JP2017102046A - Image forming apparatus and recording medium thickness determination method - Google Patents

Image forming apparatus and recording medium thickness determination method Download PDF

Info

Publication number
JP2017102046A
JP2017102046A JP2015236422A JP2015236422A JP2017102046A JP 2017102046 A JP2017102046 A JP 2017102046A JP 2015236422 A JP2015236422 A JP 2015236422A JP 2015236422 A JP2015236422 A JP 2015236422A JP 2017102046 A JP2017102046 A JP 2017102046A
Authority
JP
Japan
Prior art keywords
light
wavelength
recording medium
thickness
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015236422A
Other languages
Japanese (ja)
Inventor
祥代 山田
Sachiyo Yamada
祥代 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2015236422A priority Critical patent/JP2017102046A/en
Publication of JP2017102046A publication Critical patent/JP2017102046A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an image forming apparatus that, in determination of the thickness of a recording medium including paper, is not easily affected by a change or variation in the amount of received light by using optical means and can accurately determine the thickness of the recording medium.SOLUTION: An image forming apparatus comprises: light source parts 3 (light source 31 and light source 32) that irradiate a recording medium 2 with rays of irradiation light having different wavelengths or wavelength ranges; and light receiving means 4 (light receiving part 41 and light receiving part 42) that receive the irradiation light that has transmitted through the recording medium 2, and determines the thickness of the recording medium 2 on the basis of a difference in the amount of received rays of light having different wavelengths or wavelength ranges.SELECTED DRAWING: Figure 1

Description

本発明は、画像形成装置に関し、特に紙などの記録媒体の厚さを判別する技術に関する。   The present invention relates to an image forming apparatus, and more particularly to a technique for determining the thickness of a recording medium such as paper.

画像形成装置(プリンタや複写機など)において使用される記録媒体(紙など)につき、従来は、使用者が画像形成装置の操作パネル等から使用する記録媒体の情報(紙の種別や厚さ等)を入力し、その情報を基に適切な定着条件、転写条件、搬送条件等の制御条件を導出するものであった。また、光センサ等によって自動的に記録媒体に関する情報を判別し、これを基に適切な定着条件、転写条件、搬送条件等の制御条件を導出するものも存在する。
これに関し、光センサを用いて記録媒体の厚さを判別する技術が特許文献1によって開示されている。
For recording media (paper, etc.) used in image forming apparatuses (printers, copiers, etc.), conventionally, information on recording media used by the user from the operation panel of the image forming apparatus (paper type, thickness, etc.) ) And appropriate control conditions such as fixing conditions, transfer conditions, and transport conditions are derived based on the information. In addition, there is an apparatus that automatically determines information about a recording medium by using an optical sensor or the like and derives control conditions such as an appropriate fixing condition, transfer condition, and conveying condition based on the information.
In this regard, Patent Document 1 discloses a technique for determining the thickness of a recording medium using an optical sensor.

特開2014−145761号公報JP 2014-145761 A

特許文献1によって開示される技術は、基準反射板を閉めた状態で得られる“高反射状態での光量”と、基準反射板を開けた状態で得られる“低反射状態での光量”との比によって、記録媒体の厚さを求めるものである。しかしながら、この方法では、基準反射板を開閉する機構を設けることが必須となる。可動部を有する機構の追加は、コスト増につながると共に、故障などの問題を引き起こす原因を増やすことにもなる。
また、光センサを用いて、記録媒体を透過または反射した光を受光し、その受光量(絶対量)によって記録媒体の厚さを判別する方法の場合、センサ等の経年変化や、汚れなどの外的要因により受光量が影響を受けることにより、受光光量値に変化やバラツキが生じ、判別精度が低下するという問題があった。
The technique disclosed in Patent Document 1 is that “amount of light in a high reflection state” obtained with the reference reflector closed and “amount of light in a low reflection state” obtained with the reference reflector opened. The thickness of the recording medium is obtained by the ratio. However, in this method, it is essential to provide a mechanism for opening and closing the reference reflector. The addition of a mechanism having a movable part leads to an increase in cost and increases the cause of problems such as failure.
In the case of a method of using a photosensor to receive light that has been transmitted or reflected through a recording medium and determining the thickness of the recording medium based on the amount of received light (absolute amount), such as sensor aging, dirt, etc. When the amount of received light is affected by an external factor, there is a problem in that the received light amount value changes or varies, and the discrimination accuracy decreases.

本発明は、上記の点に鑑み、紙などの記録媒体の厚さの判別において、光学的手段を用いながら、受光光量値の変化やバラツキの影響を受けることが抑止され、精度よく記録媒体の厚さ判別が可能な画像形成装置を提供することを目的とする。   In view of the above-mentioned points, the present invention suppresses the influence of change or variation in the amount of received light while using optical means in the determination of the thickness of a recording medium such as paper. An object of the present invention is to provide an image forming apparatus capable of determining the thickness.

(構成1)
記録媒体搬送手段と、光源部と、受光手段とを備え、前記光源部は、異なる波長又は波長領域の照射光を前記記録媒体搬送手段によって搬送中の記録媒体へ照射し、前記受光手段は、搬送中の前記記録媒体を前記照射光が透過した透過光であって、前記異なる波長又は波長領域の照射光に対応する透過光ごとの受光量を取得し、前記透過光ごとの受光量の相違に基づいて、前記記録媒体の厚さを判別することを特徴とする画像形成装置。
(Configuration 1)
A recording medium transporting unit, a light source unit, and a light receiving unit, wherein the light source unit irradiates the recording medium being transported by the recording medium transporting unit with irradiation light having a different wavelength or wavelength region; The transmitted light transmitted through the recording medium being conveyed is transmitted light, the received light amount for each transmitted light corresponding to the irradiated light of the different wavelength or wavelength region is obtained, and the received light amount difference for each transmitted light To determine the thickness of the recording medium.

(構成2)
前記透過光ごとの受光量の比を算出し、当該算出された受光量の比と、前記記録媒体の厚さごとに予め設定されている閾値を比較して、前記記録媒体の厚さを判別することを特徴とする構成1に記載の画像形成装置。
(Configuration 2)
The ratio of the received light amount for each transmitted light is calculated, and the thickness of the recording medium is determined by comparing the calculated ratio of the received light amount with a preset threshold value for each thickness of the recording medium. The image forming apparatus according to Configuration 1, wherein:

(構成3)
前記記録媒体を介さずに前記光源部からの照射光を受光した際の受光量を用いて、前記透過光の受光量を規格化することを特徴とする構成1又は構成2に記載の画像形成装置。
(Configuration 3)
The image formation according to Configuration 1 or Configuration 2, wherein the received light amount of the transmitted light is normalized by using the received light amount when the irradiation light from the light source unit is received without passing through the recording medium. apparatus.

(構成4)
前記異なる波長又は波長領域の照射光が、3つ以上の異なる波長又は波長領域の照射光であることを特徴とする構成1から構成3の何れかに記載の画像形成装置。
(Configuration 4)
4. The image forming apparatus according to any one of Configurations 1 to 3, wherein the irradiation light of the different wavelength or wavelength region is irradiation light of three or more different wavelengths or wavelength regions.

(構成5)
前記異なる波長又は波長領域の照射光が、760nm未満の波長又は波長領域の光と、760nm以上の波長又は波長領域の光を有することを特徴とする構成1から構成4の何れかに記載の画像形成装置。
(Configuration 5)
The image according to any one of Configurations 1 to 4, wherein the irradiation light having the different wavelength or wavelength region includes light having a wavelength or wavelength region of less than 760 nm and light having a wavelength or wavelength region of 760 nm or more. Forming equipment.

(構成6)
前記760nm未満の波長領域が400〜500nmであり、前記760nm以上の波長領域が800〜900nmであることを特徴とする構成5に記載の画像形成装置。
(Configuration 6)
6. The image forming apparatus according to Configuration 5, wherein the wavelength region of less than 760 nm is 400 to 500 nm, and the wavelength region of 760 nm or more is 800 to 900 nm.

