JP2017096229A - Catalyst temperature control device - Google Patents

Catalyst temperature control device Download PDF

Info

Publication number
JP2017096229A
JP2017096229A JP2015231751A JP2015231751A JP2017096229A JP 2017096229 A JP2017096229 A JP 2017096229A JP 2015231751 A JP2015231751 A JP 2015231751A JP 2015231751 A JP2015231751 A JP 2015231751A JP 2017096229 A JP2017096229 A JP 2017096229A
Authority
JP
Japan
Prior art keywords
temperature
heat
catalyst
heat receiving
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015231751A
Other languages
Japanese (ja)
Inventor
飯島 章
Akira Iijima
章 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2015231751A priority Critical patent/JP2017096229A/en
Publication of JP2017096229A publication Critical patent/JP2017096229A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively maintain a catalyst temperature in an activation temperature range even when an exhaust gas temperature exceeds an activation upper limit temperature of a catalyst.SOLUTION: A catalyst temperature control device includes: an aftertreatment device 16 having a catalyst 18 provided in an exhaust pipe 12 of an engine 10 to purify exhaust gas; and a heat pipe 20 having a heat reception section 23 and a heat radiation section 24 provided on one end side and the other end side of a cylindrical pipe 21 in which working fluid is included, respectively. The heat reception section 23 is disposed upstream of the aftertreatment device 16 in the exhaust pipe 12, and the heat radiation section 24 is disposed outside the exhaust pipe 12. When a temperature of exhaust gas for heating the heat reception section 23 is raised to a catalyst activation upper limit temperature, the working fluid is moved from the heat reception section 23 to the heat radiation section 24 for heat exchange with outside air, so as to cool the exhaust gas flowing into the catalyst 18.SELECTED DRAWING: Figure 2

Description

本発明は、触媒温度制御装置に関し、特に、高排気温時に触媒温度を活性温度域に維持させる技術に関する。   The present invention relates to a catalyst temperature control device, and more particularly to a technique for maintaining a catalyst temperature in an active temperature range at a high exhaust temperature.

従来より、排気ガス中に含まれる窒素化合物(以下、NOx)を還元浄化する触媒として、選択還元型NOx触媒(SCR触媒)や、吸蔵還元型NOx触媒(LNT触媒)等が知られている。   Conventionally, a selective reduction type NOx catalyst (SCR catalyst), an occlusion reduction type NOx catalyst (LNT catalyst), and the like are known as catalysts for reducing and purifying nitrogen compounds (hereinafter referred to as NOx) contained in exhaust gas.

これらのNOx触媒に良好な浄化性能を発揮させるには、触媒温度を触媒活性温度域(例えば、約200〜約600℃の範囲)に維持することが好ましい。このため、例えば、冷間始動時等の低排気温時に、吸入空気量を減少させたり、排気バルブの開弁時期を進角させたり、或は、ポスト噴射による酸化触媒の酸化反応熱を利用して排気温度を上昇させることで、触媒温度を早期に活性温度まで上昇させる所謂昇温制御が種々提案されている。   In order for these NOx catalysts to exhibit good purification performance, it is preferable to maintain the catalyst temperature in a catalyst activation temperature range (for example, a range of about 200 to about 600 ° C.). For this reason, for example, when the exhaust gas temperature is low, such as during cold start, the intake air amount is reduced, the opening timing of the exhaust valve is advanced, or the oxidation reaction heat of the oxidation catalyst by post injection is used. Various so-called temperature raising controls for raising the catalyst temperature to the activation temperature at an early stage by raising the exhaust gas temperature have been proposed.

特開2006−152841号公報JP 2006-152841 A 特開2001−263050号公報JP 2001-263050 A

ところで、上述したように、冷間始動時等の低排気温時は昇温制御を実施することで触媒の早期活性化を図ることが可能である。しかしながら、高負荷運転時やフィルタ強制再生時等、高温排気ガスによってNOx触媒が活性上限温度よりも高く昇温された場合には、触媒温度を活性温度域まで低下させる有効な手段がなく、触媒の浄化性能を低下させてしまう課題がある。   By the way, as described above, it is possible to activate the catalyst at an early stage by performing the temperature rise control at a low exhaust temperature such as at the time of cold start. However, there is no effective means for lowering the catalyst temperature to the active temperature range when the NOx catalyst is heated to a temperature higher than the activation upper limit temperature by high-temperature exhaust gas during high load operation or forced filter regeneration. There is a problem of deteriorating the purification performance.

