JP2017097961A - Gas Circuit Breaker - Google Patents

Gas Circuit Breaker Download PDF

Info

Publication number
JP2017097961A
JP2017097961A JP2015225659A JP2015225659A JP2017097961A JP 2017097961 A JP2017097961 A JP 2017097961A JP 2015225659 A JP2015225659 A JP 2015225659A JP 2015225659 A JP2015225659 A JP 2015225659A JP 2017097961 A JP2017097961 A JP 2017097961A
Authority
JP
Japan
Prior art keywords
arc
insulating member
movable
gas
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015225659A
Other languages
Japanese (ja)
Inventor
新海 健
Takeshi Shinkai
健 新海
周也 真島
Shuya Majima
周也 真島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015225659A priority Critical patent/JP2017097961A/en
Publication of JP2017097961A publication Critical patent/JP2017097961A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a gas circuit breaker capable of obtaining a sufficient interelectrode insulation strength, even if a decomposition gas or a decomposition product is generated, even without enlarging a pressure accumulation chamber.SOLUTION: The gas circuit breaker comprises: a sealed container filled with an arc-extinguishing gas; an opposite arc contactor and a movable arc contactor which are disposed oppositely within the sealed container and are brought into contact with or separated from each other in the case of power-off or power-on, and in which arch discharge is generated in the process of separation; a pressure accumulation chamber which blows the pressure-accumulated arc-extinguishing gas to the arc discharge; an opposite-side support part supporting the opposite arc contactor; a movable-side support part supporting the movable arc contactor; and an insulation cylinder 6 which connects the opposite-side support part and the movable-side support part and of which the internal space is communicated with an arc space where the arc discharge is generated. The insulation cylinder 6 includes: an insulation member 6a which is cylindrical and has a support strength; and an insulation member 6b which has decomposition gas resistance and decomposition product resistance, and the insulation member 6b is provided on an inner face of the insulation member 6a.SELECTED DRAWING: Figure 2

Description

本発明の実施形態は、電力系統において電流遮断を行うガス遮断器に関する。   Embodiments described herein relate generally to a gas circuit breaker that performs current interruption in a power system.

現在、高電圧大容量の電力系統では、SFガスを絶縁及び消弧媒体としたガス絶縁開閉装置が広く使用されている。ガス絶縁開閉装置を構成する主要機器として、内部にSFガスを充填させたガス遮断器がある。このガス遮断器は、電力系統における故障電流を速やかに遮断することができる電力機器である。ガス遮断器は、遮断過程に接触子を機械的に切り離し、この切り離しによって発生したアーク放電を絶縁及び消弧媒体の吹き付けによって消弧する。 Currently, in the electric power system high voltage large capacity, gas-insulated switchgear apparatus with insulation and arc-extinguishing medium SF 6 gas is widely used. As a main device constituting the gas insulated switchgear, there is a gas circuit breaker filled with SF 6 gas. This gas circuit breaker is a power device capable of quickly interrupting a fault current in the power system. The gas circuit breaker mechanically disconnects the contact during the disconnection process, and extinguishes arc discharge generated by the disconnection by blowing an insulating and arc-extinguishing medium.

上記のようなガス遮断器は、現在パッファ形と呼ばれるタイプが広く普及している。パッファ形ガス遮断器は、消弧性ガスが充填された密閉容器内に、固定アーク接触子及び固定通電接触子と、可動アーク接触子及び可動通電接触子とがそれぞれ対向して配置され、それぞれを機械的な駆動力によって接触又は離反させることで電流を導通し又は遮断する。   The type of gas circuit breaker as described above is now widely used as a puffer type. The puffer-type gas circuit breaker is arranged in a sealed container filled with an arc extinguishing gas, with a fixed arc contact and a fixed energizing contact, and a movable arc contact and a movable energizing contact arranged to face each other. Is brought into contact or separated by a mechanical driving force to conduct or cut off the current.

このガス遮断器には、接触子の離反に伴って容積が減少し、内部の消弧性ガスが蓄圧される蓄圧室と、両アーク接触子を取り囲むように配置され、蓄圧室内で蓄圧された消弧性ガスをアーク放電に誘導する絶縁ノズルが設けられている。   In this gas circuit breaker, the volume decreases with the separation of the contacts, and the pressure accumulating chamber in which the arc extinguishing gas is accumulated and the arc contacts are disposed so as to surround the pressure accumulating chamber, and the pressure is accumulated in the pressure accumulating chamber. An insulating nozzle is provided for inducing arc-extinguishing gas to arc discharge.

遮断過程においては、固定アーク接触子と可動アーク接触子が離反することで、両アーク接触子間にアーク放電が発生する。接触子の離反に伴って蓄圧室で十分蓄圧された消弧性ガスを、絶縁ノズルを介してアーク放電に強力に吹き付けることにより、両アーク接触子の絶縁性能を回復させ、アーク放電が小さくなる電流零点で消弧し、電流の遮断を完了させる。   In the interruption process, the fixed arc contact and the movable arc contact are separated from each other, so that arc discharge occurs between the arc contacts. The arc extinguishing gas, which has been sufficiently accumulated in the accumulator chamber with the separation of the contacts, is strongly blown to the arc discharge through the insulation nozzle, thereby restoring the insulation performance of both arc contacts and reducing the arc discharge. The arc is extinguished at the current zero point to complete the current interruption.

特公平7―97466号公報Japanese Patent Publication No. 7-97466

上記のような従来のガス遮断器において、固定アーク接触子が設けられる固定接触子部と、可動アーク接触子が設けられる可動接触子部とを連結し、これらの接触子部を絶縁する絶縁筒が設けられる。この絶縁筒は、その内部空間が、アーク放電の発生するアーク空間と連通するように設けられる。   In the conventional gas circuit breaker as described above, an insulating cylinder that connects a fixed contact portion provided with a fixed arc contact and a movable contact portion provided with a movable arc contact and insulates these contact portions. Is provided. The insulating cylinder is provided so that its internal space communicates with an arc space where arc discharge occurs.

故障電流遮断時のように数kAから数十kAオーダーの大電流アークを遮断すると、消弧性ガスが分解したり、固定アーク接触子及び可動アーク接触子や、絶縁ノズルの材料が消弧性ガス中に溶発したりする。このため、故障電流遮断後には、密閉容器内に、消弧性ガスの分解ガスや、温度低下により固体化した多様な分解生成物が存在する。   When a high-current arc of several kA to several tens of kA order is interrupted, such as when a fault current is interrupted, the arc extinguishing gas is decomposed, and the material of the fixed and movable arc contacts and the insulating nozzle is extinguished. It may ablate in the gas. For this reason, after the failure current is interrupted, the arc-extinguishing gas decomposition gas and various decomposition products solidified due to the temperature decrease exist in the sealed container.

従って、密閉容器内の絶縁筒の内面が、このような分解ガスに曝されると、短期的又は長期的にその表面が変質し、絶縁耐力が低下する場合がある。また、固体の分解生成物がその内面に堆積すると、絶縁筒の変質の他、表面抵抗が低下し、絶縁耐力が低下する場合がある。   Therefore, when the inner surface of the insulating cylinder in the hermetic container is exposed to such a decomposition gas, the surface may change in the short term or in the long term, and the dielectric strength may decrease. Moreover, when a solid decomposition product accumulates on the inner surface, in addition to the deterioration of the insulating cylinder, the surface resistance may decrease and the dielectric strength may decrease.

そのため、一般的には、分解ガスや分解生成物による絶縁強度の低下があっても、絶縁筒は、絶縁筒の長さを長くする等の絶縁距離を取って十分な裕度を持って構成されるが、絶縁筒の大型化に伴い蓄圧室が大型化するという問題が発生する。   Therefore, in general, even if there is a decrease in insulation strength due to cracked gas or decomposition products, the insulating cylinder is configured with sufficient tolerance by taking an insulating distance such as increasing the length of the insulating cylinder. However, there arises a problem that the pressure accumulating chamber is enlarged as the insulating cylinder is enlarged.

