WO2022070397A1 - Gas circuit breaker - Google Patents

Gas circuit breaker Download PDF

Info

Publication number
WO2022070397A1
WO2022070397A1 PCT/JP2020/037505 JP2020037505W WO2022070397A1 WO 2022070397 A1 WO2022070397 A1 WO 2022070397A1 JP 2020037505 W JP2020037505 W JP 2020037505W WO 2022070397 A1 WO2022070397 A1 WO 2022070397A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc
movable
contact
gas
cylinder
Prior art date
Application number
PCT/JP2020/037505
Other languages
French (fr)
Japanese (ja)
Inventor
崇文 飯島
真一 永田
Original Assignee
株式会社東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社東芝
Priority to PCT/JP2020/037505 priority Critical patent/WO2022070397A1/en
Publication of WO2022070397A1 publication Critical patent/WO2022070397A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/055Features relating to the gas

Definitions

  • the embodiment of the present invention relates to a gas circuit breaker.
  • a gas circuit breaker that switches currents in an electric power system mechanically disconnects contacts in a closed container filled with an arc-extinguishing gas during the disconnection process, and extinguishes the arc discharge between the contacts caused by the disconnection of the contacts.
  • the arc is extinguished by spraying sex gas.
  • the gas circuit breaker aims to restore the dielectric strength between the contacts by quickly removing the hot gas generated by the arc discharge from the contacts.
  • the gas circuit breaker has an exhaust unit that forms a flow path for hot gas. The exhaust unit is required to cool the hot gas and then discharge it to the outside of the exhaust unit, and to suppress an increase in pressure inside the exhaust unit.
  • the insulation between the exhaust gas and the grounded closed container may be destroyed and a ground fault may occur.
  • the spraying of the arc-extinguishing gas weakens, the improvement of the dielectric strength becomes insufficient, and the current cutoff performance may deteriorate.
  • SF 6 sulfur hexafluoride
  • SF 6 is a greenhouse gas, and it is required to reduce the amount used as an arc-extinguishing gas. Therefore, it is desired to develop a technique for reducing the volume of the closed container.
  • the distance between the exhaust part and the closed container becomes smaller, so it is necessary to review the method of exhausting the hot gas by the exhaust part in order to suppress the ground fault.
  • the problem to be solved by the present invention is to provide a miniaturized gas circuit breaker having excellent current breaking performance.
  • the gas circuit breaker of the embodiment has a fixed contact, a movable contact, an insulating nozzle, a pressure accumulator, and a first cylinder.
  • the fixed contacts are fixedly arranged with respect to the closed container in a closed container filled with an arc-extinguishing gas.
  • the movable contact is arranged in a closed container.
  • the movable contact is in contact with the fixed contact in the closed pole state, and is displaced in the first direction from the closed pole state to be separated from the fixed contact.
  • the insulating nozzle is formed in a tubular shape.
  • the insulated nozzle has a nozzle opening at the end in the second direction opposite to the first direction. The insulating nozzle is displaced in conjunction with the movable contact.
  • the insulating nozzle surrounds an arc discharge that ignites between the fixed and movable contacts.
  • the pressure accumulator stores the arc-extinguishing gas.
  • the pressure accumulator discharges the arc-extinguishing gas into the inside of the insulating nozzle and blows it against the arc discharge.
  • the first cylinder surrounds the nozzle opening in a fully open state where the movable contact is farthest from the fixed contact.
  • the inner peripheral surface of the first cylinder has a diffuser portion at a position in the second direction from the nozzle opening in a fully open state. The diameter of the diffuser portion increases toward the second direction.
  • Sectional drawing which shows the gas circuit breaker of embodiment.
  • Sectional drawing which shows the gas circuit breaker of embodiment.
  • Sectional drawing which shows the gas circuit breaker of embodiment.
  • the graph which shows the characteristic of the gas circuit breaker which concerns on embodiment.
  • the graph which shows the characteristic of the gas circuit breaker which concerns on embodiment.
  • the gas circuit breaker 1 of the embodiment is a switchgear that opens and closes an electric circuit of an electric power system.
  • the same reference numerals are given to configurations having the same or similar functions. Then, the duplicate description of those configurations may be omitted.
  • FIG. 1 to 3 are cross-sectional views showing the gas circuit breaker 1 of the embodiment. Note that FIG. 1 shows a state in which the gas circuit breaker 1 is turned on. FIG. 2 shows immediately before the opening of the gas circuit breaker 1 in the closed state. FIG. 3 shows a completely open state of the gas circuit breaker 1.
  • the gas circuit breaker 1 includes a closed container (not shown) filled with an arc-extinguishing gas, and an opposed unit 3 and a movable unit 4 arranged in the closed container.
  • the arc-extinguishing gas is a gas having excellent arc-extinguishing performance and insulating performance, and is, for example, sulfur hexafluoride (SF 6 ) gas.
  • the facing unit 3 and the movable unit 4 are housed in a closed container together with an arc-extinguishing gas.
  • the closed container is made of a metal material.
  • the closed container is grounded.
  • the facing unit 3 and the movable unit 4 form a part of an electric circuit.
  • the facing unit 3 includes a facing contact portion 30.
  • the facing contact portion 30 is conducting to a first conductor (not shown) drawn from the outside of the closed container to the inside.
  • the movable unit 4 includes a movable contact portion 60.
  • the movable contact portion 60 is electrically connected to a second conductor (not shown) drawn from the outside to the inside of the closed container.
  • the gas circuit breaker 1 opens and closes an electric circuit and conducts or cuts off an electric current by contacting or separating the facing contact portion 30 and the movable contact portion 60 from each other.
  • the state in which the facing contact portion 30 and the movable contact portion 60 are in contact with each other is referred to as a closed pole state
  • the state in which the facing contact portion 30 and the movable contact portion 60 are separated from each other is referred to as an open pole state.
  • the closed pole states the state applied when it is not necessary to shut off the electric circuit is particularly referred to as a closed state.
  • the state in which the current cutoff operation is completed is particularly referred to as a completely open pole state.
  • the process of separating the facing contact portion 30 and the movable contact portion 60 from each other from the closed state to the completely open state is referred to as an open pole process.
  • the facing unit 3 and the movable unit 4 are each formed of a plurality of cylindrical or columnar members.
  • the cylindrical or columnar members are arranged so that their central axes coincide with each other.
  • the facing unit 3 and the movable unit 4 are arranged so as to face each other in the axial direction of the central axis.
  • the axial direction of the central axis is simply referred to as an axial direction.
  • the direction that orbits around the central axis is referred to as a circumferential direction.
  • the direction orthogonal to the central axis is referred to as a radial direction.
  • FIGS. 1 to 3 the first direction in the axial direction is indicated by an arrow A, and the second direction opposite to the first direction is indicated by an arrow B.
  • the facing unit 3 is fixedly arranged with respect to the closed container in a state of being spaced from the closed container.
  • the facing unit 3 includes an exhaust chamber 10 and a facing contact portion 30.
  • the exhaust chamber 10 has an inner cylinder 11 (first cylinder) and an outer cylinder 21 (second cylinder).
  • the inner cylinder 11 and the outer cylinder 21 are each formed in a cylindrical shape by a metal material.
  • the inner cylinder 11 and the outer cylinder 21 are conductive to the first conductor described above.
  • the inner cylinder 11 is open on both sides in the axial direction.
  • the inner cylinder 11 includes an upstream portion 12, a downstream portion 13, an intermediate portion 14, and a flange 15.
  • the upstream portion 12 extends in the second direction in the axial direction from the end portion in the first direction in the axial direction of the inner cylinder 11.
  • the upstream portion 12 extends axially with a constant inner diameter and a constant outer diameter.
  • the upstream portion 12 surrounds the nozzle opening 71 of the insulating nozzle 70, which will be described later, in a fully open state (see FIG. 3).
  • the downstream portion 13 is arranged in the second direction from the upstream portion 12.
  • the downstream portion 13 extends in the first direction from the end portion of the inner cylinder 11 in the second direction.
  • the downstream portion 13 is formed to have a larger diameter than the upstream portion 12.
  • the downstream portion 13 extends axially with a constant inner diameter and a constant outer diameter.
  • the inner diameter of the downstream portion 13 is larger than the inner diameter of the upstream portion 12.
  • the intermediate portion 14 is arranged between the upstream portion 12 and the downstream portion 13.
  • the intermediate portion 14 is connected to an end portion of the upstream portion 12 in the second direction and an end portion of the downstream portion 13 in the first direction.
  • the inner peripheral surface of the intermediate portion 14 is connected to the inner peripheral surface of the upstream portion 12 at the end portion of the intermediate portion 14 in the first direction.
  • the inner peripheral surface of the intermediate portion 14 gradually increases in diameter from the end portion of the intermediate portion 14 in the first direction toward the second direction. In other words, the inner diameter of the intermediate portion 14 gradually increases from the end portion of the intermediate portion 14 in the first direction toward the second direction.
  • the inner peripheral surface of the intermediate portion 14 is connected to the inner peripheral surface of the downstream portion 13 at the end portion of the intermediate portion 14 in the second direction.
  • the outer peripheral surface of the intermediate portion 14 is connected to the outer peripheral surface of the upstream portion 12 at the end portion of the intermediate portion 14 in the first direction.
  • the outer peripheral surface of the intermediate portion 14 is connected to the outer peripheral surface of the downstream portion 13 at the end portion of the intermediate portion 14 in the second direction.
  • the inner peripheral surface and the outer peripheral surface of the intermediate portion 14 each extend linearly in a vertical cross section along the central axis.
  • the flange 15 is provided at the end of the inner cylinder 11 in the first direction.
  • the flange 15 protrudes radially outward from the end portion of the upstream portion 12 in the first direction, and extends in the circumferential direction over the entire circumference.
  • the outer diameter of the flange 15 is larger than the outer diameter of the downstream portion 13.
  • the outer cylinder 21 is formed so as to surround the end portion of the inner cylinder 11 in the second direction.
  • the outer cylinder 21 includes a peripheral wall portion 22 and a closing portion 23.
  • the peripheral wall portion 22 surrounds the inner cylinder 11 from the outside in the radial direction.
  • the peripheral wall portion 22 extends in the axial direction with a constant inner diameter and a constant outer diameter.
  • the inner diameter of the peripheral wall portion 22 is smaller than the outer diameter of the flange 15 of the inner cylinder 11.
  • the end portion of the peripheral wall portion 22 in the first direction is located in the first direction with respect to the end portion of the downstream portion 13 of the inner cylinder 11 in the first direction.
  • the end portion of the peripheral wall portion 22 in the first direction is spaced from the flange 15 of the inner cylinder 11 over the entire circumference in the circumferential direction.
  • the end portion of the peripheral wall portion 22 in the first direction overlaps the upstream portion 12 of the inner cylinder 11 when viewed from the radial direction.
  • the end portion of the peripheral wall portion 22 in the second direction is located in the second direction with respect to the end portion of the inner cylinder 11 in the second direction.
  • the inner peripheral surface of the peripheral wall portion 22 is spaced from the outer peripheral surface of the downstream portion 13 of the inner cylinder 11 over the entire circumference in the circumferential direction.
  • the closed portion 23 closes the inside of the peripheral wall portion 22 in the second direction of the inner cylinder 11.
  • the closed portion 23 projects inward in the radial direction from the end portion of the peripheral wall portion 22 in the second direction.
  • the closing portion 23 is spaced from the end portion in the second direction of the inner cylinder 11 over the entire circumference in the circumferential direction.
  • the facing contactor portion 30 includes a facing energizing contact 31 and a facing arc contact 32 (fixed contact).
  • the opposed energizing contact 31 is formed in a cylindrical shape by a metal material. Both ends of the opposed energizing contact 31 are open in the axial direction. The opposed energizing contact 31 is coupled to the end of the inner cylinder 11 in the first direction. The opposed energizing contact 31 is conducting to the first conductor via the exhaust chamber 10.
  • the facing arc contactor 32 is formed in a columnar shape by a metal material.
  • the facing arc contactor 32 is arranged inside the facing energizing contact 31.
  • the facing arc contactor 32 is supported by the inner cylinder 11 via a support member (not shown).
  • the facing arc contactor 32 projects in the first direction from the end portion of the inner cylinder 11 in the first direction.
  • the facing arc contactor 32 is conducting to the first conductor via the support member and the exhaust chamber 10.
  • the movable unit 4 is arranged so as to be displaced in the axial direction with respect to the facing unit 3 except for the piston 50 described later.
  • the movable unit 4 includes an operation rod 40, a cylinder 45, a piston 50, a movable contact portion 60, and an insulating nozzle 70.
  • the operation rod 40 is made of a metal material.
  • the operation rod 40 is formed in a cylindrical shape.
  • the operating rod 40 extends axially with a constant outer diameter.
  • the operation rod 40 is connected to a drive device (both not shown) via an insulating rod at the end in the first direction, and is rotatable in the axial direction with respect to the closed container.
  • the cylinder 45 is formed in a cylindrical shape by a metal material.
  • the cylinder 45 includes a peripheral wall 46 extending in the axial direction and a bottom wall 47 connected to the end of the peripheral wall 46 in the second direction.
  • the peripheral wall 46 extends with a constant inner diameter.
  • the inner diameter of the peripheral wall 46 is larger than the outer diameter of the operation rod 40.
  • the peripheral wall 46 surrounds the operation rod 40 from the outside in the radial direction.
  • the bottom wall 47 projects radially inward from the end of the peripheral wall 46 in the second direction.
  • a circular through hole 47a is formed in the center of the bottom wall 47. That is, the bottom wall 47 is formed in the shape of an annular plate.
  • An operation rod 40 is inserted through the through hole 47a.
  • the cylinder 45 is fixedly arranged with respect to the operation rod 40, and is displaced in the axial direction in conjunction with the operation rod 40.
  • the piston 50 is arranged between the operation rod 40 and the peripheral wall 46 of the cylinder 45.
  • the piston 50 is formed in the shape of an annulus plate extending in both the radial and circumferential directions.
  • the inner diameter of the piston 50 coincides with the outer diameter of the operating rod 40.
  • the outer diameter of the piston 50 coincides with the inner diameter of the peripheral wall 46 of the cylinder 45.
  • the piston 50 is fixedly arranged with respect to the closed container.
  • the cylinder 45, the piston 50, and the operation rod 40 define a puffer chamber 55 (accumulation unit) for accumulating arc-extinguishing gas.
  • the volume of the puffer chamber 55 is variable in conjunction with the displacement of the operation rod 40.
  • the volume of the puffer chamber 55 decreases with the displacement of the cylinder 45 and the operating rod 40 in the first direction, so that the internal arc-extinguishing gas is boosted.
  • the puffer chamber 55 discharges the extinguished gas boosted in the puffer chamber 55 from the puffer chamber 55 through the gap between the bottom wall 47 of the cylinder 45 and the operation rod 40.
  • the movable contact portion 60 includes a movable arc contact 61 (movable contact) and a movable energizing contact 62.
  • the movable arc contactor 61 is formed in a cylindrical shape by a metal material. Both ends of the movable arc contactor 61 are open in the axial direction.
  • the movable arc contact 61 is coupled to the end portion of the operation rod 40 in the second direction and extends in the second direction from the end portion of the operation rod 40 in the second direction.
  • the movable arc contactor 61 is conducting to the operation rod 40.