開示の技術は、排気ガス温度が触媒の活性上限温度を超えた場合においても、触媒温度を活性温度域に効果的に維持させることを目的とする。   The disclosed technique aims to effectively maintain the catalyst temperature in the activation temperature range even when the exhaust gas temperature exceeds the activation upper limit temperature of the catalyst.

開示の技術は、エンジンの排気管に設けられて排気ガスを浄化する触媒を含む後処理装置と、作動流体が封入された円筒管の一端側に受熱部、他端側に放熱部が設けられ、前記受熱部が前記排気管内の前記後処理装置よりも上流側に配置される共に、前記放熱部が前記排気管の外側に配置されたヒートパイプと、を備え、前記受熱部を加熱する排気ガスの温度が前記触媒の活性上限温度まで上昇すると、前記作動流体が前記受熱部から前記放熱部に移動して外気と熱交換されることで、前記触媒に流れ込む排気ガスを冷却することを特徴とする。   The disclosed technology includes a post-processing device including a catalyst for purifying exhaust gas provided in an exhaust pipe of an engine, a heat receiving portion on one end side of a cylindrical tube in which a working fluid is sealed, and a heat radiating portion on the other end side. And a heat pipe in which the heat receiving portion is disposed upstream of the post-processing device in the exhaust pipe and the heat radiating portion is disposed outside the exhaust pipe, and exhausts that heat the heat receiving portion When the temperature of the gas rises to the upper limit temperature of activation of the catalyst, the working fluid moves from the heat receiving portion to the heat radiating portion to exchange heat with outside air, thereby cooling the exhaust gas flowing into the catalyst. And

前記円筒管の内圧を前記受熱部の温度が前記活性上限温度まで上昇すると前記作動流体を気化させる内圧値に設定してもよい。   The internal pressure of the cylindrical tube may be set to an internal pressure value that vaporizes the working fluid when the temperature of the heat receiving portion rises to the activation upper limit temperature.

前記円筒管内の前記受熱部と前記放熱部との間に設けられて当該円筒管内の流路を遮閉又は開放可能な閉塞体をさらに備え、前記受熱部を加熱する排気ガスの温度が前記活性上限温度まで上昇すると、前記閉塞体が前記流路を遮閉から開放に切り替えることで、前記作動流体の前記受熱部から前記放熱部への移動を開始させるものでもよい。   A closed body provided between the heat receiving portion and the heat radiating portion in the cylindrical tube and capable of blocking or opening a flow path in the cylindrical tube is further provided, and the temperature of the exhaust gas that heats the heat receiving portion is the activity. When the temperature rises to the upper limit temperature, the closing body may start the movement of the working fluid from the heat receiving portion to the heat radiating portion by switching the flow path from closed to open.

前記閉塞体が、伸縮自在な弾性部材で形成されると共に、圧力媒体として粘性液体が供給されると膨張して前記流路を遮閉するものでもよい。   The closing body may be formed of an elastic member that can be expanded and contracted, and may be expanded when a viscous liquid is supplied as a pressure medium to close the flow path.

前記受熱部又は前記放熱部の少なくとも一方の外周にフィンが設けられてもよい。   A fin may be provided on an outer periphery of at least one of the heat receiving unit or the heat radiating unit.

前記受熱部を加熱する排気ガスの温度が前記活性上限温度まで上昇すると、前記放熱部に冷却風を送風する冷却ファンをさらに備えてもよい。   When the temperature of the exhaust gas that heats the heat receiving part rises to the activation upper limit temperature, a cooling fan that blows cooling air to the heat radiating part may be further provided.

開示の技術によれば、排気ガス温度が触媒の活性上限温度を超えた場合においても、触媒温度を活性温度域に効果的に維持させることができる。   According to the disclosed technology, the catalyst temperature can be effectively maintained in the activation temperature range even when the exhaust gas temperature exceeds the activation upper limit temperature of the catalyst.