本実施形態に係るガス遮断器は、上記のような課題を解決するためになされたものであり、蓄圧室を大型化しなくても、分解ガスや分解生成物の発生があっても十分な極間の絶縁強度を得ることのできるガス遮断器を提供することを目的としている。   The gas circuit breaker according to the present embodiment has been made to solve the above-described problems, and even if there is no generation of cracked gas and cracked products without increasing the pressure accumulating chamber, it is sufficient. It aims at providing the gas circuit breaker which can acquire the insulation strength between.

上記の目的を達成するために、本実施形態のガス遮断器は、電流の遮断と投入を切り替えるガス遮断器であって、消弧性ガスが充填された密閉容器と、前記密閉容器内に対向配置され、遮断又は投入の際に互いに接触又は開離し、開離の過程でアーク放電が発弧する対向アーク接触子及び可動アーク接触子と、前記アーク放電に対して蓄圧した前記消弧性ガスを吹き付ける蓄圧室と、前記対向アーク接触子を支持する対向側支持部と、前記可動アーク接触子を支持する可動側支持部と、前記対向側支持部と前記可動側支持部との間を繋ぐとともに、内部空間が前記アーク放電の発生するアーク空間と連通する絶縁筒と、を備え、前記絶縁筒は、円筒状で支持強度を有する第1の絶縁部材と、耐分解ガス性及び耐分解生成物性を有する第2の絶縁部材とを有し、前記第2の絶縁部材は、前記第1の絶縁部材の内面に設けられていること、を特徴とする。   In order to achieve the above object, the gas circuit breaker according to the present embodiment is a gas circuit breaker that switches between interruption and supply of current, and is opposed to the hermetic container filled with an arc extinguishing gas, Arranged, opposed arc contacts and movable arc contacts that are in contact with or separated from each other when interrupted or turned on, and arc discharge is generated in the process of opening, and the arc extinguishing gas accumulated with respect to the arc discharge A pressure accumulating chamber, a facing support part that supports the counter arc contact, a movable support part that supports the movable arc contact, and a connection between the facing support part and the movable support part. And an insulating cylinder communicating with the arc space where the arc discharge is generated, the insulating cylinder being cylindrical and having a supporting strength, a decomposition gas resistance, and a decomposition resistant generation Second perfection with physical properties And a member, said second insulating member is provided on the inner surface of the first insulating member, and wherein.

第1の実施形態に係るガス遮断器の全体構成を示す断面図であって、(a)は通常時の閉極(電流通電)状態を示すガス遮断器の断面図、(b)は開極(電流遮断動作中)の状態を示すガス遮断器の断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows the whole structure of the gas circuit breaker which concerns on 1st Embodiment, Comprising: (a) is sectional drawing of the gas circuit breaker which shows a normal closing (electric current supply) state, (b) is opening. It is sectional drawing of the gas circuit breaker which shows the state of (in current interruption operation | movement). 第1の実施形態に係る絶縁筒の拡大断面図である。It is an expanded sectional view of the insulating cylinder concerning a 1st embodiment. 第2の実施形態に係る絶縁筒の拡大断面図である。It is an expanded sectional view of the insulating cylinder which concerns on 2nd Embodiment.

[1.第1の実施形態]
[1−1.全体構成]
まず、本実施形態のガス遮断器の全体構成について図面を参照しつつ説明する。図1は、本実施形態のガス遮断器の全体構成を示す断面図であり、図1(a)は、通常時の閉極(電流通電)状態を示し、図1(b)は開極(電流遮断動作中)の状態を示している。
[1. First Embodiment]
[1-1. overall structure]
First, the whole structure of the gas circuit breaker of this embodiment is demonstrated, referring drawings. FIG. 1 is a cross-sectional view showing the overall configuration of the gas circuit breaker of the present embodiment. FIG. 1 (a) shows a normally closed (current-carrying) state, and FIG. It shows the state of current interruption operation).

本実施形態のガス遮断器は、接地された金属からなる密閉容器1と、密閉容器1外部から引き込まれる導体7aと導体7bとの間に対向接点部10と可動接点部20を相対させて備える。対向接点部10は、導体7aと接続された対向側支持部13に固定される。可動接点部20は、対向接点部10と接離する方向に摺動可能に可動側支持部33に嵌め込まれている。可動側支持部33にはその内壁面に通電接触子28が設けられ、この接触子28に可動接点部20が摺動可能に接触している。導体7bは、可動側支持部33と接続されている。導体7a、対向側支持部13及び対向接点部10が一連に接続されて片側の電路が形成され、導体7b、可動側支持部33及び可動接点部20が一連に接続されて他方の電路が形成される。   The gas circuit breaker according to the present embodiment is provided with a facing contact portion 10 and a movable contact portion 20 facing each other between a sealed container 1 made of a grounded metal and a conductor 7a and a conductor 7b drawn from the outside of the sealed container 1. . The opposed contact portion 10 is fixed to the opposed side support portion 13 connected to the conductor 7a. The movable contact portion 20 is fitted in the movable side support portion 33 so as to be slidable in a direction in which the movable contact portion 20 contacts and separates from the opposing contact portion 10. An energizing contact 28 is provided on the inner wall surface of the movable side support portion 33, and the movable contact portion 20 is slidably in contact with the contact 28. The conductor 7 b is connected to the movable side support portion 33. The conductor 7a, the opposed side support portion 13 and the opposed contact portion 10 are connected in series to form an electric circuit on one side, and the conductor 7b, the movable side support portion 33 and the movable contact portion 20 are connected in series to form the other electric circuit. Is done.

このガス遮断器は、対向接点部10に対して可動接点部20を接触及び離反させることで導体7a側と導体7b側の電路を開閉し、電流を導通及び遮断する。可動接点部20は、絶縁ロッド27と接続されており、絶縁ロッド27はバネ式や油圧式等の動力源である不図示の機構部に接続されている。可動接点部20は、機構部による絶縁ロッド27の押し引きにより、対向接点部10に対して接離する。   This gas circuit breaker opens and closes the electric paths on the conductor 7a side and the conductor 7b side by bringing the movable contact portion 20 into and out of contact with the opposing contact portion 10, thereby conducting and blocking current. The movable contact portion 20 is connected to an insulating rod 27, and the insulating rod 27 is connected to a mechanism portion (not shown) that is a power source such as a spring type or a hydraulic type. The movable contact portion 20 contacts and separates from the opposing contact portion 10 by pushing and pulling the insulating rod 27 by the mechanism portion.

電流遮断過程では、対向接点部10と可動接点部20との間にアーク放電9が発弧する。密閉容器7には消弧性ガスが充填されている。また可動接点部20には、対向接点部10からの離反に連動して容積を減少させる蓄圧室25が設けられている。蓄圧室25は、容積減少によって消弧性ガスを蓄圧及びアーク放電9に向けて噴出し、アーク放電9を電流零点で消弧する。   In the current interruption process, an arc discharge 9 is generated between the opposed contact portion 10 and the movable contact portion 20. The sealed container 7 is filled with an arc extinguishing gas. The movable contact portion 20 is provided with a pressure accumulating chamber 25 that reduces the volume in conjunction with the separation from the opposing contact portion 10. The pressure accumulating chamber 25 discharges the arc extinguishing gas toward the pressure accumulating and arc discharge 9 by reducing the volume, and extinguishes the arc discharge 9 at the current zero point.