  • the end portion 61a of the movable arc contactor 61 in the second direction bulges inward in the radial direction.
  • the inner diameter of the end portion 61a in the second direction of the movable arc contactor 61 is equal to or smaller than the outer diameter of the opposed arc contactor 32.
  • the movable arc contactor 61 is displaced in the axial direction in conjunction with the operation rod 40.
  • the facing arc contactor 32 and the movable arc contactor 61 are provided so as to be able to come into contact with each other in the axial direction as the operation rod 40 is displaced.
  • the opposed arc contactor 32 and the movable arc contactor 61 are in contact with each other in the closed pole state and separated from each other in the open pole state.
  • the facing arc contactor 32 and the movable arc contactor 61 come into contact with each other and become conductive when the facing arc contactor 32 is inserted into the opening of the movable arc contactor 61.
  • the movable energizing contact 62 is formed in a cylindrical shape by a metal material.
  • the movable energizing contact 62 is arranged so as to surround the movable arc contact 61.
  • the movable energizing contact 62 extends in the second direction from the bottom wall 47 of the cylinder 45.
  • the movable energizing contactor 62 is conducting to the cylinder 45.
  • the end of the movable energizing contact 62 in the second direction is open in the second direction.
  • the movable energizing contact 62 is relatively fixed to the operation rod 40 via the cylinder 45.
  • the movable energizing contact 62 is displaced in the axial direction in conjunction with the operation rod 40.
  • the opposed energizing contact 31 and the movable energizing contact 62 are provided so as to be detachable from each other in the axial direction as the operation rod 40 is displaced.
  • the opposed energizing contact 31 and the movable energizing contact 62 are in contact with each other in the closed state and separated from each other in the open pole state.
  • the opposed energized contact 31 and the movable energized contact 62 are separated from each other earlier than the opposed arc contact 32 and the movable arc contact 61 in the opening process (see FIG. 2).
  • the counter-energized contact 31 and the movable energized contact 62 are in contact with each other to conduct conduction by inserting the movable energized contact 62 into the opening in the first direction of the opposed energized contact 31.
  • the insulating nozzle 70 is formed in a cylindrical shape by the insulating material.
  • the insulating nozzle 70 projects from between the movable arc contact 61 and the movable energizing contact 62 in the second direction from the movable arc contact 61 and the movable energizing contact 62.
  • the insulating nozzle 70 is fixed to the inner peripheral surface of the movable energizing contact 62.
  • the insulating nozzles 70 are provided at intervals in the radial direction with respect to the movable arc contactor 61.
  • the insulating nozzle 70 includes a nozzle opening 71 at the end in the second direction.
  • the nozzle opening 71 is open inside the exhaust chamber 10.
  • the inner peripheral surface of the insulating nozzle 70 is provided with a throat portion 72.
  • the throat portion 72 is a portion of the insulating nozzle 70 having the smallest inner diameter.
  • the throat portion 72 is provided at an intermediate portion in the axial direction of the insulating nozzle 70.
  • the throat portion 72 is provided in a second direction with respect to the movable arc contactor 61.
  • the insulating nozzle 70 surrounds an arc discharge described later in the open pole state.
  • the inside of the insulating nozzle 70 forms a flow path for the arc-extinguishing gas discharged from the puffer chamber 55.
  • the insulating nozzle 70 guides the arc-extinguishing gas discharged from the puffer chamber 55 to the arc discharge.
  • the nozzle opening 71 of the insulating nozzle 70 is opened inside the inner cylinder 11 in a completely open state.
  • the inner peripheral surface 16 of the inner cylinder 11 forms a flow path for the arc-extinguishing gas discharged from the nozzle opening 71.
  • the inner peripheral surface 16 of the inner cylinder 11 includes an upstream guide portion 17, a diffuser portion 18, and a downstream guide portion 19 as a portion forming a flow path.
  • the upstream guide portion 17 is at least a part of the inner peripheral surface of the upstream portion 12.
  • the upstream guide portion 17 extends axially from the position of the nozzle opening 71 in the axial direction with a constant inner diameter in the second direction.
  • the diffuser portion 18 is an inner peripheral surface of the intermediate portion 14.
  • the diffuser portion 18 is connected to the upstream guide portion 17 at the end portion of the diffuser portion 18 in the first direction.
  • the diameter of the diffuser portion 18 is gradually increased from the upstream guide portion 17 toward the second direction.
  • the downstream guide portion 19 is an inner peripheral surface of the downstream portion 13.
  • the downstream guide portion 19 is connected to the diffuser portion 18 at the end of the downstream guide portion 19 in the first direction.
  • the downstream guide portion 19 extends in the axial direction with a constant inner diameter.
  • the inner diameter of the downstream guide portion 19 is larger than the inner diameter of the upstream guide portion 17.
  • the circuit breaker operation of the gas circuit breaker 1 will be described.
  • the movable contact portion 60 in the loaded state, the movable contact portion 60 is located at the end portion in the movable range in the second direction.
  • the movable energizing contact 62 is inserted inside the opposed energizing contact 31 to make contact, and the opposed arc contact 32 is inserted inside the movable arc contact 61 to make contact.
  • the facing unit 3 and the movable unit 4 become conductive.
  • the gas circuit breaker 1 displaces the operation rod 40 in the first direction and separates the opposed contact portion 30 and the movable contact portion 60 from each other.
  • the movable arc contact 61, the movable energizing contact 62, the insulating nozzle 70, and the cylinder 45 are displaced in the first direction in conjunction with the operating rod 40.
  • the cylinder 45 is displaced in the first direction, the volume of the puffer chamber 55 is reduced, and the arc-extinguishing gas inside the puffer chamber 55 is boosted.
  • the opposed arc contactor 32 and the movable arc contactor 61 are separated from each other, and the state shifts from the closed pole state to the open pole state.
  • an arc discharge is generated between the facing arc contactor 32 and the movable arc contactor 61.
  • the surrounding arc-extinguishing gas is heated to become a high-temperature hot gas and expands. A part of the expanded arc-extinguishing gas flows into the puffer chamber 55. As a result, the extinguishing gas inside the puffer chamber 55 is further boosted.
  • the breaking operation progresses, the distance between the opposed arc contactor 32 and the movable arc contactor 61 increases, the current decreases toward the current zero point, and the arc discharge decreases.
  • the arc discharge becomes small, the inflow of the arc-extinguishing gas into the puffer chamber 55 is stopped, and the high-pressure arc-extinguishing gas is discharged from the puffer chamber 55.
  • the arc-extinguishing gas discharged from the puffer chamber 55 passes between the insulating nozzle 70 and the movable arc contactor 61 and is blown to the arc discharge. As a result, the arc discharge is extinguished and the current is cut off.
  • the position of the operation rod 40 in the fully open state is a position where the operation rod 40 is completely displaced in the first direction by a drive device (not shown) connected to the operation rod 40.
  • the arc-extinguishing gas sprayed on the arc discharge is discharged separately from the flow path on the facing unit 3 side and the flow path on the movable unit 4 side together with the heat gas generated by the arc discharge.
  • the arc-extinguishing gas that has flowed into the flow path on the facing unit 3 side passes through the inside of the throat portion 72 of the insulating nozzle 70 and is discharged from the nozzle opening 71.
  • the arc-extinguishing gas discharged from the nozzle opening 71 passes through the flow path formed on the inner peripheral surface 16 of the inner cylinder 11, passes between the inner cylinder 11 and the outer cylinder 21, and reaches the inside of the closed container.
  • the flow path on the movable unit 4 side reaches the inside of the closed container from the opening of the movable arc contact 61 in the first direction through the inside of the movable arc contact 61 and the inside of the operation rod 40.
  • the configuration in which the inner peripheral surface 16 of the inner cylinder 11 of the exhaust chamber 10 has the diffuser portion 18 is adopted.
  • the diffuser portion 18 is provided at a position in the second direction from the nozzle opening 71 in a fully open state, and its diameter increases toward the second direction. According to this configuration, the heat gas generated by the arc discharge inside the insulating nozzle 70 is pushed out to the arc-extinguishing gas discharged from the puffer chamber 55 in the second direction from the nozzle opening 71 of the insulating nozzle 70. Is discharged to.
  • the hot gas discharged from the nozzle opening 71 flows in the second direction inside the inner cylinder 11 and is agitated with the low-temperature arc-extinguishing gas existing inside the inner cylinder 11.
  • the heat gas passes through the inside of the diffuser portion 18 in the process of flowing inside the inner cylinder 11 in the second direction.
  • the heat gas is boosted by passing through the inside of the diffuser portion 18. Therefore, stirring between the hot gas and the low-temperature arc-extinguishing gas existing inside the inner cylinder 11 is promoted by the pressure difference between the hot gas and the low-temperature arc-extinguishing gas.
  • the inner cylinder 11 can cool the heat gas and then discharge it.
  • the low-temperature arc-extinguishing gas has a higher specific density than the hot gas. Therefore, if the hot gas is not agitated with the low-temperature arc-extinguishing gas inside the inner cylinder 11, the flow of the hot gas is hindered by the low-temperature arc-extinguishing gas, and the hot gas moves with the facing arc contactor 32. It becomes difficult to come off from between the arc contactor 61.
  • the hot gas is agitated with the low-temperature arc-extinguishing gas inside the inner cylinder 11, so that the opposed arc contactor 32 and the movable arc contactor are compared with the case where the hot gas is not agitated. It is possible to promote the discharge of hot gas from between 61. As a result, the pressure between the opposed arc contactor 32 and the movable arc contactor 61 can be made sufficiently smaller than the pressure in the puffer chamber 55. Therefore, it is possible to suppress the weakening of the spraying of the arc-extinguishing gas and improve the dielectric strength between the opposed arc contactor 32 and the movable arc contactor 61. As described above, it is possible to provide a miniaturized gas circuit breaker 1 having excellent current breaking performance.
  • the exhaust chamber 10 has an outer cylinder 21.
  • the outer cylinder 21 has a peripheral wall portion 22 that surrounds the inner cylinder 11 and a closing portion 23 that closes the inside of the peripheral wall portion 22 in the second direction of the inner cylinder 11.
  • the heat gas discharged from the end portion of the inner cylinder 11 in the second direction passes between the inner cylinder 11 and the outer cylinder 21 and is discharged to the outside of the exhaust chamber 10. Therefore, the flow path length of the hot gas in the exhaust chamber can be lengthened as compared with the configuration in which the exhaust chamber has only the inner cylinder. Therefore, the exhaust chamber 10 can cool the heat gas more sufficiently before discharging it.
  • the inner peripheral surface 16 of the inner cylinder 11 has an upstream guide portion 17.
  • the upstream guide portion 17 extends from the nozzle opening 71 in the second direction with a constant inner diameter in a fully open state, and is connected to the diffuser portion 18.
  • the inner diameter of the upstream guide portion 17 is r1 and the axial length of the upstream guide portion 17 is x1
  • the step between the inner peripheral surface of the insulating nozzle 70 and the diffuser portion 18 becomes small.
  • the length of the upstream guide portion 17 in the axial direction is the distance from the nozzle opening 71 to the end portion of the upstream portion 12 in the second direction in the axial direction.
  • FIG. 4 is a graph showing the characteristics of the gas circuit breaker according to the embodiment.
  • FIG. 4 shows a simulation result of an embodiment in which the frequency of the alternating current is 50 Hz, the frequency of the alternating current is set to 50 Hz, the above x1 is constant, and r1 is changed in the gas circuit breaker 1 according to the embodiment.
  • the horizontal axis indicates the elapsed time in the shutoff operation.
  • the vertical axis shows the ratio (boosting ratio) of the pressure increased inside the upstream guide portion 17 to the pressure inside the closed container in the steady state.
  • the gas circuit breaker opens at the timing of the elapsed time of ⁇ 20 msec, and the alternating current reaches the zero point at the timing of 0 msec. That is, the simulation result shown in FIG. 4 is an evaluation result for a maximum arc time of 20 msec, assuming a short-distance line failure.
  • the heat gas can flow inside the inner cylinder 11 without delay as r2 / r1 becomes larger.
  • the inner diameter of the end portion of the inner cylinder 11 in the second direction is the inner diameter of the downstream guide portion 19.
  • FIG. 5 is a graph showing the characteristics of the gas circuit breaker according to the embodiment.
  • FIG. 5 shows the simulation results of an embodiment in which the frequency of the alternating current is 50 Hz, the frequency of the alternating current is set to 50 Hz, the r2 is constant, and r1 is changed in the gas circuit breaker 1 according to the embodiment.
  • the horizontal axis indicates the elapsed time in the shutoff operation.
  • the vertical axis shows the ratio (boosting ratio) of the pressure increased inside the upstream guide portion 17 to the pressure inside the closed container in the steady state.
  • the gas circuit breaker opens at the timing of the elapsed time of ⁇ 20 msec, and the alternating current reaches the zero point at the timing of 0 msec. That is, the simulation result shown in FIG. 5 is an evaluation result for a maximum arc time of 20 msec, assuming a short-distance line failure, similar to the simulation result shown in FIG.
  • the relationship between the inner diameter r1 of the upstream guide portion 17 and the axial length x1 of the upstream guide portion 17 is not particularly limited. Even if r1 / x1 is 0.9 or less, heat gas can be discharged from between the opposed arc contactor 32 and the movable arc contactor 61. Therefore, it is possible to suppress the weakening of the spraying of the arc-extinguishing gas and improve the dielectric strength between the opposed arc contactor 32 and the movable arc contactor 61. However, as described above, by setting r1 / x1 to be larger than 0.9, a larger effect can be obtained.
  • the relationship between the inner diameter r1 of the upstream guide portion 17 and the inner diameter r2 of the end portion of the inner cylinder 11 in the second direction is not particularly limited. Even if r2 / r1 is 1.5 or less, heat gas can be discharged from between the opposed arc contactor 32 and the movable arc contactor 61. Therefore, it is possible to suppress the weakening of the spraying of the arc-extinguishing gas and improve the dielectric strength between the opposed arc contactor 32 and the movable arc contactor 61. However, as described above, by setting r2 / r1 to be larger than 1.5, a larger effect can be obtained.
  • the exhaust chamber 10 has an inner cylinder 11 and an outer cylinder 21.
  • the exhaust chamber does not have to have the outer cylinder 21. Even with this configuration, the hot gas can be cooled and discharged from the exhaust chamber by the above-mentioned action. Therefore, it is possible to suppress the dielectric breakdown between the exhaust chamber and the closed container while reducing the size of the closed container.
  • the arc-extinguishing gas is not limited to sulfur hexafluoride gas. According to the above embodiment, the dielectric breakdown between the exhaust chamber 10 and the closed container can be suppressed, so that even if air, carbon dioxide, oxygen, nitrogen and a mixed gas thereof are applied as the arc extinguishing gas, for example. good.
  • the diffuser portion on the inner peripheral surface of the inner cylinder is provided at a position in the second direction from the nozzle opening in the fully open state, and the diameter increases toward the second direction. are doing.
  • the inner cylinder can be discharged after cooling the heat gas. Therefore, it is possible to suppress the dielectric breakdown between the exhaust chamber and the closed container while reducing the size of the closed container. Further, it is possible to promote the discharge of hot gas from between the opposed arc contactor and the movable arc contactor. Therefore, it is possible to suppress the weakening of the spraying of the arc-extinguishing gas and improve the dielectric strength between the opposed arc contactor and the movable arc contactor. As described above, it is possible to provide a miniaturized gas circuit breaker 1 having excellent current breaking performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Breakers (AREA)