(構成7)
前記異なる波長又は波長領域の照射光が、可視域外の光を有することを特徴とする構成1から構成6の何れかに記載の画像形成装置。
(Configuration 7)
The image forming apparatus according to any one of Configurations 1 to 6, wherein the irradiation light having the different wavelength or wavelength region includes light outside the visible region.

(構成8)
前記光源部が、前記異なる波長又は波長領域ごとの照射光を照射する複数の光源を有し、前記受光手段が、前記異なる波長又は波長領域の照射光に対応する透過光ごとの受光量を取得する複数の受光部を有することを特徴とする構成1から構成7の何れかに記載の画像形成装置。
(Configuration 8)
The light source unit has a plurality of light sources that irradiate irradiation light of the different wavelengths or wavelength regions, and the light receiving unit obtains an amount of received light for each transmitted light corresponding to the irradiation light of the different wavelengths or wavelength regions. The image forming apparatus according to any one of Configurations 1 to 7, further comprising: a plurality of light receiving units.

(構成9)
前記光源部が、前記異なる波長又は波長領域の照射光を含んだ光を照射する1つの光源を有し、前記受光手段が、前記異なる波長又は波長領域の照射光に対応する透過光ごとの受光量を取得する複数の受光部を有することを特徴とする構成1から構成7の何れかに記載の画像形成装置。
(Configuration 9)
The light source unit includes one light source that emits light including irradiation light of the different wavelength or wavelength region, and the light receiving unit receives light for each transmitted light corresponding to the irradiation light of the different wavelength or wavelength region. The image forming apparatus according to any one of Configurations 1 to 7, further comprising a plurality of light receiving units that acquire the amount.

(構成10)
前記光源部が、前記異なる波長又は波長領域ごとの照射光を照射する複数の光源を有し、前記受光手段が、前記異なる波長又は波長領域の照射光に対応する透過光の受光量を取得する1つの受光部を有し、前記複数の光源を時分割点灯させ、前記異なる波長又は波長領域の照射光に対応する透過光ごとの受光量を取得することを特徴とする構成1から構成7の何れかに記載の画像形成装置。
(Configuration 10)
The light source unit includes a plurality of light sources that irradiate irradiation light for the different wavelengths or wavelength regions, and the light receiving unit acquires a received light amount of transmitted light corresponding to the irradiation light of the different wavelengths or wavelength regions. The structure 1 to the structure 7 having one light receiving unit, lighting the plurality of light sources in a time-sharing manner, and obtaining a received light amount for each transmitted light corresponding to the irradiation light of the different wavelength or wavelength region The image forming apparatus according to any one of the above.

(構成11)
画像形成装置における記録媒体の厚さを光学的に検知する方法であって、前記記録媒体を透過した透過光スペクトルの成分比に基づいて、前記記録媒体の厚さを判別することを特徴とする記録媒体厚さ判別方法。
(Configuration 11)
A method for optically detecting a thickness of a recording medium in an image forming apparatus, wherein the thickness of the recording medium is determined based on a component ratio of a transmitted light spectrum transmitted through the recording medium. Recording medium thickness discrimination method.

(構成12)
前記透過光スペクトルの成分比を、前記記録媒体を介さずに受光した際の受光スペクトルの成分比によって規格化し、当該規格化した値に基づいて前記記録媒体の厚さを判別することを特徴とする構成11に記載の記録媒体厚さ判別方法。
(Configuration 12)
The component ratio of the transmitted light spectrum is normalized by the component ratio of the received light spectrum when light is received without passing through the recording medium, and the thickness of the recording medium is determined based on the normalized value. The recording medium thickness determination method according to Configuration 11.

(構成13)
前記透過光を得るための光源として、3つ以上の異なる波長又は波長領域の光を照射させることを特徴とする構成11又は構成12に記載の記録媒体厚さ判別方法。
(Configuration 13)
The recording medium thickness discrimination method according to Configuration 11 or Configuration 12, wherein light having three or more different wavelengths or wavelength regions is irradiated as a light source for obtaining the transmitted light.

(構成14)
前記透過光を得るための光源として、760nm未満の波長又は波長領域の光と、760以上の長い波長又は波長領域の光を照射させることを特徴とする構成11から構成13の何れかに記載の記録媒体厚さ判別方法。
(Configuration 14)
The light source for obtaining the transmitted light is irradiated with light having a wavelength or wavelength region of less than 760 nm and light having a longer wavelength or wavelength region of 760 or more. Recording medium thickness discrimination method.

(構成15)
前記760nm未満の波長領域が400〜500nmであり、前記760nm以上の波長領域が800〜900nmであることを特徴とする構成14に記載の記録媒体厚さ判別方法。
(Configuration 15)
The recording medium thickness determination method according to Configuration 14, wherein the wavelength region of less than 760 nm is 400 to 500 nm, and the wavelength region of 760 nm or more is 800 to 900 nm.

(構成16)
前記透過光を得るための光源として、可視域外の光を照射させることを特徴とする構成11から構成15の何れかに記載の記録媒体厚さ判別方法。
(Configuration 16)
16. The recording medium thickness determination method according to any one of Configurations 11 to 15, wherein light outside the visible range is irradiated as a light source for obtaining the transmitted light.

本発明の画像形成装置及び記録媒体厚さ判別方法は、異なる波長又は波長領域の光の受光量の相違に基づいて記録媒体の厚さを判別するものであり、光量値を絶対的に用いて判別するのではなく、検知した光量を相対的に用いるものである。従って、光量値の変化バラツキが生じた場合にもこれをキャンセルする効果があり、光学式でありながら受光光量値の変化バラツキによる判別精度の低下を抑止することができる。   The image forming apparatus and the recording medium thickness determination method of the present invention determine the thickness of a recording medium based on the difference in the amount of light received at different wavelengths or wavelength regions, and absolutely use the light amount value. Rather than discriminating, the detected light amount is relatively used. Therefore, even when the variation in the light amount value occurs, there is an effect of canceling this, and it is possible to suppress a decrease in the discrimination accuracy due to the variation in the received light amount value even though it is optical.

実施形態1の画像形成装置の本発明に関する部分の概略を示すブロック図1 is a block diagram showing an outline of a part related to the present invention of an image forming apparatus according to a first embodiment; 実施形態1の画像形成装置の本発明に関する概略フローチャートSchematic flowchart relating to the present invention of the image forming apparatus of Embodiment 1 実施形態1の画像形成装置の光源部の発光スペクトルEmission spectrum of light source unit of image forming apparatus of embodiment 1 光源の発光スペクトルと、同光源による紙厚ごと(70μm、200μm、400μm)の透過光のスペクトルを対比するグラフA graph comparing the emission spectrum of a light source and the spectrum of transmitted light for each paper thickness (70 μm, 200 μm, 400 μm) by the same light source 透過光スペクトルの成分比(400−500nmの透過光受光量と、800−900nmの透過光受光量の比)と紙厚の関係を示すグラフA graph showing the relationship between the component ratio of the transmitted light spectrum (ratio of transmitted light received amount of 400-500 nm and transmitted light received amount of 800-900 nm) and paper thickness 本発明に係る画像形成装置の他の例を示す概略ブロック図Schematic block diagram showing another example of the image forming apparatus according to the present invention. 透過光スペクトルの成分比を、紙を介さずに受光した際の受光スペクトルの成分比によって規格化した場合の、紙厚との関係を示すグラフGraph showing the relationship with the paper thickness when the component ratio of the transmitted light spectrum is normalized by the component ratio of the received light spectrum when light is received without passing through paper 実施形態2の画像形成装置の本発明に関する部分の概略を示すブロック図FIG. 3 is a block diagram showing an outline of a part related to the present invention of an image forming apparatus according to a second embodiment. 実施形態2の画像形成装置の本発明に関する概略フローチャートSchematic flowchart relating to the present invention of the image forming apparatus of Embodiment 2.