消弧性ガスは、消弧性能及び絶縁性能に優れたガスであり、例えば六フッ化硫黄ガス(SFガス)が挙げられる。但し、SFガスは、二酸化炭素ガスの23900倍の地球温暖化効果を有すると言われており、環境保全の観点から、SFガスよりも地球温暖化係数の小さいガスを用いるようにしても良い。この地球温暖化係数の小さいガスとしては、空気、二酸化炭素、酸素、窒素またはそれらの混合ガス等が挙げられる。 The arc extinguishing gas is a gas excellent in arc extinguishing performance and insulation performance, and examples thereof include sulfur hexafluoride gas (SF 6 gas). However, SF 6 gas is said to have a global warming effect 23,900 times that of carbon dioxide gas. From the viewpoint of environmental conservation, SF 6 gas may be a gas having a smaller global warming potential than SF 6 gas. good. Examples of the gas having a small global warming potential include air, carbon dioxide, oxygen, nitrogen, or a mixed gas thereof.

このようなガス遮断器は、円筒を主体とする部材によって組み立てられており、各部材は中心軸を一致させて密閉容器7内に配置されている。以下では、各部材の位置関係及び方向を説明するのに、対向接点部10及び対向側支持部13の各部材において可動接点部20に向かう方向を可動側、その反対を反可動側と呼び、可動接点部20の各部材において対向接点部10に向かう方向を対向側、その反対を反対向側と呼ぶ。   Such a gas circuit breaker is assembled by members mainly made of a cylinder, and the respective members are arranged in the sealed container 7 with their central axes aligned. Hereinafter, in order to explain the positional relationship and direction of each member, the direction toward the movable contact portion 20 in each member of the opposed contact portion 10 and the opposed side support portion 13 is referred to as a movable side, and the opposite is referred to as an anti-movable side. In each member of the movable contact portion 20, the direction toward the opposing contact portion 10 is referred to as an opposite side, and the opposite is referred to as an opposite side.

[1−2.詳細構成]
まず、対向側支持部13及び可動側支持部33は、互いに対向させて密閉容器1内で固定されている。対向側支持部13は、両端が開口した中空円筒形状の導体であり、対向接点部10を固定する。可動側支持部33は、対向側が開口したコップ形状の導体であり、対向側の開口から可動接点部20が挿通され、内面に設けられた通電接触子28に摺動可能に支持する。可動側支持部33は、密閉容器1内壁に立設された絶縁支持台34に絶縁支持されている。
[1-2. Detailed configuration]
First, the opposed side support portion 13 and the movable side support portion 33 are fixed in the sealed container 1 so as to face each other. The opposite side support portion 13 is a hollow cylindrical conductor having both ends opened, and fixes the opposite contact portion 10. The movable side support portion 33 is a cup-shaped conductor having an opening on the opposite side, and the movable contact portion 20 is inserted through the opening on the opposite side, and is slidably supported on the energizing contact 28 provided on the inner surface. The movable side support portion 33 is insulated and supported by an insulation support base 34 erected on the inner wall of the sealed container 1.

この対向側支持部13及び可動側支持部33は、互いの開口を対向させて密閉容器1内に離間配置されている。対向側支持部13及び可動側支持部33の互いに対向する開口は、フランジ状に形成されており、対向側支持部13及び可動側支持部33の間に、絶縁筒6が継合されている。   The opposing side support portion 13 and the movable side support portion 33 are spaced apart from each other in the sealed container 1 with their openings facing each other. Openings facing each other of the opposed side support portion 13 and the movable side support portion 33 are formed in a flange shape, and the insulating cylinder 6 is joined between the opposed side support portion 13 and the movable side support portion 33. .

絶縁筒6は、円筒形状の絶縁物からなり、その径は対向側支持部13及び可動側支持部33と同径であり、対向側支持部13及び可動側支持部33の間を繋いでいる。絶縁筒6は、対向側支持部13及び可動側支持部33の間の空間と、密閉容器1の内壁面とを絶縁し、対向側支持部13と可動側支持部33とともにアーク放電9を消弧する消弧室を形成する。すなわち、絶縁筒6の内部空間は、アーク放電9が発生するアーク空間と連通する。   The insulating cylinder 6 is made of a cylindrical insulator, and the diameter thereof is the same as that of the opposing side support portion 13 and the movable side support portion 33, and connects the opposing side support portion 13 and the movable side support portion 33. . The insulating cylinder 6 insulates the space between the opposed side support portion 13 and the movable side support portion 33 and the inner wall surface of the sealed container 1, and extinguishes the arc discharge 9 together with the opposed side support portion 13 and the movable side support portion 33. An arc extinguishing chamber is formed. That is, the internal space of the insulating cylinder 6 communicates with the arc space where the arc discharge 9 is generated.

図2は、絶縁筒6の拡大断面図である。図2に示すように、絶縁筒6は、円筒形状で支持強度を有する絶縁部材6aと、耐分解ガス性及び耐分解生成物性を有する絶縁部材6bとを有する。絶縁部材6aは、例えば、FRPやエポキシ系樹脂製であり、中空円筒形が広く用いられている。FRPはマンドレルと言われる棒にFRPシートを巻きつけることで円筒形状を構成するのに対し、エポキシ系樹脂では所謂型に注型することで円筒形状を成形する。エポキシ系樹脂には、機械強度を高めるためアルミナやシリカを含有するものを用いても良い。   FIG. 2 is an enlarged cross-sectional view of the insulating cylinder 6. As shown in FIG. 2, the insulating cylinder 6 includes an insulating member 6a having a cylindrical shape and supporting strength, and an insulating member 6b having decomposition gas resistance and decomposition product resistance. The insulating member 6a is made of, for example, FRP or epoxy resin, and a hollow cylindrical shape is widely used. FRP forms a cylindrical shape by winding an FRP sheet around a rod called a mandrel, whereas an epoxy resin molds a cylindrical shape by pouring into a so-called mold. An epoxy resin containing alumina or silica may be used to increase mechanical strength.

絶縁部材6bは、絶縁部材6aの内面に設けられており、円筒形状の絶縁部材6bが絶縁部材6aと一体成型されるか、絶縁部材6aの内面にコーティング層として設けられる。一体成型によれば、金型に材料を注入することで製造できるため、製造が簡便になる。コーティング層として設ける場合には、金型などの別途の装置が不要であり、簡便に製造することができる。なお、絶縁部材6aと絶縁部材6bを別々で円筒形状に成形しておき、接着剤等により二重筒として絶縁筒6を構成しても良い。絶縁部材6a又は絶縁部材6bを重複させて絶縁筒6を三重筒として構成しても良い。絶縁部材6bは、絶縁部材6aよりも高い耐分解ガス性及び耐分解生成物性を有し、例えば、エポキシ系樹脂から構成される。但し、これに限定されず、絶縁部材6bは耐熱性を有するフッ素樹脂系、ポリイミド、PEEKなどの樹脂から構成されていても良い。また、絶縁部材6bをコーティング層とする場合、フッ素樹脂系としても良い。耐分解ガス性及び耐分解生成物性は、絶縁部材6bが有するが、絶縁部材6aも有していても良い。この場合、絶縁部材6bの方を、絶縁部材6aよりも耐分解ガス性及び耐分解生成物性を高くしておく。   The insulating member 6b is provided on the inner surface of the insulating member 6a, and the cylindrical insulating member 6b is formed integrally with the insulating member 6a or is provided as a coating layer on the inner surface of the insulating member 6a. According to integral molding, since it can manufacture by inject | pouring material into a metal mold | die, manufacture becomes simple. In the case of providing as a coating layer, a separate device such as a mold is unnecessary, and it can be easily manufactured. The insulating member 6a and the insulating member 6b may be separately formed into a cylindrical shape, and the insulating tube 6 may be configured as a double tube by an adhesive or the like. The insulating cylinder 6 may be configured as a triple cylinder by overlapping the insulating member 6a or the insulating member 6b. The insulating member 6b has higher decomposition gas resistance and decomposition product resistance than the insulating member 6a, and is made of, for example, an epoxy resin. However, the insulating member 6b is not limited to this, and the insulating member 6b may be made of a heat-resistant resin such as a fluororesin, polyimide, or PEEK. Further, when the insulating member 6b is a coating layer, a fluororesin system may be used. The insulating member 6b has the decomposition gas resistance and the decomposition resistance product property, but may also have the insulating member 6a. In this case, the insulating member 6b has a higher decomposition gas resistance and decomposition product resistance than the insulating member 6a.