Abstract

A gas circuit breaker according to an embodiment has a fixed contactor, a movable contactor, an insulating nozzle, a pressure accumulation part, and a first cylindrical body. The movable contactor is displaced in a first direction from a closed pole state and spaced apart from the fixed contactor. The insulating nozzle has a nozzle opening section at an end section thereof in a second direction. The insulating nozzle surrounds an arc discharge which is generated between the fixed contactor and the movable contactor. The pressure accumulation part discharges an arc extinguishing gas into the insulating nozzle and blows the gas toward the arc discharge. The first cylindrical body surrounds the nozzle opening section in a fully closed pole state. The inner peripheral surface of the first cylindrical body has, in the fully open pole state, a diffuser part at a position further in the second direction than the nozzle opening section. The diffuser part expands in diameter in the second direction.

Description

ガス遮断器Gas circuit breaker
 本発明の実施形態は、ガス遮断器に関する。 The embodiment of the present invention relates to a gas circuit breaker.
 電力系統において電流開閉を行うガス遮断器は、消弧性ガスを充填する密閉容器内で、遮断過程において接触子を機械的に切り離し、接触子の切り離しによって生じる接触子間のアーク放電を消弧性ガスの吹き付けによって消弧する。ガス遮断器は、アーク放電によって生じた熱ガスを接触子間から速やかに除去することで、接触子間の絶縁耐力の回復を図る。ガス遮断器は、熱ガスの流路を形成する排気部を持つ。排気部は、熱ガスを冷却してから排気部外に排出すること、および排気部内の圧力上昇を抑制することを求められる。熱ガスが高温のまま排気部から排出されると、排気部と接地された密閉容器との間の絶縁が破壊されて地絡が生じる可能性がある。排気部内の圧力が上昇すると、消弧性ガスの吹き付けが弱まって絶縁耐力の向上が不十分となり、電流遮断性能が低下する可能性がある。 A gas circuit breaker that switches currents in an electric power system mechanically disconnects contacts in a closed container filled with an arc-extinguishing gas during the disconnection process, and extinguishes the arc discharge between the contacts caused by the disconnection of the contacts. The arc is extinguished by spraying sex gas. The gas circuit breaker aims to restore the dielectric strength between the contacts by quickly removing the hot gas generated by the arc discharge from the contacts. The gas circuit breaker has an exhaust unit that forms a flow path for hot gas. The exhaust unit is required to cool the hot gas and then discharge it to the outside of the exhaust unit, and to suppress an increase in pressure inside the exhaust unit. If the hot gas is discharged from the exhaust gas at a high temperature, the insulation between the exhaust gas and the grounded closed container may be destroyed and a ground fault may occur. When the pressure in the exhaust section rises, the spraying of the arc-extinguishing gas weakens, the improvement of the dielectric strength becomes insufficient, and the current cutoff performance may deteriorate.
 ところで、消弧性ガスには、優れたアーク消弧性能を有するSF(六フッ化硫黄)が主に用いられる。SFは、地球温暖化ガスであり、消弧性ガスとしての使用量の削減を求められている。そのため、密閉容器の体積を小さくする技術の開発が望まれている。しかし、密閉容器の小型化に伴って、排気部と密閉容器との間隔が縮小するので、地絡を抑制するために排気部による熱ガスの排気方法を見直す必要がある。 By the way, SF 6 (sulfur hexafluoride), which has excellent arc extinguishing performance, is mainly used as the arc extinguishing gas. SF 6 is a greenhouse gas, and it is required to reduce the amount used as an arc-extinguishing gas. Therefore, it is desired to develop a technique for reducing the volume of the closed container. However, as the size of the closed container becomes smaller, the distance between the exhaust part and the closed container becomes smaller, so it is necessary to review the method of exhausting the hot gas by the exhaust part in order to suppress the ground fault.
米国特許出願公開第2014/0251957号明細書U.S. Patent Application Publication No. 2014/0251957 米国特許出願公開第2014/0209568号明細書U.S. Patent Application Publication No. 2014/0209568
 本発明が解決しようとする課題は、優れた電流遮断性能を有する小型化されたガス遮断器を提供することである。 The problem to be solved by the present invention is to provide a miniaturized gas circuit breaker having excellent current breaking performance.
 実施形態のガス遮断器は、固定接触子と、可動接触子と、絶縁ノズルと、蓄圧部と、第1筒体と、を持つ。固定接触子は、消弧性ガスが充填された密閉容器内で密閉容器に対して固定的に配置されている。可動接触子は、密閉容器内に配置されている。可動接触子は、閉極状態で固定接触子に接触するとともに、閉極状態から第1方向に変位して固定接触子から離間する。絶縁ノズルは、筒状に形成されている。絶縁ノズルは、第1方向とは反対側の第2方向の端部にノズル開口部を持つ。絶縁ノズルは、可動接触子に連動して変位する。絶縁ノズルは、固定接触子と可動接触子との間で発弧するアーク放電を囲む。蓄圧部は、消弧性ガスを蓄圧する。蓄圧部は、消弧性ガスを絶縁ノズルの内部に放出してアーク放電に対して吹き付ける。第1筒体は、可動接触子が固定接触子から最も離間した完全開極状態でノズル開口部を囲う。第1筒体の内周面は、完全開極状態においてノズル開口部よりも第2方向の位置にディフューザ部を持つ。ディフューザ部は、第2方向に向かうに従い拡径する。 The gas circuit breaker of the embodiment has a fixed contact, a movable contact, an insulating nozzle, a pressure accumulator, and a first cylinder. The fixed contacts are fixedly arranged with respect to the closed container in a closed container filled with an arc-extinguishing gas. The movable contact is arranged in a closed container. The movable contact is in contact with the fixed contact in the closed pole state, and is displaced in the first direction from the closed pole state to be separated from the fixed contact. The insulating nozzle is formed in a tubular shape. The insulated nozzle has a nozzle opening at the end in the second direction opposite to the first direction. The insulating nozzle is displaced in conjunction with the movable contact. The insulating nozzle surrounds an arc discharge that ignites between the fixed and movable contacts. The pressure accumulator stores the arc-extinguishing gas. The pressure accumulator discharges the arc-extinguishing gas into the inside of the insulating nozzle and blows it against the arc discharge. The first cylinder surrounds the nozzle opening in a fully open state where the movable contact is farthest from the fixed contact. The inner peripheral surface of the first cylinder has a diffuser portion at a position in the second direction from the nozzle opening in a fully open state. The diameter of the diffuser portion increases toward the second direction.
実施形態のガス遮断器を示す断面図。Sectional drawing which shows the gas circuit breaker of embodiment. 実施形態のガス遮断器を示す断面図。Sectional drawing which shows the gas circuit breaker of embodiment. 実施形態のガス遮断器を示す断面図。Sectional drawing which shows the gas circuit breaker of embodiment. 実施形態に係るガス遮断器の特性を示すグラフ。The graph which shows the characteristic of the gas circuit breaker which concerns on embodiment. 実施形態に係るガス遮断器の特性を示すグラフ。The graph which shows the characteristic of the gas circuit breaker which concerns on embodiment.
 以下、実施形態のガス遮断器1を、図面を参照して説明する。実施形態のガス遮断器1は、電力系統の電気回路を開閉する開閉装置である。なお以下の説明では、同一または類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は省略する場合がある。 Hereinafter, the gas circuit breaker 1 of the embodiment will be described with reference to the drawings. The gas circuit breaker 1 of the embodiment is a switchgear that opens and closes an electric circuit of an electric power system. In the following description, the same reference numerals are given to configurations having the same or similar functions. Then, the duplicate description of those configurations may be omitted.
 図1から図3は、実施形態のガス遮断器1を示す断面図である。なお、図1はガス遮断器1の投入状態を示している。図2はガス遮断器1の閉極状態における開極直前を示している。図3はガス遮断器1の完全開極状態を示している。 1 to 3 are cross-sectional views showing the gas circuit breaker 1 of the embodiment. Note that FIG. 1 shows a state in which the gas circuit breaker 1 is turned on. FIG. 2 shows immediately before the opening of the gas circuit breaker 1 in the closed state. FIG. 3 shows a completely open state of the gas circuit breaker 1.
 図1に示すように、ガス遮断器1は、消弧性ガスが充填された図示しない密閉容器と、密閉容器内に配置された対向ユニット3および可動ユニット4と、を備えている。消弧性ガスは、消弧性能および絶縁性能に優れたガスであり、例えば六フッ化硫黄(SF)ガスである。対向ユニット3および可動ユニット4は、密閉容器に消弧性ガスとともに収納されている。密閉容器は、金属材料により形成されている。密閉容器は、接地されている。 As shown in FIG. 1, the gas circuit breaker 1 includes a closed container (not shown) filled with an arc-extinguishing gas, and an opposed unit 3 and a movable unit 4 arranged in the closed container. The arc-extinguishing gas is a gas having excellent arc-extinguishing performance and insulating performance, and is, for example, sulfur hexafluoride (SF 6 ) gas. The facing unit 3 and the movable unit 4 are housed in a closed container together with an arc-extinguishing gas. The closed container is made of a metal material. The closed container is grounded.
 対向ユニット3および可動ユニット4は、電気回路の一部を構成している。対向ユニット3は、対向接触子部30を備えている。対向接触子部30は、密閉容器の外部から内部に引き込まれた第1導体(不図示)に導通している。可動ユニット4は、可動接触子部60を備えている。可動接触子部60は、密閉容器の外部から内部に引き込まれた第2導体(不図示)に導通している。ガス遮断器1は、対向接触子部30および可動接触子部60を互いに接触または離間させることで、電気回路の開閉し、電流を導通または遮断する。以下の説明では、対向接触子部30および可動接触子部60が互いに接触した状態を閉極状態といい、対向接触子部30および可動接触子部60が互いに離間した状態を開極状態という。また、閉極状態のうち、電気回路を遮断させる必要がない場合に適用される状態を特に投入状態という。また、開極状態のうち、電流の遮断動作が完了した状態を特に完全開極状態という。また、投入状態から完全開極状態に向けて対向接触子部30および可動接触子部60を互いに離間させる過程を開極過程という。 The facing unit 3 and the movable unit 4 form a part of an electric circuit. The facing unit 3 includes a facing contact portion 30. The facing contact portion 30 is conducting to a first conductor (not shown) drawn from the outside of the closed container to the inside. The movable unit 4 includes a movable contact portion 60. The movable contact portion 60 is electrically connected to a second conductor (not shown) drawn from the outside to the inside of the closed container. The gas circuit breaker 1 opens and closes an electric circuit and conducts or cuts off an electric current by contacting or separating the facing contact portion 30 and the movable contact portion 60 from each other. In the following description, the state in which the facing contact portion 30 and the movable contact portion 60 are in contact with each other is referred to as a closed pole state, and the state in which the facing contact portion 30 and the movable contact portion 60 are separated from each other is referred to as an open pole state. Further, among the closed pole states, the state applied when it is not necessary to shut off the electric circuit is particularly referred to as a closed state. Further, among the open pole states, the state in which the current cutoff operation is completed is particularly referred to as a completely open pole state. Further, the process of separating the facing contact portion 30 and the movable contact portion 60 from each other from the closed state to the completely open state is referred to as an open pole process.
 図1に示すように、対向ユニット3および可動ユニット4は、それぞれ複数の円筒状または円柱状の部材により形成されている。円筒状または円柱状の各部材は、中心軸線を一致させて配置されている。対向ユニット3および可動ユニット4は、上記中心軸線の軸方向で対向するように配置されている。なお、以下の説明では、上記中心軸線の軸方向を単に軸方向と称する。また、上記中心軸線周りを周回する方向を周方向と称する。また、上記中心軸線に直交する方向を径方向と称する。また、図1から図3において、軸方向の第1方向を矢印Aで示し、第1方向とは反対側の第2方向を矢印Bで示している。 As shown in FIG. 1, the facing unit 3 and the movable unit 4 are each formed of a plurality of cylindrical or columnar members. The cylindrical or columnar members are arranged so that their central axes coincide with each other. The facing unit 3 and the movable unit 4 are arranged so as to face each other in the axial direction of the central axis. In the following description, the axial direction of the central axis is simply referred to as an axial direction. Further, the direction that orbits around the central axis is referred to as a circumferential direction. Further, the direction orthogonal to the central axis is referred to as a radial direction. Further, in FIGS. 1 to 3, the first direction in the axial direction is indicated by an arrow A, and the second direction opposite to the first direction is indicated by an arrow B.
 対向ユニット3は、密閉容器に対して間隔をあけた状態で、密閉容器に対して固定的に配置されている。対向ユニット3は、排気チャンバ10と、対向接触子部30と、を備えている。 The facing unit 3 is fixedly arranged with respect to the closed container in a state of being spaced from the closed container. The facing unit 3 includes an exhaust chamber 10 and a facing contact portion 30.
 排気チャンバ10は、内筒11(第1筒体)および外筒21(第2筒体)を有する。内筒11および外筒21は、それぞれ金属材料により円筒状に形成されている。内筒11および外筒21は、上述した第1導体に導通している。 The exhaust chamber 10 has an inner cylinder 11 (first cylinder) and an outer cylinder 21 (second cylinder). The inner cylinder 11 and the outer cylinder 21 are each formed in a cylindrical shape by a metal material. The inner cylinder 11 and the outer cylinder 21 are conductive to the first conductor described above.
 内筒11は、軸方向の両側に開口している。内筒11は、上流部12と、下流部13と、中間部14と、フランジ15と、を備える。 The inner cylinder 11 is open on both sides in the axial direction. The inner cylinder 11 includes an upstream portion 12, a downstream portion 13, an intermediate portion 14, and a flange 15.
 上流部12は、内筒11における軸方向の第1方向の端部から軸方向の第2方向に延びている。上流部12は、一定の内径および一定の外径で軸方向に延びている。上流部12は、完全開極状態で後述する絶縁ノズル70のノズル開口部71を囲う(図3参照)。 The upstream portion 12 extends in the second direction in the axial direction from the end portion in the first direction in the axial direction of the inner cylinder 11. The upstream portion 12 extends axially with a constant inner diameter and a constant outer diameter. The upstream portion 12 surrounds the nozzle opening 71 of the insulating nozzle 70, which will be described later, in a fully open state (see FIG. 3).
 下流部13は、上流部12よりも第2方向に配置されている。下流部13は、内筒11における第2方向の端部から第1方向に延びている。下流部13は、上流部12よりも大径に形成されている。下流部13は、一定の内径および一定の外径で軸方向に延びている。下流部13の内径は、上流部12の内径よりも大きい。 The downstream portion 13 is arranged in the second direction from the upstream portion 12. The downstream portion 13 extends in the first direction from the end portion of the inner cylinder 11 in the second direction. The downstream portion 13 is formed to have a larger diameter than the upstream portion 12. The downstream portion 13 extends axially with a constant inner diameter and a constant outer diameter. The inner diameter of the downstream portion 13 is larger than the inner diameter of the upstream portion 12.