以下、本発明の実施態様について、図面を参照しながら具体的に説明する。なお、以下の実施態様は、本発明を具体化する際の一形態であって、本発明をその範囲内に限定するものではない。   Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. In addition, the following embodiment is one form at the time of actualizing this invention, Comprising: This invention is not limited within the range.

<実施形態1>
図1は、本実施形態の画像形成装置の本発明に関する部分の概略を示すブロック図である。
本実施形態の画像形成装置1は、記録媒体2(紙等)の厚みを光学的手段によって判別するものであり、図1に示されるように、記録媒体2へ光を照射する光源部3と、光源部3から照射された光が記録媒体2を透過した透過光を受光する受光手段4と、受光手段4からの信号の処理をする透過光処理部5と、透過光処理部5の出力結果を閾値と比較し記録媒体2の厚さ判別する比較判別部6等を有する。また、特に図示はしていないが、画像形成装置1は、記録媒体2を搬送する搬送手段を備える。
<Embodiment 1>
FIG. 1 is a block diagram showing an outline of a part related to the present invention of the image forming apparatus of the present embodiment.
The image forming apparatus 1 according to the present embodiment discriminates the thickness of a recording medium 2 (paper or the like) by optical means. As shown in FIG. 1, a light source unit 3 that irradiates light onto the recording medium 2 and , A light receiving unit 4 that receives the transmitted light transmitted through the recording medium 2 by the light emitted from the light source unit 3, a transmitted light processing unit 5 that processes a signal from the light receiving unit 4, and an output of the transmitted light processing unit 5 A comparison discriminator 6 for discriminating the thickness of the recording medium 2 by comparing the result with a threshold is provided. Although not particularly illustrated, the image forming apparatus 1 includes a transport unit that transports the recording medium 2.

光源部3は、異なる波長又は波長領域の照射光を記録媒体2へ照射する光源であり、本実施形態では、異なる波長領域ごとの光を照射する光源31と光源32によって構成される。
本実施形態では、図3に示されるように、光源31が青色領域(400〜500nm)の波長領域の発光スペクトルを有し、光源32は赤及び赤外領域(800〜900nm)の発光スペクトルを有する。
The light source unit 3 is a light source that irradiates the recording medium 2 with irradiation light having different wavelengths or wavelength regions. In the present embodiment, the light source unit 3 includes a light source 31 and a light source 32 that irradiate light in different wavelength regions.
In the present embodiment, as shown in FIG. 3, the light source 31 has an emission spectrum in the wavelength region of the blue region (400 to 500 nm), and the light source 32 has an emission spectrum in the red and infrared regions (800 to 900 nm). Have.

受光手段4は、異なる波長又は波長領域の照射光に基づく透過光であって、前記異なる波長又は波長領域の照射光に対応する透過光ごとの受光量を検出するものである。本実施形態では、青色領域(400〜500nm)に受光感度を有する受光部41と、赤及び赤外領域(800〜900nm)に受光感度を有する受光部42によって構成される。   The light receiving means 4 is a transmitted light based on the irradiation light of different wavelengths or wavelength regions, and detects the received light amount for each transmitted light corresponding to the irradiation light of the different wavelengths or wavelength regions. In the present embodiment, the light receiving unit 41 having light receiving sensitivity in the blue region (400 to 500 nm) and the light receiving unit 42 having light receiving sensitivity in the red and infrared regions (800 to 900 nm) are configured.

透過光処理部5は、受光手段4からの信号(センサ電圧)のA/D変換や、受光部41による受光量と、受光部42による受光量の比である波長成分比を算出(透過光スペクトルの成分比を算出)する処理等を行う。
比較判別部6は、透過光処理部5で導出された透過光の波長成分比を、予め定めた閾値と比較し、記録媒体の厚さ判別を行う。
なお、透過光処理部5と比較判別部6は、それぞれ専用回路で構成されるものであっても良いし、汎用的なマイコン上でプログラムによって実現されるもの等であっても良い。(受光手段4とマイコンの間にA/D変換部を設けるものであってもよい)
The transmitted light processing unit 5 performs A / D conversion of a signal (sensor voltage) from the light receiving unit 4 and calculates a wavelength component ratio that is a ratio between the amount of light received by the light receiving unit 41 and the amount of light received by the light receiving unit 42 (transmitted light). Processing for calculating a spectral component ratio is performed.
The comparison discriminating unit 6 compares the wavelength component ratio of the transmitted light derived by the transmitted light processing unit 5 with a predetermined threshold value and discriminates the thickness of the recording medium.
The transmitted light processing unit 5 and the comparison / discrimination unit 6 may be configured by dedicated circuits, or may be realized by a program on a general-purpose microcomputer. (An A / D converter may be provided between the light receiving means 4 and the microcomputer)

ここで、本発明の基本原理を説明する。
光はその波長により記録媒体に対する透過性に違いがあり、短波長光に対して長波長光の方が、透過性が高いという性質をもつ。本発明は、この性質を利用して、記録媒体の厚み判別を行うものである。
図4に、光源そのものの発光スペクトルと、記録媒体(いわゆる普通紙)の厚み毎の透過光スペクトルを示した。図4(a)は、横軸を波長成分、縦軸を発光強度(≒受光量)とし、光源そのものの発光スペクトルと、紙厚ごと(70μm、200μm、400μm)の透過光のスペクトルを示したものである。図4(b)は、図4(a)において、各厚みの記録媒体の透過光量の最大値で正規化したスペクトルを示している(縦軸は無次元)。なお、記録媒体の各厚み70μm、200μm、400μmは、電子写真装置分野において、薄紙、中厚紙、厚紙と呼ばれる厚みに相当する。
図4(a)、(b)に示されるように、記録媒体を透過した透過光は、記録媒体の厚みに相関して波長成分が変化している。記録媒体が厚くなるに従い、透過光は短波長成分に対し長波長成分が増加する。即ち、70um(薄紙)の波長成分比は光源と同等であるが、記録媒体が厚くなる従いその波長成分比が変化している事がわかる。
図4(b)に示されるように、760nmを境にして、短波長側では記録媒体の厚みに対応して波長成分比が低下している。一方、長波長側では波長成分比が増加する(正規化後のスペクトルとしてはほぼ変化がないが、短波長側が低下しているため、波長成分比としては増加する)。
これに基づき、本実施形態は、760nm未満の波長又は波長領域(青色領域)の光と、760nm以上の波長又は波長領域(赤及び赤外領域)の光を照射し、その透過光の波長成分比によって記録媒体の厚みを検知するものである。なお、760nmを境とした短波長と長波長の波長成分比を用いることが好適ではあるが、図4からも理解されるように、必ずしも760nmを境とした短波長と長波長の波長成分比でなくても、記録媒体の厚みに依存して波長成分比が変化する組み合わせは存在する。よって、例えば、760nm未満の2つの波長領域(or波長)に基づいて、これらの波長成分比を用いた厚み検出をするもの等であってもよい。
Here, the basic principle of the present invention will be described.
The light has a property that the transmittance with respect to the recording medium differs depending on the wavelength, and the longer wavelength light has a higher transmittance than the shorter wavelength light. The present invention utilizes this property to determine the thickness of a recording medium.
FIG. 4 shows the emission spectrum of the light source itself and the transmitted light spectrum for each thickness of the recording medium (so-called plain paper). FIG. 4A shows the emission spectrum of the light source itself and the spectrum of transmitted light for each paper thickness (70 μm, 200 μm, 400 μm), with the horizontal axis representing the wavelength component and the vertical axis representing the emission intensity (≈the amount of received light). Is. FIG. 4B shows a spectrum normalized with the maximum value of the amount of transmitted light of each thickness of the recording medium in FIG. 4A (the vertical axis is dimensionless). Note that the thicknesses of 70 μm, 200 μm, and 400 μm of the recording medium correspond to thicknesses called thin paper, medium thick paper, and thick paper in the electrophotographic apparatus field.
As shown in FIGS. 4A and 4B, the transmitted light transmitted through the recording medium has a wavelength component that changes in correlation with the thickness of the recording medium. As the recording medium becomes thicker, the transmitted light has a longer wavelength component with respect to a shorter wavelength component. That is, it can be seen that the wavelength component ratio of 70 um (thin paper) is equivalent to that of the light source, but the wavelength component ratio changes as the recording medium becomes thicker.
As shown in FIG. 4B, the wavelength component ratio is decreased corresponding to the thickness of the recording medium on the short wavelength side with 760 nm as a boundary. On the other hand, the wavelength component ratio increases on the long wavelength side (although there is almost no change in the spectrum after normalization, the wavelength component ratio increases because the short wavelength side decreases).
Based on this, this embodiment irradiates light of a wavelength or wavelength region (blue region) of less than 760 nm and light of a wavelength or wavelength region (red and infrared region) of 760 nm or more, and the wavelength component of the transmitted light. The thickness of the recording medium is detected by the ratio. Although it is preferable to use the wavelength component ratio between the short wavelength and the long wavelength at the boundary of 760 nm, as is understood from FIG. 4, the wavelength component ratio between the short wavelength and the long wavelength at the boundary of 760 nm is not necessarily used. Even if this is not the case, there are combinations in which the wavelength component ratio changes depending on the thickness of the recording medium. Therefore, for example, a thickness detection using these wavelength component ratios based on two wavelength regions (or wavelengths) of less than 760 nm may be used.