対向接点部10は、対向接触子11及び対向通電接触子12を有する。可動接点部20は、可動接触子21、可動通電接触子22、絶縁ノズル23、可動シリンダ24、蓄圧室25、及び操作ロッド26を有する。   The opposing contact portion 10 includes an opposing contact 11 and an opposing energizing contact 12. The movable contact portion 20 includes a movable contact 21, a movable energizing contact 22, an insulating nozzle 23, a movable cylinder 24, a pressure accumulation chamber 25, and an operation rod 26.

対向通電接触子12及び可動通電接触子22は、それぞれ端面が開口した円筒形状を有する導体であり、互いに開口を向かい合わせて同一軸上に配置されている。対向通電接触子12の開口縁は内部に膨出しており、開口縁部分の内径と可動通電接触子22の外径は一致している。   The opposed energizing contact 12 and the movable energizing contact 22 are cylindrical conductors each having an open end face, and are disposed on the same axis with the openings facing each other. The opening edge of the opposed energizing contact 12 bulges inside, and the inner diameter of the opening edge portion and the outer diameter of the movable energizing contact 22 are the same.

対向通電接触子12は、可動側支持部13に固定されている。可動通電接触子22は、対向通電接触子12に対して移動可能となっており、対向通電接触子12の開口に可動通電接触子22が差し込まれることで、対向通電接触子12の内面と可動通電接触子22の外面とが接触し、電気的に導通できる状態となる。   The opposed energizing contact 12 is fixed to the movable support 13. The movable energizing contact 22 is movable with respect to the opposing energizing contact 12, and the movable energizing contact 22 is inserted into the opening of the opposing energizing contact 12, thereby moving the inner surface of the opposing energizing contact 12. It will be in the state which can contact with the outer surface of the electricity supply contact 22 and can be electrically connected.

対向アーク接触子11は、一端が丸みを帯びた中実の円柱状の導体である。対向アーク接触子11は、対向側支持部13の内壁面からその内部に突き出るように設けられた支持部14を介して固定支持されている。   The counter arc contact 11 is a solid cylindrical conductor whose one end is rounded. The counter arc contact 11 is fixedly supported via a support portion 14 provided so as to protrude from the inner wall surface of the counter side support portion 13 to the inside thereof.

可動アーク接触子21は、両端が開口した円筒形状を有する導体である。電流遮断過程では、可動アーク接触子21が対向アーク接触子11から開離して両接触子11、21間にアーク放電9が発生するアーク空間が形成される。   The movable arc contactor 21 is a conductor having a cylindrical shape with both ends opened. In the current interruption process, the movable arc contact 21 is separated from the opposed arc contact 11, and an arc space in which arc discharge 9 is generated is formed between both the contacts 11 and 21.

可動アーク接触子21の開口縁は内部に膨出し、その内径は対向アーク接触子11の外径と一致する。可動アーク接触子21は対向アーク接触子11に対し移動が可能であり、対向アーク接触子11が可動アーク接触子21の開口に差し込まれることで、両接触子11、21が互いに接触し、導通できる状態となる。   The opening edge of the movable arc contact 21 bulges inside, and its inner diameter matches the outer diameter of the counter arc contact 11. The movable arc contact 21 is movable with respect to the opposed arc contact 11. When the opposed arc contact 11 is inserted into the opening of the movable arc contact 21, both the contacts 11, 21 are brought into contact with each other, and are electrically connected. It will be ready.

なお、可動アーク接触子21の先端は円周方向に分割され、指状電極となっている場合もある。その場合、可動アーク接触子21は可撓性を有し、可動アーク接触子21の開口縁の内径は、対向アーク接触子11の外径より若干小さくされてすぼめられている。対向アーク接触子11が可動アーク接触子21の開口に差し込まれることで、両接触子11、21が互いに接触し、導通できる状態となる。   The tip of the movable arc contact 21 may be divided in the circumferential direction to form a finger electrode. In that case, the movable arc contact 21 has flexibility, and the inner diameter of the opening edge of the movable arc contact 21 is slightly smaller than the outer diameter of the opposed arc contact 11 and is narrowed. When the opposing arc contact 11 is inserted into the opening of the movable arc contact 21, both the contacts 11 and 21 come into contact with each other and become conductive.

対向アーク接触子11に対する可動アーク接触子21の移動は、可動アーク接触子21に固定支持された操作ロッド26によって引き起こされる。操作ロッド26は、対向側が開口した中空の筒であり、中心軸上に配置される。操作ロッド26は、絶縁性を有する中実の円柱である絶縁ロッド27を介して、密閉容器1と連結された不図示の機構部に接続されており、機構部を駆動源として操作ロッド26が押し引きされることによって、可動側接点部2全体が対向側及び反対向側に移動する。   The movement of the movable arc contact 21 with respect to the counter arc contact 11 is caused by an operating rod 26 fixedly supported by the movable arc contact 21. The operation rod 26 is a hollow cylinder having an opening on the opposite side, and is disposed on the central axis. The operation rod 26 is connected to a mechanism unit (not shown) connected to the hermetic container 1 via an insulation rod 27 that is a solid solid cylinder having insulating properties. By being pushed and pulled, the entire movable contact portion 2 moves to the opposite side and the opposite side.

操作ロッド26の対向側の開口には、同径に構成された可動アーク接触子21が対向側に向けて立設されている。操作ロッド26の一回り外周には、アーク放電9に対して蓄圧した消弧性ガスを吹き付けるバームクーヘン形状の空間である蓄圧室25が設けられている。すなわち、蓄圧室25は、操作ロッド26と、操作ロッド26と連動するシリンダ24と位置不動のピストン31とから構成されている。   In the opening on the opposite side of the operation rod 26, a movable arc contact 21 having the same diameter is erected toward the opposite side. A pressure accumulation chamber 25, which is a Baumkuchen-shaped space for blowing the arc-extinguishing gas accumulated with respect to the arc discharge 9, is provided around the circumference of the operation rod 26. That is, the pressure accumulating chamber 25 includes an operating rod 26, a cylinder 24 that is linked to the operating rod 26, and a piston 31 that does not move.

シリンダ24は、有底のコップ形状を有する導体であり、有底端面を対向側に向けて、側面が操作ロッド26を取り囲むように中心軸に沿って反対向側に延びている。シリンダ24の有底部分には、シリンダ24内外を連通するリング状の連通孔24aが設けられている。連通孔24aは、操作ロッド26の径より一回り大きい。シリンダ24は、連通孔24aと操作ロッド26を同軸にし、操作ロッド26の対向側端面と面一にして連結される。   The cylinder 24 is a conductor having a bottomed cup shape, and extends toward the opposite side along the central axis so that the bottomed end surface faces the opposite side and the side surface surrounds the operation rod 26. The bottomed portion of the cylinder 24 is provided with a ring-shaped communication hole 24 a that communicates the inside and outside of the cylinder 24. The communication hole 24 a is slightly larger than the diameter of the operation rod 26. The cylinder 24 is connected so that the communication hole 24 a and the operation rod 26 are coaxial, and is flush with the opposite end surface of the operation rod 26.

