの長径は、前記長方形の長辺の長さである。   In the present disclosure, the average minor axis of the particles A is an average value of the minor axes of at least 200 particles A. The minor axis of the particle A is the length of the short side of the rectangle when a minimum rectangle circumscribing the projected image of the particle A is drawn using, for example, TEM observation and image analysis software. Similarly, the major axis of the particle A is the length of the long side of the rectangle.

粒子Aの平均アスペクト比は、研磨速度向上、粗研磨後のロールオフ低減、及び長波長うねり低減の観点から、1.10以上が好ましく、1.15以上がより好ましく、1.20以上が更に好ましく、そして、同様の観点から、2.00以下が好ましく、1.70以下がより好ましく、1.50以下が更に好ましい。   The average aspect ratio of the particles A is preferably 1.10 or more, more preferably 1.15 or more, and further preferably 1.20 or more from the viewpoints of improving the polishing rate, reducing roll-off after rough polishing, and reducing long wavelength waviness. From the same viewpoint, it is preferably 2.00 or less, more preferably 1.70 or less, and even more preferably 1.50 or less.

本開示において、粒子Aの平均アスペクト比は、少なくとも200個の粒子Aのアスペクト比の平均値である。粒子Aのアスペクト比は、粒子Aの長径と短径との比(長径/短径)である。   In the present disclosure, the average aspect ratio of the particles A is an average value of the aspect ratios of at least 200 particles A. The aspect ratio of the particle A is the ratio of the major axis to the minor axis of the particle A (major axis / minor axis).

粒子AのBET比表面積は、研磨速度向上、粗研磨後のロールオフ低減、及び長波長うねり低減の観点から、50m2/g以下が好ましく、40m2/g以下がより好ましく、30m2/g以下が更に好ましく、そして、10m2/g以上が好ましく、15m2/g以上がより好ましく、20m2/g以上が更に好ましい。本開示において、BET比表面積は、窒素吸着法(以下、「BET法」ともいう)により算出できる。具体的には、実施例に記載の測定方法により算出できる。 BET specific surface area of the particles A is increased polishing rate, roll-off reduction after rough grinding, and in view of the long wavelength waviness reduction is preferably 50 m 2 / g or less, more preferably 40m 2 / g, 30m 2 / g The following is more preferable, and 10 m 2 / g or more is preferable, 15 m 2 / g or more is more preferable, and 20 m 2 / g or more is more preferable. In the present disclosure, the BET specific surface area can be calculated by a nitrogen adsorption method (hereinafter also referred to as “BET method”). Specifically, it can be calculated by the measurement method described in the examples.

粒子Aの平均一次粒子径D1は、研磨速度向上、粗研磨後のロールオフ低減、及び長波長うねり低減の観点から、60nm以上が好ましく、70nm以上がより好ましく、80nm以上が更に好ましく、そして、同様の観点から、200nm以下が好ましく、150nm以下がより好ましく、120nm以下が更に好ましい。   The average primary particle diameter D1 of the particles A is preferably 60 nm or more, more preferably 70 nm or more, still more preferably 80 nm or more, from the viewpoints of polishing rate improvement, roll-off reduction after rough polishing, and long-wave waviness reduction, and From the same viewpoint, 200 nm or less is preferable, 150 nm or less is more preferable, and 120 nm or less is still more preferable.

本開示において、粒子Aの平均一次粒子径は、BET比表面積S(m2/g)を用いて、下記式から算出できる。具体的には、実施例に記載の測定方法により算出できる。
平均一次粒子径(nm)=2727/S
In the present disclosure, the average primary particle diameter of the particles A can be calculated from the following formula using the BET specific surface area S (m 2 / g). Specifically, it can be calculated by the measurement method described in the examples.
Average primary particle diameter (nm) = 2727 / S

粒子Aの平均二次粒子径D2は、研磨速度向上、粗研磨後のロールオフ低減、及び長波長うねり低減の観点から、180nm以上であり、200nm以上が好ましく、220nm以上がより好ましく、そして、500nm以下が好ましく、400nm以下がより好ましく、300nm以下が更に好ましい。   The average secondary particle diameter D2 of the particles A is 180 nm or more, preferably 200 nm or more, more preferably 220 nm or more, from the viewpoints of polishing rate improvement, roll-off reduction after rough polishing, and long-wave waviness reduction, and 500 nm or less is preferable, 400 nm or less is more preferable, and 300 nm or less is still more preferable.

本開示において、粒子Aの平均二次粒子径とは、動的光散乱法により測定される散乱強度分布に基づく平均粒径をいう。本開示において「散乱強度分布」とは、動的光散乱法(DLS:Dynamic Light Scattering)又は準弾性光散乱(QLS:Quasielastic Light Scattering)により求められるサブミクロン以下の粒子の重量換算の粒径分布のことをいう。本開示における粒子Aの平均二次粒子径は、具体的には実施例に記載の方法により得ることができる。   In the present disclosure, the average secondary particle diameter of the particles A refers to an average particle diameter based on a scattering intensity distribution measured by a dynamic light scattering method. In the present disclosure, the “scattering intensity distribution” means a particle size distribution in terms of weight of sub-micron particles or less obtained by dynamic light scattering (DLS) or quasielastic light scattering (QLS). I mean. Specifically, the average secondary particle diameter of the particles A in the present disclosure can be obtained by the method described in Examples.

粒子Aの平均二次粒子径D2と平均一次粒子径D1との粒径比(D2/D1)は、研磨速度向上、粗研磨後のロールオフ低減、及び長波長うねり低減の観点から、2.1以上であり、2.2以上が好ましく、2.4以上がより好ましく、そして、4.0以下であり、3.0以下が好ましく、2.8以下がより好ましい。   The particle diameter ratio (D2 / D1) between the average secondary particle diameter D2 and the average primary particle diameter D1 of the particles A is from the viewpoint of improving the polishing rate, reducing roll-off after rough polishing, and reducing long wavelength waviness. 1 or more, preferably 2.2 or more, more preferably 2.4 or more, and 4.0 or less, preferably 3.0 or less, and more preferably 2.8 or less.

本開示において、粒径比(D2/D1)は、粒子Aの異形度合いを意味し得る。一般的に動的光散乱法によって測定される平均二次粒子径D2は、シリカ粒子が異形粒子の場合、長方向での光散乱を検出して処理を行うため、長方向と短方向の長さを考慮して異形度合いが大きいほど大きな数値となる。BET法によって測定される比表面積値から換算される平均一次粒子径D1は、求まる粒子の体積をベースとして球換算で表されるため、平均二次粒子径D2に比べると小さな数値となる。研磨速度の観点から、粒径比(D2/D1)は、上述の範囲のなかでも大きいことが好ましい。   In the present disclosure, the particle size ratio (D2 / D1) may mean the degree of deformation of the particles A. In general, the average secondary particle diameter D2 measured by the dynamic light scattering method is such that when the silica particles are irregularly shaped particles, light scattering in the long direction is detected and the processing is performed. In view of this, the larger the degree of deformity, the larger the value. Since the average primary particle diameter D1 converted from the specific surface area value measured by the BET method is expressed in terms of a sphere based on the obtained particle volume, it is a smaller numerical value than the average secondary particle diameter D2. From the viewpoint of the polishing rate, the particle size ratio (D2 / D1) is preferably large in the above range.

粒子Aの二次粒子径の変動係数(以下、「CV値」ともいう)は、研磨速度向上、粗研磨後のロールオフ低減、及び長波長うねり低減の観点から、10%以上が好ましく、15%以上がより好ましく、20%以上が更に好ましく、そして、30%以下が好ましく、28%以下がより好ましい。   The coefficient of variation (hereinafter also referred to as “CV value”) of the secondary particle diameter of the particles A is preferably 10% or more from the viewpoint of improving the polishing rate, reducing roll-off after rough polishing, and reducing long wavelength waviness. % Or more is more preferable, 20% or more is more preferable, 30% or less is preferable, and 28% or less is more preferable.

本開示において粒子Aの二次粒子径のCV値とは、動的光散乱法により検出角90°の散乱強度分布に基づき、測定される二次粒子径の標準偏差を平均二次粒子径で除して100を掛けて得られる値(単位:%)をいう。前記CV値は、具体的には実施例に記載の方法により測定することができる。   In the present disclosure, the CV value of the secondary particle diameter of the particle A is based on the scattering intensity distribution at a detection angle of 90 ° by the dynamic light scattering method, and the standard deviation of the secondary particle diameter measured is the average secondary particle diameter. The value (unit:%) obtained by dividing and multiplying by 100. Specifically, the CV value can be measured by the method described in Examples.