 中間部14は、上流部12と下流部13との間に配置されている。中間部14は、上流部12の第2方向の端部と下流部13の第1方向の端部とに接続されている。中間部14の内周面は、中間部14の第1方向の端部で上流部12の内周面に接続している。中間部14の内周面は、中間部14の第1方向の端部から第2方向に向かうに従い漸次拡径している。換言すると、中間部14の内径は、中間部14の第1方向の端部から第2方向に向かうに従い漸次増大している。中間部14の内周面は、中間部14の第2方向の端部で下流部13の内周面に接続している。中間部14の外周面は、中間部14の第1方向の端部で上流部12の外周面に接続している。中間部14の外周面は、中間部14の第2方向の端部で下流部13の外周面に接続している。中間部14の内周面および外周面は、それぞれ中心軸線に沿う縦断面で直線状に延びている。 The intermediate portion 14 is arranged between the upstream portion 12 and the downstream portion 13. The intermediate portion 14 is connected to an end portion of the upstream portion 12 in the second direction and an end portion of the downstream portion 13 in the first direction. The inner peripheral surface of the intermediate portion 14 is connected to the inner peripheral surface of the upstream portion 12 at the end portion of the intermediate portion 14 in the first direction. The inner peripheral surface of the intermediate portion 14 gradually increases in diameter from the end portion of the intermediate portion 14 in the first direction toward the second direction. In other words, the inner diameter of the intermediate portion 14 gradually increases from the end portion of the intermediate portion 14 in the first direction toward the second direction. The inner peripheral surface of the intermediate portion 14 is connected to the inner peripheral surface of the downstream portion 13 at the end portion of the intermediate portion 14 in the second direction. The outer peripheral surface of the intermediate portion 14 is connected to the outer peripheral surface of the upstream portion 12 at the end portion of the intermediate portion 14 in the first direction. The outer peripheral surface of the intermediate portion 14 is connected to the outer peripheral surface of the downstream portion 13 at the end portion of the intermediate portion 14 in the second direction. The inner peripheral surface and the outer peripheral surface of the intermediate portion 14 each extend linearly in a vertical cross section along the central axis.
 フランジ15は、内筒11の第1方向の端部に設けられている。フランジ15は、上流部12の第1方向の端部から径方向の外側に突出し、周方向に全周にわたって延びている。フランジ15の外径は、下流部13の外径よりも大きい。 The flange 15 is provided at the end of the inner cylinder 11 in the first direction. The flange 15 protrudes radially outward from the end portion of the upstream portion 12 in the first direction, and extends in the circumferential direction over the entire circumference. The outer diameter of the flange 15 is larger than the outer diameter of the downstream portion 13.
 外筒21は、内筒11の第2方向の端部を囲うように形成されている。外筒21は、周壁部22と、閉塞部23と、を備える。 The outer cylinder 21 is formed so as to surround the end portion of the inner cylinder 11 in the second direction. The outer cylinder 21 includes a peripheral wall portion 22 and a closing portion 23.
 周壁部22は、内筒11を径方向の外側から囲う。周壁部22は、一定の内径および一定の外径で軸方向に延びている。周壁部22の内径は、内筒11のフランジ15の外径よりも小さい。周壁部22の第1方向の端部は、内筒11の下流部13の第1方向の端部よりも第1方向に位置する。周壁部22の第1方向の端部は、周方向の全周にわたって内筒11のフランジ15に対して間隔をあけている。本実施形態では、周壁部22の第1方向の端部は、径方向から見て内筒11の上流部12に重なっている。周壁部22の第2方向の端部は、内筒11の第2方向の端部よりも第2方向に位置する。周壁部22の内周面は、周方向の全周にわたって内筒11の下流部13の外周面に対して間隔をあけている。 The peripheral wall portion 22 surrounds the inner cylinder 11 from the outside in the radial direction. The peripheral wall portion 22 extends in the axial direction with a constant inner diameter and a constant outer diameter. The inner diameter of the peripheral wall portion 22 is smaller than the outer diameter of the flange 15 of the inner cylinder 11. The end portion of the peripheral wall portion 22 in the first direction is located in the first direction with respect to the end portion of the downstream portion 13 of the inner cylinder 11 in the first direction. The end portion of the peripheral wall portion 22 in the first direction is spaced from the flange 15 of the inner cylinder 11 over the entire circumference in the circumferential direction. In the present embodiment, the end portion of the peripheral wall portion 22 in the first direction overlaps the upstream portion 12 of the inner cylinder 11 when viewed from the radial direction. The end portion of the peripheral wall portion 22 in the second direction is located in the second direction with respect to the end portion of the inner cylinder 11 in the second direction. The inner peripheral surface of the peripheral wall portion 22 is spaced from the outer peripheral surface of the downstream portion 13 of the inner cylinder 11 over the entire circumference in the circumferential direction.
 閉塞部23は、内筒11の第2方向で周壁部22の内側を閉塞している。閉塞部23は、周壁部22の第2方向の端部から径方向の内側に張り出している。閉塞部23は、周方向の全周にわたって内筒11の第2方向の端部に対して間隔をあけている。 The closed portion 23 closes the inside of the peripheral wall portion 22 in the second direction of the inner cylinder 11. The closed portion 23 projects inward in the radial direction from the end portion of the peripheral wall portion 22 in the second direction. The closing portion 23 is spaced from the end portion in the second direction of the inner cylinder 11 over the entire circumference in the circumferential direction.
 対向接触子部30は、対向通電接触子31と、対向アーク接触子32(固定接触子)と、を備えている。 The facing contactor portion 30 includes a facing energizing contact 31 and a facing arc contact 32 (fixed contact).
 対向通電接触子31は、金属材料により、円筒状に形成されている。対向通電接触子31の両端は、軸方向に開口している。対向通電接触子31は、内筒11の第1方向の端部に結合している。対向通電接触子31は、排気チャンバ10を介して第1導体に導通している。 The opposed energizing contact 31 is formed in a cylindrical shape by a metal material. Both ends of the opposed energizing contact 31 are open in the axial direction. The opposed energizing contact 31 is coupled to the end of the inner cylinder 11 in the first direction. The opposed energizing contact 31 is conducting to the first conductor via the exhaust chamber 10.
 対向アーク接触子32は、金属材料により、円柱状に形成されている。対向アーク接触子32は、対向通電接触子31の内側に配置されている。対向アーク接触子32は、不図示の支持部材を介して内筒11に支持されている。対向アーク接触子32は、内筒11の第1方向の端部から第1方向に突出している。対向アーク接触子32は、支持部材および排気チャンバ10を介して第1導体に導通している。 The facing arc contactor 32 is formed in a columnar shape by a metal material. The facing arc contactor 32 is arranged inside the facing energizing contact 31. The facing arc contactor 32 is supported by the inner cylinder 11 via a support member (not shown). The facing arc contactor 32 projects in the first direction from the end portion of the inner cylinder 11 in the first direction. The facing arc contactor 32 is conducting to the first conductor via the support member and the exhaust chamber 10.
 可動ユニット4は、後述するピストン50を除き、対向ユニット3に対して軸方向に変位可能に配置されている。可動ユニット4は、操作ロッド40と、シリンダ45と、ピストン50と、可動接触子部60と、絶縁ノズル70と、を備えている。 The movable unit 4 is arranged so as to be displaced in the axial direction with respect to the facing unit 3 except for the piston 50 described later. The movable unit 4 includes an operation rod 40, a cylinder 45, a piston 50, a movable contact portion 60, and an insulating nozzle 70.
 操作ロッド40は、金属材料により形成されている。操作ロッド40は、円筒状に形成されている。操作ロッド40は、一定の外径で軸方向に延びている。操作ロッド40は、第1方向の端部において絶縁ロッドを介して駆動装置(いずれも不図示)に接続され、密閉容器に対して軸方向に変位可能になっている。 The operation rod 40 is made of a metal material. The operation rod 40 is formed in a cylindrical shape. The operating rod 40 extends axially with a constant outer diameter. The operation rod 40 is connected to a drive device (both not shown) via an insulating rod at the end in the first direction, and is rotatable in the axial direction with respect to the closed container.
 シリンダ45は、金属材料により、円筒状に形成されている。シリンダ45は、軸方向に延びる周壁46と、周壁46の第2方向の端部に連設された底壁47と、を備えている。周壁46は、一定の内径で延びている。周壁46の内径は、操作ロッド40の外径よりも大きい。周壁46は、操作ロッド40を径方向の外側から囲っている。底壁47は、周壁46の第2方向の端部から径方向の内側に張り出している。底壁47の中心部には、円形の貫通孔47aが形成されている。つまり、底壁47は、円環板状に形成されている。貫通孔47aには、操作ロッド40が挿通されている。シリンダ45は、操作ロッド40に対して固定的に配置され、操作ロッド40に連動して軸方向に変位する。 The cylinder 45 is formed in a cylindrical shape by a metal material. The cylinder 45 includes a peripheral wall 46 extending in the axial direction and a bottom wall 47 connected to the end of the peripheral wall 46 in the second direction. The peripheral wall 46 extends with a constant inner diameter. The inner diameter of the peripheral wall 46 is larger than the outer diameter of the operation rod 40. The peripheral wall 46 surrounds the operation rod 40 from the outside in the radial direction. The bottom wall 47 projects radially inward from the end of the peripheral wall 46 in the second direction. A circular through hole 47a is formed in the center of the bottom wall 47. That is, the bottom wall 47 is formed in the shape of an annular plate. An operation rod 40 is inserted through the through hole 47a. The cylinder 45 is fixedly arranged with respect to the operation rod 40, and is displaced in the axial direction in conjunction with the operation rod 40.
 ピストン50は、操作ロッド40と、シリンダ45の周壁46と、の間に配置されている。ピストン50は、径方向および周方向の双方向に延びる円環板状に形成されている。ピストン50の内径は、操作ロッド40の外径と一致している。ピストン50の外径は、シリンダ45の周壁46の内径と一致している。ピストン50は、密閉容器に対して固定的に配置されている。 The piston 50 is arranged between the operation rod 40 and the peripheral wall 46 of the cylinder 45. The piston 50 is formed in the shape of an annulus plate extending in both the radial and circumferential directions. The inner diameter of the piston 50 coincides with the outer diameter of the operating rod 40. The outer diameter of the piston 50 coincides with the inner diameter of the peripheral wall 46 of the cylinder 45. The piston 50 is fixedly arranged with respect to the closed container.
 シリンダ45、ピストン50および操作ロッド40は、消弧性ガスを蓄圧するパッファ室55(蓄圧部)を画成している。パッファ室55は、操作ロッド40の変位に連動して容積可変である。パッファ室55は、シリンダ45および操作ロッド40の第1方向への変位に伴って容積が減少することで、内部の消弧性ガスを昇圧する。パッファ室55は、パッファ室55内で昇圧した消弧性ガスをシリンダ45の底壁47と操作ロッド40との隙間を通じてパッファ室55から放出する。 The cylinder 45, the piston 50, and the operation rod 40 define a puffer chamber 55 (accumulation unit) for accumulating arc-extinguishing gas. The volume of the puffer chamber 55 is variable in conjunction with the displacement of the operation rod 40. The volume of the puffer chamber 55 decreases with the displacement of the cylinder 45 and the operating rod 40 in the first direction, so that the internal arc-extinguishing gas is boosted. The puffer chamber 55 discharges the extinguished gas boosted in the puffer chamber 55 from the puffer chamber 55 through the gap between the bottom wall 47 of the cylinder 45 and the operation rod 40.
 可動接触子部60は、可動アーク接触子61(可動接触子)と、可動通電接触子62と、を備えている。 The movable contact portion 60 includes a movable arc contact 61 (movable contact) and a movable energizing contact 62.
 可動アーク接触子61は、金属材料により円筒状に形成されている。可動アーク接触子61の両端は、軸方向に開口している。可動アーク接触子61は、操作ロッド40の第2方向の端部に結合し、操作ロッド40の第2方向の端部から第2方向に延びている。可動アーク接触子61は、操作ロッド40に導通している。可動アーク接触子61の第2方向の端部61aは、径方向の内側に向かって膨出している。可動アーク接触子61の第2方向の端部61aの内径は、対向アーク接触子32の外径以下である。 The movable arc contactor 61 is formed in a cylindrical shape by a metal material. Both ends of the movable arc contactor 61 are open in the axial direction. The movable arc contact 61 is coupled to the end portion of the operation rod 40 in the second direction and extends in the second direction from the end portion of the operation rod 40 in the second direction. The movable arc contactor 61 is conducting to the operation rod 40. The end portion 61a of the movable arc contactor 61 in the second direction bulges inward in the radial direction. The inner diameter of the end portion 61a in the second direction of the movable arc contactor 61 is equal to or smaller than the outer diameter of the opposed arc contactor 32.
 可動アーク接触子61は、操作ロッド40に連動して、軸方向に変位する。対向アーク接触子32および可動アーク接触子61は、操作ロッド40の変位に伴って軸方向に互いに接離可能に設けられている。対向アーク接触子32および可動アーク接触子61は、閉極状態で互いに接触するとともに、開極状態で互いに離間する。対向アーク接触子32および可動アーク接触子61は、対向アーク接触子32が可動アーク接触子61の開口に挿入されることで、互いに接触して導通する。 The movable arc contactor 61 is displaced in the axial direction in conjunction with the operation rod 40. The facing arc contactor 32 and the movable arc contactor 61 are provided so as to be able to come into contact with each other in the axial direction as the operation rod 40 is displaced. The opposed arc contactor 32 and the movable arc contactor 61 are in contact with each other in the closed pole state and separated from each other in the open pole state. The facing arc contactor 32 and the movable arc contactor 61 come into contact with each other and become conductive when the facing arc contactor 32 is inserted into the opening of the movable arc contactor 61.
 可動通電接触子62は、金属材料により、円筒状に形成されている。可動通電接触子62は、可動アーク接触子61を囲うように配置されている。可動通電接触子62は、シリンダ45の底壁47から第2方向に延びている。可動通電接触子62は、シリンダ45に導通している。可動通電接触子62の第2方向の端部は、第2方向に開口している。 The movable energizing contact 62 is formed in a cylindrical shape by a metal material. The movable energizing contact 62 is arranged so as to surround the movable arc contact 61. The movable energizing contact 62 extends in the second direction from the bottom wall 47 of the cylinder 45. The movable energizing contactor 62 is conducting to the cylinder 45. The end of the movable energizing contact 62 in the second direction is open in the second direction.
