WO2018066119A1 - Gas circuit breaker - Google Patents

Gas circuit breaker Download PDF

Info

Publication number
WO2018066119A1
WO2018066119A1 PCT/JP2016/079875 JP2016079875W WO2018066119A1 WO 2018066119 A1 WO2018066119 A1 WO 2018066119A1 JP 2016079875 W JP2016079875 W JP 2016079875W WO 2018066119 A1 WO2018066119 A1 WO 2018066119A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot gas
movable
space
fixed
arc
Prior art date
Application number
PCT/JP2016/079875
Other languages
French (fr)
Japanese (ja)
Inventor
周也 真島
崇文 飯島
吉野 智之
旭 島村
嵩人 石井
隆介 落合
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to CN201680087827.8A priority Critical patent/CN109496342A/en
Priority to JP2018543550A priority patent/JP6659864B2/en
Priority to PCT/JP2016/079875 priority patent/WO2018066119A1/en
Publication of WO2018066119A1 publication Critical patent/WO2018066119A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/72Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid having stationary parts for directing the flow of arc-extinguishing fluid, e.g. arc-extinguishing chamber
    • H01H33/74Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid having stationary parts for directing the flow of arc-extinguishing fluid, e.g. arc-extinguishing chamber wherein the break is in gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism

Definitions

  • Embodiment of this invention is related with the gas circuit breaker which provided the exhaust hole in the hot gas processing space which takes in a hot gas.
  • a type called a puffer type is now widely used.
  • a fixed part and a movable part are arranged in a sealed container filled with an arc-extinguishing gas so as to face and concentrically face each other on a concentric axis.
  • a fixed arc contact and a fixed energizing contact are provided on the fixed portion side, and a movable arc contact and a movable energizing contact are provided on the movable portion side, respectively.
  • SF 6 gas As an insulating medium and arc extinguishing medium used for the gas circuit breaker, SF 6 gas is mainly used. Furthermore, in order to reduce the amount of SF 6 gas that has a high warming effect, gas other than SF 6 gas is used as an insulating medium and arc-extinguishing medium, or a mixed gas mixed with various gases is used as an insulating medium and an extinguishing medium. Sometimes used as an arc medium.
  • the fixed part and the movable part are in contact with each other and conduct current. Also, when the fixed part and the movable part are separated when a large current is interrupted, a steep transient recovery voltage is applied immediately after the current is interrupted, so that an arc discharge occurs between the fixed arc contact and the movable arc contact. appear.
  • the puffer-type gas circuit breaker Since the puffer-type gas circuit breaker has a pressure accumulating means for blowing a gas to the arc discharge, the blown gas becomes a high-temperature hot gas by the arc discharge.
  • This hot gas passes through the inside of the movable part and the fixed part from the space where the arc discharge is generated, and is diffused into the sealed container.
  • a high electric field part is generated in the part where the hot gas is dissipated in the movable part and the fixed part. . Therefore, a ground fault may occur between the movable part and the fixed part side and the sealed container. As a result, the breaking performance of the gas circuit breaker may be reduced.
  • a hot gas processing space for taking in hot gas by arc discharge is provided inside the movable part and the fixed part.
  • the hot gas processing space is provided, for example, inside a movable part support for supporting the movable part and a fixed part support for supporting the fixed part.
  • the hot gas treatment space is configured by being surrounded by wall surfaces of the members constituting the movable part and the fixed part, but it is necessary to provide an exhaust hole in the wall surface part in order to avoid a pressure increase in the hot gas treatment space. .
  • the hot gas generated between the arc contacts flows into the hot gas processing space.
  • the gas existing in advance in the hot gas processing space is pushed by the flowing hot gas and flows out from the exhaust hole to the internal space of the sealed container.
  • the hot gas that has flowed into the hot gas processing space is cooled by entering the hot gas processing space, and then is diffused from the exhaust hole into the sealed container.
  • the gas circuit breaker as described above, it is possible to reduce the conductivity by cooling the hot gas in the hot gas processing space, and it is possible to avoid the formation of a high electric field portion near the exhaust hole. . Thereby, it becomes possible to prevent the occurrence of a ground fault in the sealed container, and it is possible to maintain an excellent blocking performance.
  • the present embodiment has been proposed to solve the above-described problems, and its purpose is to provide excellent shut-off performance even if the hot gas processing space is reduced by defining the hot gas exhaust direction.
  • An object of the present invention is to provide a gas circuit breaker that can be used.
  • an embodiment of the present invention includes a component (9) in a gas circuit breaker including the following components (1) to (8).
  • a sealed container filled with an arc extinguishing gas (2) A fixed portion and a movable portion that are disposed in the sealed container so as to face and concentrically face each other on a concentric axis.
  • a fixed arc contact and a fixed energization contact provided in the fixed portion.
  • An arc discharge space in which hot gas due to arc discharge can be generated between the fixed arc contact and the movable arc contact when the fixed portion and the movable portion are separated.
  • a hot gas processing space provided in at least one of the fixed portion and the movable portion so as to take in the hot gas from the arc discharge space.
  • An exhaust hole that is formed in the wall surface portion and communicates the hot gas processing space and the space in the sealed container.
  • the arc discharge space side is the upstream side of the hot gas
  • the exhaust hole side is the downstream side of the hot gas
  • the exhaust hole is from a cross-sectional area on the upstream side of the hot gas. Also, the downstream cross-sectional area is made smaller.
  • the gas circuit breaker having the components (1) to (8) may have the following component (10). (10) A baffle that closes the exhaust hole with a predetermined interval and is installed in parallel with the equipotential surface near the exhaust hole. Furthermore, the embodiment of the present invention may include the following component (11) in the gas circuit breaker having the components (1) to (8). (11) The exhaust hole opens in the axial direction of the fixed part or the movable part.
  • FIG. 3 is a cross-sectional structure diagram of the first embodiment (a state during a current interruption operation).
  • FIG. 2 is a cross-sectional structure diagram of the first embodiment (a state during a charging operation).
  • FIG. 3 is a plan view showing an equipotential surface in the vicinity of an exhaust hole in the first embodiment (a state in which a gas flow is exhausted).
  • the top view which shows the equipotential surface of the exhaust hole vicinity in a comparative example (state before exhausting a gas flow).
  • the side view which shows the equipotential surface of the exhaust hole vicinity in 2nd Embodiment (state before exhausting a gas flow).
  • the side view which shows the equipotential surface of the exhaust hole vicinity in 2nd Embodiment (The state which exhausted the gas flow).
  • the side view which shows the equipotential surface of the exhaust hole vicinity in 2nd Embodiment (state before exhausting a gas flow).
  • the side view which shows the equipotential surface of the exhaust hole vicinity in 2nd Embodiment (The state which exhausted the gas flow).
  • the top view which shows the equipotential surface of the exhaust hole vicinity in 3rd Embodiment (The state before exhausting a gas flow).
  • FIG. 6 is a cross-sectional structure diagram of another embodiment (a state during a current interruption operation).
  • the side view (state which exhausted the gas flow) which shows the equipotential surface of exhaust hole vicinity in other embodiment.
  • the side view (state which exhausted the gas flow) which shows the equipotential surface of exhaust hole vicinity in other embodiment.
  • the side view (state which exhausted the gas flow) which shows the equipotential surface of exhaust hole vicinity in other embodiment.
  • All of the gas circuit breakers according to the following embodiments are puffer-type gas circuit breakers, and include a hot gas processing space for taking in hot gas generated between arc contacts, and an internal pressure rise in the hot gas processing space. An exhaust hole is provided for restraining.
  • FIG. 1 shows a state during a current interruption operation
  • FIG. 2 shows a closing state.
  • each component in a figure is a coaxial cylindrical shape in general.
  • the puffer-type gas circuit breaker is provided with a sealed container 2.
  • the hermetic container 2 is composed of a grounded metal or insulator, and the inside thereof is filled with an arc extinguishing gas 1 such as SF 6 gas as an electric insulating medium and an arc extinguishing medium.
  • the fixing portion 3 is insulated and fixed in the hermetic container 2 via a fixed-side support insulator 7b.
  • the fixed part 3 includes a fixed energizing part 3a and a fixed arc contact 3b.
  • the fixed part 3 is composed of a hollow member, and a fixed-side hot gas processing space 14 is provided therein.
  • An exhaust hole 14 a is formed in the wall surface surrounding the fixed-side hot gas processing space 14.
  • the movable portion 4 is disposed so as to be able to contact and separate from the fixed portion 3 so as to face the fixed portion 3 on a concentric axis.
  • the movable part 4 is provided so as to be movable along the axial direction of the sealed container 2 and is insulated and supported with respect to the sealed container 2 via a movable support insulator 7a.
  • the movable part 4 includes an insulating nozzle 4a, a movable arc contact 4b, a current-carrying contact 4c, and a puffer cylinder 4d in order from the fixed part 3, and these members are integrally attached to the operation rod 4e. ing.
  • the fixed portion 3 and the movable portion 4 are configured to contact each other when the pole is closed and to conduct current, and to be able to generate an arc discharge 6 between the fixed arc contact 3b and the movable arc contact 4b at the time of separation. Yes. That is, the fixed arc contact 3b and the movable arc contact 4b are in contact conduction when the circuit breaker is turned on. Moreover, at the time of interruption
  • the insulating nozzle 4a Since the insulating nozzle 4a is exposed to the arc discharge 6, it is often composed mainly of polytetrafluoroethylene, which is an insulator having high arc resistance.
  • a piston 5 for compressing the internal space is attached to the puffer cylinder 4d.
  • a movable part support 12 is attached to the piston 5.
  • the movable part support 12 is fixed in the hermetic container 2 via a movable support insulator 7a.
  • the movable part support 12 is made of a hollow member having a diameter larger than that of the piston 5, and its internal space is a movable-side hot gas treatment space 13.
  • exhaust hole As shown in FIGS. 1 to 4, three exhaust holes 17 a to 17 c having different cross-sectional areas are formed in the wall surface portion of the movable portion support 12 surrounding the movable-side hot gas processing space 13. These exhaust holes 17a to 17c are for suppressing an increase in pressure in the movable hot gas processing space 13. Further, in the movable hot gas processing space 13, the space side where the arc discharge 6 is generated is the upstream side of the hot gas 9, the exhaust holes 17a to 17c side is the downstream side of the hot gas 9, and the exhaust holes 17a to 17c are hot gas. 9 is formed such that the cross-sectional area on the downstream side is sequentially smaller than the cross-sectional area on the upstream side. That is, the cross-sectional areas of the exhaust holes 17a to 17c are formed such that the exhaust hole 17a> the exhaust hole 17b> the exhaust hole 17c.
  • the current is drawn to the outside through the conducting conductor 10 and the bushing (not shown).
  • the current-carrying conductor 10 is insulated and supported by the insulating spacer 11, and at the same time, the gas space in the sealed container 2 is divided by the insulating spacer 11.
  • the movability of the movable portion 4 is achieved by connecting the operating rod 4e to the movable portion in the drive device 8 via the insulating rod 15 and the airtight rod 16.
  • the gas sprayed on the arc discharge 6 is heated by the arc discharge 6 to become a hot gas 9 having a high temperature.
  • the hot gas 9 flows separately from the space where the arc discharge 6 is generated to the fixed portion 3 side and the movable portion 4 side.
  • the hot gas 9 that has flowed to the fixed portion 3 side passes through the fixed-side hot gas processing space 14, is cooled, and is diffused into the sealed container 2 through the exhaust holes 17a to 17c.
  • the hot gas 9 that has flowed to the movable portion 4 side passes through the hollow portion of the drive rod 4 e, is cooled in the movable-side hot gas processing space 13 in the movable portion support 12, and is diffused into the sealed container 2. .