粒子Aとしては、例えば、コロイダルシリカ、フュームドシリカ、表面修飾したシリカ等が挙げられる。研磨速度向上、粗研磨後のロールオフ低減、及び長波長うねり低減の観点から、粒子Aとしては、コロイダルシリカが好ましく、下記の特定の形状をもったコロイダルシリカがより好ましい。   Examples of the particles A include colloidal silica, fumed silica, and surface-modified silica. From the viewpoint of improving the polishing rate, reducing roll-off after rough polishing, and reducing long wavelength waviness, the particles A are preferably colloidal silica, and more preferably colloidal silica having the following specific shape.

粒子Aの形状は、研磨速度向上、粗研磨後のロールオフ低減、及び長波長うねり低減の観点から、好ましくは、粒子Aの二次粒子径よりも粒径が小さいシリカ粒子を前駆体粒子として、複数の前駆体粒子が、凝集又は融着した形状である。粒子Aは、同様の観点から、金平糖型のシリカ粒子Aa、異形型のシリカ粒子Ab、及び異形かつ金平糖型のシリカ粒子Acから選ばれる少なくとも1種のシリカ粒子であることが好ましく、異形型のシリカ粒子Abがより好ましい。   From the viewpoints of improving the polishing rate, reducing roll-off after rough polishing, and reducing long wavelength waviness, the shape of the particles A is preferably silica particles having a particle size smaller than the secondary particle size of the particles A as precursor particles. The plurality of precursor particles are aggregated or fused. From the same point of view, the particle A is preferably at least one silica particle selected from a confetti-type silica particle Aa, a deformed-type silica particle Ab, and a deformed and confetti-type silica particle Ac. Silica particles Ab are more preferable.

本開示において、金平糖型のシリカ粒子Aa(以下、「粒子Aa」ともいう)は、球状の粒子表面に特異な疣状突起を有するシリカ粒子をいう(図1参照)。粒子Aaは、好ましくは、最も大きい前駆体粒子a1と、粒径が前駆体粒子a1の1/5以下である1個以上の前駆体粒子a2とが、凝集又は融着した形状である。粒子Aaは、好ましくは粒径の小さい複数の前駆体粒子a2が粒径の大きな1個の前駆体粒子a1に一部埋没した状態である。粒子Aaは、例えば、特開2008−137822号公報に記載の方法により、得られうる。前駆体粒子の粒径は、TEM等による観察画像において1個の前駆体粒子内で測定される円相当径、すなわち、前駆体粒子の投影面積と同じ面積である円の長径として求められうる。シリカ粒子Ab及びシリカ粒子Acにおける前駆体粒子の粒径も同様に求めることができる。   In the present disclosure, confetti-type silica particles Aa (hereinafter, also referred to as “particles Aa”) refer to silica particles having unique hook-shaped protrusions on the surface of spherical particles (see FIG. 1). The particle Aa preferably has a shape in which the largest precursor particle a1 and one or more precursor particles a2 having a particle size of 1/5 or less of the precursor particle a1 are aggregated or fused. The particles Aa are preferably in a state in which a plurality of precursor particles a2 having a small particle size are partially embedded in one precursor particle a1 having a large particle size. The particles Aa can be obtained, for example, by the method described in JP 2008-137822 A. The particle diameter of the precursor particles can be obtained as the equivalent circle diameter measured in one precursor particle in an observation image by TEM or the like, that is, the major axis of a circle having the same area as the projected area of the precursor particles. The particle diameters of the precursor particles in the silica particles Ab and the silica particles Ac can be obtained in the same manner.

本開示において、異形型のシリカ粒子Ab(以下、「粒子Ab」ともいう)は、2個以上の前駆体粒子、好ましくは2個以上10個以下の前駆体粒子が凝集又は融着した形状のシリカ粒子をいう(図2参照)。粒子Abは、好ましくは、最も小さい前駆体粒子の粒径を基準にして、粒径が1.5倍以内の2個以上の前駆体粒子が、凝集又は融着した形状である。粒子Abは、例えば、特開2015−86102号公報に記載の方法により、得られうる。   In the present disclosure, irregular-shaped silica particles Ab (hereinafter also referred to as “particles Ab”) have a shape in which two or more precursor particles, preferably two or more and ten or less precursor particles are aggregated or fused. This refers to silica particles (see FIG. 2). The particle Ab preferably has a shape in which two or more precursor particles having a particle size of 1.5 times or less are aggregated or fused on the basis of the particle size of the smallest precursor particle. The particles Ab can be obtained, for example, by the method described in JP-A-2015-86102.

本開示において、異形かつ金平糖型のシリカ粒子Ac(以下、「粒子Ac」ともいう)は、前記粒子Abを前駆体粒子c1とし、最も大きい前駆体粒子c1と、粒径が前駆体粒子c1の1/5以下である1個以上の前駆体粒子c2とが、凝集又は融着した形状である。   In the present disclosure, irregular and confetti-type silica particles Ac (hereinafter also referred to as “particles Ac”) have the particle Ab as the precursor particle c1, the largest precursor particle c1, and the particle size of the precursor particle c1. It is a shape in which one or more precursor particles c2 which are 1/5 or less are aggregated or fused.

粒子Aは、好ましくは粒子Aa、Ab及びAcから選ばれる1種以上を含む。粒子A中の粒子Aa、Ab及びAcの合計量は、研磨速度向上、粗研磨後のロールオフ低減、及び長波長うねり低減の観点から、50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましく、90質量%以上が更により好ましく、実質的に100質量%が更により好ましい。   The particle A preferably contains one or more selected from the particles Aa, Ab and Ac. The total amount of the particles Aa, Ab and Ac in the particle A is preferably 50% by mass or more, more preferably 70% by mass or more from the viewpoint of improving the polishing rate, reducing roll-off after rough polishing, and reducing long wavelength waviness. 80 mass% or more is still more preferable, 90 mass% or more is still more preferable, and substantially 100 mass% is still more preferable.

粒子Aは、粗研磨における研磨速度の低下抑制、粗研磨後のロールオフ及び長波長うねりの低減、並びに粗研磨及び仕上げ研磨後の突起欠陥低減の観点から、火炎溶融法、ゾルゲル法、及び粉砕法で製造されたものでもよいが、珪酸アルカリ水溶液を出発原料とする粒子成長法(以下、「水ガラス法」ともいう)により製造されたシリカ粒子であることが好ましい。粒子Aの使用形態としては、スラリー状であることが好ましい。   From the viewpoints of suppressing a decrease in polishing rate in rough polishing, reducing roll-off and long-wave waviness after rough polishing, and reducing protrusion defects after rough polishing and final polishing, the particles A are flame-melting, sol-gel processing, and pulverization. Although it may be produced by a method, silica particles produced by a particle growth method using an alkali silicate aqueous solution as a starting material (hereinafter also referred to as “water glass method”) are preferable. The usage form of the particles A is preferably a slurry.

粒子Aの粒径分布を調整する方法は、例えば、その製造段階における粒子の成長過程で新たな核となる粒子を加えることにより所望の粒径分布を持たせる方法や、異なる粒径分布を有する2種類以上のシリカ粒子を混合して所望の粒径分布を持たせる方法等が挙げられる。   The method for adjusting the particle size distribution of the particles A includes, for example, a method of giving a desired particle size distribution by adding particles serving as a new nucleus in the process of particle growth in the production stage, and a different particle size distribution. Examples thereof include a method of mixing two or more types of silica particles to give a desired particle size distribution.

研磨液組成物中の粒子Aの含有量は、研磨速度向上、粗研磨後のロールオフ低減、及び長波長うねり低減の観点から、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が更に好ましく、2質量%以上が更により好ましく、そして、経済性の観点から、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が更に好ましく、15質量%以下が更により好ましい。   The content of the particles A in the polishing composition is preferably 0.1% by mass or more, more preferably 0.5% by mass or more from the viewpoints of improving the polishing rate, reducing roll-off after rough polishing, and reducing long wavelength waviness. More preferably, 1% by mass or more is further preferable, 2% by mass or more is further more preferable, and from the viewpoint of economy, 30% by mass or less is preferable, 25% by mass or less is more preferable, and 20% by mass or less is more preferable. 15% by mass or less is even more preferable.