ピストン31は、中心が開口したドーナツ形状の円盤である。可動側支持部33の内面からは、ピストン支え31aが延びており、ピストン31は、このピストン支え31aによって位置が固定されている。ピストン31は、シリンダ24の有底端面と反対向側へ離れて対面設置される。ピストン31は、その外形がシリンダ24の内径と略一致し、シリンダ24に嵌め込まれる。また、ピストン31の開口径は、操作ロッド26の外径と略一致し、ピストン31の開口に操作ロッド26が摺動可能に挿通されている。   The piston 31 is a donut-shaped disk whose center is open. A piston support 31a extends from the inner surface of the movable support 33, and the position of the piston 31 is fixed by the piston support 31a. The piston 31 is disposed facing the bottom end surface of the cylinder 24 away from the opposite side. The outer shape of the piston 31 substantially matches the inner diameter of the cylinder 24 and is fitted into the cylinder 24. The opening diameter of the piston 31 substantially matches the outer diameter of the operation rod 26, and the operation rod 26 is slidably inserted into the opening of the piston 31.

蓄圧室25は、操作ロッド26の外周面、シリンダ24の内周面及びピストン31で画成された空間を有する。蓄圧室25は、操作ロッド26の移動と連動してシリンダ24の有底端面がピストン31に対して接近又は離反することで、その容積が可変となる。シリンダ24は、その有底端面のピストン31に対する接近により蓄圧室25の容積を減少させる。そして、蓄圧室25内の消弧性ガスが圧縮されることで蓄圧され、連通孔24aからその消弧性ガスをアーク放電9に向けて噴出させる。   The pressure accumulating chamber 25 has a space defined by the outer peripheral surface of the operating rod 26, the inner peripheral surface of the cylinder 24, and the piston 31. The volume of the pressure accumulating chamber 25 is variable when the bottomed end surface of the cylinder 24 approaches or separates from the piston 31 in conjunction with the movement of the operation rod 26. The cylinder 24 reduces the volume of the pressure accumulating chamber 25 by the approach of the bottomed end surface to the piston 31. Then, the arc extinguishing gas in the pressure accumulating chamber 25 is compressed and accumulated, and the arc extinguishing gas is ejected toward the arc discharge 9 from the communication hole 24a.

シリンダ24の有底端面には、可動アーク接触子21を覆う絶縁ノズル23が立設している。絶縁ノズル23は、シリンダ24の連通孔24aの外周から筒を対向側へ延ばすように設けられており、その内部空間が蓄圧室25と連通している。すなわち、絶縁ノズル23は、蓄圧室25で蓄圧された消弧性ガスを、連通孔24aを介してアーク空間へ誘導する整流手段である。絶縁ノズル23は、最小内径部分であるスロート23aを備えるラバールノズルであり、シリンダ24の有底端面からスロート23aにかけて縮径し、スロート23aから対向側まで拡径する内部空間を有する。   On the bottomed end surface of the cylinder 24, an insulating nozzle 23 is provided so as to cover the movable arc contact 21. The insulating nozzle 23 is provided so as to extend the cylinder from the outer periphery of the communication hole 24 a of the cylinder 24 to the opposite side, and its internal space communicates with the pressure accumulation chamber 25. That is, the insulating nozzle 23 is a rectifying means for guiding the arc extinguishing gas accumulated in the pressure accumulating chamber 25 to the arc space through the communication hole 24a. The insulating nozzle 23 is a Laval nozzle provided with a throat 23a which is the smallest inner diameter portion, and has an internal space which is reduced in diameter from the bottomed end surface of the cylinder 24 to the throat 23a and expanded from the throat 23a to the opposite side.

[1−3.動作]
本実施形態のガス遮断器の動作について説明する。通電状態では、図1(a)に示すように、導体7a、対向側支持部13、対向通電接触子12、可動通電接触子22、シリンダ24、通電接触子28、可動側支持部33及び導体7bが電気的に接続されて電炉を形成する。通電状態において、電流は、導体7a又は導体7bからガス遮断器に流れ込み、対向接点部10と可動接点部20を介して他の導体7b又は導体7aからガス遮断器外部へ流れ出す。
[1-3. Operation]
Operation | movement of the gas circuit breaker of this embodiment is demonstrated. In the energized state, as shown in FIG. 1A, the conductor 7a, the opposed side support portion 13, the opposed energized contactor 12, the movable energized contactor 22, the cylinder 24, the energized contactor 28, the movable side supporter 33, and the conductor. 7b is electrically connected to form an electric furnace. In the energized state, the current flows from the conductor 7a or the conductor 7b to the gas circuit breaker, and flows out from the other conductor 7b or the conductor 7a to the outside of the gas circuit breaker via the opposed contact portion 10 and the movable contact portion 20.

事故電流等を遮断する場合、ガス遮断器は、対向接点部10に対して可動接点部20を開離させて電流を遮断する。具体的には、操作ロッド26は、操作部の操作力を受けて、対向接点部10とは反対方向に中心軸に沿って移動する。可動接点部20は、操作ロッド26に引きずられて対向接点部10から離れるように移動し、対向通電接触子12と可動通電接触子22とが開離する。   When interrupting an accident current or the like, the gas circuit breaker opens the movable contact portion 20 with respect to the opposing contact portion 10 to interrupt the current. Specifically, the operating rod 26 receives the operating force of the operating portion and moves along the central axis in the opposite direction to the opposed contact portion 10. The movable contact portion 20 is dragged by the operating rod 26 and moves away from the opposed contact portion 10, and the opposed energized contact 12 and the movable energized contact 22 are separated.

この操作ロッド26の移動と連動してシリンダ24は、その有底端面が位置固定のピストン31に対して接近する。そのため、蓄圧室25の容積は減少し、ボイルの法則に従い蓄圧室25内の消弧性ガスが蓄圧される。   In conjunction with the movement of the operating rod 26, the bottom end surface of the cylinder 24 approaches the piston 31 whose position is fixed. Therefore, the volume of the pressure accumulating chamber 25 decreases, and the arc extinguishing gas in the pressure accumulating chamber 25 is accumulated according to Boyle's law.

遮断動作が更に進行し、対向アーク接触子11に対して可動アーク接触子21が開離すると、対向アーク接触子11の可動側先端と可動アーク接触子21との間にはアーク放電9が発弧する。更に遮断動作が進行し、対向アーク接触子11と可動アーク接触子21間の距離が十分開き、かつ蓄圧室25内が十分蓄圧されると、蓄圧室25内の消弧性ガスが連通孔24aを通って絶縁ノズル23内に噴出する。   When the interruption operation further proceeds and the movable arc contact 21 is separated from the opposed arc contact 11, an arc discharge 9 is generated between the movable end of the opposed arc contact 11 and the movable arc contact 21. Arc. When the interruption operation further proceeds, the distance between the counter arc contact 11 and the movable arc contact 21 is sufficiently wide, and the pressure accumulation chamber 25 is sufficiently accumulated, the arc extinguishing gas in the pressure accumulation chamber 25 is communicated with the communication hole 24a. It passes through the insulating nozzle 23 and passes through.

噴流となった消弧性ガスは、絶縁ノズル23と可動アーク接触子21との間をガス流路として、アーク放電9に向けて案内され、アーク放電9に強力に吹き付けられる。そして、アーク放電9は、電流零点を迎えたときに、強力な消弧性ガスの吹き付けと相俟って消弧に至る。これによりガス遮断器の電流遮断は完了する。   The arc extinguishing gas that has become a jet is guided toward the arc discharge 9 using the gas flow path between the insulating nozzle 23 and the movable arc contact 21, and is strongly blown onto the arc discharge 9. When the arc discharge 9 reaches the current zero point, the arc discharge 9 is extinguished in combination with the blowing of a strong arc extinguishing gas. Thereby, the current interruption of the gas circuit breaker is completed.