  • FIG. 5 shows an equipotential surface near the exhaust hole according to the first embodiment.
  • 6 and 7 are comparative examples of the first embodiment in which three exhaust holes 19a to 19c having the same cross-sectional area are arranged at equal intervals, and show equipotential surfaces in the vicinity of the exhaust holes in the comparative example.
  • 6 shows a state before the hot gas 9 is exhausted
  • FIGS. 5 and 7 show a state where the hot gas 9 is exhausted.
  • the cross-sectional areas of the exhaust holes 19a to 19c are all the same from the upstream side to the downstream side of the hot gas 9.
  • the hot gas 9 is not discharged from the upstream exhaust hole 19a, but is concentrated from the downstream exhaust holes 19b and 19c.
  • the hot gas 9 is quickly discharged from the downstream space of the movable-side hot gas processing space 13 and does not stay in the movable-side hot gas processing space 13 for a long time. That is, the hot gas 9 is not sufficiently cooled in the movable hot gas processing space 13. As a result, the hot gas 9 of high temperature flows out from the exhaust holes 19b and 19c, and a high electric field portion 18 (portion surrounded by a thick dotted line) is formed in the vicinity of the exhaust holes 19b and 19c (see FIG. 7).
  • the sectional areas of the exhaust holes 17a to 17c are sequentially reduced from the upstream side to the downstream side of the hot gas 9, so that the movable side hot gas is discharged from the exhaust holes 17a to 17c.
  • the hot gas 9 gradually flows out of the processing space 13.
  • the exhaust gas amount from the upstream exhaust hole 17a is “large”
  • the exhaust gas amount from the middle exhaust hole 17b is “medium”
  • the exhaust gas amount from the downstream exhaust hole 17c is “small” (See FIG. 5).
  • the amount of exhaust gas of the hot gas 9 entering the movable hot gas treatment space 13 decreases toward the downstream space of the movable hot gas treatment space 13 and is discharged from the downstream space of the movable hot gas treatment space 13 at a stretch. It will not be done. As a result, the hot gas 9 can remain in the movable hot gas processing space 13 for a long time. For this reason, the temperature of the hot gas 9 can be reliably cooled in the movable hot gas processing space 13.
  • the temperature of the hot gas 9 is sufficiently cooled in the movable hot gas processing space 13. can do. Accordingly, the high electric field portion 18 is hardly formed in the vicinity of the exhaust holes 17a to 17c, and the occurrence of a ground fault can be prevented between the movable portion support 12 on the movable portion 4 side and the sealed container 2. According to the first embodiment, even when the diameter of the sealed container 2 is reduced and the amount of hot gas 9 flowing into the movable-side hot gas processing space 13 is small, excellent shutoff performance is maintained. Is possible. Thereby, the gas circuit breaker which made compactness and interruption
  • FIGS. 8 and 9 show equipotential surfaces near the exhaust holes according to the second embodiment
  • FIGS. 10 and 11 show equipotential surfaces near the exhaust holes in the comparative example with respect to the second embodiment.
  • Show. 8 and 10 show a state before the hot gas 9 is exhausted
  • FIGS. 9 and 11 show a state where the hot gas 9 is exhausted.
  • the basic configuration of the second embodiment is the same as that of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • the wall surface of the movable support 12 surrounding the movable-side hot gas processing space 13 has an exhaust for suppressing an increase in pressure in the hot gas processing space 13.
  • a hole 21 is provided.
  • Two exhaust holes 21 are provided facing each other along the circumferential direction of the movable support 12.
  • a baffle 22 is attached to the inside of the movable support 12 so as to face each exhaust hole 21.
  • the baffle 22 closes the exhaust hole 21 from the inside with a predetermined interval and is installed in parallel with the equipotential surface near the exhaust hole 21.
  • the surface area of the baffle 22 is formed to be approximately the same as the opening area of the exhaust hole 21.
  • FIGS. 10 and 11 An equipotential surface in the vicinity of the exhaust hole 21 where the baffle 22 is not installed is shown.
  • the hot gas 9 is exhausted directly from the exhaust hole 21 toward the inner surface of the sealed container 2 that is the ground fault direction. End up.
  • the equipotential surface in the vicinity of the exhaust hole 21 is disturbed, the interval between the equipotential surfaces is reduced, and the high electric field portion 18 (portion surrounded by a thick dotted line) is formed.
  • the baffle 22 since the baffle 22 is installed near the exhaust hole 21, the baffle 22 closes the exhaust hole 21, so that the hot gas 9 is blocked by the baffle 22 and is not easily exhausted. Moreover, since the baffle 22 is installed in parallel with the equipotential surface near the exhaust hole 21, even if the hot gas 9 is exhausted from the exhaust hole 21, the hot gas 9 flows out in parallel with the equipotential surface. Become.
  • the hot gas 9 does not flow toward the inner surface of the sealed container 2 which is the ground fault direction, and the equipotential surface near the exhaust hole 21 is not disturbed. As a result, the interval between equipotential surfaces is not reduced, and the formation of the high electric field portion 18 can be avoided.
  • the second embodiment it is possible to prevent the occurrence of a ground fault between the movable portion support 12 on the movable portion 4 side and the sealed container 2, and the movable side as in the first embodiment. While reducing the capacity
  • the baffle 22 since the hot gas 9 flowing along the baffle 22 collides with the gas flowing out from one end side of the baffle 22 and the gas flowing out from the other end side of the baffle 22, the baffle 22 The hot gas 9 tends to stay on the surface 22. For this reason, the hot gas 9 stays in the movable hot gas processing space 13 for a long time and is cooled. Therefore, the high electric field portion 18 is more difficult to be formed and can reliably prevent the occurrence of a ground fault.
  • FIGS. 12 and 13 show equipotential surfaces near the exhaust hole according to the third embodiment.
  • FIG. 12 shows a state before exhausting the hot gas 9
  • FIG. 13 shows a state where the hot gas 9 is exhausted.
  • the basic configuration of the third embodiment is the same as that of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • the wall surface of the movable part support 12 is provided with exhaust holes 24 and 25 that allow the movable-side hot gas treatment space 13 and the space in the sealed container 2 to communicate with each other. These exhaust holes 24 and 25 are opened toward the axial direction of the movable part 4.
  • the space side where the arc discharge 6 is generated is the upstream side of the hot gas 9
  • the exhaust holes 24, 25 side is the downstream side of the hot gas 9
  • the wall portion of the movable portion support 12 is heated.
  • the radial dimension on the upstream side of the gas 9 is short and the radial dimension on the downstream side is long.
  • the movable part support 12 having different radial dimensions is specifically composed of a three-stage cylindrical shape.
  • the portion with the shortest diameter is the small diameter portion 12a
  • the portion close to the diameter of the small diameter portion 12a has the long diameter portion, the medium diameter portion 12b
  • the longest diameter portion is the large diameter portion 12c.
  • the exhaust hole 24 is provided in the wall surface portion of the medium diameter portion 12b that is generated from the difference in diameter between the small diameter portion 12a and the medium diameter portion 12b.
  • the exhaust hole 25 is provided in the wall surface portion of the large-diameter portion 12c generated from the difference in diameter between the medium-diameter portion 12b and the large-diameter portion 12c.
  • the number and shape of the exhaust holes and baffles, the arrangement locations, the constituent materials, and the like can be selected as appropriate.
  • four exhaust holes 21 are equally provided at an angle of 90 degrees, and four baffles 22 are provided so as to cover the four exhaust holes 21 correspondingly. good.
  • the amount of the hot gas 9 exhausted from the exhaust holes 21 can be reduced by using four exhaust holes 21 and baffles 22.
  • the surface area of the baffle may be larger than the cross-sectional area of the exhaust hole, or the exhaust hole may be closed with a predetermined interval from the outside rather than from the inside.
  • the cross-sectional area on the downstream side may be smaller than the cross-sectional area on the upstream side of the hot gas 9. Therefore, as a modification of the first embodiment, for example, as shown in FIG. 15, one elongated triangular exhaust hole 17 d may be formed in the axial direction of the movable portion support 12.
  • the exhaust holes 17a to 17c having a small cross-sectional area are arranged from the upstream side to the downstream side of the hot gas 9, but this is not restrictive.
  • a plurality of exhaust holes 17e having the same cross-sectional area may be provided so that the number of exhaust holes per unit area decreases sequentially from the upstream side to the downstream side of the hot gas 9.
  • six exhaust holes 17e may be disposed on the upstream side of the hot gas 9, two exhaust holes 17e may be disposed on the downstream side, and four exhaust holes 17e may be disposed therebetween.
  • the exhaust hole or baffle is provided on the movable-side hot gas treatment space 13 side.
  • the exhaust hole is provided on the fixed part 3 side on the hot gas treatment space 14 side. 21 may be provided, and the baffle 22 may be provided so as to cover it.
  • an exhaust hole having a downstream cross-sectional area smaller than an upstream cross-sectional area may be provided in a wall surface part surrounding the hot gas processing space 14 on the fixed part 3 side.
  • the radial dimension on the upstream side of the hot gas 9 is shortened and the radial dimension on the downstream side is lengthened.
  • the upstream radial dimension of the gas 9 may be lengthened and the downstream radial dimension may be shortened.
  • the large diameter portion 12c, the medium diameter portion 12b, and the small diameter portion 12a may be arranged in this order from the upstream side of the hot gas 9.
  • the hot gas 9 flows from the exhaust holes 24 and 25 toward the outside of the movable hot gas processing space 13. It will gradually flow out. At this time, the exhaust gas amount from the upstream exhaust hole 25 tends to be “large”, and the exhaust gas amount from the downstream exhaust hole 24 tends to be “small”.
  • the amount of exhaust gas of the hot gas 9 entering the movable hot gas treatment space 13 decreases toward the downstream space of the movable hot gas treatment space 13 and is discharged from the downstream space of the movable hot gas treatment space 13 at a stretch. It will not be done.
  • the hot gas 9 can stay in the movable hot gas processing space 13 for a long time. Thereby, the temperature of the hot gas 9 can be reliably cooled in the movable-side hot gas processing space 13, and an excellent blocking performance can be exhibited.
  • the small diameter portion 12a and the medium diameter portion 12b are adjacent to each other, and the large diameter portion 12c and the medium diameter portion 12b are adjacent to each other, as shown in FIG.
  • the end surfaces of the diameter portions 12 a to 12 c may be overlapped in the axial direction of the movable portion 4.
  • the exhaust holes 26 and 27 have a predetermined length in the axial direction of the movable portion 4.
  • the hot gas 9 flowing through the exhaust holes 26 and 27 flows in the opposite direction to the flow of the hot gas 9 flowing through the movable hot gas processing space 13. Therefore, compared with the exhaust holes 24 and 25 having only the opening surfaces, the hot gas 9 is less likely to flow through the exhaust holes 26 and 27 and is not easily discharged therefrom. Accordingly, the hot gas 9 stays in the movable hot gas processing space 13 for a long time and is easily cooled, and the formation of the high electric field portion 18 can be avoided to reliably prevent the occurrence of a ground fault.
  • the fixed portion is expressed, but a so-called dual motion mechanism that improves the relative opening speed by driving the opposing contact portion to the side opposite to the movable contact portion in the sealed container. It can also be applied to gas breakers of the type using Moreover, it is possible to apply embodiment of this invention to gas circuit breakers other than a puffer type, and what combined said embodiment is also included by embodiment of this invention.

Landscapes

  • Circuit Breakers (AREA)

Abstract

Provided is a gas circuit breaker that is able to exhibit excellent breaking performance by determining an exhaust direction of heat gas even when the space for treating the heat gas is reduced in size. A movable part 4 is provided with a heat gas treatment space 13 into which heat gas 9 heated to a high temperature by an arc discharge 6 is introduced from a space in which the arc discharge 6 is generated. In the heat gas treatment space 13, exhaust holes 17a-17c that suppress pressure increase in the heat gas treatment space 13 are disposed along the direction from upstream to downstream of the heat gas 9. The exhaust holes 17a-17c are provided such that the downstream side thereof has a smaller cross-sectional area than the upstream side thereof.