本発明の第一実施形態に係る触媒温度制御装置が適用されたエンジンの吸排気系を示す模式的な全体構成図である。1 is a schematic overall configuration diagram showing an intake / exhaust system of an engine to which a catalyst temperature control device according to a first embodiment of the present invention is applied. 本発明の第一実施形態に係るヒートパイプを示す模式的な断面図である。It is typical sectional drawing which shows the heat pipe which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係るヒートパイプにおいて、閉塞体が円筒管内の流路を遮閉した状態を示す模式的な断面図である。In the heat pipe which concerns on 2nd embodiment of this invention, it is typical sectional drawing which shows the state which the obstruction body obstruct | occluded the flow path in a cylindrical tube. 本発明の第二実施形態に係るヒートパイプにおいて、閉塞体が円筒管内の流路を開放した状態を示す模式的な断面図である。In the heat pipe which concerns on 2nd embodiment of this invention, it is typical sectional drawing which shows the state which the obstruction body open | released the flow path in a cylindrical tube. 本発明の他の実施形態に係るヒートパイプを示す模式的な断面図である。It is typical sectional drawing which shows the heat pipe which concerns on other embodiment of this invention. 本発明の他の実施形態に係るヒートパイプを示す模式的な断面図である。It is typical sectional drawing which shows the heat pipe which concerns on other embodiment of this invention.

以下、添付図面に基づいて、本発明の各実施形態に係る触媒温度制御装置を説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。   Hereinafter, a catalyst temperature control apparatus according to each embodiment of the present invention will be described with reference to the accompanying drawings. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

[第一実施形態]
図1は、第一実施形態に係る触媒温度制御装置が適用されたエンジンの吸排気系を示す模式的な全体構成図である。エンジン10の吸気マニホールド10Aには吸気管11が接続され、排気マニホールド10Bには排気管12が接続されている。
[First embodiment]
FIG. 1 is a schematic overall configuration diagram showing an intake / exhaust system of an engine to which a catalyst temperature control device according to a first embodiment is applied. An intake pipe 11 is connected to the intake manifold 10A of the engine 10, and an exhaust pipe 12 is connected to the exhaust manifold 10B.

吸気管11には、吸気上流側から順に、エアーフィルタ13、過給機のコンプレッサ14A、インタークーラ15等が設けられている。排気管12には、排気上流側から順に、過給機のタービン14B、ヒートパイプ20、排気後処理装置16等が設けられている。排気後処理装置16のケース17内には、排気ガス中に含まれるNOxを還元浄化するNOx触媒18が収容されている。   The intake pipe 11 is provided with an air filter 13, a supercharger compressor 14 </ b> A, an intercooler 15, and the like in order from the intake upstream side. The exhaust pipe 12 is provided with a turbocharger turbine 14B, a heat pipe 20, an exhaust aftertreatment device 16 and the like in order from the exhaust upstream side. A NOx catalyst 18 for reducing and purifying NOx contained in the exhaust gas is housed in the case 17 of the exhaust aftertreatment device 16.

次に、図2に基づいて、本実施形態に係るヒートパイプ20の詳細について説明する。ヒートパイプ20は、水等の作動流体が封入された円筒管21と、円筒管21の内壁に内張りされたウィック22と、円筒管21の一端側に設けられると共に排気管12内に挿入されて排気ガスにより加熱される受熱部23と、円筒管21の他端側に設けられると共に排気管12の外側に配置されて作動流体を外気と熱交換させる放熱部24と、受熱部23の外周に設けられて受熱面積を拡張させる複数の受熱用フィン25と、放熱部24の外周に設けられて放熱面積を拡張させる複数の放熱用フィン26とを備えている。   Next, based on FIG. 2, the detail of the heat pipe 20 which concerns on this embodiment is demonstrated. The heat pipe 20 is provided with a cylindrical tube 21 filled with a working fluid such as water, a wick 22 lined on the inner wall of the cylindrical tube 21, and provided on one end side of the cylindrical tube 21 and inserted into the exhaust pipe 12. A heat receiving part 23 heated by the exhaust gas, a heat dissipating part 24 provided on the other end side of the cylindrical tube 21 and arranged outside the exhaust pipe 12 for exchanging heat with the working air, and an outer periphery of the heat receiving part 23 A plurality of heat receiving fins 25 provided to expand the heat receiving area and a plurality of heat dissipating fins 26 provided on the outer periphery of the heat radiating portion 24 to expand the heat radiating area are provided.