 可動通電接触子62は、シリンダ45を介して操作ロッド40に相対固定されている。可動通電接触子62は、操作ロッド40に連動して、軸方向に変位する。対向通電接触子31および可動通電接触子62は、操作ロッド40の変位に伴って軸方向に互いに接離可能に設けられている。対向通電接触子31および可動通電接触子62は、投入状態で互いに接触するとともに、開極状態で互いに離間する。対向通電接触子31および可動通電接触子62は、開極過程において対向アーク接触子32および可動アーク接触子61よりも早く互いに離間する(図2参照)。対向通電接触子31および可動通電接触子62は、可動通電接触子62が対向通電接触子31の第1方向の開口に挿入されることで、互いに接触して導通する。 The movable energizing contact 62 is relatively fixed to the operation rod 40 via the cylinder 45. The movable energizing contact 62 is displaced in the axial direction in conjunction with the operation rod 40. The opposed energizing contact 31 and the movable energizing contact 62 are provided so as to be detachable from each other in the axial direction as the operation rod 40 is displaced. The opposed energizing contact 31 and the movable energizing contact 62 are in contact with each other in the closed state and separated from each other in the open pole state. The opposed energized contact 31 and the movable energized contact 62 are separated from each other earlier than the opposed arc contact 32 and the movable arc contact 61 in the opening process (see FIG. 2). The counter-energized contact 31 and the movable energized contact 62 are in contact with each other to conduct conduction by inserting the movable energized contact 62 into the opening in the first direction of the opposed energized contact 31.
 絶縁ノズル70は、絶縁材料により、円筒状に形成されている。絶縁ノズル70は、可動アーク接触子61と可動通電接触子62との間から、可動アーク接触子61および可動通電接触子62よりも第2方向に突出している。絶縁ノズル70は、可動通電接触子62の内周面に固定されている。絶縁ノズル70は、可動アーク接触子61に対して径方向に間隔をあけて設けられている。絶縁ノズル70は、第2方向の端部にノズル開口部71を備える。ノズル開口部71は、排気チャンバ10の内側で開口している。 The insulating nozzle 70 is formed in a cylindrical shape by the insulating material. The insulating nozzle 70 projects from between the movable arc contact 61 and the movable energizing contact 62 in the second direction from the movable arc contact 61 and the movable energizing contact 62. The insulating nozzle 70 is fixed to the inner peripheral surface of the movable energizing contact 62. The insulating nozzles 70 are provided at intervals in the radial direction with respect to the movable arc contactor 61. The insulating nozzle 70 includes a nozzle opening 71 at the end in the second direction. The nozzle opening 71 is open inside the exhaust chamber 10.
 絶縁ノズル70の内周面は、スロート部72を備えている。スロート部72は、絶縁ノズル70において内径が最小の部分である。スロート部72は、絶縁ノズル70における軸方向の中間部に設けられている。スロート部72は、可動アーク接触子61よりも第2方向に設けられている。絶縁ノズル70は、開極状態において後述するアーク放電を囲む。絶縁ノズル70の内部は、パッファ室55から放出された消弧性ガスの流路を形成している。絶縁ノズル70は、パッファ室55から放出された消弧性ガスをアーク放電に案内する。 The inner peripheral surface of the insulating nozzle 70 is provided with a throat portion 72. The throat portion 72 is a portion of the insulating nozzle 70 having the smallest inner diameter. The throat portion 72 is provided at an intermediate portion in the axial direction of the insulating nozzle 70. The throat portion 72 is provided in a second direction with respect to the movable arc contactor 61. The insulating nozzle 70 surrounds an arc discharge described later in the open pole state. The inside of the insulating nozzle 70 forms a flow path for the arc-extinguishing gas discharged from the puffer chamber 55. The insulating nozzle 70 guides the arc-extinguishing gas discharged from the puffer chamber 55 to the arc discharge.
 図3に示すように、内筒11の内側には、完全開極状態で、絶縁ノズル70のノズル開口部71が開口している。内筒11の内周面16は、ノズル開口部71から排出される消弧性ガスの流路を形成する。内筒11の内周面16は、流路を形成する部分として、上流ガイド部17と、ディフューザ部18と、下流ガイド部19と、を備える。上流ガイド部17は、上流部12の内周面の少なくとも一部である。上流ガイド部17は、軸方向におけるノズル開口部71の位置から第2方向に一定の内径で軸方向に延びている。ディフューザ部18は、中間部14の内周面である。ディフューザ部18は、ディフューザ部18の第1方向の端部で上流ガイド部17に接続している。ディフューザ部18は、上流ガイド部17から第2方向に向かうに従い漸次拡径している。下流ガイド部19は、下流部13の内周面である。下流ガイド部19は、下流ガイド部19の第1方向の端部でディフューザ部18に接続している。下流ガイド部19は、一定の内径で軸方向に延びている。下流ガイド部19の内径は、上流ガイド部17の内径よりも大きい。 As shown in FIG. 3, the nozzle opening 71 of the insulating nozzle 70 is opened inside the inner cylinder 11 in a completely open state. The inner peripheral surface 16 of the inner cylinder 11 forms a flow path for the arc-extinguishing gas discharged from the nozzle opening 71. The inner peripheral surface 16 of the inner cylinder 11 includes an upstream guide portion 17, a diffuser portion 18, and a downstream guide portion 19 as a portion forming a flow path. The upstream guide portion 17 is at least a part of the inner peripheral surface of the upstream portion 12. The upstream guide portion 17 extends axially from the position of the nozzle opening 71 in the axial direction with a constant inner diameter in the second direction. The diffuser portion 18 is an inner peripheral surface of the intermediate portion 14. The diffuser portion 18 is connected to the upstream guide portion 17 at the end portion of the diffuser portion 18 in the first direction. The diameter of the diffuser portion 18 is gradually increased from the upstream guide portion 17 toward the second direction. The downstream guide portion 19 is an inner peripheral surface of the downstream portion 13. The downstream guide portion 19 is connected to the diffuser portion 18 at the end of the downstream guide portion 19 in the first direction. The downstream guide portion 19 extends in the axial direction with a constant inner diameter. The inner diameter of the downstream guide portion 19 is larger than the inner diameter of the upstream guide portion 17.
 続いて、ガス遮断器1の遮断動作について説明する。
 図1に示すように、投入状態では、可動接触子部60は、可動範囲における第2方向の端部に位置する。投入状態では、可動通電接触子62が対向通電接触子31の内側に挿入されて接触し、対向アーク接触子32が可動アーク接触子61の内側に挿入されて接触している。これにより、対向ユニット3と可動ユニット4とが導通する。
Subsequently, the circuit breaker operation of the gas circuit breaker 1 will be described.
As shown in FIG. 1, in the loaded state, the movable contact portion 60 is located at the end portion in the movable range in the second direction. In the turned-on state, the movable energizing contact 62 is inserted inside the opposed energizing contact 31 to make contact, and the opposed arc contact 32 is inserted inside the movable arc contact 61 to make contact. As a result, the facing unit 3 and the movable unit 4 become conductive.
 ガス遮断器1は、電流を遮断する場合、操作ロッド40を第1方向に変位させ、対向接触子部30および可動接触子部60を互いに離間させる。操作ロッド40を第1方向に変位させると、可動アーク接触子61、可動通電接触子62、絶縁ノズル70およびシリンダ45が操作ロッド40に連動して第1方向に変位する。シリンダ45が第1方向に変位すると、パッファ室55の容積が減少し、パッファ室55内部の消弧性ガスが昇圧される。 When the current is cut off, the gas circuit breaker 1 displaces the operation rod 40 in the first direction and separates the opposed contact portion 30 and the movable contact portion 60 from each other. When the operating rod 40 is displaced in the first direction, the movable arc contact 61, the movable energizing contact 62, the insulating nozzle 70, and the cylinder 45 are displaced in the first direction in conjunction with the operating rod 40. When the cylinder 45 is displaced in the first direction, the volume of the puffer chamber 55 is reduced, and the arc-extinguishing gas inside the puffer chamber 55 is boosted.
 図2に示すように、投入状態から操作ロッド40を第1方向に変位させると、対向通電接触子31と可動通電接触子62とが離間する。この状態では、対向アーク接触子32と可動アーク接触子61とが互いに接触しているので、対向ユニット3と可動ユニット4とが導通している。 As shown in FIG. 2, when the operating rod 40 is displaced in the first direction from the closed state, the opposed energizing contact 31 and the movable energizing contact 62 are separated from each other. In this state, the facing arc contactor 32 and the movable arc contactor 61 are in contact with each other, so that the facing unit 3 and the movable unit 4 are conducting with each other.
 さらに操作ロッド40を第2方向に変位させると、対向アーク接触子32と可動アーク接触子61とが離間し、閉極状態から開極状態に移行する。対向アーク接触子32と可動アーク接触子61とが離間すると、対向アーク接触子32と可動アーク接触子61との間で、アーク放電が発弧する。アーク放電が発弧すると、周囲の消弧性ガスが加熱されて高温の熱ガスとなり、膨張する。膨張した消弧性ガスの一部は、パッファ室55に流入する。これにより、パッファ室55内部の消弧性ガスがさらに昇圧される。 When the operating rod 40 is further displaced in the second direction, the opposed arc contactor 32 and the movable arc contactor 61 are separated from each other, and the state shifts from the closed pole state to the open pole state. When the facing arc contactor 32 and the movable arc contactor 61 are separated from each other, an arc discharge is generated between the facing arc contactor 32 and the movable arc contactor 61. When the arc discharge is triggered, the surrounding arc-extinguishing gas is heated to become a high-temperature hot gas and expands. A part of the expanded arc-extinguishing gas flows into the puffer chamber 55. As a result, the extinguishing gas inside the puffer chamber 55 is further boosted.
 図3に示すように、遮断動作が進行すると、対向アーク接触子32と可動アーク接触子61との距離が開くとともに、電流が電流零点に向けて小さくなり、アーク放電が小さくなる。アーク放電が小さくなると、消弧性ガスのパッファ室55への流入が停止し、パッファ室55から高圧の消弧性ガスが放出される。パッファ室55から放出された消弧性ガスは、絶縁ノズル70と可動アーク接触子61との間を通って、アーク放電に吹き付けられる。これにより、アーク放電が消弧に至り、電流が遮断される。そして、可動接触子部60は、対向接触子部30から最も離間した位置で完全開極状態に至り、遮断動作が完了する。なお、完全開極状態における操作ロッド40の位置は、操作ロッド40に接続された駆動装置(不図示)により操作ロッド40が第1方向へ変位し切った位置である。 As shown in FIG. 3, as the breaking operation progresses, the distance between the opposed arc contactor 32 and the movable arc contactor 61 increases, the current decreases toward the current zero point, and the arc discharge decreases. When the arc discharge becomes small, the inflow of the arc-extinguishing gas into the puffer chamber 55 is stopped, and the high-pressure arc-extinguishing gas is discharged from the puffer chamber 55. The arc-extinguishing gas discharged from the puffer chamber 55 passes between the insulating nozzle 70 and the movable arc contactor 61 and is blown to the arc discharge. As a result, the arc discharge is extinguished and the current is cut off. Then, the movable contact portion 60 reaches the fully open state at the position farthest from the facing contact portion 30, and the shutoff operation is completed. The position of the operation rod 40 in the fully open state is a position where the operation rod 40 is completely displaced in the first direction by a drive device (not shown) connected to the operation rod 40.
 アーク放電に吹き付けられた消弧性ガスは、アーク放電によって生じた熱ガスとともに、対向ユニット3側の流路と可動ユニット4側の流路とに分かれて排出される。対向ユニット3側の流路に流入した消弧性ガスは、絶縁ノズル70のスロート部72の内側を通ってノズル開口部71から排出される。ノズル開口部71から排出された消弧性ガスは、内筒11の内周面16に形成された流路を通過し、内筒11および外筒21の間を経て密閉容器内に至る。可動ユニット4側の流路は、可動アーク接触子61の第1方向の開口から可動アーク接触子61の内部、および操作ロッド40の内部を経て密閉容器内に至る。 The arc-extinguishing gas sprayed on the arc discharge is discharged separately from the flow path on the facing unit 3 side and the flow path on the movable unit 4 side together with the heat gas generated by the arc discharge. The arc-extinguishing gas that has flowed into the flow path on the facing unit 3 side passes through the inside of the throat portion 72 of the insulating nozzle 70 and is discharged from the nozzle opening 71. The arc-extinguishing gas discharged from the nozzle opening 71 passes through the flow path formed on the inner peripheral surface 16 of the inner cylinder 11, passes between the inner cylinder 11 and the outer cylinder 21, and reaches the inside of the closed container. The flow path on the movable unit 4 side reaches the inside of the closed container from the opening of the movable arc contact 61 in the first direction through the inside of the movable arc contact 61 and the inside of the operation rod 40.
 以上に説明したように、本実施形態では、排気チャンバ10の内筒11の内周面16がディフューザ部18を有する構成を採用した。ディフューザ部18は、完全開極状態においてノズル開口部71よりも第2方向の位置に設けられ、第2方向に向かうに従い拡径している。
 この構成によれば、絶縁ノズル70の内部でアーク放電によって生じた熱ガスは、パッファ室55から放出された消弧性ガスに押し出されるように、絶縁ノズル70のノズル開口部71から第2方向に排出される。ノズル開口部71から排出された熱ガスは、内筒11の内部を第2方向に流動しつつ、内筒11の内部に存在する低温の消弧性ガスと攪拌される。ここで、熱ガスは、内筒11の内部を第2方向に流動する過程で、ディフューザ部18の内側を通過する。熱ガスは、ディフューザ部18の内側を通過することで昇圧する。このため、熱ガスと内筒11の内部に存在する低温の消弧性ガスとの攪拌は、熱ガスと低温の消弧性ガスとの圧力差により促進される。これにより、内筒11は、熱ガスを冷却してから排出することができる。よって、密閉容器を小型化しつつ、排気チャンバ10と密閉容器との間の絶縁破壊を抑制できる。
 ところで、低温の消弧性ガスは、熱ガスよりも比重が大きい。このため、仮に熱ガスが内筒11の内部で低温の消弧性ガスと攪拌されない場合、熱ガスの流動が低温の消弧性ガスによって阻害されて、熱ガスが対向アーク接触子32と可動アーク接触子61との間から抜けにくくなる。本実施形態によれば、熱ガスが内筒11の内部で低温の消弧性ガスと攪拌されることにより、熱ガスが攪拌されない場合と比較して、対向アーク接触子32と可動アーク接触子61との間から熱ガスの排出を促進できる。その結果、対向アーク接触子32と可動アーク接触子61との間の圧力を、パッファ室55の圧力よりも十分に小さくすることができる。よって、消弧性ガスの吹き付けが弱まることを抑制して対向アーク接触子32と可動アーク接触子61との間の絶縁耐力を向上させることができる。
 以上により、優れた電流遮断性能を有する小型化されたガス遮断器1を提供できる。
As described above, in the present embodiment, the configuration in which the inner peripheral surface 16 of the inner cylinder 11 of the exhaust chamber 10 has the diffuser portion 18 is adopted. The diffuser portion 18 is provided at a position in the second direction from the nozzle opening 71 in a fully open state, and its diameter increases toward the second direction.
According to this configuration, the heat gas generated by the arc discharge inside the insulating nozzle 70 is pushed out to the arc-extinguishing gas discharged from the puffer chamber 55 in the second direction from the nozzle opening 71 of the insulating nozzle 70. Is discharged to. The hot gas discharged from the nozzle opening 71 flows in the second direction inside the inner cylinder 11 and is agitated with the low-temperature arc-extinguishing gas existing inside the inner cylinder 11. Here, the heat gas passes through the inside of the diffuser portion 18 in the process of flowing inside the inner cylinder 11 in the second direction. The heat gas is boosted by passing through the inside of the diffuser portion 18. Therefore, stirring between the hot gas and the low-temperature arc-extinguishing gas existing inside the inner cylinder 11 is promoted by the pressure difference between the hot gas and the low-temperature arc-extinguishing gas. As a result, the inner cylinder 11 can cool the heat gas and then discharge it. Therefore, it is possible to suppress dielectric breakdown between the exhaust chamber 10 and the closed container while reducing the size of the closed container.
By the way, the low-temperature arc-extinguishing gas has a higher specific density than the hot gas. Therefore, if the hot gas is not agitated with the low-temperature arc-extinguishing gas inside the inner cylinder 11, the flow of the hot gas is hindered by the low-temperature arc-extinguishing gas, and the hot gas moves with the facing arc contactor 32. It becomes difficult to come off from between the arc contactor 61. According to the present embodiment, the hot gas is agitated with the low-temperature arc-extinguishing gas inside the inner cylinder 11, so that the opposed arc contactor 32 and the movable arc contactor are compared with the case where the hot gas is not agitated. It is possible to promote the discharge of hot gas from between 61. As a result, the pressure between the opposed arc contactor 32 and the movable arc contactor 61 can be made sufficiently smaller than the pressure in the puffer chamber 55. Therefore, it is possible to suppress the weakening of the spraying of the arc-extinguishing gas and improve the dielectric strength between the opposed arc contactor 32 and the movable arc contactor 61.