Description

ガス遮断器Gas circuit breaker
 本発明の実施形態は、熱ガスを取り込む熱ガス処理空間に排気穴を設けたガス遮断器に関する。 Embodiment of this invention is related with the gas circuit breaker which provided the exhaust hole in the hot gas processing space which takes in a hot gas.
 電力系統にて電流開閉を行うガス遮断器においては、現在パッファ形と呼ばれるタイプが広く普及している。ガス遮断器では、消弧性ガスが充填された密閉容器内に、同心軸上に向かい合って固定部及び可動部が接離自在に配置されている。固定部側には固定アーク接触子及び固定通電接触子が、可動部側には可動アーク接触子及び可動通電接触子が、それぞれ設けられている。 In gas circuit breakers that perform current switching in the electric power system, a type called a puffer type is now widely used. In a gas circuit breaker, a fixed part and a movable part are arranged in a sealed container filled with an arc-extinguishing gas so as to face and concentrically face each other on a concentric axis. A fixed arc contact and a fixed energizing contact are provided on the fixed portion side, and a movable arc contact and a movable energizing contact are provided on the movable portion side, respectively.
 ガス遮断器に用いられる絶縁媒体及び消弧媒体としては、SFガスが主に用いられている。さらに現在では、温暖化効果の高いSFガスの使用量を減らすために、SFガス以外のガスを絶縁媒体及び消弧媒体に使用したり、各種ガスを混合した混合ガスを絶縁媒体及び消弧媒体に使用したりする場合もある。 As an insulating medium and arc extinguishing medium used for the gas circuit breaker, SF 6 gas is mainly used. Furthermore, in order to reduce the amount of SF 6 gas that has a high warming effect, gas other than SF 6 gas is used as an insulating medium and arc-extinguishing medium, or a mixed gas mixed with various gases is used as an insulating medium and an extinguishing medium. Sometimes used as an arc medium.
 以上のようなガス遮断器では、閉極状態においては固定部及び可動部は互いに接触状態にあって電流通電を行う。また、大電流の遮断に際して固定部及び可動部が開離する時には、電流遮断直後に急峻な過渡回復電圧が印加されるので、固定アーク接触子と可動アーク接触子との間にはアーク放電が発生する。 In the gas circuit breaker as described above, in the closed state, the fixed part and the movable part are in contact with each other and conduct current. Also, when the fixed part and the movable part are separated when a large current is interrupted, a steep transient recovery voltage is applied immediately after the current is interrupted, so that an arc discharge occurs between the fixed arc contact and the movable arc contact. appear.
 パッファ形ガス遮断器では、アーク放電にガスを吹き付ける蓄圧手段を有しているので、吹き付けたガスはアーク放電によって高温の熱ガスとなる。この熱ガスは、アーク放電の発生空間から可動部及び固定部の内部を通過して、密閉容器内に放散される。熱ガスが高温な状態のまま導電性を持って、可動部及び固定部の内部から密閉容器内へと放散すると、可動部及び固定部において熱ガスを放散した部分には高電界部が発生する。したがって、可動部及び固定部側と密閉容器との間で地絡が発生するおそれがある。その結果、ガス遮断器の遮断性能が低下する可能性がある。 Since the puffer-type gas circuit breaker has a pressure accumulating means for blowing a gas to the arc discharge, the blown gas becomes a high-temperature hot gas by the arc discharge. This hot gas passes through the inside of the movable part and the fixed part from the space where the arc discharge is generated, and is diffused into the sealed container. When the hot gas is conductive in the hot state and dissipates from the inside of the movable part and the fixed part into the sealed container, a high electric field part is generated in the part where the hot gas is dissipated in the movable part and the fixed part. . Therefore, a ground fault may occur between the movable part and the fixed part side and the sealed container. As a result, the breaking performance of the gas circuit breaker may be reduced.
 そこで、従来のガス遮断器では、可動部及び固定部の内部において、アーク放電による熱ガスを取り込む熱ガス処理空間を設けている。熱ガス処理空間は、例えば、可動部を支持するための可動部支えや、固定部を支持するための固定部支えなどの内部に設けられる。熱ガス処理空間は可動部及び固定部を構成する部材の壁面部によって囲われることで構成するが、壁面部には熱ガス処理空間内の圧力上昇を回避するために排気穴を設ける必要がある。 Therefore, in the conventional gas circuit breaker, a hot gas processing space for taking in hot gas by arc discharge is provided inside the movable part and the fixed part. The hot gas processing space is provided, for example, inside a movable part support for supporting the movable part and a fixed part support for supporting the fixed part. The hot gas treatment space is configured by being surrounded by wall surfaces of the members constituting the movable part and the fixed part, but it is necessary to provide an exhaust hole in the wall surface part in order to avoid a pressure increase in the hot gas treatment space. .
 このような熱ガス処理空間を有するガス遮断器では、熱ガス処理空間の中にアーク接触子間で発生した熱ガスが流れ込む。このとき、熱ガス処理空間内に予め存在したガスは、流入してきた熱ガスに押されて、排気穴から密閉容器の内部空間へと流れ出る。熱ガス処理空間に流入してきた熱ガスは、熱ガス処理空間に入ったことで冷却され、その後、排気穴から密閉容器内へと放散されることになる。 In the gas circuit breaker having such a hot gas processing space, the hot gas generated between the arc contacts flows into the hot gas processing space. At this time, the gas existing in advance in the hot gas processing space is pushed by the flowing hot gas and flows out from the exhaust hole to the internal space of the sealed container. The hot gas that has flowed into the hot gas processing space is cooled by entering the hot gas processing space, and then is diffused from the exhaust hole into the sealed container.
 以上のようなガス遮断器によれば、熱ガス処理空間にて熱ガスを冷却することで導電性を低下させることが可能となり、排気穴付近での高電界部の形成を回避することができる。これにより、密閉容器内での地絡発生を防止することが可能となり、優れた遮断性能を維持することができる。 According to the gas circuit breaker as described above, it is possible to reduce the conductivity by cooling the hot gas in the hot gas processing space, and it is possible to avoid the formation of a high electric field portion near the exhaust hole. . Thereby, it becomes possible to prevent the occurrence of a ground fault in the sealed container, and it is possible to maintain an excellent blocking performance.
特開2014-41745号公報JP 2014-41745 A
 近年、ガス遮断器では、温暖化効果の高いSFガスの使用量を減らして温暖化への影響を抑止することが重視されている。そのため、密閉容器の容積低減化すなわちコンパクト化が要請されている。密閉容器のコンパクト化が実現すれば、密閉容器に充填される消弧性ガスの量も低減するので、温暖化への影響抑止に加えて、メンテナンス時のガス回収・充填作業時間の短縮も可能となるなどメリットが大きい。したがって、ガス遮断器では、コンパクト化を図るべく、密閉容器の小径化が進められる傾向にある。 In recent years, in gas circuit breakers, it has been emphasized that the use of SF 6 gas having a high warming effect is reduced to suppress the influence on warming. Therefore, there is a demand for reducing the volume of the sealed container, that is, making it compact. If the airtight container is made compact, the amount of arc extinguishing gas filled in the airtight container will also be reduced, so in addition to suppressing the impact on global warming, it is possible to shorten the time for gas recovery and filling during maintenance. The benefits are great. Therefore, in the gas circuit breaker, there is a tendency that the diameter of the sealed container is reduced in order to reduce the size.
 しかし、熱ガス処理空間を有するガス遮断器において、密閉容器の小径化を進めると、これに対応して熱ガス処理空間の容量も低減するため、熱ガス処理空間内に流入する熱ガス量が小さくなる。したがって、熱ガス処理空間に流れ込んだ熱ガスが十分に冷え切らないうちに排気穴から密閉容器内の空間へと流れ出てしまうおそれがある。 However, in a gas circuit breaker having a hot gas processing space, when the diameter of the sealed container is reduced, the capacity of the hot gas processing space is correspondingly reduced, so that the amount of hot gas flowing into the hot gas processing space is reduced. Get smaller. Therefore, there is a possibility that the hot gas flowing into the hot gas processing space may flow out from the exhaust hole to the space in the sealed container before it is sufficiently cooled down.
 その結果、せっかく熱ガス処理空間を設けたとしても、熱ガスは温度が高い状態のまま密閉容器内の空間へ排出されることになり、排気穴付近で高電界部が形成され易くなる。そのため、可動部及び固定部と密閉容器との間で地絡が発生する可能性が生じた。そこで従来から、高電界部を形成させることなく、小容量の熱ガス処理空間から熱ガスを如何にして排気するかということが課題となっている。 As a result, even if a hot gas processing space is provided, the hot gas is discharged to the space in the sealed container with a high temperature, and a high electric field portion is easily formed near the exhaust hole. Therefore, there is a possibility that a ground fault occurs between the movable part and the fixed part and the sealed container. Therefore, conventionally, there has been a problem of how to exhaust hot gas from a small-capacity hot gas processing space without forming a high electric field portion.
 本実施形態は、上記の課題を解決するために提案されたものであり、その目的は、熱ガスの排気方向を規定することにより、熱ガス処理空間を小さくしても優れた遮断性能を発揮することができるガス遮断器を提供することにある。 The present embodiment has been proposed to solve the above-described problems, and its purpose is to provide excellent shut-off performance even if the hot gas processing space is reduced by defining the hot gas exhaust direction. An object of the present invention is to provide a gas circuit breaker that can be used.
 上記の目的を達成するため、本発明の実施形態は、以下の構成要素(1)~(8)を備えたガス遮断器において、構成要素(9)を有している。
(1)消弧性ガスが充填された密閉容器。
(2)前記密閉容器内に同心軸上に向かい合って接離自在に配置された固定部及び可動部。
(3)前記固定部に設けられた固定アーク接触子及び固定通電接触子。
(4)前記可動部に設けられた可動アーク接触子及び可動通電接触子。
(5)前記固定部及び前記可動部の開離時に前記固定アーク接触子と前記可動アーク接触子との間にアーク放電による熱ガスが発生しうるアーク放電空間。
(6)前記アーク放電空間から前記熱ガスを取り込むように前記固定部及び前記可動部の少なくとも一方に設けられた熱ガス処理空間。
(7)前記熱ガス処理空間を囲う壁面部。
(8)前記壁面部に形成され前記熱ガス処理空間と前記密閉容器内の空間とを連通する排気穴。
(9)前記熱ガス処理空間において前記アーク放電空間側を前記熱ガスの上流側、前記排気穴側を前記熱ガスの下流側とし、前記排気穴は、前記熱ガスの上流側の断面積よりも下流側の断面積の方を小さくする。
In order to achieve the above object, an embodiment of the present invention includes a component (9) in a gas circuit breaker including the following components (1) to (8).
(1) A sealed container filled with an arc extinguishing gas.
(2) A fixed portion and a movable portion that are disposed in the sealed container so as to face and concentrically face each other on a concentric axis.
(3) A fixed arc contact and a fixed energization contact provided in the fixed portion.
(4) A movable arc contact and a movable energized contact provided in the movable part.
(5) An arc discharge space in which hot gas due to arc discharge can be generated between the fixed arc contact and the movable arc contact when the fixed portion and the movable portion are separated.
(6) A hot gas processing space provided in at least one of the fixed portion and the movable portion so as to take in the hot gas from the arc discharge space.
(7) A wall portion surrounding the hot gas treatment space.
(8) An exhaust hole that is formed in the wall surface portion and communicates the hot gas processing space and the space in the sealed container.
(9) In the hot gas processing space, the arc discharge space side is the upstream side of the hot gas, the exhaust hole side is the downstream side of the hot gas, and the exhaust hole is from a cross-sectional area on the upstream side of the hot gas. Also, the downstream cross-sectional area is made smaller.
 また、本発明の実施形態は、上記(1)~(8)の構成要素を有するガス遮断器において、次の構成要素(10)を有するようにしてもよい。
(10)所定の間隔を持って前記排気穴を塞ぎ且つ前記排気穴付近の等電位面と平行に設置されたバッフル。
 さらに、本発明の実施形態は、上記(1)~(8)の構成要素を有するガス遮断器において、次の構成要素(11)を有するようにしてもよい。
(11)前記排気穴は、前記固定部又は前記可動部の軸方向に向かって開口する。
In the embodiment of the present invention, the gas circuit breaker having the components (1) to (8) may have the following component (10).
(10) A baffle that closes the exhaust hole with a predetermined interval and is installed in parallel with the equipotential surface near the exhaust hole.
Furthermore, the embodiment of the present invention may include the following component (11) in the gas circuit breaker having the components (1) to (8).
(11) The exhaust hole opens in the axial direction of the fixed part or the movable part.
第1の実施形態の断面構造図(電流遮断動作中の状態)。FIG. 3 is a cross-sectional structure diagram of the first embodiment (a state during a current interruption operation). 第1の実施形態の断面構造図(投入動作中の状態)。FIG. 2 is a cross-sectional structure diagram of the first embodiment (a state during a charging operation). 第1の実施形態の要部側面図。The principal part side view of 1st Embodiment. 第1の実施形態の要部側面断面図。The principal part side surface sectional view of a 1st embodiment. 第1の実施形態において排気穴付近の等電位面を示す平面図(ガス流を排気した状態)。FIG. 3 is a plan view showing an equipotential surface in the vicinity of an exhaust hole in the first embodiment (a state in which a gas flow is exhausted). 比較例において排気穴付近の等電位面を示す平面図(ガス流を排気する前の状態)。The top view which shows the equipotential surface of the exhaust hole vicinity in a comparative example (state before exhausting a gas flow). 比較例において排気穴付近の等電位面を示す平面図(ガス流を排気した状態)。The top view which shows the equipotential surface of the exhaust hole vicinity in a comparative example (state which exhausted the gas flow). 第2の実施形態において排気穴付近の等電位面を示す側面図(ガス流を排気する前の状態)。The side view which shows the equipotential surface of the exhaust hole vicinity in 2nd Embodiment (state before exhausting a gas flow). 第2の実施形態において排気穴付近の等電位面を示す側面図(ガス流を排気した状態)。The side view which shows the equipotential surface of the exhaust hole vicinity in 2nd Embodiment (The state which exhausted the gas flow). 第2の実施形態において排気穴付近の等電位面を示す側面図(ガス流を排気する前の状態)。The side view which shows the equipotential surface of the exhaust hole vicinity in 2nd Embodiment (state before exhausting a gas flow). 第2の実施形態において排気穴付近の等電位面を示す側面図(ガス流を排気した状態)。The side view which shows the equipotential surface of the exhaust hole vicinity in 2nd Embodiment (The state which exhausted the gas flow). 第3の実施形態において排気穴付近の等電位面を示す平面図(ガス流を排気する前の状態)。The top view which shows the equipotential surface of the exhaust hole vicinity in 3rd Embodiment (The state before exhausting a gas flow). 第3の実施形態において排気穴付近の等電位面を示す平面図(ガス流を排気した状態)。The top view which shows the equipotential surface of the exhaust hole vicinity in 3rd Embodiment (The state which exhausted the gas flow). 他の実施形態において排気穴付近の等電位面を示す側面図(ガス流を排気する前の状態)。The side view (state before exhausting a gas flow) which shows the equipotential surface of exhaust hole vicinity in other embodiment. 他の実施形態の要部側面図。The principal part side view of other embodiment. 他の実施形態の要部側面図。The principal part side view of other embodiment. 他の実施形態の断面構造図(電流遮断動作中の状態)。FIG. 6 is a cross-sectional structure diagram of another embodiment (a state during a current interruption operation). 他の実施形態において排気穴付近の等電位面を示す側面図(ガス流を排気した状態)。The side view (state which exhausted the gas flow) which shows the equipotential surface of exhaust hole vicinity in other embodiment. 他の実施形態において排気穴付近の等電位面を示す側面図(ガス流を排気した状態)。The side view (state which exhausted the gas flow) which shows the equipotential surface of exhaust hole vicinity in other embodiment.
 以下、本発明に係るガス遮断器の実施形態について、図面を参照して説明する。下記の実施形態に係るガス遮断器は、いずれもパッファ形ガス遮断器であり、アーク接触子間で発生した熱ガスを取り込む熱ガス処理空間を備え、この熱ガス処理空間に内部の圧力上昇を抑えるための排気穴を設けたものである。 Hereinafter, embodiments of a gas circuit breaker according to the present invention will be described with reference to the drawings. All of the gas circuit breakers according to the following embodiments are puffer-type gas circuit breakers, and include a hot gas processing space for taking in hot gas generated between arc contacts, and an internal pressure rise in the hot gas processing space. An exhaust hole is provided for restraining.
(1)第1の実施形態
(構成)
[ガス遮断器の概要]
 図1、図2を参照して、パッファ形ガス遮断器の概要について説明する。図1は電流遮断動作中の状態を、図2は投入状態を示している。なお、図中の各部品は概ね同軸円筒形状である。
(1) First embodiment (configuration)
[Outline of gas circuit breaker]
An outline of the puffer type gas circuit breaker will be described with reference to FIGS. 1 and 2. FIG. 1 shows a state during a current interruption operation, and FIG. 2 shows a closing state. In addition, each component in a figure is a coaxial cylindrical shape in general.
 図1及び図2に示すように、パッファ形ガス遮断器には、密閉容器2が設けられている。密閉容器2は、接地された金属や碍子などから構成され、その内部には電気絶縁媒体及びアーク消弧媒体として、SFガス等の消弧性ガス1が充填されている。密閉容器2内には、固定部3が固定側支持絶縁物7bを介して密閉容器2内に絶縁固定されている。固定部3は、固定通電部3a及び固定アーク接触子3bから構成されている。固定部3は中空の部材から構成され、内部に固定側熱ガス処理空間14が設けられている。固定側熱ガス処理空間14を囲う壁面部には排気穴14aが形成されている。 As shown in FIGS. 1 and 2, the puffer-type gas circuit breaker is provided with a sealed container 2. The hermetic container 2 is composed of a grounded metal or insulator, and the inside thereof is filled with an arc extinguishing gas 1 such as SF 6 gas as an electric insulating medium and an arc extinguishing medium. In the hermetic container 2, the fixing portion 3 is insulated and fixed in the hermetic container 2 via a fixed-side support insulator 7b. The fixed part 3 includes a fixed energizing part 3a and a fixed arc contact 3b. The fixed part 3 is composed of a hollow member, and a fixed-side hot gas processing space 14 is provided therein. An exhaust hole 14 a is formed in the wall surface surrounding the fixed-side hot gas processing space 14.
 密閉容器2内には、固定部3と同心軸上に向かい合うようにして、可動部4が固定部3と接離自在に配置されている。可動部4は、密閉容器2の軸方向に沿って移動可能に設けられており、且つ密閉容器2に対して可動側支持絶縁物7aを介して絶縁支持されている。可動部4は、固定部3寄りから順次、絶縁ノズル4a、可動アーク接触子4b、通電接触子4c、パッファシリンダ4dが配置されており、これらの部材が操作ロッド4eに対し一体的に取り付けられている。 In the sealed container 2, the movable portion 4 is disposed so as to be able to contact and separate from the fixed portion 3 so as to face the fixed portion 3 on a concentric axis. The movable part 4 is provided so as to be movable along the axial direction of the sealed container 2 and is insulated and supported with respect to the sealed container 2 via a movable support insulator 7a. The movable part 4 includes an insulating nozzle 4a, a movable arc contact 4b, a current-carrying contact 4c, and a puffer cylinder 4d in order from the fixed part 3, and these members are integrally attached to the operation rod 4e. ing.
 固定部3及び可動部4は、閉極時には互いに接触して電流通電を行い、開離時には固定アーク接触子3bと可動アーク接触子4bと間にアーク放電6が発生しうるように構成されている。すなわち、固定アーク接触子3b及び可動アーク接触子4bは、遮断器投入時では接触導通状態にある。また、遮断動作時においては相対移動により固定部3及び可動部4が開離するとともに、両アーク接触子3b、4b間にアーク放電6が発生する。 The fixed portion 3 and the movable portion 4 are configured to contact each other when the pole is closed and to conduct current, and to be able to generate an arc discharge 6 between the fixed arc contact 3b and the movable arc contact 4b at the time of separation. Yes. That is, the fixed arc contact 3b and the movable arc contact 4b are in contact conduction when the circuit breaker is turned on. Moreover, at the time of interruption | blocking operation | movement, while the fixed part 3 and the movable part 4 are separated by relative movement, the arc discharge 6 generate | occur | produces between both the arc contacts 3b and 4b.
 絶縁ノズル4aは、アーク放電6に晒されるため、耐アーク性の高い絶縁物であるポリテトラフルオロエチレンを主体に構成されることが多い。パッファシリンダ4dには、その内部空間を圧縮するためのピストン5が装着されている。ピストン5には可動部支え12が取り付けられている。可動部支え12は可動側支持絶縁物7aを介して密閉容器2内に固定されている。可動部支え12はピストン5より径の大きい中空の部材からなり、その内部空間が可動側熱ガス処理空間13となっている。 Since the insulating nozzle 4a is exposed to the arc discharge 6, it is often composed mainly of polytetrafluoroethylene, which is an insulator having high arc resistance. A piston 5 for compressing the internal space is attached to the puffer cylinder 4d. A movable part support 12 is attached to the piston 5. The movable part support 12 is fixed in the hermetic container 2 via a movable support insulator 7a. The movable part support 12 is made of a hollow member having a diameter larger than that of the piston 5, and its internal space is a movable-side hot gas treatment space 13.
[排気穴]
 図1~図4に示すように、可動側熱ガス処理空間13を囲う可動部支え12の壁面部には断面積の異なる3つの排気穴17a~17cが形成されている。これら排気穴17a~17cは、可動側熱ガス処理空間13内の圧力上昇を抑えるためのものである。また、可動側熱ガス処理空間13においてアーク放電6が発生した空間側を熱ガス9の上流側、排気穴17a~17c側を熱ガス9の下流側として、排気穴17a~17cは、熱ガス9の上流側の断面積よりも下流側の断面積の方が順次、小さくなるように形成されている。つまり、排気穴17a~17cの各断面積が、排気穴17a>排気穴17b>排気穴17cとなるように形成されている。
[Exhaust hole]
As shown in FIGS. 1 to 4, three exhaust holes 17 a to 17 c having different cross-sectional areas are formed in the wall surface portion of the movable portion support 12 surrounding the movable-side hot gas processing space 13. These exhaust holes 17a to 17c are for suppressing an increase in pressure in the movable hot gas processing space 13. Further, in the movable hot gas processing space 13, the space side where the arc discharge 6 is generated is the upstream side of the hot gas 9, the exhaust holes 17a to 17c side is the downstream side of the hot gas 9, and the exhaust holes 17a to 17c are hot gas. 9 is formed such that the cross-sectional area on the downstream side is sequentially smaller than the cross-sectional area on the upstream side. That is, the cross-sectional areas of the exhaust holes 17a to 17c are formed such that the exhaust hole 17a> the exhaust hole 17b> the exhaust hole 17c.
 以上の構成を有するガス遮断器において、電流は通電導体10と図示してないブッシングを介して外部に引き出される。通電導体10は、絶縁スペーサ11により絶縁支持されると同時に、密閉容器2内のガス空間としては当該絶縁スペーサ11により区分される。可動部4の可動性は、操作ロッド4eが、絶縁ロッド15及び気密ロッド16を介して、駆動装置8内の可動部に連結されることにより達成される。 In the gas circuit breaker having the above configuration, the current is drawn to the outside through the conducting conductor 10 and the bushing (not shown). The current-carrying conductor 10 is insulated and supported by the insulating spacer 11, and at the same time, the gas space in the sealed container 2 is divided by the insulating spacer 11. The movability of the movable portion 4 is achieved by connecting the operating rod 4e to the movable portion in the drive device 8 via the insulating rod 15 and the airtight rod 16.
[遮断動作時]
 ガス遮断器の遮断動作時では、アーク接触子3b、4bによる開離動作とともに、密閉容器2に固定されたピストン5がパッファシリンダ4dの内部空間を圧縮して同部の圧力を上昇させる。そして、パッファシリンダ4d内に存在する消弧性ガス1が高圧力のガス流となり、絶縁ノズル4aによって整流され、アーク接触子3b、4b間に発生したアーク放電6に対して強力に吹付けられる。その結果、アーク接触子3b、4b間に発生した導電性のアーク放電6が消滅し、電流は遮断される。
[During shutdown operation]
During the breaking operation of the gas circuit breaker, along with the opening operation by the arc contacts 3b and 4b, the piston 5 fixed to the sealed container 2 compresses the internal space of the puffer cylinder 4d to increase the pressure in the same part. The arc-extinguishing gas 1 existing in the puffer cylinder 4d becomes a high-pressure gas flow, is rectified by the insulating nozzle 4a, and is strongly blown against the arc discharge 6 generated between the arc contacts 3b and 4b. . As a result, the conductive arc discharge 6 generated between the arc contacts 3b and 4b disappears, and the current is interrupted.
 アーク放電6に吹付けられたガスは、アーク放電6によって加熱されて、高温の熱ガス9となる。熱ガス9は、アーク放電6が発生した空間から固定部3側及び可動部4側へと分かれて流れる。固定部3側へ流れた熱ガス9は、固定側熱ガス処理空間14を通過して冷却され、排気穴17a~17cを介して密閉容器2内に放散される。また、可動部4側へ流れた熱ガス9は、駆動ロッド4eの中空部を通過して、可動部支え12内の可動側熱ガス処理空間13で冷却され、密閉容器2内に放散される。 The gas sprayed on the arc discharge 6 is heated by the arc discharge 6 to become a hot gas 9 having a high temperature. The hot gas 9 flows separately from the space where the arc discharge 6 is generated to the fixed portion 3 side and the movable portion 4 side. The hot gas 9 that has flowed to the fixed portion 3 side passes through the fixed-side hot gas processing space 14, is cooled, and is diffused into the sealed container 2 through the exhaust holes 17a to 17c. The hot gas 9 that has flowed to the movable portion 4 side passes through the hollow portion of the drive rod 4 e, is cooled in the movable-side hot gas processing space 13 in the movable portion support 12, and is diffused into the sealed container 2. .
(作用と効果)
 第1の実施形態の作用と効果について、図5~図7を用いて説明する。図5は第1の実施形態に係る排気穴付近の等電位面を示している。図6、図7は断面積の等しい3つの排気穴19a~19cを等間隔で配置した、第1の実施形態に対する比較例であって、比較例における排気穴付近の等電位面を示している。なお、図6は熱ガス9を排気する前の状態、図5及び図7は熱ガス9を排気した状態である。
(Action and effect)