円筒管21は、略L字状に屈曲して形成されており、受熱部23の管軸方向が排気ガスの流れ方向と略平行になり、且つ、受熱部23の先端側が排気後処理装置16の直上流側(触媒入口)に隣接して配置されるように、排気管12に固定されている。   The cylindrical tube 21 is formed to be bent in a substantially L shape, the tube axis direction of the heat receiving portion 23 is substantially parallel to the flow direction of the exhaust gas, and the front end side of the heat receiving portion 23 is the exhaust aftertreatment device 16. It is fixed to the exhaust pipe 12 so as to be disposed adjacent to the upstream side (catalyst inlet).

本実施形態において、円筒管21の内圧は、受熱部23の温度がNOx触媒18の活性上限温度(例えば、約600℃)まで上昇すると円筒管21内の作動流体を気化(蒸発)させる内圧値で設定されている。すなわち、高温排気ガスによって受熱部23が触媒活性上限温度まで昇温されると、作動流体が気化して放熱部24に移動し、外気との熱交換により冷却されることで、排気熱の外気への放出が促進されるようになっている。このように、受熱部23が触媒活性上限温度よりも高く昇温させる高排気温時は、ヒートパイプ20の熱伝達によって排気ガスの冷却を促進させることで、ヒートパイプ20よりも下流側の排気ガス温度(触媒入口温度)が触媒活性上限温度よりも低く抑えられるようになる。   In the present embodiment, the internal pressure of the cylindrical tube 21 is an internal pressure value that vaporizes (evaporates) the working fluid in the cylindrical tube 21 when the temperature of the heat receiving portion 23 rises to the activation upper limit temperature (for example, about 600 ° C.) of the NOx catalyst 18. Is set in That is, when the heat receiving unit 23 is heated to the catalyst activation upper limit temperature by the high-temperature exhaust gas, the working fluid is vaporized and moved to the heat radiating unit 24, and is cooled by heat exchange with the outside air. The release to is promoted. As described above, when the exhaust gas temperature is higher than the upper limit temperature of the catalyst activation by the heat receiving unit 23, the exhaust gas is promoted to cool by the heat transfer of the heat pipe 20, so that the exhaust gas downstream of the heat pipe 20 is exhausted. The gas temperature (catalyst inlet temperature) can be kept lower than the catalyst activation upper limit temperature.

以上詳述したように、本実施形態の触媒温度制御装置では、高温排気ガスによって加熱される受熱部23の温度が触媒活性上限温度まで上昇すると、円筒管21内の作動流体が気化して放熱部24に移動し、排気熱を外気に放出させることで、高温排気ガスの冷却が促進されるように構成されている。すなわち、NOx触媒18が触媒活性上限温度よりも昇温されるような高排気温状態になると、ヒートパイプ20の熱伝達によって高温排気ガスの冷却が促進されることで、触媒入口温度は活性上限温度よりも低く抑えられるようになる。これにより、高排気温時においても触媒温度を活性温度域に効果的に維持することが可能となり、浄化性能の低下による排気エミッションの悪化を防止することができる。   As described above in detail, in the catalyst temperature control device of the present embodiment, when the temperature of the heat receiving portion 23 heated by the high temperature exhaust gas rises to the upper limit temperature of the catalyst activity, the working fluid in the cylindrical tube 21 is vaporized to dissipate heat. By moving to the unit 24 and releasing the exhaust heat to the outside air, the cooling of the high temperature exhaust gas is promoted. That is, when the NOx catalyst 18 enters a high exhaust temperature state in which the temperature is raised above the catalyst activity upper limit temperature, the cooling of the high temperature exhaust gas is promoted by the heat transfer of the heat pipe 20, so that the catalyst inlet temperature becomes the activity upper limit. The temperature becomes lower than the temperature. As a result, the catalyst temperature can be effectively maintained in the activation temperature range even at a high exhaust temperature, and deterioration of exhaust emission due to a decrease in purification performance can be prevented.