本開示に係る研磨液組成物が粒子A以外のシリカ粒子を含有する場合、研磨液組成物中のシリカ粒子全体に対する粒子Aの含有量は、研磨速度向上、粗研磨後のロールオフ低減、及び長波長うねり低減の観点から、98.0質量%超が好ましく、98.5質量%以上がより好ましく、99.0質量%以上が更に好ましく、99.5質量%以上が更により好ましく、99.8質量%以上が更により好ましく、実質的に100質量%が更により好ましい。   When the polishing liquid composition according to the present disclosure contains silica particles other than the particles A, the content of the particles A with respect to the entire silica particles in the polishing liquid composition is improved in polishing rate, reduced roll-off after rough polishing, and From the viewpoint of reducing long wavelength waviness, it is preferably more than 98.0% by mass, more preferably 98.5% by mass or more, still more preferably 99.0% by mass or more, still more preferably 99.5% by mass or more, and 99.99% by mass. 8% by mass or more is even more preferable, and substantially 100% by mass is even more preferable.

[pH調整剤]
本開示に係る研磨液組成物のpHは、研磨速度向上、粗研磨後のロールオフ低減、及び長波長うねり低減の観点から、0.5以上6.0以下である。本開示に係る研磨液組成物は、研磨速度向上、粗研磨後のロールオフ低減、長波長うねり低減、及びpHを調整する観点から、pH調整剤を含有することが好ましい。pH調整剤としては、同様の観点から、酸及び塩から選ばれる1種以上が好ましい。
[PH adjuster]
The pH of the polishing composition according to the present disclosure is 0.5 or more and 6.0 or less from the viewpoint of improving the polishing rate, reducing roll-off after rough polishing, and reducing long wavelength waviness. The polishing composition according to the present disclosure preferably contains a pH adjuster from the viewpoint of improving the polishing rate, reducing roll-off after rough polishing, reducing long wavelength waviness, and adjusting pH. As a pH adjuster, 1 or more types chosen from an acid and a salt are preferable from the same viewpoint.

酸としては、例えば、硝酸、硫酸、亜硫酸、過硫酸、塩酸、過塩素酸、リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、ポリリン酸、アミド硫酸等の無機酸;有機リン酸、有機ホスホン酸等の有機酸;等が挙げられる。中でも、研磨速度向上、粗研磨後のロールオフ低減、及び長波長うねり低減の観点から、リン酸、硫酸及び1−ヒドロキシエチリデン−1,1−ジホスホン酸から選ばれる少なくとも1種が好ましく、硫酸及びリン酸から選ばれる少なくとも1種がより好ましく、硫酸が更に好ましい。   Examples of the acid include inorganic acids such as nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, polyphosphoric acid, and amidosulfuric acid; organic phosphoric acid and organic phosphonic acid Organic acids such as, and the like. Among these, at least one selected from phosphoric acid, sulfuric acid, and 1-hydroxyethylidene-1,1-diphosphonic acid is preferable from the viewpoint of improving the polishing rate, reducing roll-off after rough polishing, and reducing long wavelength waviness, and sulfuric acid and At least one selected from phosphoric acid is more preferable, and sulfuric acid is more preferable.

塩としては、例えば、上記の酸と、金属、アンモニア及びアルキルアミンから選ばれる少なくとも1種との塩が挙げられる。上記金属の具体例としては、周期表の1〜11族に属する金属が挙げられる。これらの中でも、研磨速度向上、粗研磨後のロールオフ低減、及び長波長うねり低減の観点から、上記の酸と、1族に属する金属又はアンモニアとの塩が好ましい。   As a salt, the salt of said acid and at least 1 sort (s) chosen from a metal, ammonia, and an alkylamine is mentioned, for example. Specific examples of the metal include metals belonging to Groups 1 to 11 of the periodic table. Among these, from the viewpoint of improving the polishing rate, reducing roll-off after rough polishing, and reducing long wavelength waviness, a salt of the above acid with a metal belonging to Group 1 or ammonia is preferable.

研磨液組成物中のpH調整剤の含有量は、研磨速度向上、粗研磨後のロールオフ低減、及び長波長うねり低減の観点から、0.001質量%以上が好ましく、0.01質量%以上がより好ましく、0.05質量%以上が更に好ましく、0.1質量%以上が更により好ましく、そして、同様の観点から、5.0質量%以下が好ましく、4.0質量%以下がより好ましく、3.0質量%以下が更に好ましく、2.5質量%以下が更により好ましい。   The content of the pH adjuster in the polishing composition is preferably 0.001% by mass or more, and 0.01% by mass or more from the viewpoints of improving the polishing rate, reducing roll-off after rough polishing, and reducing long wavelength waviness. Is more preferably 0.05% by mass or more, still more preferably 0.1% by mass or more, and from the same viewpoint, 5.0% by mass or less is preferable, and 4.0% by mass or less is more preferable. 3.0 mass% or less is still more preferable, and 2.5 mass% or less is still more preferable.

[酸化剤]
本開示に係る研磨液組成物は、研磨速度向上、粗研磨後のロールオフ低減、及び長波長うねり低減の観点から、酸化剤を含有してもよい。酸化剤としては、同様の観点から、例えば、過酸化物、過マンガン酸又はその塩、クロム酸又はその塩、ペルオキソ酸又はその塩、酸素酸又はその塩、硝酸類、硫酸類等が挙げられる。これらの中でも、過酸化水素、硝酸鉄(III)、過酢酸、ペルオキソ二硫酸アンモニウム、硫酸鉄(III)及び硫酸アンモニウム鉄(III)から選ばれる少なくとも1種が好ましく、研磨速度向上の観点、被研磨基板の表面に金属イオンが付着せず汎用に使用され安価であるという観点から、過酸化水素がより好ましい。これらの酸化剤は、単独で又は2種以上を混合して使用してもよい。
[Oxidant]
The polishing composition according to the present disclosure may contain an oxidizing agent from the viewpoints of improving the polishing rate, reducing roll-off after rough polishing, and reducing long wavelength waviness. Examples of the oxidizing agent include peroxide, permanganic acid or a salt thereof, chromic acid or a salt thereof, peroxo acid or a salt thereof, oxygen acid or a salt thereof, nitric acid, sulfuric acid, and the like from the same viewpoint. . Among these, at least one selected from hydrogen peroxide, iron nitrate (III), peracetic acid, ammonium peroxodisulfate, iron sulfate (III) and ammonium iron sulfate (III) is preferable. Hydrogen peroxide is more preferable from the viewpoint that metal ions do not adhere to the surface and are used for general purposes and are inexpensive. These oxidizing agents may be used alone or in admixture of two or more.

研磨液組成物中の前記酸化剤の含有量は、研磨速度向上の観点から、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、そして、研磨速度向上、粗研磨後のロールオフ低減、及び長波長うねり低減の観点から、4.0質量%以下が好ましく、2.0質量%以下がより好ましく、1.5質量%以下が更に好ましい。   The content of the oxidizing agent in the polishing liquid composition is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, further preferably 0.1% by mass or more, from the viewpoint of improving the polishing rate. And from the viewpoints of improving the polishing rate, reducing roll-off after rough polishing, and reducing long wavelength waviness, 4.0% by mass or less is preferable, 2.0% by mass or less is more preferable, and 1.5% by mass or less is more preferable. preferable.

[水]
本開示に係る研磨液組成物は、媒体として水を含有する。水としては、蒸留水、イオン交換水、純水及び超純水等が挙げられる。研磨液組成物中の水の含有量は、研磨液組成物の取扱いが容易になるため、61質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましく、85質量%以上が更により好ましく、そして、同様の観点から、99質量%以下が好ましく、98質量%以下がより好ましく、97質量%以下が更に好ましい。
[water]
The polishing liquid composition according to the present disclosure contains water as a medium. Examples of water include distilled water, ion exchange water, pure water, and ultrapure water. The water content in the polishing composition is preferably 61% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and 85% by mass because the handling of the polishing composition becomes easy. The above is more preferable, and from the same viewpoint, 99% by mass or less is preferable, 98% by mass or less is more preferable, and 97% by mass or less is more preferable.

[その他の成分]
本開示に係る研磨液組成物は、必要に応じてその他の成分を含有してもよい。他の成分としては、増粘剤、分散剤、防錆剤、塩基性物質、研磨速度向上剤、界面活性剤、高分子化合物等が挙げられる。前記その他の成分は、本開示の効果を損なわない範囲で研磨液組成物中に含有されることが好ましく、研磨液組成物中の前記その他の成分の含有量は、0質量%以上が好ましく、0質量%超がより好ましく、0.1質量%以上が更に好ましく、そして、10質量%以下が好ましく、5質量%以下がより好ましい。
[Other ingredients]
The polishing liquid composition according to the present disclosure may contain other components as necessary. Examples of other components include thickeners, dispersants, rust inhibitors, basic substances, polishing rate improvers, surfactants, and polymer compounds. The other components are preferably contained in the polishing liquid composition within a range not impairing the effects of the present disclosure, and the content of the other components in the polishing liquid composition is preferably 0% by mass or more, More than 0 mass% is more preferable, 0.1 mass% or more is still more preferable, 10 mass% or less is preferable, and 5 mass% or less is more preferable.