次に、本実施形態の画像形成装置1の動作について説明する。
図2は、画像形成装置の本発明に関する処理の概略を示すフローチャートである。
画像形成装置1では、印刷指示等により、記録媒体2が給紙トレイからピックアップされ、印刷処理部(感光体ドラム等)での印刷を行うために記録媒体搬送手段によって搬送路を搬送される。この搬送路上(印刷処理部より前)に、記録媒体の種別や厚さの検知を行うための光センサユニットが設けられており、光源部3や受光手段4はこの光センサユニットを構成するものである。
図2のフローチャートのステップ201では、光源部3から搬送路上の記録媒体2へ照射光を照射し、続くステップ202では、受光手段4において透過光の受光量を検知する。本実施形態においては、光源31と光源32を同時に発光させ、受光部41と受光部42によって受光量を検知する。即ち、青色領域(400〜500nm)の光と赤及び赤外領域(800〜900nm)の光を同時照射し、これらの透過光の受光量を検知するものである。
Next, the operation of the image forming apparatus 1 of the present embodiment will be described.
FIG. 2 is a flowchart showing an outline of processing relating to the present invention of the image forming apparatus.
In the image forming apparatus 1, the recording medium 2 is picked up from the paper feed tray in accordance with a print instruction or the like, and is transported along the transport path by a recording medium transport unit for printing on a print processing unit (photosensitive drum or the like). An optical sensor unit for detecting the type and thickness of the recording medium is provided on the conveyance path (before the print processing unit), and the light source unit 3 and the light receiving unit 4 constitute the optical sensor unit. It is.
In step 201 of the flowchart of FIG. 2, irradiation light is irradiated from the light source unit 3 to the recording medium 2 on the conveyance path. In the present embodiment, the light source 31 and the light source 32 emit light at the same time, and the light receiving amount is detected by the light receiving unit 41 and the light receiving unit 42. That is, the light in the blue region (400 to 500 nm) and the light in the red and infrared regions (800 to 900 nm) are simultaneously irradiated to detect the amount of received transmitted light.

続くステップ203では、透過光処理部5において、受光部41と受光部42によって得られた青色領域(400〜500nm)の透過光の受光量(図4(a)のグラフにおける400〜500nmの積分値と同義)と、赤及び赤外領域(800〜900nm)の透過光の受光量(図4(a)のグラフにおける800〜900nmの積分値と同義)の、波長成分比を算出(透過光スペクトルの成分比を算出)する処理等を行う。
そして、これによって得られた透過光の波長成分比を、比較判別部6において閾値と比較し、記録媒体2の厚さを判別する。
In the subsequent step 203, the transmitted light processing unit 5 receives the amount of transmitted light in the blue region (400 to 500 nm) obtained by the light receiving unit 41 and the light receiving unit 42 (integration of 400 to 500 nm in the graph of FIG. 4A). The wavelength component ratio is calculated (transmitted light) between the received light amount of the transmitted light in the red and infrared regions (800 to 900 nm) (synonymous with the integrated value of 800 to 900 nm in the graph of FIG. 4A). Processing for calculating a spectral component ratio is performed.
Then, the wavelength component ratio of the transmitted light obtained in this way is compared with a threshold value in the comparison discriminating unit 6 to discriminate the thickness of the recording medium 2.

ここでいう“閾値”は、上記説明した、記録媒体の厚さに応じて変化する波長成分比に対して、判別したい厚さごとに設定される値であり、予めの実験等によって得た値が閾値として画像形成装置1に設定されているものである。
図5に、記録媒体の厚さに対応する、透過光スペクトルの成分比(400−500nmの透過光受光量と、800−900nmの透過光受光量の比)と、閾値の関係を示している。縦軸のP2/P1におけるP1は400−500nmの透過光受光量であり、P2は800−900nmの透過光受光量である。即ちP2/P1が波長成分比である。
同図に示されるように、記録媒体の厚み70μm(薄紙)、200μm(中厚紙)の判別をするための閾値としてA(4.6<A<6.0)、記録媒体の厚み200μm、400μm(厚紙)の判別をするための閾値としてB(6.0<B<8.4)を設定することにより、薄紙、中厚紙、厚紙の判別をすることが可能となる。(これは一例であり、判別をしようとする厚みに応じて適宜閾値を設定すればよい。)
The “threshold value” here is a value set for each thickness to be discriminated with respect to the above-described wavelength component ratio that changes according to the thickness of the recording medium, and is a value obtained by a prior experiment or the like. Is set in the image forming apparatus 1 as a threshold value.
FIG. 5 shows the relationship between the component ratio of the transmitted light spectrum (the ratio of the amount of transmitted light received from 400 to 500 nm and the amount of received light received from 800 to 900 nm) and the threshold corresponding to the thickness of the recording medium. . P1 in P2 / P1 on the vertical axis is the amount of transmitted light received from 400 to 500 nm, and P2 is the amount of received light received from 800 to 900 nm. That is, P2 / P1 is the wavelength component ratio.
As shown in the figure, A (4.6 <A <6.0) is used as a threshold for discriminating the recording medium thickness of 70 μm (thin paper) and 200 μm (medium thick paper), and the recording medium thickness is 200 μm and 400 μm. By setting B (6.0 <B <8.4) as a threshold for determining (thick paper), it is possible to determine thin paper, medium thick paper, and thick paper. (This is an example, and a threshold may be set as appropriate according to the thickness to be determined.)

以上のごとく、本実施形態の画像形成装置1によれば、
従来の様な光量値を絶対的に用いる判別技術ではなく、異なる波長で検知した光量の相違に基づいて、これを相対的に用いる判別技術である。従って、光量値のバラつきがキャンセルされ、光量値の補正処理や、特別な機構等を要することなく、高精度に厚み検出をすることができる。
As described above, according to the image forming apparatus 1 of the present embodiment,
It is not a discrimination technique that absolutely uses a light quantity value as in the prior art, but a discrimination technique that relatively uses this based on the difference in the quantity of light detected at different wavelengths. Therefore, the variation in the light quantity value is canceled, and the thickness can be detected with high accuracy without requiring a light quantity correction process or a special mechanism.