[第二実施形態]
次に、図3,4に基づいて、第二実施形態に係る触媒温度制御装置のヒートパイプの詳細を説明する。
[Second Embodiment]
Next, based on FIG.3, 4, the detail of the heat pipe of the catalyst temperature control apparatus which concerns on 2nd embodiment is demonstrated.

第二実施形態のヒートパイプ20は、円筒管21内の受熱部23と放熱部24との間に設けられた閉塞体27と、閉塞体27にグリースやオイル等の水よりも蒸気圧が低い(沸点が低い)粘性液体を圧力媒体として供給又は排出させる圧力媒体給排機構30とをさらに備えて構成されている。   The heat pipe 20 of the second embodiment has a closed body 27 provided between the heat receiving part 23 and the heat radiating part 24 in the cylindrical tube 21, and the closed body 27 has a lower vapor pressure than water such as grease or oil. A pressure medium supply / discharge mechanism 30 for supplying or discharging a viscous liquid (low boiling point) as a pressure medium is further provided.

閉塞体27は、伸縮性及び耐熱性を有するゴム等の弾性材料で形成されており、圧力媒体給排機構30から圧力媒体が供給されると、径方向に膨張して円筒管21の内壁に密接される。このように、閉塞体27が円筒管21の内壁に密接すると、円筒管21内の流路は遮閉され、受熱部23から放熱部24への蒸気の流れが遮断されるようになっている。一方、閉塞体27から圧力媒体が排出されると、閉塞体27は図4の状態に縮小し、円筒管21内の流路が開放されるようになっている。   The closing body 27 is formed of an elastic material such as rubber having elasticity and heat resistance. When the pressure medium is supplied from the pressure medium supply / discharge mechanism 30, the closing body 27 expands in the radial direction to the inner wall of the cylindrical tube 21. Closely. As described above, when the closing body 27 is in close contact with the inner wall of the cylindrical tube 21, the flow path in the cylindrical tube 21 is blocked, and the flow of steam from the heat receiving portion 23 to the heat radiating portion 24 is blocked. . On the other hand, when the pressure medium is discharged from the closing body 27, the closing body 27 is reduced to the state shown in FIG. 4, and the flow path in the cylindrical tube 21 is opened.

圧力媒体給排機構30は、グリースやオイル等の粘性液体を貯留する貯留部31と、DCモータ等の電動モータ32によって正転駆動又は逆転駆動する電動ポンプ33と、電動ポンプ33の駆動を制御するコントロールユニット34と、電動ポンプ33と貯留部31とを連通させる第1給排管35と、円筒管21を貫通して電動ポンプ33と閉塞体27とを連通させる第2給排管36と、ヒートパイプ20よりも上流側の排気ガス温度を検出する温度センサ37とを備えて構成されている。第2給排管36は、円筒管21内の真空度が低下しないように、円筒管21に溶接等で固着されている。   The pressure medium supply / discharge mechanism 30 controls the storage unit 31 that stores viscous liquid such as grease and oil, the electric pump 33 that is normally or reversely driven by an electric motor 32 such as a DC motor, and the drive of the electric pump 33. A control unit 34, a first supply / exhaust pipe 35 that allows the electric pump 33 and the storage unit 31 to communicate, and a second supply / exhaust pipe 36 that allows the electric pump 33 and the closing body 27 to communicate through the cylindrical pipe 21. And a temperature sensor 37 for detecting the exhaust gas temperature upstream of the heat pipe 20. The second supply / exhaust pipe 36 is fixed to the cylindrical pipe 21 by welding or the like so that the degree of vacuum in the cylindrical pipe 21 does not decrease.

電動ポンプ33は、円筒管21内の蒸気(作動流体)の移動を遮断する場合に正転駆動される。より詳しくは、電動ポンプ33が正転駆動すると、貯留部31内の圧力媒体は第1給排管35から第2給排管36を介して閉塞体27に供給され、閉塞体27によって円筒管21内の流路が遮閉されることで、受熱部23から放熱部24への蒸気(作動流体)の流れは遮断される。   The electric pump 33 is driven to rotate forward when the movement of the steam (working fluid) in the cylindrical tube 21 is interrupted. More specifically, when the electric pump 33 is driven to rotate forward, the pressure medium in the reservoir 31 is supplied from the first supply / exhaust pipe 35 to the closing body 27 via the second supply / exhaust pipe 36, and the blocking body 27 causes the cylindrical pipe to be supplied. Since the flow path in 21 is blocked, the flow of steam (working fluid) from the heat receiving portion 23 to the heat radiating portion 24 is blocked.

一方、電動ポンプ33は、円筒管21内の蒸気(作動流体)の移動を許容する場合に逆転駆動される。電動ポンプ33が逆転駆動すると、閉塞体27内の圧力媒体は第2給排管36から第1給排管35を介して貯留部31に排出され、閉塞体27が縮小することで、円筒管21内の流路が開放されるようになっている。   On the other hand, the electric pump 33 is reversely driven when the movement of the steam (working fluid) in the cylindrical tube 21 is allowed. When the electric pump 33 is driven in reverse, the pressure medium in the closing body 27 is discharged from the second supply / discharge pipe 36 to the storage portion 31 via the first supply / discharge pipe 35, and the closing body 27 is contracted, so that the cylindrical pipe The flow path in 21 is opened.

本実施形態において、電動ポンプ33は、温度センサ37で検出される排気ガス温度がNOx触媒18の活性上限温度未満の場合に正転駆動され、温度センサ37で検出される排気ガス温度が活性上限温度以上になると逆転駆動される。すなわち、受熱部23を加熱する排気ガスの温度が活性上限温度以上になると、電動ポンプ33の逆転駆動によって閉塞体27内から圧力媒体が排出され、閉塞体27が縮小して円筒管21内の流路を開放することで、ヒートパイプ20の熱伝達による高温排気ガスの冷却が開始されるようになっている。   In the present embodiment, the electric pump 33 is driven to rotate forward when the exhaust gas temperature detected by the temperature sensor 37 is lower than the activation upper limit temperature of the NOx catalyst 18, and the exhaust gas temperature detected by the temperature sensor 37 is the activation upper limit. When it exceeds the temperature, it is driven in reverse. That is, when the temperature of the exhaust gas that heats the heat receiving unit 23 becomes equal to or higher than the activation upper limit temperature, the pressure medium is discharged from the closed body 27 by the reverse drive of the electric pump 33, and the closed body 27 is reduced and the inside of the cylindrical tube 21 is reduced. By opening the flow path, cooling of the high-temperature exhaust gas by heat transfer of the heat pipe 20 is started.

以上詳述したように、第二実施形態の触媒温度制御装置によれば、受熱部23を加熱する排気ガスの温度が活性上限温度以上に上昇すると、閉塞体27を縮小させて円筒管21内の作動流体の移動を開始させ、ヒートパイプ20による高温排気ガスの冷却を促進させることで、第一実施形態と同様に触媒入口温度が活性上限温度よりも低く抑えられるようになる。これにより、高排気温時においても触媒温度を活性温度域に効果的に維持することが可能となり、浄化性能の低下による排気エミッションの悪化を防止することができる。   As described above in detail, according to the catalyst temperature control apparatus of the second embodiment, when the temperature of the exhaust gas that heats the heat receiving portion 23 rises to the activation upper limit temperature or more, the closure body 27 is reduced and the inside of the cylindrical tube 21 is reduced. By starting the movement of the working fluid and promoting the cooling of the high temperature exhaust gas by the heat pipe 20, the catalyst inlet temperature can be kept lower than the activation upper limit temperature as in the first embodiment. As a result, the catalyst temperature can be effectively maintained in the activation temperature range even at a high exhaust temperature, and deterioration of exhaust emission due to a decrease in purification performance can be prevented.

なお、本発明は、上述の各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。   The present invention is not limited to the above-described embodiments, and can be appropriately modified and implemented without departing from the spirit of the present invention.

例えば、図5に示すように、空冷ファン28を円筒管21の放熱部24に隣接して設け、温度センサ37で検出される排気ガス温度がNOx触媒18の活性上限温度以上になると空冷ファン28を駆動させるように構成してもよい。このように、空冷ファン28で放熱部24を強制的に冷却することで、ヒートパイプ20による高温排気ガスの冷却が効果的に促進されるようになり、触媒温度を活性温度域に確実に維持することができる。   For example, as shown in FIG. 5, when the air cooling fan 28 is provided adjacent to the heat radiating portion 24 of the cylindrical tube 21 and the exhaust gas temperature detected by the temperature sensor 37 becomes equal to or higher than the upper limit temperature of activation of the NOx catalyst 18, the air cooling fan 28. May be configured to be driven. Thus, by forcibly cooling the heat radiating part 24 with the air cooling fan 28, the cooling of the high-temperature exhaust gas by the heat pipe 20 is effectively promoted, and the catalyst temperature is reliably maintained in the active temperature range. can do.

また、円筒管21は略L字状に屈曲されたものに限定されず、図6に示すように、直線状のものを用いてもよい。この場合は、放熱部24を受熱部23よりも上方に配置し、放熱部24で液化された作動流体を重力によって受熱部23に再循環させるように構成すれば、ウィック22は省略してもよい。   Further, the cylindrical tube 21 is not limited to the one bent in a substantially L shape, and a straight tube may be used as shown in FIG. In this case, the wick 22 can be omitted if the heat dissipating part 24 is arranged above the heat receiving part 23 and the working fluid liquefied by the heat dissipating part 24 is recirculated to the heat receiving part 23 by gravity. Good.

10 エンジン
12 排気管
16 排気後処理装置
18 NOx触媒
20 ヒートパイプ
21 円筒管
22 ウィック
23 受熱部
24 放熱部
25 受熱用フィン
26 放熱用フィン
DESCRIPTION OF SYMBOLS 10 Engine 12 Exhaust pipe 16 Exhaust after-treatment apparatus 18 NOx catalyst 20 Heat pipe 21 Cylindrical pipe 22 Wick 23 Heat receiving part 24 Heat radiating part 25 Heat receiving fin 26 Heat radiating fin

Claims (6)

エンジンの排気管に設けられて排気ガスを浄化する触媒を含む後処理装置と、
作動流体が封入された円筒管の一端側に受熱部、他端側に放熱部が設けられ、前記受熱部が前記排気管内の前記後処理装置よりも上流側に配置される共に、前記放熱部が前記排気管の外側に配置されたヒートパイプと、を備え、
前記受熱部を加熱する排気ガスの温度が前記触媒の活性上限温度まで上昇すると、前記作動流体が前記受熱部から前記放熱部に移動して外気と熱交換されることで、前記触媒に流れ込む排気ガスを冷却する
ことを特徴とする触媒温度制御装置。
An aftertreatment device including a catalyst that is provided in an exhaust pipe of an engine and purifies exhaust gas;
A heat receiving portion is provided on one end side of the cylindrical tube filled with the working fluid, and a heat radiating portion is provided on the other end side, and the heat receiving portion is disposed on the upstream side of the aftertreatment device in the exhaust pipe, and the heat radiating portion A heat pipe disposed outside the exhaust pipe,
When the temperature of the exhaust gas that heats the heat receiving part rises to the upper limit temperature of the catalyst, the working fluid moves from the heat receiving part to the heat radiating part and exchanges heat with the outside air, so that the exhaust flowing into the catalyst A catalyst temperature control device characterized by cooling a gas.
前記円筒管の内圧を前記受熱部の温度が前記活性上限温度まで上昇すると前記作動流体を気化させる内圧値に設定した
請求項1に記載の触媒温度制御装置。
The catalyst temperature control device according to claim 1, wherein the internal pressure of the cylindrical tube is set to an internal pressure value that vaporizes the working fluid when the temperature of the heat receiving portion rises to the upper limit of activation temperature.
前記円筒管内の前記受熱部と前記放熱部との間に設けられて当該円筒管内の流路を遮閉又は開放可能な閉塞体をさらに備え、
前記受熱部を加熱する排気ガスの温度が前記活性上限温度まで上昇すると、前記閉塞体が前記流路を遮閉から開放に切り替えることで、前記作動流体の前記受熱部から前記放熱部への移動を開始させる
請求項1に記載の触媒温度制御装置。
Further comprising a closing body provided between the heat receiving portion and the heat radiating portion in the cylindrical tube and capable of blocking or opening the flow path in the cylindrical tube;
When the temperature of the exhaust gas that heats the heat receiving part rises to the upper limit temperature of the activation, the closing body switches the flow path from the closed state to the open state, thereby moving the working fluid from the heat receiving part to the heat radiating part. The catalyst temperature control device according to claim 1.
前記閉塞体が、伸縮自在な弾性部材で形成されると共に、圧力媒体として粘性液体が供給されると膨張して前記流路を遮閉する
請求項3に記載の触媒温度制御装置。
The catalyst temperature control device according to claim 3, wherein the closing body is formed of an elastic member that can expand and contract, and expands when the viscous liquid is supplied as a pressure medium to block the flow path.
前記受熱部又は前記放熱部の少なくとも一方の外周にフィンが設けられた
請求項1から4の何れか一項に記載の触媒温度制御装置。
The catalyst temperature control device according to any one of claims 1 to 4, wherein a fin is provided on an outer periphery of at least one of the heat receiving unit or the heat radiating unit.
前記受熱部を加熱する排気ガスの温度が前記活性上限温度まで上昇すると、前記放熱部に冷却風を送風する冷却ファンをさらに備える
請求項1から5の何れか一項に記載の触媒温度制御装置。
The catalyst temperature control device according to any one of claims 1 to 5, further comprising a cooling fan that blows cooling air to the heat radiating portion when the temperature of the exhaust gas that heats the heat receiving portion rises to the activation upper limit temperature. .
JP2015231751A 2015-11-27 2015-11-27 Catalyst temperature control device Pending JP2017096229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015231751A JP2017096229A (en) 2015-11-27 2015-11-27 Catalyst temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015231751A JP2017096229A (en) 2015-11-27 2015-11-27 Catalyst temperature control device

Publications (1)

Publication Number Publication Date
JP2017096229A true JP2017096229A (en) 2017-06-01

Family

ID=58817941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015231751A Pending JP2017096229A (en) 2015-11-27 2015-11-27 Catalyst temperature control device

Country Status (1)

Country Link
JP (1) JP2017096229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112161501A (en) * 2020-09-28 2021-01-01 北京空间飞行器总体设计部 Controllable heat pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112161501A (en) * 2020-09-28 2021-01-01 北京空间飞行器总体设计部 Controllable heat pipe

Similar Documents

Publication Publication Date Title
JP6032783B2 (en) Solid SCR system
EP2318676B1 (en) Exhaust heat recovery system
RU2629726C2 (en) Way of transport facilities heating, a diesel-driven truck with a crew cab and a control method of a diesel-driven truck heat-transfer system
JP2009236014A (en) Waste heat recovery system
JP4715883B2 (en) Exhaust treatment device for internal combustion engine
JP2007285264A (en) Heat exchanger
JP5141479B2 (en) Exhaust gas purification system and exhaust gas purification method
JP2017096229A (en) Catalyst temperature control device
JP2007085195A (en) Waste heat regeneration system
JP4324216B2 (en) Engine exhaust gas heat recovery unit and engine-driven heat pump or cogeneration system using the same
JP2007239595A (en) Arrangement structure of exhaust system heat exchanger
JP2010059862A (en) Exhaust heat recovery device
JP6435734B2 (en) Exhaust gas purification device
JP2005127137A (en) Egr system of engine
JP4291649B2 (en) Catalytic converter
JP2018159329A (en) Heat recovery system
JP2020101103A (en) Exhaust heat recovery device of internal combustion engine
JP6066875B2 (en) Waste heat recovery device for internal combustion engine
JP2010133349A (en) Exhaust heat recovery device
JP4941445B2 (en) Exhaust heat recovery device
JP2018184922A (en) Heat recovery system
JP2005330832A (en) Heat storage system
WO2013146462A1 (en) Exhaust gas purification system of internal combustion engine
JP2005098141A (en) Exhaust emission control device
JP2018159330A (en) Heat recovery system