As described above, it is possible to provide a miniaturized gas circuit breaker 1 having excellent current breaking performance.
 さらに、本実施形態では、排気チャンバ10が外筒21を有する。外筒21は、内筒11を囲う周壁部22と、内筒11の第2方向で周壁部22の内側を閉塞する閉塞部23と、を有する。この構成によれば、内筒11の第2方向の端部から排出された熱ガスは、内筒11と外筒21との間を通って排気チャンバ10の外部に排出される。このため、排気チャンバが内筒のみを有する構成と比較して、排気チャンバにおける熱ガスの流路長を長くすることができる。よって、排気チャンバ10は、熱ガスをより十分に冷却してから排出することができる。 Further, in the present embodiment, the exhaust chamber 10 has an outer cylinder 21. The outer cylinder 21 has a peripheral wall portion 22 that surrounds the inner cylinder 11 and a closing portion 23 that closes the inside of the peripheral wall portion 22 in the second direction of the inner cylinder 11. According to this configuration, the heat gas discharged from the end portion of the inner cylinder 11 in the second direction passes between the inner cylinder 11 and the outer cylinder 21 and is discharged to the outside of the exhaust chamber 10. Therefore, the flow path length of the hot gas in the exhaust chamber can be lengthened as compared with the configuration in which the exhaust chamber has only the inner cylinder. Therefore, the exhaust chamber 10 can cool the heat gas more sufficiently before discharging it.
 内筒11の内周面16は、上流ガイド部17を有する。上流ガイド部17は、完全開極状態においてノズル開口部71から第2方向に一定の内径で延びてディフューザ部18に接続する。ここで、上流ガイド部17の内径をr1とし、上流ガイド部17の軸方向の長さをx1とした場合、絶縁ノズル70の内周面とディフューザ部18との間の段差が小さくなる。これにより、熱ガスが上流ガイド部17の内側を通過する際の流速の低下を緩和し、熱ガスの慣性により熱ガスの後方に負圧を発生させることができる。よって、対向アーク接触子32と可動アーク接触子61との間から熱ガスの排出を促進できる。なお、上流ガイド部17の軸方向の長さは、軸方向においてノズル開口部71から上流部12の第2方向の端部までの距離である。 The inner peripheral surface 16 of the inner cylinder 11 has an upstream guide portion 17. The upstream guide portion 17 extends from the nozzle opening 71 in the second direction with a constant inner diameter in a fully open state, and is connected to the diffuser portion 18. Here, when the inner diameter of the upstream guide portion 17 is r1 and the axial length of the upstream guide portion 17 is x1, the step between the inner peripheral surface of the insulating nozzle 70 and the diffuser portion 18 becomes small. As a result, it is possible to alleviate the decrease in the flow velocity when the hot gas passes through the inside of the upstream guide portion 17, and to generate a negative pressure behind the hot gas due to the inertia of the hot gas. Therefore, it is possible to promote the discharge of heat gas from between the opposed arc contactor 32 and the movable arc contactor 61. The length of the upstream guide portion 17 in the axial direction is the distance from the nozzle opening 71 to the end portion of the upstream portion 12 in the second direction in the axial direction.
 図4は、実施形態に係るガス遮断器の特性を示すグラフである。
 図4は、実施形態に係るガス遮断器1において、交流電流の周波数を50Hzとし、上記x1を一定とし、r1を変化させた実施例のシミュレーション結果を示している。図4において、横軸は、遮断動作における経過時間を示す。縦軸は、定常時における密閉容器内の圧力に対し、上流ガイド部17の内側において上昇した圧力の割合(昇圧比)を示す。図4に示すシミュレーション結果において、経過時間が-20msecのタイミングでガス遮断器が開極し、0msecのタイミングで交流電流がゼロ点となっている。すなわち、図4に示すシミュレーション結果は、近距離線路故障を想定し、最長アーク時間20msecを対象とした評価結果である。
FIG. 4 is a graph showing the characteristics of the gas circuit breaker according to the embodiment.
FIG. 4 shows a simulation result of an embodiment in which the frequency of the alternating current is 50 Hz, the frequency of the alternating current is set to 50 Hz, the above x1 is constant, and r1 is changed in the gas circuit breaker 1 according to the embodiment. In FIG. 4, the horizontal axis indicates the elapsed time in the shutoff operation. The vertical axis shows the ratio (boosting ratio) of the pressure increased inside the upstream guide portion 17 to the pressure inside the closed container in the steady state. In the simulation result shown in FIG. 4, the gas circuit breaker opens at the timing of the elapsed time of −20 msec, and the alternating current reaches the zero point at the timing of 0 msec. That is, the simulation result shown in FIG. 4 is an evaluation result for a maximum arc time of 20 msec, assuming a short-distance line failure.
 図4に示すように、r1/x1が0.9以下の場合には、交流電流がゼロ点となるタイミングにかけて、上流ガイド部17の内側の圧力が増大した状態が続いている。これに対し、r1/x1が0.9よりも大きい場合には、交流電流がゼロ点となるタイミングにかけて、上流ガイド部17の内側の圧力の増大が抑制されている。これにより、交流電流がゼロ点となるタイミングに向けて、パッファ室55は対向アーク接触子32と可動アーク接触子61との間に消弧性ガスを吹き付け続けるので、アーク放電の再発孤が抑制される。したがって、r1/x1を0.9よりも大きく設定することで、絶縁耐力を向上させてガス遮断器1の電流遮断性能を向上させることができる。 As shown in FIG. 4, when r1 / x1 is 0.9 or less, the pressure inside the upstream guide portion 17 continues to increase toward the timing when the alternating current reaches the zero point. On the other hand, when r1 / x1 is larger than 0.9, the increase in pressure inside the upstream guide portion 17 is suppressed until the AC current reaches the zero point. As a result, the puffer chamber 55 continues to blow the arc-extinguishing gas between the opposed arc contactor 32 and the movable arc contactor 61 toward the timing when the alternating current reaches the zero point, so that the recurrence of the arc discharge is suppressed. Will be done. Therefore, by setting r1 / x1 to be larger than 0.9, the dielectric strength can be improved and the current cutoff performance of the gas circuit breaker 1 can be improved.
 さらに、内筒11の第2方向の端部の内径をr2とした場合、r2/r1が大きくなるに従い、内筒11の内部で熱ガスをより遅滞なく流動させることができる。これにより、熱ガスが上流ガイド部17の内側を通過する際の流速の低下を緩和し、熱ガスの慣性により熱ガスの後方に負圧を発生させることができる。よって、対向アーク接触子32と可動アーク接触子61との間から熱ガスの排出を促進できる。なお、本実施形態において内筒11の第2方向の端部の内径は、下流ガイド部19の内径である。 Further, when the inner diameter of the end portion of the inner cylinder 11 in the second direction is r2, the heat gas can flow inside the inner cylinder 11 without delay as r2 / r1 becomes larger. As a result, it is possible to alleviate the decrease in the flow velocity when the hot gas passes through the inside of the upstream guide portion 17, and to generate a negative pressure behind the hot gas due to the inertia of the hot gas. Therefore, it is possible to promote the discharge of heat gas from between the opposed arc contactor 32 and the movable arc contactor 61. In this embodiment, the inner diameter of the end portion of the inner cylinder 11 in the second direction is the inner diameter of the downstream guide portion 19.
 図5は、実施形態に係るガス遮断器の特性を示すグラフである。
 図5は、実施形態に係るガス遮断器1において、交流電流の周波数を50Hzとし、上記r2を一定とし、r1を変化させた実施例のシミュレーション結果を示している。図5において、横軸は、遮断動作における経過時間を示す。縦軸は、定常時における密閉容器内の圧力に対し、上流ガイド部17の内側において上昇した圧力の割合(昇圧比)を示す。図5に示すシミュレーション結果において、経過時間が-20msecのタイミングでガス遮断器が開極し、0msecのタイミングで交流電流がゼロ点となっている。すなわち、図5に示すシミュレーション結果は、図4に示すシミュレーション結果と同様に、近距離線路故障を想定し、最長アーク時間20msecを対象とした評価結果である。
FIG. 5 is a graph showing the characteristics of the gas circuit breaker according to the embodiment.
FIG. 5 shows the simulation results of an embodiment in which the frequency of the alternating current is 50 Hz, the frequency of the alternating current is set to 50 Hz, the r2 is constant, and r1 is changed in the gas circuit breaker 1 according to the embodiment. In FIG. 5, the horizontal axis indicates the elapsed time in the shutoff operation. The vertical axis shows the ratio (boosting ratio) of the pressure increased inside the upstream guide portion 17 to the pressure inside the closed container in the steady state. In the simulation result shown in FIG. 5, the gas circuit breaker opens at the timing of the elapsed time of −20 msec, and the alternating current reaches the zero point at the timing of 0 msec. That is, the simulation result shown in FIG. 5 is an evaluation result for a maximum arc time of 20 msec, assuming a short-distance line failure, similar to the simulation result shown in FIG.
 図5に示すように、r2/r1が1.5の場合には、交流電流がゼロ点となるタイミングにかけて、上流ガイド部17の内側の圧力が増大した状態が続いている。これに対し、r2/r1が1.5よりも大きい場合には、交流電流がゼロ点となるタイミングにかけて、上流ガイド部17の内側の圧力の増大が抑制されている。これにより、交流電流がゼロ点となるタイミングに向けて、パッファ室55は対向アーク接触子32と可動アーク接触子61との間に消弧性ガスを吹き付け続けるので、アーク放電の再発孤が抑制される。したがって、r2/r1を1.5よりも大きく設定することで、絶縁耐力を向上させてガス遮断器1の電流遮断性能を向上させることができる。 As shown in FIG. 5, when r2 / r1 is 1.5, the pressure inside the upstream guide portion 17 continues to increase toward the timing when the alternating current reaches the zero point. On the other hand, when r2 / r1 is larger than 1.5, the increase in pressure inside the upstream guide portion 17 is suppressed toward the timing when the alternating current reaches the zero point. As a result, the puffer chamber 55 continues to blow the arc-extinguishing gas between the opposed arc contactor 32 and the movable arc contactor 61 toward the timing when the alternating current reaches the zero point, so that the recurrence of the arc discharge is suppressed. Will be done. Therefore, by setting r2 / r1 to be larger than 1.5, the dielectric strength can be improved and the current breaking performance of the gas circuit breaker 1 can be improved.
 なお、上流ガイド部17の内径r1と、上流ガイド部17の軸方向の長さx1との関係は、特に限定されない。r1/x1が0.9以下であっても、対向アーク接触子32と可動アーク接触子61との間から熱ガスの排出を促進できる。よって、消弧性ガスの吹き付けが弱まることを抑制して対向アーク接触子32と可動アーク接触子61との間の絶縁耐力を向上させることができる。ただし上述したように、r1/x1を0.9よりも大きく設定することで、より大きな効果が得られる。 The relationship between the inner diameter r1 of the upstream guide portion 17 and the axial length x1 of the upstream guide portion 17 is not particularly limited. Even if r1 / x1 is 0.9 or less, heat gas can be discharged from between the opposed arc contactor 32 and the movable arc contactor 61. Therefore, it is possible to suppress the weakening of the spraying of the arc-extinguishing gas and improve the dielectric strength between the opposed arc contactor 32 and the movable arc contactor 61. However, as described above, by setting r1 / x1 to be larger than 0.9, a larger effect can be obtained.
 また、上流ガイド部17の内径r1と、内筒11の第2方向の端部の内径r2との関係は、特に限定されない。r2/r1が1.5以下であっても、対向アーク接触子32と可動アーク接触子61との間から熱ガスの排出を促進できる。よって、消弧性ガスの吹き付けが弱まることを抑制して対向アーク接触子32と可動アーク接触子61との間の絶縁耐力を向上させることができる。ただし上述したように、r2/r1を1.5よりも大きく設定することで、より大きな効果が得られる。 Further, the relationship between the inner diameter r1 of the upstream guide portion 17 and the inner diameter r2 of the end portion of the inner cylinder 11 in the second direction is not particularly limited. Even if r2 / r1 is 1.5 or less, heat gas can be discharged from between the opposed arc contactor 32 and the movable arc contactor 61. Therefore, it is possible to suppress the weakening of the spraying of the arc-extinguishing gas and improve the dielectric strength between the opposed arc contactor 32 and the movable arc contactor 61. However, as described above, by setting r2 / r1 to be larger than 1.5, a larger effect can be obtained.
 また、上記実施形態では、排気チャンバ10が内筒11および外筒21を有している。しかし、排気チャンバは、外筒21を有していなくてもよい。この構成であっても、上述した作用により排気チャンバから熱ガスを冷却して排出することができる。よって、密閉容器を小型化しつつ、排気チャンバと密閉容器との間の絶縁破壊を抑制できる。 Further, in the above embodiment, the exhaust chamber 10 has an inner cylinder 11 and an outer cylinder 21. However, the exhaust chamber does not have to have the outer cylinder 21. Even with this configuration, the hot gas can be cooled and discharged from the exhaust chamber by the above-mentioned action. Therefore, it is possible to suppress the dielectric breakdown between the exhaust chamber and the closed container while reducing the size of the closed container.
 また、消弧性ガスは、六フッ化硫黄ガスに限定されない。上記実施形態によれば、排気チャンバ10と密閉容器との間の絶縁破壊を抑制できるので、消弧性ガスとして、例えば空気や、二酸化炭素、酸素、窒素およびその混合ガス等を適用してもよい。 Also, the arc-extinguishing gas is not limited to sulfur hexafluoride gas. According to the above embodiment, the dielectric breakdown between the exhaust chamber 10 and the closed container can be suppressed, so that even if air, carbon dioxide, oxygen, nitrogen and a mixed gas thereof are applied as the arc extinguishing gas, for example. good.
 以上説明した少なくともひとつの実施形態によれば、内筒の内周面のディフューザ部は、完全開極状態においてノズル開口部よりも第2方向の位置に設けられ、第2方向に向かうに従い拡径している。これにより、内筒は、熱ガスを冷却してから排出することができる。よって、密閉容器を小型化しつつ、排気チャンバと密閉容器との間の絶縁破壊を抑制できる。さらに、対向アーク接触子と可動アーク接触子との間から熱ガスの排出を促進できる。よって、消弧性ガスの吹き付けが弱まることを抑制して対向アーク接触子と可動アーク接触子との間の絶縁耐力を向上させることができる。以上により、優れた電流遮断性能を有する小型化されたガス遮断器1を提供できる。 According to at least one embodiment described above, the diffuser portion on the inner peripheral surface of the inner cylinder is provided at a position in the second direction from the nozzle opening in the fully open state, and the diameter increases toward the second direction. are doing. As a result, the inner cylinder can be discharged after cooling the heat gas. Therefore, it is possible to suppress the dielectric breakdown between the exhaust chamber and the closed container while reducing the size of the closed container. Further, it is possible to promote the discharge of hot gas from between the opposed arc contactor and the movable arc contactor. Therefore, it is possible to suppress the weakening of the spraying of the arc-extinguishing gas and improve the dielectric strength between the opposed arc contactor and the movable arc contactor. As described above, it is possible to provide a miniaturized gas circuit breaker 1 having excellent current breaking performance.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope of the invention described in the claims and the equivalent scope thereof, as are included in the scope and gist of the invention.