[アルミナ砥粒]
本開示に係る研磨液組成物は、突起欠陥の低減化の観点から、アルミナ砥粒の含有量が、0.1質量%以下が好ましく、0.05質量%以下がより好ましく、0.02質量%以下が更に好ましく、アルミナ砥粒を実質的に含まないことが更に好ましい。本開示において「アルミナ砥粒を実質的に含まない」とは、アルミナ粒子を含まないこと、砥粒として機能する量のアルミナ粒子を含まないこと、又は、研磨結果に影響を与える量のアルミナ粒子を含まないこと、を含みうる。アルミナ粒子の研磨液組成物中の含有量は、研磨液組成物中の砥粒全量に対し、2質量%以下が好ましく、1質量%以下がより好ましく、0.5質量%以下が更に好ましく、実質的に0質量%であることが更により好ましい。
[Alumina abrasive]
In the polishing composition according to the present disclosure, the content of alumina abrasive grains is preferably 0.1% by mass or less, more preferably 0.05% by mass or less, from the viewpoint of reducing protrusion defects, and 0.02% by mass. % Or less is further preferable, and it is more preferable that the alumina abrasive grains are not substantially contained. In the present disclosure, “substantially free of alumina abrasive grains” means that no alumina particles are contained, no alumina particles functioning as abrasive grains, or an amount of alumina particles that affect the polishing result. May not be included. The content of the alumina particles in the polishing liquid composition is preferably 2% by mass or less, more preferably 1% by mass or less, still more preferably 0.5% by mass or less, based on the total amount of abrasive grains in the polishing liquid composition. Even more preferably, it is substantially 0% by weight.

[pH]
本開示に係る研磨液組成物のpHは、研磨速度向上、及び長波長うねり低減の観点から、0.5以上であり、0.7以上が好ましく、0.9以上がより好ましく、1.0以上が更に好ましく、1.2以上が更により好ましく、1.4以上が更により好ましく、そして、同様の観点から、6.0以下であり、4.0以下が好ましく、3.0以下がより好ましく、2.5以下が更に好ましく、2.0以下が更により好ましい。pHの調整は、前述の酸や公知のpH調整剤を用いて、調整することが好ましい。上記のpHは、25℃における研磨液組成物のpHであり、pHメータを用いて測定でき、好ましくは、pHメータの電極を研磨液組成物へ浸漬して2分後の数値である。
[PH]
The pH of the polishing composition according to the present disclosure is 0.5 or higher, preferably 0.7 or higher, more preferably 0.9 or higher, from the viewpoint of improving the polishing rate and reducing long wavelength waviness, and more preferably 1.0 or higher. The above is more preferable, 1.2 or more is still more preferable, 1.4 or more is still more preferable, and from the same viewpoint, it is 6.0 or less, 4.0 or less is preferable, and 3.0 or less is more Preferably, 2.5 or less is further preferable, and 2.0 or less is even more preferable. The pH is preferably adjusted using the aforementioned acid or a known pH adjuster. The above pH is the pH of the polishing composition at 25 ° C. and can be measured using a pH meter, and is preferably a value two minutes after the electrode of the pH meter is immersed in the polishing composition.

[研磨液組成物の製造方法]
本開示に係る研磨液組成物は、例えば、粒子Aを含むシリカスラリーと、更に所望により、pH調整剤、酸化剤及びその他の成分とを公知の方法で配合し、pHを0.5以上6.0以下とすることにより製造できる。したがって、本開示は、少なくとも粒子A及び水を配合する工程を含む、研磨液組成物の製造に用いられるシリカスラリーの製造方法に関する。さらに、本開示は、少なくとも粒子A及び水を配合する工程を含み、必要に応じてpHを0.5以上6.0以下に調整する工程を含む、研磨液組成物の製造方法に関する。本開示において「配合する」とは、粒子A及び水、並びに必要に応じてpH調整剤、酸化剤及びその他の成分を同時に又は任意の順に混合することを含む。前記配合は、例えば、ホモミキサー、ホモジナイザー、超音波分散機及び湿式ボールミル等の混合器等を用いて行うことができる。研磨液組成物の製造方法における各成分の好ましい配合量は、研磨液組成物中の各成分の好ましい含有量と同じである。
[Method for producing polishing composition]
The polishing composition according to the present disclosure is prepared by, for example, blending a silica slurry containing the particles A and, if desired, a pH adjusting agent, an oxidizing agent and other components by a known method, and adjusting the pH to 0.5 or more and 6 It can be manufactured by setting it to 0.0 or less. Therefore, this indication is related with the manufacturing method of the silica slurry used for manufacture of polishing liquid composition including the process of blending at least particles A and water. Furthermore, this indication is related with the manufacturing method of polishing liquid composition including the process of mix | blending at least particle | grains A and water, and including the process of adjusting pH to 0.5 or more and 6.0 or less as needed. In the present disclosure, “mixing” includes mixing the particles A and water, and, if necessary, a pH adjuster, an oxidizing agent and other components simultaneously or in any order. The blending can be performed using, for example, a mixer such as a homomixer, a homogenizer, an ultrasonic disperser, and a wet ball mill. The preferable compounding quantity of each component in the manufacturing method of polishing liquid composition is the same as the preferable content of each component in polishing liquid composition.

本開示の研磨液組成物の製造方法は、シリカ粒子の分散性の観点から、好ましくは以下の工程を有する。
工程1:水と、pH調整剤と、任意で酸化剤を混合し、pH6.0以下の分散媒を調製する工程
工程2:前記分散媒と、粒子Aを含むシリカスラリーとを、混合する工程
工程1において、得られる分散媒のpHは、研磨液組成物のpHが所望の値となるように調整されることが好ましい。
The manufacturing method of the polishing composition of the present disclosure preferably includes the following steps from the viewpoint of dispersibility of silica particles.
Step 1: Step of mixing water, a pH adjuster, and optionally an oxidizing agent to prepare a dispersion medium having a pH of 6.0 or less Step 2: Step of mixing the dispersion medium and silica slurry containing particles A In step 1, the pH of the resulting dispersion medium is preferably adjusted so that the pH of the polishing composition becomes a desired value.

本開示において「研磨液組成物中の各成分の含有量」とは、研磨液組成物を研磨に使用する時点での前記各成分の含有量をいう。したがって、本開示に係る研磨液組成物が濃縮物として作製された場合には、前記各成分の含有量はその濃縮分だけ高くなりうる。   In the present disclosure, the “content of each component in the polishing liquid composition” refers to the content of each component at the time when the polishing liquid composition is used for polishing. Therefore, when the polishing liquid composition according to the present disclosure is prepared as a concentrate, the content of each component can be increased by the concentration.

[研磨液キット]
本開示は、研磨液組成物を製造するためのキットであって、前記粒子Aを含むシリカスラリーが容器に収納された容器入りスラリーを含む、研磨液キットに関する。本開示に係る研磨液キットは、前記容器入りスラリーとは別の容器に収納されたpH6.0以下の分散媒をさらに含むことができる。本開示によれば、砥粒としてシリカ粒子を使用した場合でも、粗研磨における研磨速度を大きく損ねることなく、さらに、粗研磨後のロールオフを大きく悪化させることなく、粗研磨後の基板表面の長波長うねりを低減できる研磨液組成物が得られうる研磨液キットを提供できる。
[Polishing liquid kit]
The present disclosure relates to a polishing liquid kit for manufacturing a polishing liquid composition, which includes a container-containing slurry in which a silica slurry containing the particles A is stored in a container. The polishing liquid kit according to the present disclosure may further include a dispersion medium having a pH of 6.0 or less housed in a container different from the container-containing slurry. According to the present disclosure, even when silica particles are used as the abrasive grains, the polishing rate in the rough polishing is not significantly impaired, and further, the roll-off after the rough polishing is not greatly deteriorated. A polishing liquid kit from which a polishing liquid composition capable of reducing long wavelength waviness can be obtained can be provided.

本開示に係る研磨液キットとしては、例えば、前記粒子Aを含有するシリカスラリー(第1液)と、被研磨物の研磨に用いる研磨液組成物に配合され得る他の成分を含む溶液(第2液)とが、相互に混合されていない状態で保存されており、これらが使用時に混合される研磨液キット(2液型研磨液組成物)が挙げられる。研磨液組成物に配合され得る他の成分としては、例えば、pH調整剤、酸化剤等が挙げられる。前記第1液及び第2液には、各々必要に応じて任意成分が含まれていても良い。該任意成分としては、例えば、増粘剤、分散剤、防錆剤、塩基性物質、研磨速度向上剤、界面活性剤、高分子化合物等が挙げられる。   As the polishing liquid kit according to the present disclosure, for example, a solution (first liquid) containing silica slurry (first liquid) containing the particles A and other components that can be blended in a polishing liquid composition used for polishing an object to be polished. 2 liquid) is stored in a state where they are not mixed with each other, and a polishing liquid kit (2 liquid type polishing liquid composition) in which these are mixed at the time of use is mentioned. Examples of other components that can be blended in the polishing liquid composition include a pH adjuster and an oxidizing agent. The first liquid and the second liquid may each contain an optional component as necessary. Examples of the optional component include a thickener, a dispersant, a rust inhibitor, a basic substance, a polishing rate improver, a surfactant, and a polymer compound.

[被研磨基板]
本開示に係る研磨液組成物が研磨の対象とする被研磨基板、磁気ディスク基板の製造に用いられる基板であり、例えば、Ni−Pメッキされたアルミニウム合金基板や、珪酸ガラス、アルミノ珪酸ガラス、結晶化ガラス、強化ガラス等のガラス基板が挙げられ、強度と扱いやすさの観点からNi−Pメッキされたアルミニウム合金基板が好ましい。本開示において「Ni−Pメッキされたアルミニウム合金基板」とは、アルミニウム合金基材の表面を研削後、無電解Ni−Pメッキ処理したものをいう。被研磨基板の表面を本開示にかかる研磨液組成物を用いて研磨する工程の後、スパッタ等でその基板表面に磁性層を形成する工程を行うことにより、磁気ディスクを製造できうる。被研磨基板の形状には、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状が挙げられ、好ましくはディスク状の被研磨基板である。ディスク状の被研磨基板の場合、その外径は、例えば10〜120mmであり、その厚みは、例えば0.5〜2mmである。
[Polished substrate]
The polishing composition according to the present disclosure is a substrate to be polished and a substrate used for manufacturing a magnetic disk substrate. For example, a Ni-P plated aluminum alloy substrate, silicate glass, aluminosilicate glass, Examples thereof include glass substrates such as crystallized glass and tempered glass, and an aluminum alloy substrate plated with Ni—P is preferable from the viewpoint of strength and ease of handling. In the present disclosure, the “Ni—P plated aluminum alloy substrate” refers to a surface of an aluminum alloy base material that has been subjected to electroless Ni—P plating after being ground. A magnetic disk can be manufactured by performing the process of forming a magnetic layer on the substrate surface by sputtering or the like after the process of polishing the surface of the substrate to be polished using the polishing composition according to the present disclosure. Examples of the shape of the substrate to be polished include a shape having a flat portion such as a disk shape, a plate shape, a slab shape, and a prism shape, and a shape having a curved surface portion such as a lens, and preferably a disk-shaped substrate to be polished. It is. In the case of a disk-shaped substrate to be polished, the outer diameter is, for example, 10 to 120 mm, and the thickness is, for example, 0.5 to 2 mm.

一般に、磁気ディスクは、研削工程を経た被研磨基板が、粗研磨工程、仕上げ研磨工程を経て研磨され、磁性層形成工程を経て製造される。本開示に係る研磨液組成物は、粗研磨工程における研磨に使用されることが好ましい。   In general, a magnetic disk is manufactured through a magnetic layer forming process in which a substrate to be polished that has undergone a grinding process is polished through a rough polishing process and a final polishing process. The polishing composition according to the present disclosure is preferably used for polishing in the rough polishing step.

[磁気ディスク基板の製造方法]
本開示は、本開示の研磨液組成物を用いて被研磨基板を研磨する工程(以下、「本開示に係る研磨液組成物を用いた研磨工程」ともいう)を含む、磁気ディスク基板の製造方法(以下、「本開示に係る基板製造方法」ともいう。)に関する。
[Method of manufacturing magnetic disk substrate]
The present disclosure includes a step of polishing a substrate to be polished using the polishing liquid composition of the present disclosure (hereinafter also referred to as “polishing step using the polishing liquid composition according to the present disclosure”). The present invention relates to a method (hereinafter also referred to as “substrate manufacturing method according to the present disclosure”).

本開示に係る研磨液組成物を用いた研磨工程では、例えば、研磨パッドを貼り付けた定盤で被研磨基板を挟み込み、本開示に係る研磨液組成物を研磨面に供給し、圧力を加えながら研磨パッドや被研磨基板を動かすことにより、被研磨基板を研磨する。   In the polishing process using the polishing liquid composition according to the present disclosure, for example, the substrate to be polished is sandwiched by a surface plate with a polishing pad attached thereto, the polishing liquid composition according to the present disclosure is supplied to the polishing surface, and pressure is applied. The substrate to be polished is polished by moving the polishing pad and the substrate to be polished.

本開示に係る研磨液組成物を用いた研磨工程における研磨荷重は、研磨速度向上、粗研磨後のロールオフ低減、及び長波長うねり低減の観点から、30kPa以下が好ましく、25kPa以下がより好ましく、20kPa以下が更に好ましく、そして、3kPa以上が好ましく、5kPa以上がより好ましく、7kPa以上が更に好ましい。本開示において「研磨荷重」とは、研磨時に被研磨基板の被研磨面に加えられる定盤の圧力をいう。研磨荷重の調整は、定盤や基板等への空気圧や重りの負荷によって行うことができる。   The polishing load in the polishing step using the polishing liquid composition according to the present disclosure is preferably 30 kPa or less, more preferably 25 kPa or less, from the viewpoints of improving the polishing rate, reducing roll-off after rough polishing, and reducing long wavelength waviness. 20 kPa or less is more preferable, 3 kPa or more is preferable, 5 kPa or more is more preferable, and 7 kPa or more is more preferable. In the present disclosure, “polishing load” refers to the pressure of the surface plate applied to the surface to be polished of the substrate to be polished during polishing. The polishing load can be adjusted by applying air pressure or weight to the surface plate or the substrate.

本開示に係る研磨液組成物を用いた研磨工程における、被研磨基板1cm2あたりの研磨量は、研磨速度向上、粗研磨後のロールオフ低減、及び長波長うねり低減の観点から、0.20mg以上が好ましく、0.30mg以上がより好ましく、0.40mg以上が更に好ましく、そして、同様の観点から、2.50mg以下が好ましく、2.00mg以下がより好ましく、1.60mg以下が更に好ましい。 In the polishing process using the polishing liquid composition according to the present disclosure, the polishing amount per 1 cm 2 of the substrate to be polished is 0.20 mg from the viewpoint of improving the polishing rate, reducing roll-off after rough polishing, and reducing long wavelength waviness. The above is preferable, 0.30 mg or more is more preferable, 0.40 mg or more is more preferable, and from the same viewpoint, 2.50 mg or less is preferable, 2.00 mg or less is more preferable, and 1.60 mg or less is further preferable.

本開示に係る研磨液組成物を用いた研磨工程における被研磨基板1cm2あたりの研磨液組成物の供給速度は、経済性の観点から、2.5mL/分以下が好ましく、2.0mL/分以下がより好ましく、1.5mL/分以下が更に好ましく、そして、研磨速度の向上の観点から、被研磨基板1cm2あたり0.01mL/分以上が好ましく、0.03mL/分以上がより好ましく、0.05mL/分以上が更に好ましい。 The supply rate of the polishing liquid composition per 1 cm 2 of the substrate to be polished in the polishing step using the polishing liquid composition according to the present disclosure is preferably 2.5 mL / min or less from the viewpoint of economy, and is 2.0 mL / min. The following is more preferable, 1.5 mL / min or less is further preferable, and from the viewpoint of improving the polishing rate, 0.01 mL / min or more per 1 cm 2 of the substrate to be polished is preferable, 0.03 mL / min or more is more preferable, 0.05 mL / min or more is more preferable.

本開示に係る研磨液組成物を研磨機へ供給する方法としては、例えば、ポンプ等を用いて連続的に供給を行う方法が挙げられる。研磨液組成物を研磨機へ供給する際は、全ての成分を含んだ1液で供給する方法の他、研磨液組成物の保存安定性等を考慮して、複数の配合用成分液に分け、2液以上で供給することもできる。後者の場合、例えば供給配管中又は被研磨基板上で、上記複数の配合用成分液が混合され、本開示に係る研磨液組成物となる。   Examples of a method for supplying the polishing liquid composition according to the present disclosure to a polishing machine include a method of continuously supplying using a pump or the like. When supplying the polishing liquid composition to the polishing machine, in addition to the method of supplying it with one liquid containing all the components, considering the storage stability of the polishing liquid composition, etc., it is divided into a plurality of component liquids for blending. Two or more liquids can be supplied. In the latter case, for example, the plurality of compounding component liquids are mixed in the supply pipe or on the substrate to be polished to obtain the polishing liquid composition according to the present disclosure.

本開示に係る基板製造方法によれば、粗研磨における研磨速度を大幅に損なうことなく、粗研磨後の基板表面の長波長うねり及びロールオフを低減できるため、基板品質が向上した磁気ディスク基板を効率よく製造できるという効果が奏されうる。   According to the substrate manufacturing method according to the present disclosure, the long-wavelength undulation and roll-off of the substrate surface after rough polishing can be reduced without significantly impairing the polishing rate in rough polishing. The effect that it can manufacture efficiently can be show | played.

[研磨方法]
本開示は、本開示に係る研磨液組成物を用いた研磨工程を含む、磁気ディスク基板の研磨方法(以下、本開示に係る研磨方法ともいう)に関する。
[Polishing method]
The present disclosure relates to a magnetic disk substrate polishing method (hereinafter, also referred to as a polishing method according to the present disclosure) including a polishing step using the polishing liquid composition according to the present disclosure.

本開示に係る研磨方法を使用することにより、粗研磨における研磨速度を大幅に損なうことなく、粗研磨後の基板表面の長波長うねり及びロールオフを低減できるため、基板品質が向上した磁気ディスク基板の生産性を向上できるという効果が奏されうる。具体的な研磨の方法及び条件は、上述した本開示に係る基板製造方法と同じようにすることができる。   By using the polishing method according to the present disclosure, the long-wavelength undulation and roll-off of the substrate surface after the rough polishing can be reduced without significantly impairing the polishing speed in the rough polishing. The effect that productivity of can be improved can be show | played. The specific polishing method and conditions can be the same as those of the substrate manufacturing method according to the present disclosure described above.

以下、実施例により本開示をさらに詳細に説明するが、これらは例示的なものであって、本開示はこれら実施例に制限されるものではない。   Hereinafter, the present disclosure will be described in more detail by way of examples. However, these examples are illustrative, and the present disclosure is not limited to these examples.

1.研磨液組成物の調製
表1の砥粒(非球状シリカ粒子A、アルミナ砥粒)、pH調整剤(硫酸)、酸化剤(過酸化水素)、及び水を用い、実施例1〜4及び比較例1〜4の研磨液組成物を調製した。研磨液組成物中の各成分の含有量は、砥粒:7.5質量%、硫酸:0.5質量%、過酸化水素:0.5質量%であった。研磨液組成物のpHは1.4であった。粒子Aは、水ガラス法により製造されたコロイダルシリカ粒子である。pHは、pHメータ(東亜ディーケーケー社製)を用いて測定し、電極を研磨液組成物へ浸漬して2分後の数値を採用した(以下、同様)。
1. Preparation of polishing liquid composition Examples 1-4 and comparison using the abrasive grains (non-spherical silica particles A, alumina abrasive grains), pH adjuster (sulfuric acid), oxidizing agent (hydrogen peroxide), and water in Table 1 The polishing liquid compositions of Examples 1 to 4 were prepared. The content of each component in the polishing composition was 7.5% by mass of abrasive grains, 0.5% by mass of sulfuric acid, and 0.5% by mass of hydrogen peroxide. The pH of the polishing composition was 1.4. The particles A are colloidal silica particles produced by a water glass method. The pH was measured using a pH meter (manufactured by Toa DKK Co., Ltd.), and the value after 2 minutes after the electrode was immersed in the polishing composition was adopted (hereinafter the same).

2.各パラメータの測定方法
[シリカ粒子の平均短径、平均アスペクト比及び平均球形度の測定方法]
シリカ粒子をTEM(日本電子社製「JEM−2000FX」、80kV、1〜5万倍)で観察した写真をパーソナルコンピュータにスキャナで画像データとして取込み、解析ソフト(三谷商事「WinROOF(Ver.3.6)」)を用いて500個のシリカ粒子の投影画像について下記の通り解析した。
個々のシリカ粒子の短径及び長径を求め、短径の平均値(平均短径)を得た。さらに、長径を短径で除した値からアスペクト比の平均値(平均アスペクト比)を得た。さらに、個々のシリカ粒子の面積Sと周囲長Lとから、下記式により個々のシリカ粒子の球形度を算出し、球形度の平均値(平均球形度)を得た。
球形度=4π×S/L2
2. Measuring method of each parameter [Measuring method of average minor diameter, average aspect ratio and average sphericity of silica particles]
A photograph obtained by observing silica particles with a TEM (“JEM-2000FX” manufactured by JEOL Ltd., 80 kV, 1 to 50,000 times) is captured as image data with a scanner on a personal computer, and analysis software (Mitani Corporation “WinROOF (Ver. 3. 6) ”) was used to analyze the projected images of 500 silica particles as follows.
The minor axis and major axis of each silica particle were determined, and the average value of the minor axis (average minor axis) was obtained. Further, an average aspect ratio (average aspect ratio) was obtained from a value obtained by dividing the major axis by the minor axis. Furthermore, from the area S and the perimeter length L of each silica particle, the sphericity of each silica particle was calculated by the following formula, and the average value of sphericity (average sphericity) was obtained.
Sphericality = 4π × S / L 2

[シリカ砥粒の平均一次粒子径の測定方法]
シリカ砥粒の平均一次粒子径は、BET法によって算出されるBET比表面積S(m2/g)を用いて下記式から算出した。
平均一次粒子径(nm)=2727/S
[Measurement method of average primary particle diameter of silica abrasive grains]
The average primary particle diameter of the silica abrasive grains was calculated from the following formula using the BET specific surface area S (m 2 / g) calculated by the BET method.
Average primary particle diameter (nm) = 2727 / S

BET比表面積Sは、下記の[前処理]をした後、測定サンプル約0.1gを測定セルに小数点以下4桁(0.1mgの桁)まで精量し、比表面積の測定直前に110℃の雰囲気下で30分間乾燥した後、比表面積測定装置(マイクロメリティック自動比表面積測定装置、フローソーブIII2305、島津製作所製)を用いてBET法により測定した。
[前処理]
スラリー状の粒子をシャーレにとり150℃の熱風乾燥機内で1時間乾燥させた。乾燥後の試料をメノウ乳鉢で細かく粉砕して測定サンプルを得た。
The BET specific surface area S was subjected to the following [pre-treatment], then weighed about 0.1 g of the measurement sample into the measurement cell to 4 digits after the decimal point (0.1 mg digit), and 110 ° C. immediately before the measurement of the specific surface area. After being dried for 30 minutes under the above atmosphere, measurement was performed by the BET method using a specific surface area measuring device (Micromeritic automatic specific surface area measuring device, Flowsorb III2305, manufactured by Shimadzu Corporation).
[Preprocessing]
Slurry particles were placed in a petri dish and dried in a hot air dryer at 150 ° C. for 1 hour. The dried sample was finely pulverized in an agate mortar to obtain a measurement sample.

[シリカ粒子の平均二次粒子径及びCV値の測定方法]
シリカ粒子をイオン交換水で希釈し、シリカ粒子を0.02質量%含有する分散液を調製して試料とし、動的光散乱装置(大塚電子社製「DLS−7000」)を用いて、下記の条件で測定した。得られた重量換算での粒度分布の面積が全体の50%となる粒径(D50)を平均二次粒子径とした。同時に、得られた重量換算分布における標準偏差を、前記平均二次粒径で除して、100をかけた値をCV値(単位:%)とした。
測定条件:試料量 30mL
:レーザー He−Ne、3.0mW、633nm
:散乱光検出角 90°
:積算回数 200回
[Measuring method of average secondary particle diameter and CV value of silica particles]
Silica particles are diluted with ion-exchanged water, a dispersion containing 0.02% by mass of silica particles is prepared and used as a sample, and a dynamic light scattering device (“DLS-7000” manufactured by Otsuka Electronics Co., Ltd.) is used. It measured on condition of this. The particle diameter (D50) at which the area of the obtained particle size distribution in terms of weight was 50% of the whole was taken as the average secondary particle diameter. At the same time, the standard deviation in the obtained weight conversion distribution was divided by the average secondary particle diameter, and a value multiplied by 100 was taken as the CV value (unit:%).
Measurement conditions: Sample volume 30 mL
: Laser He-Ne, 3.0 mW, 633 nm
: Scattered light detection angle 90 °
: Accumulation count 200 times

[アルミナ砥粒の平均二次粒子径の測定方法]
ポイズ530(花王社製、ポリカルボン酸型高分子界面活性剤)を0.5質量%含有する水溶液を分散媒として、下記測定装置内に投入し、続いて透過率が75〜95%になるようにサンプル(アルミナ粒子)を投入し、その後、5分間超音波を付与した後、粒径を測定した。
測定機器 :堀場製作所製 レーザー回折/散乱式粒度分布測定装置 LA920
循環強度 :4
超音波強度:4
[Measurement method of average secondary particle diameter of alumina abrasive grains]
An aqueous solution containing 0.5% by mass of Poise 530 (manufactured by Kao Corporation, polycarboxylic acid type polymer surfactant) is used as a dispersion medium, and is introduced into the following measuring apparatus, and subsequently the transmittance is 75 to 95%. In this manner, a sample (alumina particles) was put in, and after applying ultrasonic waves for 5 minutes, the particle size was measured.
Measuring instrument: Laser diffraction / scattering particle size distribution measuring device LA920 manufactured by Horiba, Ltd.
Circulation strength: 4
Ultrasonic intensity: 4

3.基板の研磨
調製した実施例1〜4及び比較例1〜4の研磨液組成物を用いて、下記の研磨条件で被研磨基板を研磨した。
3. Polishing Substrate The substrate to be polished was polished under the following polishing conditions using the prepared polishing liquid compositions of Examples 1 to 4 and Comparative Examples 1 to 4.

[研磨条件]
研磨機:両面研磨機(9B型両面研磨機、スピードファム社製)
被研磨基板:Ni−Pメッキされたアルミニウム合金基板、厚み:1.27mm、直径95mm、枚数:10枚
研磨液:研磨液組成物
研磨パッド:スエードタイプ(発泡層:ポリウレタンエラストマー)、厚み:1.0mm、平均気孔径:30μm、表面層の圧縮率:2.5%(Filwel社製)
定盤回転数:40rpm
研磨荷重:9.8kPa(設定値)
研磨液供給量:60mL/min
研磨時間:シリカ砥粒5分30秒、アルミナ砥粒3分30秒
[Polishing conditions]
Polishing machine: Double-side polishing machine (9B-type double-side polishing machine, manufactured by Speed Fam Co., Ltd.)
Substrate to be polished: Ni-P plated aluminum alloy substrate, thickness: 1.27 mm, diameter 95 mm, number of sheets: 10 polishing liquid: polishing composition polishing pad: suede type (foam layer: polyurethane elastomer), thickness: 1 0.0 mm, average pore diameter: 30 μm, compression ratio of surface layer: 2.5% (manufactured by Filwel)
Plate rotation speed: 40 rpm
Polishing load: 9.8 kPa (set value)
Polishing liquid supply amount: 60 mL / min
Polishing time: silica abrasive 5 minutes 30 seconds, alumina abrasive 3 minutes 30 seconds

4.評価方法
[研磨速度の評価]
実施例1〜4及び比較例1〜4の研磨液組成物の研磨速度は、以下のようにして評価した。まず、研磨前後の各基板1枚当たりの重さを計り(Sartorius社製、「BP−210S」)を用いて測定し、各基板の質量変化から質量減少量を求めた。全10枚の平均の質量減少量を研磨時間で割った値を研磨速度とし、下記式により算出した。さらに比較例1を100とした相対値を算出した。
質量減少量(g)={研磨前の質量(g)−研磨後の質量(g)}
研磨速度(mg/min)=質量減少量(mg)/研磨時間(min)
4). Evaluation method [Evaluation of polishing rate]
The polishing rates of the polishing composition of Examples 1 to 4 and Comparative Examples 1 to 4 were evaluated as follows. First, the weight per substrate before and after polishing was measured (measured by Sartorius, “BP-210S”), and the amount of mass reduction was determined from the change in mass of each substrate. A value obtained by dividing the average mass reduction amount of all 10 sheets by the polishing time was defined as a polishing rate, and was calculated by the following formula. Furthermore, a relative value was calculated with Comparative Example 1 as 100.
Weight loss (g) = {mass before polishing (g) −mass after polishing (g)}
Polishing speed (mg / min) = mass reduction amount (mg) / polishing time (min)

[長波長うねりの評価]
研磨後の10枚の両面、計20面について、下記の条件で測定した。その20面の測定値の平均値を基板の長波長うねりとして算出した。さらに比較例1を100.0とした相対値を算出した。
測定機器: KLA Tencor社製「OptiFLAT III」
Radius Inside/Out: 14.87mm/47.83mm
Center X/Y: 55.44mm/53.38mm
Low Cutoff: 2.5mm
Inner Mask: 18.50mm
Outer Mask: 45.5mm
Long Period: 2.5mm
Wa Correction: 0.9
Rn Correction: 1.0
No Zernike Terms: 8
[Evaluation of long wavelength swell]
Measurements were made on the following conditions for 10 surfaces after polishing, a total of 20 surfaces. The average value of the measured values on the 20 surfaces was calculated as the long wavelength waviness of the substrate. Furthermore, the relative value which set the comparative example 1 as 100.0 was computed.
Measuring equipment: “OptiFLAT III” manufactured by KLA Tencor
Radius Inside / Out: 14.87mm / 47.83mm
Center X / Y: 55.44mm / 53.38mm
Low Cutoff: 2.5mm
Inner Mask: 18.50mm
Outer Mask: 45.5mm
Long Period: 2.5mm
Wa Correction: 0.9
Rn Correction: 1.0
No Zernike Terms: 8

[ロールオフの評価]
研磨後の10枚の基板から任意に1枚を選択し、選択した基板のロールオフ値について、Zygo社製「New View 5032(レンズ:2.5倍、ズーム:0.5倍)」を用いて下記のとおり測定した。
(測定条件)
図3のように、基板表面の中心から外周方向に向かって43.0mm及び44.0mmとなる位置をそれぞれA点及びB点とし、A点とB点とを結ぶ延長線上において基板表面の中心から46.6mmとなる位置をC点とする。そして、研磨後の基板1枚のC点の位置を表裏3箇所ずつ(計6箇所)算出し、それぞれのC点から基板表面までの基板の厚み方向の距離を測定し、それらの平均値をロールオフ値(nm)とした。各測定点の位置算出には、Zygo社製の解析ソフト(Metro Pro)を用いた。ロールオフ値が正(プラス)の値に近づくほど、基板の端部が盛り上がっていることを示し、ロールオフが抑制されたといえる。
[Roll-off evaluation]
Select one of the 10 substrates after polishing, and use “New View 5032 (lens: 2.5 ×, zoom: 0.5 ×)” manufactured by Zygo for the roll-off value of the selected substrate. And measured as follows.
(Measurement condition)
As shown in FIG. 3, the positions of 43.0 mm and 44.0 mm from the center of the substrate surface toward the outer peripheral direction are point A and point B, respectively, and the center of the substrate surface on the extension line connecting points A and B A position where the distance is 46.6 mm from the first point is defined as point C. And the position of C point of 1 board | substrate after grinding | polishing calculates front and back 3 places (total 6 places), measures the distance of the thickness direction of the board | substrate from each C point to the substrate surface, and those average values are calculated. The roll-off value (nm) was used. For calculating the position of each measurement point, analysis software (Metro Pro) manufactured by Zygo was used. The closer the roll-off value is to a positive (plus) value, the higher the end of the substrate is, and it can be said that roll-off is suppressed.

[アルミナ残留の評価方法]
研磨後の各基板の表面を走査型電子顕微鏡(日立製作所社製:S−4000)にて1万倍で観察し、下記の3段階評価をした。
○:表面にアルミナ残留物が全く観察されないもの
△:表面にわずかにアルミナ残留物が観察されたもの
×:表面にアルミナ残留物が観察されたもの
[Alumina residue evaluation method]
The surface of each substrate after polishing was observed at a magnification of 10,000 with a scanning electron microscope (manufactured by Hitachi, Ltd .: S-4000), and the following three-stage evaluation was performed.
○: No alumina residue observed on the surface Δ: A slight alumina residue observed on the surface ×: Alumina residue observed on the surface

5.結果
各評価の結果を表1に示した。
5). Results The results of each evaluation are shown in Table 1.

表1に示されるように、特定の非球状シリカ粒子を砥粒として含有する実施例1〜4は、特定の非球状シリカを砥粒として含まない比較例1〜4に比べて、研磨速度を大幅に損ねることなく、さらにロールオフを大幅に悪化させることなく、研磨後の長波長うねりが低減された。   As Table 1 shows, Examples 1-4 which contain a specific non-spherical silica particle as an abrasive grain have polishing rate compared with Comparative Examples 1-4 which do not contain a specific non-spherical silica as an abrasive grain. Long-wave waviness after polishing was reduced without significantly detracting from the roll-off and without significantly deteriorating roll-off.

本開示によれば、研磨速度を維持しつつ、研磨後のロールオフ及び長波長うねりを低減できるから、磁気ディスク基板の製造の生産性を向上できる。本開示は、磁気ディスク基板の製造に好適に用いることができる。   According to the present disclosure, roll-off and long-wave waviness after polishing can be reduced while maintaining the polishing rate, so that the productivity of manufacturing a magnetic disk substrate can be improved. The present disclosure can be suitably used for manufacturing a magnetic disk substrate.

Claims (10)

非球状シリカ粒子A及び水を含み、
pHが、0.5以上6.0以下であり、
前記非球状シリカ粒子Aの平均二次粒子径D2と平均一次粒子径D1との比D2/D1が、2.1以上4.0以下であり、
前記非球状シリカ粒子Aの平均二次粒子径D2が、180nm以上である、磁気ディスク基板用研磨液組成物。
Comprising non-spherical silica particles A and water,
pH is 0.5 or more and 6.0 or less,
The ratio D2 / D1 of the average secondary particle diameter D2 and the average primary particle diameter D1 of the non-spherical silica particles A is 2.1 or more and 4.0 or less,
A polishing composition for a magnetic disk substrate, wherein the non-spherical silica particles A have an average secondary particle diameter D2 of 180 nm or more.
前記非球状シリカ粒子Aの平均球形度が、0.85以下である、請求項1に記載の磁気ディスク基板用研磨液組成物。   The polishing composition for a magnetic disk substrate according to claim 1, wherein the nonspherical silica particles A have an average sphericity of 0.85 or less. 前記非球状シリカ粒子Aの平均一次粒子径D1が、80nm以上である、請求項1又は2に記載の磁気ディスク基板用研磨液組成物。   The polishing composition for a magnetic disk substrate according to claim 1 or 2, wherein the non-spherical silica particles A have an average primary particle diameter D1 of 80 nm or more. アルミナ砥粒の含有量が、0.1質量%以下である、請求項1から3のいずれかに記載の磁気ディスク基板用研磨液組成物。   4. The polishing composition for a magnetic disk substrate according to claim 1, wherein the content of the alumina abrasive grains is 0.1% by mass or less. 前記非球状シリカ粒子Aの二次粒子径の変動係数CVが、30%以下である、請求項1から4のいずれかに記載の磁気ディスク基板用研磨液組成物。   The polishing composition for a magnetic disk substrate according to any one of claims 1 to 4, wherein a coefficient of variation CV of a secondary particle diameter of the non-spherical silica particles A is 30% or less. Ni−Pメッキされたアルミニウム合金基板の研磨に用いられる、請求項1から5のいずれかに記載された磁気ディスク基板用研磨液組成物。   The polishing composition for a magnetic disk substrate according to any one of claims 1 to 5, which is used for polishing an Ni-P plated aluminum alloy substrate. pH調整剤を更に含む、請求項1から6のいずれかに記載の磁気ディスク基板用研磨液組成物。   The polishing composition for a magnetic disk substrate according to claim 1, further comprising a pH adjuster. 酸化剤を更に含む、請求項1から7のいずれかに記載の磁気ディスク基板用研磨液組成物。   The polishing composition for a magnetic disk substrate according to any one of claims 1 to 7, further comprising an oxidizing agent. 請求項1から8のいずれかに記載の磁気ディスク基板用研磨液組成物を用いて被研磨基板を研磨する工程を含む、磁気ディスク基板の製造方法。   A method for producing a magnetic disk substrate, comprising a step of polishing a substrate to be polished using the polishing composition for a magnetic disk substrate according to claim 1. 請求項1から8のいずれかに記載の磁気ディスク基板用研磨液組成物を用いて被研磨基板を研磨する工程を含み、前記被研磨基板は、磁気ディスク基板の製造に用いられる基板である、基板の研磨方法。   A step of polishing a substrate to be polished using the polishing composition for a magnetic disk substrate according to any one of claims 1 to 8, wherein the substrate to be polished is a substrate used for production of a magnetic disk substrate. A method for polishing a substrate.
JP2015233520A 2015-11-30 2015-11-30 Polishing liquid composition for magnetic disk substrate Active JP6584936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015233520A JP6584936B2 (en) 2015-11-30 2015-11-30 Polishing liquid composition for magnetic disk substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015233520A JP6584936B2 (en) 2015-11-30 2015-11-30 Polishing liquid composition for magnetic disk substrate

Publications (2)

Publication Number Publication Date
JP2017102990A true JP2017102990A (en) 2017-06-08
JP6584936B2 JP6584936B2 (en) 2019-10-02

Family

ID=59017461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015233520A Active JP6584936B2 (en) 2015-11-30 2015-11-30 Polishing liquid composition for magnetic disk substrate

Country Status (1)

Country Link
JP (1) JP6584936B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003959A1 (en) * 2017-06-27 2019-01-03 花王株式会社 Polishing liquid composition
JP2020053108A (en) * 2018-09-28 2020-04-02 株式会社フジミインコーポレーテッド Composition for polishing and use thereof
JP7396953B2 (en) 2020-03-31 2023-12-12 株式会社フジミインコーポレーテッド Polishing composition, substrate manufacturing method, and polishing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059877A (en) * 2001-08-09 2003-02-28 Fujimi Inc Polishing composition and polishing method using the same
JP2004123880A (en) * 2002-10-01 2004-04-22 Fujimi Inc Polishing composition
JP2014130663A (en) * 2012-12-28 2014-07-10 Kao Corp Manufacturing method for magnetic disk substrate
JP2015041391A (en) * 2013-08-20 2015-03-02 花王株式会社 Manufacturing method of magnetic disk substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059877A (en) * 2001-08-09 2003-02-28 Fujimi Inc Polishing composition and polishing method using the same
JP2004123880A (en) * 2002-10-01 2004-04-22 Fujimi Inc Polishing composition
JP2014130663A (en) * 2012-12-28 2014-07-10 Kao Corp Manufacturing method for magnetic disk substrate
JP2015041391A (en) * 2013-08-20 2015-03-02 花王株式会社 Manufacturing method of magnetic disk substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003959A1 (en) * 2017-06-27 2019-01-03 花王株式会社 Polishing liquid composition
JP2019006935A (en) * 2017-06-27 2019-01-17 花王株式会社 Polishing liquid composition
JP2020053108A (en) * 2018-09-28 2020-04-02 株式会社フジミインコーポレーテッド Composition for polishing and use thereof
JP7262197B2 (en) 2018-09-28 2023-04-21 株式会社フジミインコーポレーテッド Polishing composition and its use
JP7396953B2 (en) 2020-03-31 2023-12-12 株式会社フジミインコーポレーテッド Polishing composition, substrate manufacturing method, and polishing method

Also Published As

Publication number Publication date
JP6584936B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
WO2017094592A1 (en) Polishing liquid composition for magnetic disk substrate
JP4231632B2 (en) Polishing liquid composition
TW500785B (en) Polishing composition and method for producing a memory hard disk
WO2016002613A1 (en) Polishing liquid composition for magnetic disk substrates
JP6820723B2 (en) Abrasive liquid composition for magnetic disk substrate
JP6584936B2 (en) Polishing liquid composition for magnetic disk substrate
JP2014205756A (en) Rough polishing abrasive composition, method for polishing magnetic disk substrate, method for producing magnetic disk substrate, and magnetic disk substrate
TW201905157A (en) Polishing liquid composition
JP2005023228A (en) Composition for polishing
JP6584945B2 (en) Polishing liquid composition for magnetic disk substrate
JP6584935B2 (en) Polishing liquid composition for magnetic disk substrate
TWI731113B (en) Manufacturing method of magnetic disk substrate
JP7411498B2 (en) polishing liquid composition
TWI808978B (en) Silicon oxide slurry for polishing liquid composition
JP6982427B2 (en) Silica slurry
JP7055695B2 (en) Silica abrasive grains for polishing
JP2009181690A (en) Method of manufacturing substrate
JP6959857B2 (en) Abrasive liquid composition
WO2023229009A1 (en) Grinding liquid composition
WO2019004161A1 (en) Silica slurry for polishing-liquid composition
WO2024106338A1 (en) Polishing liquid composition
JP2023174608A (en) polishing liquid composition
JP2023173782A (en) polishing liquid composition
JP6425992B2 (en) Polishing liquid composition for sapphire plate
JP2023169503A (en) Silica-based particle dispersion, polishing slurries for polishing magnetic disk substrate, composition for polishing magnetic disk substrates, and method for manufacturing silica-based particle groups

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190904

R151 Written notification of patent or utility model registration

Ref document number: 6584936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250