なお、本実施形態では、光源部の例として2つの光源31と光源32を備え、これに対応する受光手段を2つ備えるもの(受光部41、42)を説明したが、3つ以上の波長領域の照射光を照射させ、これをそれぞれ受光するものであってもよい。
例えば、色紙等の特定の波長領域に対する反射特性を有する記録媒体の場合、その波長領域では透過光を得にくい場合がある。これに対して、3つ以上の波長領域の照射光を用いることにより、何れかの2つ以上の波長領域で透過光を得られるようにしておくことで、色紙等の場合にも高精度に厚み検出をすることができる。(3つ以上の波長領域を使用する場合には、それぞれ波長領域の組み合わせごとに閾値を持たせておくことにより、受光できた波長領域の任意の組み合わせに対して、厚み検出をすることができる。)
同様の理由により、光源として、可視域外の光を照射する光源を用いるようにしてもよい。これにより、色紙等の場合にも高精度に厚み検出をすることができる。なお、“可視域”とは、360nm〜830nmの波長領域であり、“可視域外の光”とはこの範囲外の波長の光である。
In the present embodiment, an example of a light source unit including two light sources 31 and 32 and two light receiving units corresponding to the light sources 31 and 42 (light receiving units 41 and 42) has been described. It is also possible to irradiate the region with irradiation light and receive it respectively.
For example, in the case of a recording medium having reflection characteristics for a specific wavelength region such as colored paper, it may be difficult to obtain transmitted light in that wavelength region. On the other hand, by using irradiated light in three or more wavelength regions so that transmitted light can be obtained in any two or more wavelength regions, it is highly accurate even in the case of colored paper or the like. Thickness detection can be performed. (When three or more wavelength regions are used, a thickness can be detected for any combination of received wavelength regions by providing a threshold value for each combination of wavelength regions. .)
For the same reason, a light source that emits light outside the visible range may be used as the light source. Thereby, even in the case of colored paper or the like, the thickness can be detected with high accuracy. The “visible region” is a wavelength region of 360 nm to 830 nm, and “light outside the visible region” is light having a wavelength outside this range.

また、本実施形態では、各波長領域ごとに光源(光源31、32)を設けるものを例としているが、よりブロードなスペクトルを持つ光源を1つ設けるものであってもよい(例えば白色光源)。
図6にはそのようなものの一例を示した(図1と同様の構成要素については同一の符号を使用している)。
図6(a)に示されるように、例えば白色光を発光する光源33を1つ設け、受光部41で短波長側(760nmより短い波長)、受光部42で長波長側(760nmより長い波長)を受光する構成としてもよい。(即ち、光源33としては、最低限、760nmより短い波長と、760nmより長い波長を含んでいるものであればよい。)
また、図6(b)に示されるように、各波長領域ごとに受光感度をもつ受光部につき、素子としてはブロードな受光感度を持つ同一の素子(受光部43)を使用し、各波長領域を透過させる光学フィルタ71、72を設けるようにしてもよい(光学フィルタ71及び受光部43と、光学フィルタ72及び受光部43が、それぞれ受光部41、42と同義)。
何れの場合も、動作としては上記説明と同様である。
In the present embodiment, the light source (light source 31, 32) is provided for each wavelength region, but one light source having a broader spectrum may be provided (for example, a white light source). .
FIG. 6 shows an example of such a thing (the same reference numerals are used for the same components as in FIG. 1).
As shown in FIG. 6A, for example, one light source 33 that emits white light is provided, the light receiving unit 41 has a shorter wavelength side (wavelength shorter than 760 nm), and the light receiving unit 42 has a longer wavelength side (wavelength longer than 760 nm). ) May be received. (That is, the light source 33 may be any light source that includes at least a wavelength shorter than 760 nm and a wavelength longer than 760 nm.)
Further, as shown in FIG. 6B, for each light receiving part having light receiving sensitivity for each wavelength region, the same element (light receiving part 43) having a broad light receiving sensitivity is used as the element, May be provided (the optical filter 71 and the light receiving unit 43, and the optical filter 72 and the light receiving unit 43 are synonymous with the light receiving units 41 and 42, respectively).
In either case, the operation is the same as described above.

本実施形態では、所定の波長領域を有する照射光を用いるものとして説明しているが、単波長の光を用いるものであっても構わない。即ち、異なる2つ以上の単波長の照射光を使用し、これによる透過光の受光量の成分比に基づいて厚さを判別するものであってもよい。   In this embodiment, the irradiation light having a predetermined wavelength region is described as being used. However, light having a single wavelength may be used. That is, two or more different single-wavelength irradiation lights may be used, and the thickness may be determined based on the component ratio of the amount of transmitted light received.

本実施形態では、透過光の波長成分比を、各波長領域における受光量から求めてそのまま使うものを例として説明したが、記録媒体を介さずに光源部からの照射光を受光した際の受光量(光源の発光強度)を用いて、透過光の受光量を規格化してもよい。
図7は、透過光の波長成分比を、記録媒体を介さずに受光した際の受光スペクトルの成分比によって規格化した場合の、紙厚との関係を示すグラフである。
図中のαは、記録媒体無状態(即ち直接受光)での800−900nmの受光量を、同じく記録媒体無状態の400−500nmの受光量で割った値(記録媒体を介さずに受光した際の波長成分比)であり、このαを透過光の波長成分比であるP2/P1に乗じることで規格化しているものである。(なお、当然に、閾値も図7に基づく値となる。)
このように光源部3そのものが有する発光強度(受光手段4の受光性能等を含む)によって規格化した値を用いることで、光源部3や受光手段4の個体差、各素子の経年変化や各素子の温度特性に基づく特性変化などをキャンセルする(校正する)ことが可能となるため、より好適である。
In the present embodiment, the wavelength component ratio of the transmitted light has been described as an example obtained from the amount of light received in each wavelength region and used as it is. However, the light reception when the irradiation light from the light source unit is received without going through the recording medium. The amount of transmitted light received may be normalized using the amount (the light emission intensity of the light source).
FIG. 7 is a graph showing the relationship with the paper thickness when the wavelength component ratio of transmitted light is normalized by the component ratio of the received light spectrum when light is received without passing through the recording medium.
Α in the figure is a value obtained by dividing the received light amount of 800 to 900 nm in the absence of the recording medium (that is, the direct light reception) by the received light amount of 400 to 500 nm in the same state of the recording medium. Which is normalized by multiplying this α by P2 / P1, which is the wavelength component ratio of transmitted light. (Naturally, the threshold value is also a value based on FIG. 7.)
In this way, by using a value normalized by the light emission intensity (including the light receiving performance of the light receiving means 4) of the light source unit 3 itself, individual differences of the light source unit 3 and the light receiving unit 4, aging of each element, Since it is possible to cancel (calibrate) a characteristic change based on the temperature characteristic of the element, it is more preferable.

<実施形態2>
図8は、実施形態2の画像形成装置の本発明に関する部分の概略を示すブロック図である。実施形態1(図1)と同様の構成要素については同一の符号を使用し、ここでの説明を省略もしくは簡略化する。
図8に示されるように、本実施形態の画像形成装置1は、受光手段4として、1つの受光部43を備える点で、実施形態1と異なる。
受光部43は、図6(b)で示した受光部43と同一のものであり、ブロードな受光感度を持つ素子である。即ち、図8のブロック図においては、受光部43が、光源31が発する青色領域(400〜500nm)、及び、光源32が発する赤及び赤外領域(800〜900nm)を含んだ受光感度を有するものである。
なお、ここでは説明の簡便化のため、光源部3について実施形態1と同様の構成のブロック図としているが、3つ以上の波長領域の照射光としても良い点や、可視域外の光を照射するものであっても良い点などは、実施形態1の説明の通りである。
<Embodiment 2>
FIG. 8 is a block diagram showing an outline of a part related to the present invention of the image forming apparatus according to the second embodiment. Constituent elements similar to those in the first embodiment (FIG. 1) are denoted by the same reference numerals, and description thereof is omitted or simplified.
As shown in FIG. 8, the image forming apparatus 1 according to the present embodiment is different from the first embodiment in that the light receiving unit 4 includes one light receiving unit 43.
The light receiving unit 43 is the same as the light receiving unit 43 shown in FIG. 6B, and is an element having a broad light receiving sensitivity. That is, in the block diagram of FIG. 8, the light receiving unit 43 has a light receiving sensitivity including a blue region (400 to 500 nm) emitted from the light source 31 and a red and infrared region (800 to 900 nm) emitted from the light source 32. Is.
Here, for the sake of simplicity of explanation, the light source unit 3 is a block diagram having the same configuration as that of the first embodiment. However, the light source unit 3 may be irradiated with light in three or more wavelength regions, or is irradiated with light outside the visible region. The points that may be performed are as described in the first embodiment.

次に、本実施形態の画像形成装置1の動作について説明する。
図9は、実施形態2の画像形成装置の本発明に関する処理の概略を示すフローチャートである。なお、ここでは、光源が3つ以上あり、それぞれの波長又は波長領域(波長成分)の組み合わせごとに記録媒体の厚さ判別のための閾値が設定されているものを例として説明する。
Next, the operation of the image forming apparatus 1 of the present embodiment will be described.
FIG. 9 is a flowchart illustrating an outline of processing related to the present invention of the image forming apparatus according to the second embodiment. Here, an example will be described in which there are three or more light sources and a threshold for determining the thickness of the recording medium is set for each combination of wavelengths or wavelength regions (wavelength components).

ステップ901は初期化処理であり、iに1を代入し、nに光源の数を代入する。なお、nを変数としているのは“光源が3つ以上”という説明のためであり、実際の装置では光源の数(波長成分比を求めるための波長又は波長領域の数)は決まっているものであるので、定数にて下記の処理を行う。   Step 901 is an initialization process, in which 1 is substituted for i and the number of light sources is substituted for n. Note that n is used as a variable for explanation of “three or more light sources”, and the number of light sources (the number of wavelengths or wavelength regions for obtaining the wavelength component ratio) is determined in an actual apparatus. Therefore, the following processing is performed with constants.

先ず、実施形態1と同様に印刷指示等に基づいて搬送路上を搬送される記録媒体2に対して、i番目の光源のみによって照射光を照射する(ステップ902)。続くステップ903では、受光部43によって透過光を受光し、その受光量をi番目の光源の透過光量として記憶する。   First, similarly to the first embodiment, the recording medium 2 conveyed on the conveyance path based on a print instruction or the like is irradiated with irradiation light only by the i-th light source (step 902). In the subsequent step 903, the transmitted light is received by the light receiving unit 43, and the received light amount is stored as the transmitted light amount of the i-th light source.

ステップ904、905では、iをインクリメントし、iがnを超えたか否かを判別し、超えていない場合にはステップ902へと戻って処理を繰り返し、超えた場合にはステップ906へと移行する。即ち、“3つ以上の光源”の全てについて発光及び透過光の受光処理が行われるまでステップ902〜905の処理を繰り返し(各光源を時分割点灯)、全ての光源について発光及び透過光の受光処理終わった場合には、ステップ906へと移行するものである。   In steps 904 and 905, i is incremented, and it is determined whether or not i exceeds n. If not, the process returns to step 902 to repeat the process, and if it exceeds, the process proceeds to step 906. . That is, the processing of steps 902 to 905 is repeated until each of “three or more light sources” is subjected to light emission and transmission light reception processing (each light source is turned on in a time-sharing manner), and light emission and transmission light reception is performed for all light sources. When the processing is completed, the process proceeds to step 906.

ステップ906では、ステップ903で記憶している各光源の透過光の受光量のデータの中から、光源のうち、760nm未満の波長の光を発するものの中で透過光量が最大のものと、760nm以上の波長の光を発するものの中で透過光量が最大のもの、をそれぞれ判別・選択し、これらの波長成分比を算出する。
なお、“760nm未満(or以上)の波長の光を発するものの中で透過光量が最大のもの”に関し、実際の透過光の受光量を、対応波長の光源の直接の受光量で正規化して、この値に基づいて大小比較をする。例えば、500nmの透過光量がXである場合、記録媒体を介せずに受光した500nmの受光量(≒500nmの発光強度)Yを用いてXを正規化し、これらの正規化された値に基づいて大小比較をするものである。
In step 906, among the data of the amount of light received by each light source stored in step 903, among the light sources that emit light having a wavelength of less than 760 nm, the maximum transmitted light amount is 760 nm or more. Are determined and selected, and the ratio of these wavelength components is calculated.
In addition, regarding “the one that emits light having a wavelength of less than 760 nm (or more)”, the amount of light actually transmitted is normalized by the amount of light directly received by the light source of the corresponding wavelength, Based on this value, the size is compared. For example, when the transmitted light amount at 500 nm is X, X is normalized using a received light amount of 500 nm (approximately 500 nm emission intensity) Y received without passing through the recording medium, and based on these normalized values. Compare the size.

ステップ907では、算出された透過光の波長成分比を、選択された2つの波長又は波長領域(波長成分)に対応する閾値と比較して、記録媒体の厚さを判別する。   In step 907, the calculated wavelength component ratio of the transmitted light is compared with threshold values corresponding to the two selected wavelengths or wavelength regions (wavelength components) to determine the thickness of the recording medium.

以上のごとく、本実施形態によれば、実施形態1と同様に、異なる波長で検知した光量の相違に基づいてこれを相対的に用いるため、光量値のバラつきがキャンセルされ、光量値の補正処理や、特別な機構等を要することなく、高精度に厚み検出をすることができる。
また、波長成分比を求めるための波長又は波長領域の数を3つ以上とし、これらの中で最も受光レベル(正規化後の値)の高いものを選択して、厚さ判別のための波長成分比を求めているため、精度よく厚み検出をすることができる。
As described above, according to the present embodiment, as in the first embodiment, since the relative use is performed based on the difference in the amount of light detected at different wavelengths, the variation in the light amount value is canceled, and the light amount value correction process is performed. In addition, the thickness can be detected with high accuracy without requiring a special mechanism or the like.
In addition, the number of wavelengths or wavelength regions for obtaining the wavelength component ratio is set to 3 or more, and the wavelength with the highest received light level (value after normalization) is selected from these, and the wavelength for thickness discrimination Since the component ratio is obtained, the thickness can be detected with high accuracy.

本実施形態では、ブロードな受光感度を有する1つの受光部43を備え、各光源を時分割点灯させることによって、“異なる波長又は波長領域の照射光に対応する透過光ごとの受光量”を取得するようにしている。即ち、受光部43だけでなく、各光源を時分割点灯させる制御部(図示しないマイコン等)や透過光処理部5なども含めて、“異なる波長又は波長領域の照射光に対応する透過光ごとの受光量を取得する受光手段”が構成されているものである。
このように、各波長の照射光を時分割で照射させることにより、受光部を1つとすることができるため、装置の小型化や低コスト化に有利である。
In the present embodiment, a single light receiving unit 43 having broad light receiving sensitivity is provided, and each light source is turned on in a time-sharing manner, thereby obtaining “amount of received light for each transmitted light corresponding to irradiation light of different wavelengths or wavelength regions”. Like to do. That is, not only the light receiving unit 43 but also a control unit (such as a microcomputer not shown) that lights each light source in a time-sharing manner and the transmitted light processing unit 5, for each transmitted light corresponding to irradiation light of different wavelengths or wavelength regions. The light receiving means for acquiring the amount of received light is configured.
In this way, by irradiating irradiation light of each wavelength in a time-sharing manner, one light receiving unit can be provided, which is advantageous for downsizing and cost reduction of the apparatus.

なお、本実施形態では、波長成分比を求めるための、760nm未満の波長成分と760nm以上の波長成分の選択について、正規化した受光量が最も大きいものをそれぞれ選ぶものを例としているが、選択方法についてはその他の方法であってもよい(例えば、予め優先順位を定めておき、所定レベル以上の受光量を得られたもののうち最も高い優先順位のものを選択するもの等)。
また、本実施形態では、760nm未満の波長成分と760nm以上の波長成分をそれぞれ1つ選択して、1つの波長成分比を求めて厚み判別するものを例としたが、複数の波長成分の組み合わせについて、複数の波長成分比を求め、それぞれについて得られた厚みの判別結果を用いて、最終的な厚み判別をするようにしてもよい(例えば、得られた複数の厚み判別結果の中で、最も頻度の高い結果を最終的な厚みと判別する等)。
In the present embodiment, the selection of the wavelength component of less than 760 nm and the wavelength component of 760 nm or more for obtaining the wavelength component ratio is exemplified by selecting the one with the largest normalized light reception amount. The method may be other methods (for example, a method in which a priority order is set in advance and the one with the highest priority order is selected from among those that have obtained a received light amount of a predetermined level or higher).
In the present embodiment, the wavelength component of less than 760 nm and the wavelength component of 760 nm or more are selected one by one and the thickness is determined by determining one wavelength component ratio. However, a combination of a plurality of wavelength components is used. For a plurality of wavelength component ratios, the thickness determination results obtained for each may be used to determine the final thickness (for example, among the plurality of thickness determination results obtained, For example, the most frequent result is determined as the final thickness).

なお、本発明における“透過光”とは、拡散反射光も含む概念である。拡散反射光は、記録媒体の内部で拡散された光であり、即ち、記録媒体の内部を透過した結果得られるものであって、記録媒体の厚みに基づく情報を内包するものである。
従って、本発明における“透過光”という概念には拡散反射光も含まれ、受光手段としても拡散反射光を受光するために記録媒体に対して光源部と同じ側に設けられるものが含まれる。
The “transmitted light” in the present invention is a concept including diffuse reflected light. Diffuse reflected light is light diffused inside the recording medium, that is, obtained as a result of passing through the inside of the recording medium, and includes information based on the thickness of the recording medium.
Therefore, the concept of “transmitted light” in the present invention includes diffusely reflected light, and also includes a light receiving means provided on the same side as the light source unit with respect to the recording medium in order to receive diffusely reflected light.

本発明において、厚さ判別をする記録媒体としては、パルプを使用した紙(いわゆる普通紙)が好適な対象であるが、これに限られるものではなく、透過光スペクトルが厚みに依存して変化するものであれば、各種の記録媒体に対して適用することができる。   In the present invention, the recording medium for determining the thickness is preferably a paper using pulp (so-called plain paper), but is not limited to this, and the transmitted light spectrum changes depending on the thickness. If it does, it can apply with respect to various recording media.

1...画像形成装置
2...記録媒体
3...光源部
31、32...光源
4...受光手段
41、42...受光部
5...透過光処理部
6...比較判別部
1. . . 1. Image forming apparatus . . 2. Recording medium . . Light source unit 31, 32. . . Light source 4. . . Light receiving means 41, 42. . . Light receiving part 5. . . Transmitted light processing unit 6. . . Comparison discriminator

Claims (16)

記録媒体搬送手段と、光源部と、受光手段とを備え、
前記光源部は、異なる波長又は波長領域の照射光を前記記録媒体搬送手段によって搬送中の記録媒体へ照射し、
前記受光手段は、搬送中の前記記録媒体を前記照射光が透過した透過光であって、前記異なる波長又は波長領域の照射光に対応する透過光ごとの受光量を取得し、
前記透過光ごとの受光量の相違に基づいて、前記記録媒体の厚さを判別することを特徴とする画像形成装置。
A recording medium conveying means, a light source unit, and a light receiving means;
The light source unit irradiates the recording medium being conveyed by the recording medium conveying means with irradiation light of different wavelengths or wavelength regions,
The light receiving means is a transmitted light through which the irradiation light has transmitted through the recording medium being conveyed, and obtains a received light amount for each transmitted light corresponding to the irradiation light of the different wavelength or wavelength region,
An image forming apparatus, wherein the thickness of the recording medium is determined based on a difference in received light amount for each transmitted light.
前記透過光ごとの受光量の比を算出し、当該算出された受光量の比と、前記記録媒体の厚さごとに予め設定されている閾値を比較して、前記記録媒体の厚さを判別することを特徴とする請求項1に記載の画像形成装置。   The ratio of the received light amount for each transmitted light is calculated, and the thickness of the recording medium is determined by comparing the calculated ratio of the received light amount with a preset threshold value for each thickness of the recording medium. The image forming apparatus according to claim 1. 前記記録媒体を介さずに前記光源部からの照射光を受光した際の受光量を用いて、前記透過光の受光量を規格化することを特徴とする請求項1又は請求項2に記載の画像形成装置。   The received light amount of the transmitted light is normalized by using the received light amount when the irradiation light from the light source unit is received without passing through the recording medium. Image forming apparatus. 前記異なる波長又は波長領域の照射光が、3つ以上の異なる波長又は波長領域の照射光であることを特徴とする請求項1から請求項3の何れかに記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the irradiation light having the different wavelength or wavelength region is irradiation light having three or more different wavelengths or wavelength regions. 前記異なる波長又は波長領域の照射光が、760nm未満の波長又は波長領域の光と、760nm以上の波長又は波長領域の光を有することを特徴とする請求項1から請求項4の何れかに記載の画像形成装置。   The irradiation light having the different wavelength or wavelength region includes light having a wavelength or wavelength region of less than 760 nm and light having a wavelength or wavelength region of 760 nm or more. Image forming apparatus. 前記760nm未満の波長領域が400〜500nmであり、前記760nm以上の波長領域が800〜900nmであることを特徴とする請求項5に記載の画像形成装置。   6. The image forming apparatus according to claim 5, wherein the wavelength region of less than 760 nm is 400 to 500 nm, and the wavelength region of 760 nm or more is 800 to 900 nm. 前記異なる波長又は波長領域の照射光が、可視域外の光を有することを特徴とする請求項1から請求項6の何れかに記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the irradiation light having the different wavelength or wavelength region includes light outside the visible region. 前記光源部が、前記異なる波長又は波長領域ごとの照射光を照射する複数の光源を有し、
前記受光手段が、前記異なる波長又は波長領域の照射光に対応する透過光ごとの受光量を取得する複数の受光部を有することを特徴とする請求項1から請求項7の何れかに記載の画像形成装置。
The light source unit has a plurality of light sources that irradiate irradiation light for the different wavelengths or wavelength regions,
The said light-receiving means has a some light-receiving part which acquires the light reception amount for every transmitted light corresponding to the irradiation light of the said different wavelength or wavelength range, The any one of Claims 1-7 characterized by the above-mentioned. Image forming apparatus.
前記光源部が、前記異なる波長又は波長領域の照射光を含んだ光を照射する1つの光源を有し、
前記受光手段が、前記異なる波長又は波長領域の照射光に対応する透過光ごとの受光量を取得する複数の受光部を有することを特徴とする請求項1から請求項7の何れかに記載の画像形成装置。
The light source unit has one light source that emits light including irradiation light of the different wavelength or wavelength region,
The said light-receiving means has a some light-receiving part which acquires the light reception amount for every transmitted light corresponding to the irradiation light of the said different wavelength or wavelength range, The any one of Claims 1-7 characterized by the above-mentioned. Image forming apparatus.
前記光源部が、前記異なる波長又は波長領域ごとの照射光を照射する複数の光源を有し、
前記受光手段が、前記異なる波長又は波長領域の照射光に対応する透過光の受光量を取得する1つの受光部を有し、
前記複数の光源を時分割点灯させ、前記異なる波長又は波長領域の照射光に対応する透過光ごとの受光量を取得することを特徴とする請求項1から請求項7の何れかに記載の画像形成装置。
The light source unit has a plurality of light sources that irradiate irradiation light for the different wavelengths or wavelength regions,
The light receiving means has one light receiving unit for acquiring a received light amount of transmitted light corresponding to irradiation light of the different wavelength or wavelength region;
8. The image according to claim 1, wherein the plurality of light sources are turned on in a time-sharing manner, and the received light amount for each transmitted light corresponding to the irradiation light of the different wavelength or wavelength region is acquired. Forming equipment.
画像形成装置における記録媒体の厚さを光学的に検知する方法であって、前記記録媒体を透過した透過光スペクトルの成分比に基づいて、前記記録媒体の厚さを判別することを特徴とする記録媒体厚さ判別方法。   A method for optically detecting a thickness of a recording medium in an image forming apparatus, wherein the thickness of the recording medium is determined based on a component ratio of a transmitted light spectrum transmitted through the recording medium. Recording medium thickness discrimination method. 前記透過光スペクトルの成分比を、前記記録媒体を介さずに受光した際の受光スペクトルの成分比によって規格化し、当該規格化した値に基づいて前記記録媒体の厚さを判別することを特徴とする請求項11に記載の記録媒体厚さ判別方法。   The component ratio of the transmitted light spectrum is normalized by the component ratio of the received light spectrum when light is received without passing through the recording medium, and the thickness of the recording medium is determined based on the normalized value. The recording medium thickness determination method according to claim 11. 前記透過光を得るための光源として、3つ以上の異なる波長又は波長領域の光を照射させることを特徴とする請求項11又は請求項12に記載の記録媒体厚さ判別方法。   13. The recording medium thickness determination method according to claim 11, wherein light having three or more different wavelengths or wavelength regions is irradiated as a light source for obtaining the transmitted light. 前記透過光を得るための光源として、760nm未満の波長又は波長領域の光と、760nm以上の波長又は波長領域の光を照射させることを特徴とする請求項11から請求項13の何れかに記載の記録媒体厚さ判別方法。   The light source for obtaining the transmitted light is irradiated with light having a wavelength or wavelength region of less than 760 nm and light having a wavelength or wavelength region of 760 nm or more. Recording medium thickness determination method. 前記760nm未満の波長領域が400〜500nmであり、前記760nm以上の波長領域が800〜900nmであることを特徴とする請求項14に記載の記録媒体厚さ判別方法。   The recording medium thickness determination method according to claim 14, wherein the wavelength region of less than 760 nm is 400 to 500 nm, and the wavelength region of 760 nm or more is 800 to 900 nm. 前記透過光を得るための光源として、可視域外の光を照射させることを特徴とする請求項11から請求項15の何れかに記載の記録媒体厚さ判別方法。   The recording medium thickness determination method according to claim 11, wherein light outside the visible range is irradiated as a light source for obtaining the transmitted light.
JP2015236422A 2015-12-03 2015-12-03 Image forming apparatus and recording medium thickness determination method Pending JP2017102046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015236422A JP2017102046A (en) 2015-12-03 2015-12-03 Image forming apparatus and recording medium thickness determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015236422A JP2017102046A (en) 2015-12-03 2015-12-03 Image forming apparatus and recording medium thickness determination method

Publications (1)

Publication Number Publication Date
JP2017102046A true JP2017102046A (en) 2017-06-08

Family

ID=59017558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015236422A Pending JP2017102046A (en) 2015-12-03 2015-12-03 Image forming apparatus and recording medium thickness determination method

Country Status (1)

Country Link
JP (1) JP2017102046A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110095415A (en) * 2018-01-31 2019-08-06 柯尼卡美能达株式会社 Sheet material condition discriminating apparatus and method, image forming apparatus and storage medium
JP2020064003A (en) * 2018-10-18 2020-04-23 コニカミノルタ株式会社 Image forming apparatus, basis weight deriving method, and basis weight deriving program
JP2020064004A (en) * 2018-10-18 2020-04-23 コニカミノルタ株式会社 Image forming apparatus, basis weight deriving method, and basis weight deriving program
JP2021033057A (en) * 2019-08-23 2021-03-01 コニカミノルタ株式会社 Image forming apparatus
JP2022008843A (en) * 2017-04-11 2022-01-14 キヤノン株式会社 Water detector and image formation device for recording material
CN114613035A (en) * 2022-02-11 2022-06-10 浙江易印网络科技股份有限公司 Tracing method and device in printing process
US11815453B2 (en) 2017-04-11 2023-11-14 Canon Kabushiki Kaisha Moisture detecting apparatus for recording material and image forming apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022008843A (en) * 2017-04-11 2022-01-14 キヤノン株式会社 Water detector and image formation device for recording material
JP7297024B2 (en) 2017-04-11 2023-06-23 キヤノン株式会社 image forming device
US11815453B2 (en) 2017-04-11 2023-11-14 Canon Kabushiki Kaisha Moisture detecting apparatus for recording material and image forming apparatus
CN110095415A (en) * 2018-01-31 2019-08-06 柯尼卡美能达株式会社 Sheet material condition discriminating apparatus and method, image forming apparatus and storage medium
JP2020064003A (en) * 2018-10-18 2020-04-23 コニカミノルタ株式会社 Image forming apparatus, basis weight deriving method, and basis weight deriving program
JP2020064004A (en) * 2018-10-18 2020-04-23 コニカミノルタ株式会社 Image forming apparatus, basis weight deriving method, and basis weight deriving program
JP7172428B2 (en) 2018-10-18 2022-11-16 コニカミノルタ株式会社 Image forming apparatus, basis weight derivation method and basis weight derivation program
JP7187968B2 (en) 2018-10-18 2022-12-13 コニカミノルタ株式会社 Image forming apparatus, basis weight derivation method and basis weight derivation program
JP2021033057A (en) * 2019-08-23 2021-03-01 コニカミノルタ株式会社 Image forming apparatus
JP7434753B2 (en) 2019-08-23 2024-02-21 コニカミノルタ株式会社 image forming device
CN114613035A (en) * 2022-02-11 2022-06-10 浙江易印网络科技股份有限公司 Tracing method and device in printing process

Similar Documents

Publication Publication Date Title
JP2017102046A (en) Image forming apparatus and recording medium thickness determination method
JP6242570B2 (en) Image reading apparatus and paper sheet processing apparatus
US8587844B2 (en) Image inspecting apparatus, image inspecting method, and image forming apparatus
US8913905B2 (en) Image forming apparatus that detects transition between patch images
US9001333B2 (en) Recording medium determining device and recording medium determination method
US10295943B2 (en) Image forming apparatus and image forming method
WO2018029884A1 (en) Image formation device and determination method
US11415508B2 (en) Moisture detecting apparatus for recording material and image forming apparatus
JP4810257B2 (en) Image forming apparatus
WO2014132415A1 (en) Fluorescence and phosphorescence detecting method and device, and valuable media authenticity determining method and device
US10353332B2 (en) Image forming apparatus including sensor having substrate on which light-emitting element and light-receiving element are provided
JP2019132697A (en) Sheet determination apparatus and image forming apparatus
JP5124831B2 (en) Image measuring apparatus and image forming apparatus
JP2010020308A (en) Device and method for detecting deposition amount of toner
JP2001343287A (en) Optical measuring device and color image forming device
US11509776B2 (en) Apparatus and method for detecting foreign substance based on a difference in reading level of reflected light in a first wavelength range and a second wavelength range
US20180075312A1 (en) Object recognition method, program, and optical system
JP2022016023A (en) Glossiness inspection device, glossiness inspection method, and image forming apparatus
JP4022562B2 (en) Bill identification method
JP3576158B2 (en) Agricultural product internal quality evaluation device
WO2012073535A1 (en) Toner concentration sensor manufacture process, toner concentration sensor control method for use in the process, control detector, and toner concentration sensor
US20240069478A1 (en) Sheet type discrimination device, sheet type discrimination method, and sheet type discrimination program
JP4505053B2 (en) Inspection device
JP2005122392A (en) Paper sheet fluorescence detecting device
JPS592188A (en) Paper sheet recognition method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170310

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170927

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170927

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20171222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181030

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20181030