The operation and effect of the first embodiment will be described with reference to FIGS. FIG. 5 shows an equipotential surface near the exhaust hole according to the first embodiment. 6 and 7 are comparative examples of the first embodiment in which three exhaust holes 19a to 19c having the same cross-sectional area are arranged at equal intervals, and show equipotential surfaces in the vicinity of the exhaust holes in the comparative example. . 6 shows a state before the hot gas 9 is exhausted, and FIGS. 5 and 7 show a state where the hot gas 9 is exhausted.
 図6、図7に示した比較例では、排気穴19a~19cの断面積が熱ガス9の上流側から下流側にかけて全て同じである。この場合、図7に示すように、上流側の排気穴19aからは熱ガス9が排出されず、下流側の排気穴19b、19cから集中して熱ガス9が排出されることになる。 6 and 7, the cross-sectional areas of the exhaust holes 19a to 19c are all the same from the upstream side to the downstream side of the hot gas 9. In this case, as shown in FIG. 7, the hot gas 9 is not discharged from the upstream exhaust hole 19a, but is concentrated from the downstream exhaust holes 19b and 19c.
 したがって、熱ガス9は、可動側熱ガス処理空間13の下流空間から迅速に排出され、可動側熱ガス処理空間13の中に長く留まることがない。すなわち、可動側熱ガス処理空間13において熱ガス9の冷却は不十分になる。その結果、排気穴19b、19cから高温の熱ガス9が流れ出ることになって、排気穴19b、19c付近に高電界部18(太点線で囲んだ部分)が形成される(図7参照)。 Therefore, the hot gas 9 is quickly discharged from the downstream space of the movable-side hot gas processing space 13 and does not stay in the movable-side hot gas processing space 13 for a long time. That is, the hot gas 9 is not sufficiently cooled in the movable hot gas processing space 13. As a result, the hot gas 9 of high temperature flows out from the exhaust holes 19b and 19c, and a high electric field portion 18 (portion surrounded by a thick dotted line) is formed in the vicinity of the exhaust holes 19b and 19c (see FIG. 7).
 これに対して、第1の実施形態では、排気穴17a~17cの断面積を、熱ガス9の上流側から下流側に向かって順次小さくしたことで、排気穴17a~17cから可動側熱ガス処理空間13の外部に向かって熱ガス9が徐々に流れ出ることになる。このとき、上流側の排気穴17aからの排ガス量は「大」、中ほどの排気穴17bからの排ガス量は「中」、下流側の排気穴17cからの排ガス量は「小」となる(図5参照)。 On the other hand, in the first embodiment, the sectional areas of the exhaust holes 17a to 17c are sequentially reduced from the upstream side to the downstream side of the hot gas 9, so that the movable side hot gas is discharged from the exhaust holes 17a to 17c. The hot gas 9 gradually flows out of the processing space 13. At this time, the exhaust gas amount from the upstream exhaust hole 17a is “large”, the exhaust gas amount from the middle exhaust hole 17b is “medium”, and the exhaust gas amount from the downstream exhaust hole 17c is “small” ( (See FIG. 5).
 したがって、可動側熱ガス処理空間13内に入った熱ガス9は、可動側熱ガス処理空間13の下流空間に向かうにつれて排ガス量が小さくなり、可動側熱ガス処理空間13の下流空間から一気に排出されることがない。結果的に熱ガス9は、可動側熱ガス処理空間13の中に長い時間、留まることができる。このため、可動側熱ガス処理空間13にて熱ガス9の温度を確実に冷却することが可能となる。 Therefore, the amount of exhaust gas of the hot gas 9 entering the movable hot gas treatment space 13 decreases toward the downstream space of the movable hot gas treatment space 13 and is discharged from the downstream space of the movable hot gas treatment space 13 at a stretch. It will not be done. As a result, the hot gas 9 can remain in the movable hot gas processing space 13 for a long time. For this reason, the temperature of the hot gas 9 can be reliably cooled in the movable hot gas processing space 13.
 以上のように、排気穴17a~17cの断面積を上流側から下流側に向かって順次小さくした第1の実施形態では、可動側熱ガス処理空間13にて熱ガス9の温度を十分に冷却することができる。したがって、排気穴17a~17c付近に高電界部18が形成され難くなり、可動部4側の可動部支え12と密閉容器2との間で、地絡発生を防ぐことができる。このような第1の実施形態によれば、密閉容器2の小径化を図って可動側熱ガス処理空間13内に流入する熱ガス9が少量だったとしても、優れた遮断性能を維持することが可能である。これにより、コンパクト化と遮断性能とを両立させたガス遮断器を得ることができる。 As described above, in the first embodiment in which the cross-sectional areas of the exhaust holes 17a to 17c are sequentially reduced from the upstream side to the downstream side, the temperature of the hot gas 9 is sufficiently cooled in the movable hot gas processing space 13. can do. Accordingly, the high electric field portion 18 is hardly formed in the vicinity of the exhaust holes 17a to 17c, and the occurrence of a ground fault can be prevented between the movable portion support 12 on the movable portion 4 side and the sealed container 2. According to the first embodiment, even when the diameter of the sealed container 2 is reduced and the amount of hot gas 9 flowing into the movable-side hot gas processing space 13 is small, excellent shutoff performance is maintained. Is possible. Thereby, the gas circuit breaker which made compactness and interruption | blocking performance compatible can be obtained.
(2)第2の実施形態
(構成)
 第2の実施形態について、図8~図11を用いて説明する。図8、図9は第2の実施形態に係る排気穴付近の等電位面を示しており、図10、図11は、第2の実施形態に対する比較例での排気穴付近の等電位面を示している。図8及び図10は熱ガス9を排気する前の状態、図9及び図11は熱ガス9を排気した状態である。なお、第2の実施形態の基本的な構成は、上記第1の実施形態と同様であり、同様の構成要素に関しては、同一符号を付して説明は省略する。
(2) Second embodiment (configuration)
A second embodiment will be described with reference to FIGS. 8 and 9 show equipotential surfaces near the exhaust holes according to the second embodiment, and FIGS. 10 and 11 show equipotential surfaces near the exhaust holes in the comparative example with respect to the second embodiment. Show. 8 and 10 show a state before the hot gas 9 is exhausted, and FIGS. 9 and 11 show a state where the hot gas 9 is exhausted. The basic configuration of the second embodiment is the same as that of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
 図8、図9に示すように、第2の実施形態には、可動側熱ガス処理空間13を囲む可動支え12の壁面部には、熱ガス処理空間13内の圧力上昇を抑えるための排気穴21が設けられている。排気穴21は、可動支え12の円周方向に沿って互いに向かい合って2つ設けられている。 As shown in FIGS. 8 and 9, in the second embodiment, the wall surface of the movable support 12 surrounding the movable-side hot gas processing space 13 has an exhaust for suppressing an increase in pressure in the hot gas processing space 13. A hole 21 is provided. Two exhaust holes 21 are provided facing each other along the circumferential direction of the movable support 12.
 各排気穴21に対向して、可動支え12の内部にはバッフル22が取り付けられている。バッフル22は、所定の間隔を持って排気穴21を内側から塞ぎ且つ排気穴21付近の等電位面と平行に設置されている。バッフル22の表面積は、排気穴21の開口面積と同程度に形成されている。 A baffle 22 is attached to the inside of the movable support 12 so as to face each exhaust hole 21. The baffle 22 closes the exhaust hole 21 from the inside with a predetermined interval and is installed in parallel with the equipotential surface near the exhaust hole 21. The surface area of the baffle 22 is formed to be approximately the same as the opening area of the exhaust hole 21.
(作用と効果)
 第2の実施形態の作用と効果について、図10、図11の比較例を参照しつつ説明する。図10、図11の比較例では、バッフル22を設置していない排気穴21付近の等電位面を示している。図11に示すように、比較例では、排気穴21にバッフル22を設置していないので、排気穴21から直接、熱ガス9が地絡方向である密閉容器2の内面方向に向かって排気されてしまう。その結果、排気穴21付近の等電位面が乱れて等電位面の間隔が縮まり、高電界部18(太点線で囲んだ部分)が形成されることになる。
(Action and effect)
The operation and effect of the second embodiment will be described with reference to the comparative examples of FIGS. In the comparative examples of FIGS. 10 and 11, an equipotential surface in the vicinity of the exhaust hole 21 where the baffle 22 is not installed is shown. As shown in FIG. 11, in the comparative example, since the baffle 22 is not installed in the exhaust hole 21, the hot gas 9 is exhausted directly from the exhaust hole 21 toward the inner surface of the sealed container 2 that is the ground fault direction. End up. As a result, the equipotential surface in the vicinity of the exhaust hole 21 is disturbed, the interval between the equipotential surfaces is reduced, and the high electric field portion 18 (portion surrounded by a thick dotted line) is formed.
 これに対して、第2の実施形態では、排気穴21付近にバッフル22を設置したことで、バッフル22が排気穴21を塞ぐので、熱ガス9はバッフル22に遮られて排気され難くなる。しかも、バッフル22を排気穴21付近の等電位面と平行に設置しているので、排気穴21から熱ガス9が排気されたとしても、その熱ガス9は等電位面と平行に流れ出ることになる。 On the other hand, in the second embodiment, since the baffle 22 is installed near the exhaust hole 21, the baffle 22 closes the exhaust hole 21, so that the hot gas 9 is blocked by the baffle 22 and is not easily exhausted. Moreover, since the baffle 22 is installed in parallel with the equipotential surface near the exhaust hole 21, even if the hot gas 9 is exhausted from the exhaust hole 21, the hot gas 9 flows out in parallel with the equipotential surface. Become.
 したがって、図11に示した比較例とは異なり、地絡方向である密閉容器2の内面方向に向かって熱ガス9が流れ出ることはなく、排気穴21付近の等電位面が乱れない。その結果、等電位面の間隔は縮まらず、高電界部18の形成を回避することができる。このような第2の実施形によれば、可動部4側の可動部支え12と密閉容器2との間での地絡発生を防ぐことができ、上記第1の実施形態と同様、可動側熱ガス処理空間13の容量を小さくしてコンパクト化を実現すると共に、優れた遮断性能を維持することができる。 Therefore, unlike the comparative example shown in FIG. 11, the hot gas 9 does not flow toward the inner surface of the sealed container 2 which is the ground fault direction, and the equipotential surface near the exhaust hole 21 is not disturbed. As a result, the interval between equipotential surfaces is not reduced, and the formation of the high electric field portion 18 can be avoided. According to the second embodiment, it is possible to prevent the occurrence of a ground fault between the movable portion support 12 on the movable portion 4 side and the sealed container 2, and the movable side as in the first embodiment. While reducing the capacity | capacitance of the hot gas processing space 13 and realizing compactization, the outstanding interruption | blocking performance can be maintained.
 また、第2の実施形態では、バッフル22に沿って流れる熱ガス9は、バッフル22の一端部側から流れ出るものと、バッフル22の他端部側から流れ出るものとが、互いに衝突するので、バッフル22の表面で熱ガス9が滞留し易い。このため、熱ガス9は、可動側熱ガス処理空間13に長く留まって冷やされることになる。したがって、高電界部18は、より形成され難くなり、地絡発生を確実に防ぐことができる。 In the second embodiment, since the hot gas 9 flowing along the baffle 22 collides with the gas flowing out from one end side of the baffle 22 and the gas flowing out from the other end side of the baffle 22, the baffle 22 The hot gas 9 tends to stay on the surface 22. For this reason, the hot gas 9 stays in the movable hot gas processing space 13 for a long time and is cooled. Therefore, the high electric field portion 18 is more difficult to be formed and can reliably prevent the occurrence of a ground fault.
(3)第3の実施形態
(構成)
 以下、第3の実施形態について、図12、図13を用いて説明する。図12、図13は第3の実施形態に係る排気穴付近の等電位面を示しており、図12は熱ガス9を排気する前の状態、図13は熱ガス9を排気した状態である。なお、第3の実施形態の基本的な構成は、上記第1の実施形態と同様であり、同様の構成要素に関しては同一符号を付して説明は省略する。
(3) Third embodiment (configuration)
Hereinafter, the third embodiment will be described with reference to FIGS. 12 and 13. 12 and 13 show equipotential surfaces near the exhaust hole according to the third embodiment. FIG. 12 shows a state before exhausting the hot gas 9, and FIG. 13 shows a state where the hot gas 9 is exhausted. . The basic configuration of the third embodiment is the same as that of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
 図12、図13に示すように、可動部支え12の壁面部には、可動側熱ガス処理空間13と密閉容器2内の空間とを連通する排気穴24、25が設けられている。これら排気穴24、25は、可動部4の軸方向に向かって開口されている。可動側熱ガス処理空間13においてアーク放電6が発生した空間側を熱ガス9の上流側、排気穴24、25側を前記熱ガス9の下流側とし、可動部支え12の壁面部は、熱ガス9の上流側の半径方向の寸法が短く、下流側の半径方向の寸法が長く設けられている。 As shown in FIGS. 12 and 13, the wall surface of the movable part support 12 is provided with exhaust holes 24 and 25 that allow the movable-side hot gas treatment space 13 and the space in the sealed container 2 to communicate with each other. These exhaust holes 24 and 25 are opened toward the axial direction of the movable part 4. In the movable side hot gas treatment space 13, the space side where the arc discharge 6 is generated is the upstream side of the hot gas 9, the exhaust holes 24, 25 side is the downstream side of the hot gas 9, and the wall portion of the movable portion support 12 is heated. The radial dimension on the upstream side of the gas 9 is short and the radial dimension on the downstream side is long.
 半径方向の寸法が異なる可動部支え12は、具体的には3段の円筒状からなる。ここでは、熱ガス9の上流側から順に、径が最も短い部分を小径部12a、小径部12aの径寄りは長い径を持つ部分を中径部12b、径が最も長い部分を大径部12cとする。排気穴24は、小径部12aと中径部12bとの境目で両者の径の差から生じる中径部12bの壁面部分に設けられる。排気穴25は、中径部12bと大径部12cとの境目で両者の径の差から生じる大径部12cの壁面部分に設けられる。 The movable part support 12 having different radial dimensions is specifically composed of a three-stage cylindrical shape. Here, in order from the upstream side of the hot gas 9, the portion with the shortest diameter is the small diameter portion 12a, the portion close to the diameter of the small diameter portion 12a has the long diameter portion, the medium diameter portion 12b, and the longest diameter portion is the large diameter portion 12c. And The exhaust hole 24 is provided in the wall surface portion of the medium diameter portion 12b that is generated from the difference in diameter between the small diameter portion 12a and the medium diameter portion 12b. The exhaust hole 25 is provided in the wall surface portion of the large-diameter portion 12c generated from the difference in diameter between the medium-diameter portion 12b and the large-diameter portion 12c.
(作用と効果)
 第3の実施形態では、高温のまま熱ガス9が排気穴24、25から流れ出たとしても、可動部支え12の軸方向に沿って流れ出る。すなわち、図13に示すように、熱ガス9は等電位面と平行に流れていき、地絡方向である密閉容器2の内面方向に向かって流れることがない。したがって、排気穴24、25付近に高電界部18が形成されることがない。
(Action and effect)
In the third embodiment, even if the hot gas 9 flows out of the exhaust holes 24 and 25 while maintaining a high temperature, it flows out along the axial direction of the movable part support 12. That is, as shown in FIG. 13, the hot gas 9 flows in parallel with the equipotential surface, and does not flow toward the inner surface direction of the sealed container 2 that is the ground fault direction. Therefore, the high electric field portion 18 is not formed near the exhaust holes 24 and 25.
 その結果、可動部4側の可動部支え12と密閉容器2との間で生じる地絡を、確実に防止することができる。このような第3の実施形によれば、上記第1及び第2の実施形態と同様、可動側熱ガス処理空間13の容量を小さくしてコンパクト化を実現しても、優れた遮断性能を確保することができる。 As a result, it is possible to reliably prevent a ground fault occurring between the movable part support 12 on the movable part 4 side and the sealed container 2. According to the third embodiment, as in the first and second embodiments, even if the capacity of the movable-side hot gas processing space 13 is reduced to achieve a compact size, excellent shut-off performance is achieved. Can be secured.
(4)他の実施形態
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。
(4) Other Embodiments Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope of the present invention and the gist thereof, and are also included in the invention described in the claims and the equivalent scope thereof.
(a)排気穴やバッフルの数や形状、配置箇所や構成材料などは、適宜選択可能である。例えば図14に示すように、排気穴21を90度の角度を付けて均等に4つ設け、これに対応して4つの排気穴21を覆うように4枚のバッフル22を設けるようにしても良い。このような実施形態によれば、排気穴21及びバッフル22を4つとしたことで、排気穴21から排気される熱ガス9の量を減らすことができる。これにより、可動部4側の可動部支え12と密閉容器2との間での地絡発生をより確実に防ぐことができる。さらにバッフルは、その表面積を排気穴の断面積よりも大きく形成してもよいし、排気穴を内側からではなく、外側から、所定の間隔を持って塞ぐようにしてよい (A) The number and shape of the exhaust holes and baffles, the arrangement locations, the constituent materials, and the like can be selected as appropriate. For example, as shown in FIG. 14, four exhaust holes 21 are equally provided at an angle of 90 degrees, and four baffles 22 are provided so as to cover the four exhaust holes 21 correspondingly. good. According to such an embodiment, the amount of the hot gas 9 exhausted from the exhaust holes 21 can be reduced by using four exhaust holes 21 and baffles 22. Thereby, the occurrence of a ground fault between the movable part support 12 on the movable part 4 side and the sealed container 2 can be prevented more reliably. Furthermore, the surface area of the baffle may be larger than the cross-sectional area of the exhaust hole, or the exhaust hole may be closed with a predetermined interval from the outside rather than from the inside.
(b)第1の実施形態に係る排気穴の形状としては、熱ガス9の上流側の断面積よりも下流側の断面積の方が小さくなればよい。そのため、第1の実施形態の変形例としては例えば、図15に示すように、可動部支え12の軸方向に細長い三角形状の排気穴17dを1つ形成するようにしてもよい。 (B) As a shape of the exhaust hole according to the first embodiment, the cross-sectional area on the downstream side may be smaller than the cross-sectional area on the upstream side of the hot gas 9. Therefore, as a modification of the first embodiment, for example, as shown in FIG. 15, one elongated triangular exhaust hole 17 d may be formed in the axial direction of the movable portion support 12.
 さらに第1の実施形態では、熱ガス9の上流側より下流側に向かって断面積の小さい排気穴17a~17cを配置したが、これに限らない。例えば図16に示すように、断面積の等しい複数の排気穴17eを設け、熱ガス9の上流側より下流側に向かって単位面積当たりの排気穴の数が順次少なくなるように配置してもよい。具体的には、熱ガス9の上流側では6つの排気穴17eを配置し、下流側では2つの排気穴17eを配置し、その間では4つの排気穴17eを配置するようにしてもよい。 Furthermore, in the first embodiment, the exhaust holes 17a to 17c having a small cross-sectional area are arranged from the upstream side to the downstream side of the hot gas 9, but this is not restrictive. For example, as shown in FIG. 16, a plurality of exhaust holes 17e having the same cross-sectional area may be provided so that the number of exhaust holes per unit area decreases sequentially from the upstream side to the downstream side of the hot gas 9. Good. Specifically, six exhaust holes 17e may be disposed on the upstream side of the hot gas 9, two exhaust holes 17e may be disposed on the downstream side, and four exhaust holes 17e may be disposed therebetween.
(c)上記実施形態ではいずれも、可動側熱ガス処理空間13側に、排気穴あるいはバッフルを設けたが、図17に示すように、固定部3側の熱ガス処理空間14側に排気穴21を設け、これを覆うようにしてバッフル22を設けるようにしてもよい。また、固定部3側の熱ガス処理空間14を囲う壁面部に、上流側の断面積よりも下流側の断面積の方が小さくした排気穴を設けるようにしてもよい。 (C) In any of the above embodiments, the exhaust hole or baffle is provided on the movable-side hot gas treatment space 13 side. However, as shown in FIG. 17, the exhaust hole is provided on the fixed part 3 side on the hot gas treatment space 14 side. 21 may be provided, and the baffle 22 may be provided so as to cover it. Further, an exhaust hole having a downstream cross-sectional area smaller than an upstream cross-sectional area may be provided in a wall surface part surrounding the hot gas processing space 14 on the fixed part 3 side.
(d)上記第3の実施形態の可動部支え12では、熱ガス9の上流側の半径方向の寸法を短くし、下流側の半径方向の寸法を長くしたが、これとは逆に、熱ガス9の上流側の半径方向の寸法を長くし、下流側の半径方向の寸法を短くしてもよい。例えば図18に示すように、熱ガス9の上流側から順に、大径部12c、中径部12b、小径部12aとなるように配置してもよい。 (D) In the movable part support 12 of the third embodiment, the radial dimension on the upstream side of the hot gas 9 is shortened and the radial dimension on the downstream side is lengthened. The upstream radial dimension of the gas 9 may be lengthened and the downstream radial dimension may be shortened. For example, as shown in FIG. 18, the large diameter portion 12c, the medium diameter portion 12b, and the small diameter portion 12a may be arranged in this order from the upstream side of the hot gas 9.
 このような実施形態では、上流側から下流側に向かって順次、熱ガス9の流量が減っていくため、排気穴24、25から可動側熱ガス処理空間13の外部に向かって熱ガス9が徐々に流れ出ることになる。このとき、上流側の排気穴25からの排ガス量が「大」、下流側の排気穴24からの排ガス量は「小」となり易い。 In such an embodiment, since the flow rate of the hot gas 9 decreases sequentially from the upstream side to the downstream side, the hot gas 9 flows from the exhaust holes 24 and 25 toward the outside of the movable hot gas processing space 13. It will gradually flow out. At this time, the exhaust gas amount from the upstream exhaust hole 25 tends to be “large”, and the exhaust gas amount from the downstream exhaust hole 24 tends to be “small”.
 したがって、可動側熱ガス処理空間13内に入った熱ガス9は、可動側熱ガス処理空間13の下流空間に向かうにつれて排ガス量が小さくなり、可動側熱ガス処理空間13の下流空間から一気に排出されることがない。その結果、熱ガス9は、可動側熱ガス処理空間13の中に長い時間、留まることができる。これにより、可動側熱ガス処理空間13にて熱ガス9の温度を確実に冷却することが可能となって、優れた遮断性能を発揮することができる。 Therefore, the amount of exhaust gas of the hot gas 9 entering the movable hot gas treatment space 13 decreases toward the downstream space of the movable hot gas treatment space 13 and is discharged from the downstream space of the movable hot gas treatment space 13 at a stretch. It will not be done. As a result, the hot gas 9 can stay in the movable hot gas processing space 13 for a long time. Thereby, the temperature of the hot gas 9 can be reliably cooled in the movable-side hot gas processing space 13, and an excellent blocking performance can be exhibited.
 また、第3の実施形態に係る可動部支え12では、小径部12aと中径部12bとが互いに隣接し、大径部12cと中径部12bとが互いに隣接したが、図19に示すように、各径部12a~12cの端面同士を可動部4の軸方向に重ね合わせるようにしてもよい。このような実施形態では、可動部4の軸方向に所定の長さを持つ排気穴26、27となる。 Further, in the movable portion support 12 according to the third embodiment, the small diameter portion 12a and the medium diameter portion 12b are adjacent to each other, and the large diameter portion 12c and the medium diameter portion 12b are adjacent to each other, as shown in FIG. In addition, the end surfaces of the diameter portions 12 a to 12 c may be overlapped in the axial direction of the movable portion 4. In such an embodiment, the exhaust holes 26 and 27 have a predetermined length in the axial direction of the movable portion 4.
 これら排気穴26、27を流れる熱ガス9は、可動側熱ガス処理空間13を流れる熱ガス9の流れとは逆方向に流れることになる。そのため、開口面だけを持つ排気穴24、25と比べて、熱ガス9は排気穴26、27を流れ難くなり、そこから排出され難くなる。したがって、熱ガス9は、可動側熱ガス処理空間13に長く留まって冷やされ易くなり、高電界部18の形成を回避して地絡発生を確実に防ぐことができる。 The hot gas 9 flowing through the exhaust holes 26 and 27 flows in the opposite direction to the flow of the hot gas 9 flowing through the movable hot gas processing space 13. Therefore, compared with the exhaust holes 24 and 25 having only the opening surfaces, the hot gas 9 is less likely to flow through the exhaust holes 26 and 27 and is not easily discharged therefrom. Accordingly, the hot gas 9 stays in the movable hot gas processing space 13 for a long time and is easily cooled, and the formation of the high electric field portion 18 can be avoided to reliably prevent the occurrence of a ground fault.
 また、上記の実施形態では、固定部と表現したが、密閉容器内において対向接触子部を可動接触子部と反対側へ駆動し、相対的開極速度を向上させようとするいわゆるデュアルモーション機構を用いたタイプのガス遮断器などにも適用可能である。また、パッファ形以外のガス遮断器に本発明の実施形態を適用することは可能であり、上記の実施形態を組み合わせたものも本発明の実施形態に包含される。 In the above-described embodiment, the fixed portion is expressed, but a so-called dual motion mechanism that improves the relative opening speed by driving the opposing contact portion to the side opposite to the movable contact portion in the sealed container. It can also be applied to gas breakers of the type using Moreover, it is possible to apply embodiment of this invention to gas circuit breakers other than a puffer type, and what combined said embodiment is also included by embodiment of this invention.
1…消弧性ガス
2…密閉容器
3…固定部
3a…固定通電部
3b…固定アーク接触子
4…可動部
4a…絶縁ノズル
4b…可動アーク接触子
4c…通電接触子
4d…パッファシリンダ
4e…操作ロッド
5…ピストン
6…アーク放電
7a…固定側支持絶縁物
7b…可動側支持絶縁物
8…駆動装置
9…熱ガス
10…通電導体
11…絶縁スペーサ
12…可動部支え
12a…小径部
12b…中径部
12c…大径部
13…可動側熱ガス処理空間
14…固定側熱ガス処理空間
15…絶縁ロッド
16…気密ロッド
17a~17d、19、21、24、25、26、27…排気穴
18…高電界部
22…バッフル
DESCRIPTION OF SYMBOLS 1 ... Arc extinguishing gas 2 ... Sealed container 3 ... Fixed part 3a ... Fixed electricity supply part 3b ... Fixed arc contact 4 ... Movable part 4a ... Insulation nozzle 4b ... Moveable arc contact 4c ... Current supply contact 4d ... Puffer cylinder 4e ... Operating rod 5 ... Piston 6 ... Arc discharge 7a ... Fixed side support insulator 7b ... Moving side support insulator 8 ... Drive device 9 ... Hot gas 10 ... Conducting conductor 11 ... Insulating spacer 12 ... Moving part support 12a ... Small diameter part 12b ... Medium diameter part 12c ... Large diameter part 13 ... Movable side hot gas treatment space 14 ... Fixed side hot gas treatment space 15 ... Insulating rod 16 ... Airtight rods 17a to 17d, 19, 21, 24, 25, 26, 27 ... Exhaust holes 18 ... High electric field part 22 ... Baffle

Claims (11)

  1.  消弧性ガスが充填された密閉容器と、
     前記密閉容器内に同心軸上に向かい合って接離自在に配置された固定部及び可動部と、
     前記固定部に設けられた固定アーク接触子及び固定通電接触子と、
     前記可動部に設けられた可動アーク接触子及び可動通電接触子と、
     前記固定部及び前記可動部の開離時に前記固定アーク接触子と前記可動アーク接触子との間にアーク放電による熱ガスが発生しうるアーク放電空間と、
     前記アーク放電空間から前記熱ガスを取り込むように前記固定部及び前記可動部の少なくとも一方に設けられた熱ガス処理空間と、
     前記熱ガス処理空間を囲う壁面部と、
     前記壁面部に形成され前記熱ガス処理空間と前記密閉容器内の空間とを連通する排気穴と、
     を備え、
     前記熱ガス処理空間において前記アーク放電空間側を前記熱ガスの上流側、前記排気穴側を前記熱ガスの下流側とし、前記排気穴は、前記熱ガスの上流側の断面積よりも下流側の断面積の方を小さくしたことを特徴とするガス遮断器。
    A sealed container filled with arc-extinguishing gas;
    A fixed part and a movable part that are arranged concentrically facing each other in the sealed container and are detachable from each other; and
    A fixed arc contact and a fixed energized contact provided in the fixed part;
    A movable arc contact and a movable energized contact provided in the movable part;
    An arc discharge space in which hot gas can be generated by arc discharge between the fixed arc contactor and the movable arc contactor when the fixed part and the movable part are separated;
    A hot gas treatment space provided in at least one of the fixed part and the movable part so as to take in the hot gas from the arc discharge space;
    A wall surface surrounding the hot gas treatment space;
    An exhaust hole formed in the wall surface portion and communicating the hot gas treatment space and the space in the sealed container;
    With
    In the hot gas processing space, the arc discharge space side is the upstream side of the hot gas, the exhaust hole side is the downstream side of the hot gas, and the exhaust hole is downstream of the cross-sectional area on the upstream side of the hot gas. A gas circuit breaker characterized by having a smaller cross-sectional area.
  2.  前記排気穴は、断面積の異なる複数の排気穴からなり、
     前記熱ガスの上流側より下流側に向かって断面積が小さくなるように前記排気穴を配置したことを特徴とする請求項1に記載のガス遮断器。
    The exhaust hole is composed of a plurality of exhaust holes having different cross-sectional areas,
    2. The gas circuit breaker according to claim 1, wherein the exhaust hole is arranged so that a cross-sectional area decreases from an upstream side to a downstream side of the hot gas.
  3.  前記排気穴は、断面積の等しい複数の排気穴からなり、
     前記熱ガスの上流側より下流側に向かって単位面積当たりの排気穴の数が順次少なくなるように前記排気穴を配置したことを特徴とする請求項1に記載のガス遮断器。
    The exhaust hole is composed of a plurality of exhaust holes having the same cross-sectional area,
    2. The gas circuit breaker according to claim 1, wherein the exhaust holes are arranged so that the number of exhaust holes per unit area decreases sequentially from the upstream side to the downstream side of the hot gas.
  4.  消弧性ガスが充填された密閉容器と、
     前記密閉容器内に同心軸上に向かい合って接離自在に配置された固定部及び可動部と、
     前記固定部に設けられた固定アーク接触子及び固定通電接触子と、
     前記可動部に設けられた可動アーク接触子及び可動通電接触子と、
     前記固定部及び前記可動部の開離時に前記固定アーク接触子と前記可動アーク接触子との間にアーク放電による熱ガスが発生しうるアーク放電空間と、
     前記固定部及び前記可動部の少なくとも一方に設けられ前記アーク放電空間から前記熱ガスを取り込む熱ガス処理空間と、
     前記熱ガス処理空間を囲う壁面部と、
     前記壁面部に形成され前記熱ガス処理空間と前記密閉容器内の空間とを連通する排気穴と、
     所定の間隔を持って前記排気穴を塞ぎ且つ前記排気穴付近の等電位面と平行に設置されたバッフルと、
     を備えたことを特徴とするガス遮断器。
    A sealed container filled with arc-extinguishing gas;
    A fixed part and a movable part that are arranged concentrically facing each other in the sealed container and are detachable from each other; and
    A fixed arc contact and a fixed energized contact provided in the fixed part;
    A movable arc contact and a movable energized contact provided in the movable part;
    An arc discharge space in which hot gas can be generated by arc discharge between the fixed arc contactor and the movable arc contactor when the fixed part and the movable part are separated;
    A hot gas treatment space that is provided in at least one of the fixed portion and the movable portion and takes in the hot gas from the arc discharge space; and
    A wall surface surrounding the hot gas treatment space;
    An exhaust hole formed in the wall surface portion and communicating the hot gas treatment space and the space in the sealed container;
    A baffle that closes the exhaust hole with a predetermined interval and is installed in parallel with the equipotential surface near the exhaust hole;
    A gas circuit breaker comprising:
  5.  前記バッフルの表面積を前記排気穴の開口面積より大きくしたことを特徴とする請求項4に記載のガス遮断器。 The gas circuit breaker according to claim 4, wherein a surface area of the baffle is larger than an opening area of the exhaust hole.
  6.  消弧性ガスが充填された密閉容器と、
     前記密閉容器内に同心軸上に向かい合って接離自在に配置された固定部及び可動部と、
     前記固定部に設けられた固定アーク接触子及び固定通電接触子と、
     前記可動部に設けられた可動アーク接触子及び可動通電接触子と、
     前記固定部及び前記可動部の開離時に前記固定アーク接触子と前記可動アーク接触子との間にアーク放電による熱ガスが発生しうるアーク放電空間と、
     前記アーク放電空間から前記熱ガスを取り込むように前記固定部及び前記可動部の少なくとも一方に設けられた熱ガス処理空間と、
     前記熱ガス処理空間を囲う壁面部と、
     前記壁面部に形成され前記熱ガス処理空間と前記密閉容器内の空間とを連通する排気穴と、
     を備え、
     前記排気穴は、前記固定部又は前記可動部の軸方向に向かって開口したことを特徴とするガス遮断器。
    A sealed container filled with arc-extinguishing gas;
    A fixed part and a movable part that are arranged concentrically facing each other in the sealed container and are detachable from each other; and
    A fixed arc contact and a fixed energized contact provided in the fixed part;
    A movable arc contact and a movable energized contact provided in the movable part;
    An arc discharge space in which hot gas can be generated by arc discharge between the fixed arc contactor and the movable arc contactor when the fixed part and the movable part are separated;
    A hot gas treatment space provided in at least one of the fixed part and the movable part so as to take in the hot gas from the arc discharge space;
    A wall surface surrounding the hot gas treatment space;
    An exhaust hole formed in the wall surface portion and communicating the hot gas treatment space and the space in the sealed container;
    With
    The gas circuit breaker, wherein the exhaust hole is opened in an axial direction of the fixed part or the movable part.
  7.  前記熱ガス処理空間において前記アーク放電空間側を前記熱ガスの上流側、前記排気穴側を前記熱ガスの下流側とし、前記壁面部は、前記熱ガスの上流側の半径方向の寸法を短くし、下流側の半径方向の寸法を長くしたことを特徴とする請求項6に記載のガス遮断器。 In the hot gas processing space, the arc discharge space side is the upstream side of the hot gas, the exhaust hole side is the downstream side of the hot gas, and the wall portion has a short radial dimension on the upstream side of the hot gas. The gas circuit breaker according to claim 6, wherein the downstream radial dimension is increased.
  8.  前記熱ガス処理空間において前記アーク放電空間側を前記熱ガスの上流側、前記排気穴側を前記熱ガスの下流側とし、前記壁面部は、前記熱ガスの上流側の半径方向の寸法を長くし、下流側の半径方向の寸法を短くしたことを特徴とする請求項6に記載のガス遮断器。 In the hot gas processing space, the arc discharge space side is the upstream side of the hot gas, the exhaust hole side is the downstream side of the hot gas, and the wall portion has a longer radial dimension on the upstream side of the hot gas. The gas circuit breaker according to claim 6, wherein a downstream radial dimension is shortened.
  9.  前記壁面部は、半径方向の寸法が異なる部分を隣接して設け、
     半径方向の寸法が異なる部分同士の端面を前記固定部又は前記可動部の軸方向に重ね合わせたことを特徴とする請求項6~8のいずれかに記載のガス遮断器。
    The wall surface portion is provided adjacent to portions having different radial dimensions,
    The gas circuit breaker according to any one of claims 6 to 8, wherein end surfaces of portions having different radial dimensions are overlapped in an axial direction of the fixed portion or the movable portion.
  10.  前記可動部と一体となって駆動するパッファシリンダと、
     前記パッファシリンダの内部空間を圧縮するピストンと、
     前記ピストンに取り付けられ前記密閉容器内に固定された可動部支えと、を備え、
     前記可動部支えの内部空間に前記熱ガス処理空間を設けたことを特徴とする請求項1~9のいずれかに記載のガス遮断器。
    A puffer cylinder driven integrally with the movable part;
    A piston that compresses the internal space of the puffer cylinder;
    A movable part support attached to the piston and fixed in the sealed container,
    The gas circuit breaker according to any one of claims 1 to 9, wherein the hot gas processing space is provided in an internal space of the movable part support.
  11.  前記固定部を前記密閉容器内に固定するための固定部支えを備え、
     前記固定部支えの内部空間に前記熱ガス処理空間を設けたことを特徴とする請求項1~10のいずれかに記載のガス遮断器。
    A fixing portion support for fixing the fixing portion in the sealed container;
    The gas circuit breaker according to any one of claims 1 to 10, wherein the hot gas processing space is provided in an internal space of the fixed portion support.
PCT/JP2016/079875 2016-10-06 2016-10-06 Gas circuit breaker WO2018066119A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680087827.8A CN109496342A (en) 2016-10-06 2016-10-06 Gas circuit breaker
JP2018543550A JP6659864B2 (en) 2016-10-06 2016-10-06 Gas circuit breaker
PCT/JP2016/079875 WO2018066119A1 (en) 2016-10-06 2016-10-06 Gas circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/079875 WO2018066119A1 (en) 2016-10-06 2016-10-06 Gas circuit breaker

Publications (1)

Publication Number Publication Date
WO2018066119A1 true WO2018066119A1 (en) 2018-04-12

Family

ID=61830886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079875 WO2018066119A1 (en) 2016-10-06 2016-10-06 Gas circuit breaker

Country Status (3)

Country Link
JP (1) JP6659864B2 (en)
CN (1) CN109496342A (en)
WO (1) WO2018066119A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113192778A (en) * 2021-05-12 2021-07-30 上海西门子高压开关有限公司 Hot gas flow exhaust device for arc extinguish chamber, arc extinguish chamber and gas insulated switch
CN114141574A (en) * 2021-10-20 2022-03-04 平高集团有限公司 Circuit breaker and main pull rod thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975528A (en) * 1982-10-21 1984-04-28 株式会社富士電機総合研究所 Buffer type gas breaker
JPS63195925A (en) * 1987-02-09 1988-08-15 株式会社東芝 Buffer type gas breaker
JPH0864088A (en) * 1994-08-17 1996-03-08 Toshiba Corp Buffer type gas-blast circuit-breaker
JP2000268688A (en) * 1999-03-16 2000-09-29 Mitsubishi Electric Corp Gas-blast circuit breaker
US6207917B1 (en) * 1997-03-27 2001-03-27 Siemens Aktiengesellschaft Compressed gas power switch
US6730871B1 (en) * 1999-11-03 2004-05-04 Siemens Aktiengesellschaft Compressed gas-blast circuit breaker
US20040256361A1 (en) * 2001-11-14 2004-12-23 Andrzej Nowakowski Power switch
JP2007035518A (en) * 2005-07-28 2007-02-08 Toshiba Corp Gas circuit breaker
JP2007095680A (en) * 2005-09-26 2007-04-12 Abb Technology Ag High voltage circuit breaker with improved circuit breaker rating
JP2014041745A (en) * 2012-08-22 2014-03-06 Toshiba Corp Puffer type gas blast circuit breaker

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009009452A1 (en) * 2009-02-13 2010-08-19 Siemens Aktiengesellschaft Switchgear assembly with a switching path

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975528A (en) * 1982-10-21 1984-04-28 株式会社富士電機総合研究所 Buffer type gas breaker
JPS63195925A (en) * 1987-02-09 1988-08-15 株式会社東芝 Buffer type gas breaker
JPH0864088A (en) * 1994-08-17 1996-03-08 Toshiba Corp Buffer type gas-blast circuit-breaker
US6207917B1 (en) * 1997-03-27 2001-03-27 Siemens Aktiengesellschaft Compressed gas power switch
JP2000268688A (en) * 1999-03-16 2000-09-29 Mitsubishi Electric Corp Gas-blast circuit breaker
US6730871B1 (en) * 1999-11-03 2004-05-04 Siemens Aktiengesellschaft Compressed gas-blast circuit breaker
US20040256361A1 (en) * 2001-11-14 2004-12-23 Andrzej Nowakowski Power switch
JP2007035518A (en) * 2005-07-28 2007-02-08 Toshiba Corp Gas circuit breaker
JP2007095680A (en) * 2005-09-26 2007-04-12 Abb Technology Ag High voltage circuit breaker with improved circuit breaker rating
JP2014041745A (en) * 2012-08-22 2014-03-06 Toshiba Corp Puffer type gas blast circuit breaker

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113192778A (en) * 2021-05-12 2021-07-30 上海西门子高压开关有限公司 Hot gas flow exhaust device for arc extinguish chamber, arc extinguish chamber and gas insulated switch
CN113192778B (en) * 2021-05-12 2022-05-27 上海西门子高压开关有限公司 Hot gas flow exhaust device for arc extinguish chamber, arc extinguish chamber and gas insulated switch
CN114141574A (en) * 2021-10-20 2022-03-04 平高集团有限公司 Circuit breaker and main pull rod thereof
CN114141574B (en) * 2021-10-20 2024-03-26 平高集团有限公司 Circuit breaker and main pull rod thereof

Also Published As

Publication number Publication date
JPWO2018066119A1 (en) 2019-06-24
JP6659864B2 (en) 2020-03-04
CN109496342A (en) 2019-03-19

Similar Documents

Publication Publication Date Title
US9336974B2 (en) Gas circuit breaker
KR101763451B1 (en) Circuit breaker of gas insulation switchgear
JP3876357B2 (en) Gas circuit breaker
US20170178845A1 (en) Gas insulated circuit breaker
JP2017216094A (en) Gas circuit breaker
JP2012069348A (en) Gas circuit breaker
KR101621138B1 (en) Circuit breaker of gas insulation switchgear
JP2014229363A (en) Gas circuit breaker
JP5178967B1 (en) Gas circuit breaker
WO2018066119A1 (en) Gas circuit breaker
JP2013125720A (en) Puffer type gas circuit breaker
KR101291789B1 (en) Gas insulated switchgear
JP6435227B2 (en) Gas circuit breaker
JP2007035518A (en) Gas circuit breaker
JP6830363B2 (en) Gas circuit breaker
JP2015011911A (en) Gas circuit breaker
JP2010061858A (en) Gas-blast circuit breaker
WO2020003854A1 (en) Gas circuit breaker
JP6277083B2 (en) Gas circuit breaker
JP6363038B2 (en) Gas circuit breaker
JP2020091939A (en) Gas circuit breaker
JP6736345B2 (en) Gas circuit breaker
JP2020155302A (en) Gas circuit breaker
JPH0864088A (en) Buffer type gas-blast circuit-breaker
JP2015023006A (en) Gas circuit breaker

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543550

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918315

Country of ref document: EP

Kind code of ref document: A1