Claims (4)

  1.  消弧性ガスが充填された密閉容器内で前記密閉容器に対して固定的に配置された固定接触子と、
     前記密閉容器内に配置され、閉極状態で前記固定接触子に接触するとともに、前記閉極状態から第1方向に変位して前記固定接触子から離間する可動接触子と、
     筒状に形成されて前記第1方向とは反対側の第2方向の端部にノズル開口部を有し、前記可動接触子に連動して変位するとともに、前記固定接触子と前記可動接触子との間で発弧するアーク放電を囲む絶縁ノズルと、
     前記消弧性ガスを蓄圧するとともに、前記消弧性ガスを前記絶縁ノズルの内部に放出して前記アーク放電に対して吹き付ける蓄圧部と、
     前記可動接触子が前記固定接触子から最も離間した完全開極状態で前記ノズル開口部を囲い、前記完全開極状態において内周面が前記ノズル開口部よりも前記第2方向の位置に前記第2方向に向かうに従い拡径するディフューザ部を有する、第1筒体と、
     を備えるガス遮断器。
    A fixed contact that is fixedly arranged with respect to the closed container in a closed container filled with an arc-extinguishing gas.
    A movable contact that is arranged in the closed container and is in contact with the fixed contact in the closed pole state and is displaced in the first direction from the closed pole state to be separated from the fixed contact.
    It is formed in a cylindrical shape and has a nozzle opening at the end in the second direction opposite to the first direction, and is displaced in conjunction with the movable contact, and the fixed contact and the movable contact are provided. An insulating nozzle that surrounds the arc discharge that ignites between and
    A pressure accumulating portion that accumulates the arc-extinguishing gas and discharges the arc-extinguishing gas into the inside of the insulating nozzle to blow against the arc discharge.
    The movable contactor surrounds the nozzle opening in a fully open state farthest from the fixed contact, and in the fully open state, the inner peripheral surface is located at a position in the second direction with respect to the nozzle opening. A first cylinder having a diffuser portion whose diameter increases in two directions, and
    A gas circuit breaker equipped with.
  2.  前記第1筒体を囲う周壁部、および前記第1筒体の前記第2方向で前記周壁部の内側を閉塞する閉塞部を有する第2筒体をさらに備える、
     請求項1に記載のガス遮断器。
    A second cylinder having a peripheral wall portion surrounding the first cylinder and a closing portion for closing the inside of the peripheral wall portion in the second direction of the first cylinder is further provided.
    The gas circuit breaker according to claim 1.
  3.  前記内周面は、前記完全開極状態において前記ノズル開口部から前記第2方向に一定の内径で延びて前記ディフューザ部に接続するガイド部を有し、
     前記ガイド部の内径をr1とし、
     前記ガイド部の前記第2方向の長さをx1とした場合、
     r1/x1は0.9よりも大きい、
     請求項1または請求項2に記載のガス遮断器。
    The inner peripheral surface has a guide portion extending from the nozzle opening in the second direction with a constant inner diameter in the fully open state and connecting to the diffuser portion.
    The inner diameter of the guide portion is r1, and the guide portion is set to r1.
    When the length of the guide portion in the second direction is x1
    r1 / x1 is greater than 0.9,
    The gas circuit breaker according to claim 1 or 2.
  4.  前記第1筒体の前記第2方向の端部は、円筒状に形成され、
     前記内周面は、前記完全開極状態において前記ノズル開口部から前記第2方向に一定の内径で延びて前記ディフューザ部に接続するガイド部を有し、
     前記ガイド部の内径をr1とし、
     前記第1筒体の前記第2方向の前記端部の内径をr2とした場合、
     r2/r1は1.5よりも大きい、
     請求項1から請求項3のいずれか1項に記載のガス遮断器。
    The end of the first cylinder in the second direction is formed in a cylindrical shape.
    The inner peripheral surface has a guide portion extending from the nozzle opening in the second direction with a constant inner diameter in the fully open state and connecting to the diffuser portion.
    The inner diameter of the guide portion is r1, and the guide portion is set to r1.
    When the inner diameter of the end of the first cylinder in the second direction is r2,
    r2 / r1 is greater than 1.5,
    The gas circuit breaker according to any one of claims 1 to 3.
PCT/JP2020/037505 2020-10-02 2020-10-02 Gas circuit breaker WO2022070397A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/037505 WO2022070397A1 (en) 2020-10-02 2020-10-02 Gas circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/037505 WO2022070397A1 (en) 2020-10-02 2020-10-02 Gas circuit breaker