この電流遮断動作の過程において、アーク放電9に吹き付けられた消弧性ガスは、可動接点部20側と対向接点部10側に別れて排出される。詳細には、対向接点部10側において、消弧性ガスは、アーク放電9の発生空間から、対向アーク接触子11の外周面と対向通電接触子12の内周面とで囲まれた空間を通り、対向側支持部13の内部空間を排気路として密閉容器1内に排気される。   In the process of the current interruption operation, the arc extinguishing gas blown to the arc discharge 9 is discharged separately to the movable contact portion 20 side and the opposed contact portion 10 side. Specifically, the arc-extinguishing gas on the side of the opposing contact portion 10 is a space surrounded by the outer peripheral surface of the opposing arc contact 11 and the inner peripheral surface of the opposing energizing contact 12 from the space where the arc discharge 9 is generated. As a result, the air is exhausted into the hermetic container 1 using the internal space of the opposed support 13 as an exhaust path.

また、可動接点部20側において、消弧性ガスは、アーク放電9の発生空間から可動アーク接触子21の内部に入り、操作ロッド26の内部に進入する。そして、操作ロッド26の内部において、消弧性ガスは操作ロッド26の絶縁ロッド27側の側面に設けられた貫通孔26aに至り、この貫通孔26aを介して、操作ロッド26外部の可動側支持部33の内部空間に放出される。可動支持部33の側周面にも貫通孔33aが設けられており、この貫通孔33aを通過して密閉容器1内に至り、排気完了となる。   On the movable contact portion 20 side, the arc extinguishing gas enters the movable arc contact 21 from the space where the arc discharge 9 is generated and enters the operation rod 26. In the operation rod 26, the arc extinguishing gas reaches a through hole 26a provided on the side surface of the operation rod 26 on the insulating rod 27 side, and the movable side support outside the operation rod 26 is provided through the through hole 26a. It is discharged into the internal space of the portion 33. A through hole 33a is also provided on the side peripheral surface of the movable support portion 33. The through hole 33a passes through the through hole 33a and reaches the inside of the sealed container 1 to complete exhaust.

[1−4.作用]
数kAから数十kAオーダーの大電流アークを遮断すると、消弧性ガスが分解し、絶縁ノズル23の材料、及び、対向アーク接触子11や可動アーク接触子21の材料が消弧性ガス中に溶発する。このため、故障電流遮断後には、密閉容器1内部に、消弧性ガスの分解ガスや、温度低下により固体化した多様な分解生成物が存在する。絶縁筒6は、これらの分解ガスや分解生成物に短期的及び長期的に曝されることとなる。
[1-4. Action]
When a high-current arc on the order of several kA to several tens of kA is interrupted, the arc extinguishing gas is decomposed, and the material of the insulating nozzle 23 and the material of the opposed arc contactor 11 and the movable arc contactor 21 are in the arc extinguishing gas. It will ablate. For this reason, after the failure current is interrupted, the arc-extinguishing gas decomposition gas and various decomposition products solidified due to a decrease in temperature exist in the sealed container 1. The insulating cylinder 6 is exposed to these decomposition gases and decomposition products in the short term and in the long term.

特に、絶縁筒6は、分解ガスや分解生成物が多く発生するアーク空間を覆うように設けられているため、その内面がこれらの分解ガスや分解生成物に曝されやすい。絶縁部材6aは、対向接点部10を支持する機械強度を有する支持部材として構成されるため、FRPやエポキシ樹脂が用いられることが多い。このような材料の場合、分解ガスや分解生成物により絶縁強度が低下する場合がある。本実施形態では、この絶縁部材6aの内面に耐分解ガス性及び耐分解生成物性を有する絶縁部材6bが設けられているので、遮断状態において、落雷時のインパルス電圧などが印加された場合であっても、十分な極間の絶縁強度を得ることができる。   In particular, since the insulating cylinder 6 is provided so as to cover an arc space where a large amount of cracked gas and cracked products are generated, its inner surface is easily exposed to these cracked gases and cracked products. Since the insulating member 6a is configured as a support member having mechanical strength that supports the opposing contact portion 10, FRP or epoxy resin is often used. In the case of such a material, the insulation strength may decrease due to decomposition gas or decomposition products. In this embodiment, since the insulating member 6b having the decomposition gas resistance and the decomposition product property is provided on the inner surface of the insulating member 6a, the impulse voltage at the time of lightning strike is applied in the interruption state. However, sufficient insulation strength between the electrodes can be obtained.

[1−5.効果]
(1)本実施形態のガス遮断器は、電流の遮断と投入を切り替えるガス遮断器であって、消弧性ガスが充填された密閉容器1と、密閉容器1内に対向配置され、遮断又は投入の際に互いに接触又は開離し、開離の過程でアーク放電9が発弧する対向アーク接触子11及び可動アーク接触子21と、アーク放電9に対して蓄圧した消弧性ガスを吹き付ける蓄圧室25と、対向アーク接触子11を支持する対向側支持部13と、可動アーク接触子21を支持する可動側支持部33と、対向側支持部13と可動側支持部33との間を繋ぐとともに、内部空間がアーク放電9の発生するアーク空間と連通する絶縁筒6と、を備える。絶縁筒6は、円筒状で支持強度を有する第1の絶縁部材6aと、耐分解ガス性及び耐分解生成物性を有する第2の絶縁部材6bとを有し、第2の絶縁部材6bは、第1の絶縁部材6aの内面に設けるようにした。
[1-5. effect]
(1) The gas circuit breaker of the present embodiment is a gas circuit breaker that switches between interruption and injection of current, and is disposed oppositely in the hermetic container 1 filled with the arc-extinguishing gas, and shuts off or The opposed arc contact 11 and the movable arc contact 21 that are brought into contact with or separated from each other at the time of charging, and the arc discharge 9 is generated in the course of the separation, and the accumulated pressure for blowing the arc extinguishing gas accumulated on the arc discharge 9 The chamber 25, the opposed support 13 that supports the opposed arc contact 11, the movable support 33 that supports the movable arc contact 21, and the opposed support 13 and the movable support 33 are connected to each other. In addition, the inner space includes an insulating cylinder 6 communicating with the arc space where the arc discharge 9 is generated. The insulating cylinder 6 includes a first insulating member 6a having a cylindrical shape and supporting strength, and a second insulating member 6b having decomposition gas resistance and decomposition product properties. The second insulating member 6b includes: It is provided on the inner surface of the first insulating member 6a.

これにより、絶縁筒6の内面が、分解ガスに曝され、分解生成物の堆積しやすい状況であっても、絶縁筒6の絶縁強度低下を抑制でき、蓄圧室25を大型化しなくても、十分な極間の絶縁強度を得ることができる。   Thereby, even if the inner surface of the insulating cylinder 6 is exposed to the decomposition gas and the decomposition products are likely to accumulate, it is possible to suppress a decrease in the insulating strength of the insulating cylinder 6 without enlarging the pressure accumulating chamber 25. Sufficient insulation strength between the electrodes can be obtained.

(2)第1の絶縁部材6aと第2の絶縁部材6bは一体成型するようにした。これにより、金型に材料を注入することで製造できるため、製造が簡便になる。 (2) The first insulating member 6a and the second insulating member 6b are integrally molded. Thereby, since it can manufacture by inject | pouring material into a metal mold | die, manufacture becomes easy.

(3)第2の絶縁部材6bは、第1の絶縁部材6aのコーティング層として設けた。これにより、別途の装置を要さずに、簡便に絶縁筒6の絶縁強度を高くすることができる。 (3) The second insulating member 6b is provided as a coating layer of the first insulating member 6a. Thereby, the insulation strength of the insulating cylinder 6 can be simply increased without requiring a separate device.

[2.第2の実施形態]
第2の実施形態について、図3を用いて説明する。第2の実施形態は、第1の実施形態と基本構成は同じである。第1の実施形態と異なる点のみを説明し、第1の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
[2. Second Embodiment]
A second embodiment will be described with reference to FIG. The basic configuration of the second embodiment is the same as that of the first embodiment. Only points different from the first embodiment will be described, and the same parts as those of the first embodiment are denoted by the same reference numerals and detailed description thereof will be omitted.

図3は、第2の実施形態に係る絶縁筒6の拡大断面図である。第2の実施形態に係る絶縁筒6は、絶縁部材6aの内面だけでなく外面にも絶縁部材6bを設けた点にある。外面に設けられた絶縁部材6bの厚みは、内面に設けられた絶縁部材6bの厚みと同じでも良く、異なるようにしても良い。   FIG. 3 is an enlarged cross-sectional view of the insulating cylinder 6 according to the second embodiment. The insulating cylinder 6 according to the second embodiment is that the insulating member 6b is provided not only on the inner surface but also on the outer surface of the insulating member 6a. The thickness of the insulating member 6b provided on the outer surface may be the same as or different from the thickness of the insulating member 6b provided on the inner surface.

また、分解ガスの方が分解生成物より重いため、分解ガスの方が密閉容器1内に排気されやすい。そのため、絶縁筒6の外面は分解生成物よりも分解ガスの方に曝されやすい。従って、絶縁部材6aの外面に設けられる絶縁部材6bは、耐分解ガス性を耐分解生成物性よりも高く有するように構成してもよい。例えば、このような材料を用いるか、耐分解性ガス性を有する材料と耐分解生成物性を有する材料とを混合して構成する場合には、耐分解性ガス性を有する材料の割合を高くする。   Further, since the cracked gas is heavier than the cracked product, the cracked gas is more easily exhausted into the sealed container 1. Therefore, the outer surface of the insulating cylinder 6 is more easily exposed to the decomposition gas than the decomposition product. Therefore, the insulating member 6b provided on the outer surface of the insulating member 6a may be configured to have a decomposition gas resistance higher than the decomposition product resistance. For example, when such a material is used or a material having a decomposition-resistant gas property and a material having a decomposition-resistant product property are mixed, the ratio of the material having the decomposition-resistant gas property is increased. .

本実施形態では、絶縁部材6aの内面だけでなく、外面にも絶縁部材6bを設けた。これにより、絶縁筒6の外面も絶縁強度の低下が抑制されるため、蓄圧室25を大型化しなくても、十分な極間の絶縁強度を得ることができる。   In the present embodiment, the insulating member 6b is provided not only on the inner surface of the insulating member 6a but also on the outer surface. Thereby, since the fall of an insulation strength is also suppressed for the outer surface of the insulating cylinder 6, even if it does not enlarge the pressure accumulation chamber 25, sufficient insulation strength between poles can be obtained.

[3.第3の実施形態]
第3の実施形態について説明する。第3の実施形態は、第2の実施形態と基本構成は同じである。第2の実施形態と異なる点のみを説明し、同じ部分については同じ符号を付して詳細な説明は省略する。
[3. Third Embodiment]
A third embodiment will be described. The basic configuration of the third embodiment is the same as that of the second embodiment. Only differences from the second embodiment will be described, and the same parts are denoted by the same reference numerals and detailed description thereof will be omitted.

第3の実施形態では、絶縁部材6aの内面及び外面に絶縁部材6bがコーティング層として設けられており、絶縁部材6bの誘電率は、絶縁部材6aの誘電率の50%〜150%である。この範囲を逸脱した誘電率に設定すると、絶縁部材6aと絶縁部材6bとの界面に分極電荷などの電荷が生じて絶縁強度に影響する虞があるが、上記の範囲のように、中核となる絶縁部材6aとその表面に設けられる絶縁部材6bの誘電率の値を近い値にすることで、絶縁部材6a及び絶縁部材6bの界面に電荷が生じることによる絶縁強度への影響を避けることができる。   In the third embodiment, the insulating member 6b is provided as a coating layer on the inner surface and the outer surface of the insulating member 6a, and the dielectric constant of the insulating member 6b is 50% to 150% of the dielectric constant of the insulating member 6a. If the dielectric constant deviates from this range, charges such as polarization charges may be generated at the interface between the insulating member 6a and the insulating member 6b to affect the insulation strength. However, as in the above range, it becomes the core. By making the values of the dielectric constants of the insulating member 6a and the insulating member 6b provided on the surface close to each other, it is possible to avoid the influence on the insulation strength due to the generation of electric charges at the interface between the insulating member 6a and the insulating member 6b. .

[4.第4の実施形態]
第4の実施形態について説明する。第4の実施形態は、第2の実施形態と基本構成は同じである。第2の実施形態と異なる点のみを説明し、同じ部分については同じ符号を付して詳細な説明は省略する。
[4. Fourth Embodiment]
A fourth embodiment will be described. The basic configuration of the fourth embodiment is the same as that of the second embodiment. Only differences from the second embodiment will be described, and the same parts are denoted by the same reference numerals and detailed description thereof will be omitted.

絶縁部材6bの熱膨張係数は、中核となる絶縁部材6aの熱膨張係数の75%〜125%である。この範囲を逸脱すると、熱膨張差により各部材6a、6bの寸法差が大きくなって絶縁部材6bが絶縁部材6aの表面から剥離し、絶縁強度が低下する虞があるが、上記の範囲内であれば、絶縁部材6bが絶縁部材6aの表面から剥離し、絶縁強度が低下することを抑制することができる。   The thermal expansion coefficient of the insulating member 6b is 75% to 125% of the thermal expansion coefficient of the insulating member 6a serving as the core. If it deviates from this range, there is a possibility that the dimensional difference between the members 6a and 6b becomes large due to the difference in thermal expansion, and the insulating member 6b peels off from the surface of the insulating member 6a, so that the insulation strength decreases. If it exists, it can suppress that the insulating member 6b peels from the surface of the insulating member 6a, and insulation strength falls.

絶縁部材6aの内面に設けられる絶縁部材6bの熱膨張係数は、中核となる絶縁部材6aの熱膨張係数の75%〜100%であることが好ましい。すなわち、絶縁部材6aの内面の方がアーク放電9で熱せられた高温ガスに曝されるが、この範囲とすることで、熱膨張差により各部材6a、6bの寸法差変化による剥離を抑止し、絶縁強度の低下を抑制することができる。   The thermal expansion coefficient of the insulating member 6b provided on the inner surface of the insulating member 6a is preferably 75% to 100% of the thermal expansion coefficient of the insulating member 6a serving as the core. That is, the inner surface of the insulating member 6a is exposed to a high-temperature gas heated by the arc discharge 9, but by setting this range, peeling due to a change in the dimensional difference between the members 6a and 6b is suppressed by the difference in thermal expansion. In addition, a decrease in insulation strength can be suppressed.

[5.その他の実施形態]
本明細書においては、本発明に係る複数の実施形態を説明したが、これらの実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。具体的には、第1乃至第4の実施形態を全て又はいずれかを組み合わせたものも包含される。以上のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
[5. Other Embodiments]
In the present specification, a plurality of embodiments according to the present invention have been described. However, these embodiments are presented as examples and are not intended to limit the scope of the invention. Specifically, a combination of all or any of the first to fourth embodiments is also included. The above embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof as well as included in the scope and gist of the invention.

(1)第1乃至第4の実施形態では、対向接点部10を固定して、可動接触子部20のみ軸方向に移動させるよう構成したが、対向接点部10に対して可動接触子部20が相対的に移動するように、対向接点部10も軸方向に移動させ、相対的開極速度を向上させようとするいわゆるデュアルモーション機構にしても良い。 (1) In the first to fourth embodiments, the opposed contact portion 10 is fixed and only the movable contact portion 20 is moved in the axial direction, but the movable contact portion 20 is moved with respect to the opposed contact portion 10. The counter contact portion 10 may also be moved in the axial direction so as to move relatively, so that a so-called dual motion mechanism that improves the relative opening speed may be used.

(2)第1乃至第4の実施形態では、機械的作用による蓄圧室25を有するガス遮断器を示したが、本発明には、機械的作用の蓄圧室25とアーク放電9の熱エネルギー作用による蓄圧空間を有するガス遮断器に対しても適用可能である。 (2) In the first to fourth embodiments, the gas circuit breaker having the pressure accumulating chamber 25 by mechanical action is shown. However, in the present invention, the heat energy action of the pressure accumulating chamber 25 by mechanical action and the arc discharge 9 is shown. It is applicable also to the gas circuit breaker which has the pressure accumulation space by.

1 密閉容器
7a、7b 導体
10 対向接点部
11 対向アーク接触子
12 対向通電接触子
13 対向側支持部
14 支持部
20 可動接点部
21 可動アーク接触子
22 可動通電接触子
23 絶縁ノズル
23 スロート
24 シリンダ
24a 連通孔
25 蓄圧室
26 操作ロッド
27 絶縁ロッド
28 通電接触子
31 ピストン
31a ピストン支え
33 可動側支持部
33a 貫通孔
6 絶縁筒
6a、6b 絶縁部材
7a 導体
7b 導体
9 アーク
DESCRIPTION OF SYMBOLS 1 Airtight container 7a, 7b Conductor 10 Opposing contact part 11 Opposing arc contact 12 Opposing energizing contact 13 Opposing side support part 14 Supporting part 20 Movable contact part 21 Movable arc contact 22 Movable energizing contact 23 Insulating nozzle 23 Throat 24 Cylinder 24a Communicating hole 25 Pressure accumulating chamber 26 Operating rod 27 Insulating rod 28 Energizing contact 31 Piston 31a Piston support 33 Movable support 33a Through hole 6 Insulating cylinder 6a, 6b Insulating member 7a Conductor 7b Conductor 9 Arc

Claims (7)

電流の遮断と投入を切り替えるガス遮断器であって、
消弧性ガスが充填された密閉容器と、
前記密閉容器内に対向配置され、遮断又は投入の際に互いに接触又は開離し、開離の過程でアーク放電が発弧する対向アーク接触子及び可動アーク接触子と、
前記アーク放電に対して蓄圧した前記消弧性ガスを吹き付ける蓄圧室と、
前記対向アーク接触子を支持する対向側支持部と、
前記可動アーク接触子を支持する可動側支持部と、
前記対向側支持部と前記可動側支持部との間を繋ぐとともに、内部空間が前記アーク放電の発生するアーク空間と連通する絶縁筒と、
を備え、
前記絶縁筒は、円筒状で支持強度を有する第1の絶縁部材と、耐分解ガス性及び耐分解生成物性を有する第2の絶縁部材とを有し、
前記第2の絶縁部材は、前記第1の絶縁部材の内面に設けられていること、
を特徴とするガス遮断器。
A gas circuit breaker that switches between cutting off and turning on current,
A sealed container filled with arc-extinguishing gas;
An opposed arc contact and a movable arc contact, which are opposed to each other in the closed container, contact or separate from each other at the time of shut-off or charging, and arc discharge is generated in the process of opening;
A pressure accumulating chamber that blows the arc extinguishing gas accumulated against the arc discharge;
An opposing side support for supporting the opposing arc contact;
A movable side support for supporting the movable arc contact;
An insulating cylinder that connects between the opposed side support part and the movable side support part, and an internal space communicates with the arc space where the arc discharge occurs,
With
The insulating cylinder includes a first insulating member having a cylindrical shape and supporting strength, and a second insulating member having decomposition gas resistance and decomposition product resistance,
The second insulating member is provided on an inner surface of the first insulating member;
A gas circuit breaker characterized by
前記第2の絶縁部材は、前記第1の絶縁部材の内面及び外面に設けられていること、
を特徴とする請求項1記載のガス遮断器。
The second insulating member is provided on an inner surface and an outer surface of the first insulating member;
The gas circuit breaker according to claim 1.
前記第1の絶縁部材と前記第2の絶縁部材は一体成型されていること、
を特徴とする請求項1又は2記載のガス遮断器。
The first insulating member and the second insulating member are integrally molded;
The gas circuit breaker according to claim 1 or 2.
前記第2の絶縁部材は、前記第1の絶縁部材のコーティング層であること、
を特徴とする請求項1〜3の何れかに記載のガス遮断器。
The second insulating member is a coating layer of the first insulating member;
The gas circuit breaker according to any one of claims 1 to 3.
前記第2の絶縁部材の誘電率は、前記第1の絶縁部材の誘電率の50%〜150%であること、
を特徴とする請求項1〜4の何れかに記載のガス遮断器。
The dielectric constant of the second insulating member is 50% to 150% of the dielectric constant of the first insulating member;
The gas circuit breaker according to any one of claims 1 to 4.
前記第2の絶縁部材の熱膨張係数は、前記第1の絶縁部材の熱膨張係数の75%〜125%であること、
を特徴とする請求項1〜5の何れかに記載のガス遮断器。
The thermal expansion coefficient of the second insulating member is 75% to 125% of the thermal expansion coefficient of the first insulating member;
The gas circuit breaker according to any one of claims 1 to 5.
前記第1の絶縁部材の内面に設けられた前記第2の絶縁部材は、その熱膨張係数が前記第1の絶縁部材の熱膨張係数の75%〜100%であること、
を特徴とする請求項1〜6の何れかに記載のガス遮断器。
The second insulating member provided on the inner surface of the first insulating member has a thermal expansion coefficient of 75% to 100% of the thermal expansion coefficient of the first insulating member;
The gas circuit breaker according to any one of claims 1 to 6.
JP2015225659A 2015-11-18 2015-11-18 Gas Circuit Breaker Pending JP2017097961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015225659A JP2017097961A (en) 2015-11-18 2015-11-18 Gas Circuit Breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015225659A JP2017097961A (en) 2015-11-18 2015-11-18 Gas Circuit Breaker

Publications (1)

Publication Number Publication Date
JP2017097961A true JP2017097961A (en) 2017-06-01

Family

ID=58817106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015225659A Pending JP2017097961A (en) 2015-11-18 2015-11-18 Gas Circuit Breaker

Country Status (1)

Country Link
JP (1) JP2017097961A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212260A1 (en) 2017-05-17 2018-11-22 住友化学株式会社 Composition and method for producing composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212260A1 (en) 2017-05-17 2018-11-22 住友化学株式会社 Composition and method for producing composition

Similar Documents

Publication Publication Date Title
CN100530480C (en) High-voltage vacuum circuit breaker with mono-fracture voltage to 252kV
US9336974B2 (en) Gas circuit breaker
KR20190011771A (en) Gas insulated low voltage or medium voltage load disconnect switch
US20130213939A1 (en) Vacuum interrupter for a circuit breaker arrangement
JP6270441B2 (en) Gas circuit breaker
JP2014229363A (en) Gas circuit breaker
US8766131B2 (en) Gas-insulated high-voltage switch
JP6139299B2 (en) Gas circuit breaker
JP2017097961A (en) Gas Circuit Breaker
JP4879366B1 (en) Gas circuit breaker
JP6479567B2 (en) Power circuit breaker
WO2018066119A1 (en) Gas circuit breaker
JP2019091590A (en) Gas-blast circuit breaker
JP2016219317A (en) Gas Circuit Breaker
JP2015011911A (en) Gas circuit breaker
KR101455324B1 (en) Gas circuit breaker
JPH0329230A (en) Medium voltage circuit breaker with high nominal current
JP2015082368A (en) Gas circuit breaker
JP2017068997A (en) Gas Circuit Breaker
JP2016207605A (en) Power circuit breaker
JP2015162330A (en) gas circuit breaker
JP2015023006A (en) Gas circuit breaker
RU2503078C1 (en) Sf6 circuit breaker
CN112673445B (en) Gas-insulated switch
WO2022070397A1 (en) Gas circuit breaker

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171204

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171204