Publications (1)

Publication Number Publication Date
WO2022070397A1 true WO2022070397A1 (en) 2022-04-07

Family

ID=80950424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037505 WO2022070397A1 (en) 2020-10-02 2020-10-02 Gas circuit breaker

Country Status (1)

Country Link
WO (1) WO2022070397A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017016797A (en) * 2015-06-29 2017-01-19 株式会社東芝 Gas Circuit Breaker
JP2019091590A (en) * 2017-11-14 2019-06-13 株式会社東芝 Gas-blast circuit breaker
JP2019164946A (en) * 2018-03-20 2019-09-26 株式会社東芝 Gas-blast circuit breaker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017016797A (en) * 2015-06-29 2017-01-19 株式会社東芝 Gas Circuit Breaker
JP2019091590A (en) * 2017-11-14 2019-06-13 株式会社東芝 Gas-blast circuit breaker
JP2019164946A (en) * 2018-03-20 2019-09-26 株式会社東芝 Gas-blast circuit breaker

Similar Documents

Publication Publication Date Title
EP3465717B1 (en) Gas-insulated low- or medium-voltage load break switch
US4080521A (en) Quenching contact arrangement for a compressed-gas circuit breaker
JP2014229363A (en) Gas circuit breaker
WO2022070397A1 (en) Gas circuit breaker
JP6139299B2 (en) Gas circuit breaker
US20180226214A1 (en) Gas Breaker
JP2013191466A (en) Gas circuit breaker
US10699862B2 (en) Gas-insulated high-voltage switching device with improved main nozzle
JP6746787B2 (en) Gas circuit breaker
WO2023105704A1 (en) Gas circuit breaker
WO2018225255A1 (en) Gas circuit breaker
JPWO2020084754A1 (en) Gas circuit breaker
JP2015011942A (en) Gas circuit breaker for electric power
US11217408B2 (en) Gas circuit breaker
WO2019122352A1 (en) Gas-insulated high or medium voltage circuit breaker
WO2023135639A1 (en) Gas circuit breaker
WO2020003854A1 (en) Gas circuit breaker
JP6773918B2 (en) Gas circuit breaker
JP6946475B2 (en) Gas circuit breaker
JP2015023006A (en) Gas circuit breaker
US11227735B2 (en) Gas circuit breaker
WO2018225256A1 (en) Gas circuit breaker
WO2019092861A1 (en) Gas circuit breaker
JP2015162330A (en) gas circuit breaker
JP2016062650A (en) Gas circuit breaker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP