JP4715883B2 - Exhaust treatment device for internal combustion engine - Google Patents

Exhaust treatment device for internal combustion engine Download PDF

Info

Publication number
JP4715883B2
JP4715883B2 JP2008203276A JP2008203276A JP4715883B2 JP 4715883 B2 JP4715883 B2 JP 4715883B2 JP 2008203276 A JP2008203276 A JP 2008203276A JP 2008203276 A JP2008203276 A JP 2008203276A JP 4715883 B2 JP4715883 B2 JP 4715883B2
Authority
JP
Japan
Prior art keywords
heat
exhaust
catalyst
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008203276A
Other languages
Japanese (ja)
Other versions
JP2010038072A (en
Inventor
宮男 荒川
義明 西島
正利 黒柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008203276A priority Critical patent/JP4715883B2/en
Priority to DE102009027350A priority patent/DE102009027350A1/en
Publication of JP2010038072A publication Critical patent/JP2010038072A/en
Application granted granted Critical
Publication of JP4715883B2 publication Critical patent/JP4715883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • F01N3/0256Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases the fuel being ignited by electrical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/04Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids
    • F01N3/043Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids without contact between liquid and exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、内燃機関の排気通路に触媒を配設した排気処理装置に関し、特に排気の熱を回収または廃棄する手段を備えた内燃機関用排気処理装置に関する。   The present invention relates to an exhaust treatment device in which a catalyst is disposed in an exhaust passage of an internal combustion engine, and more particularly to an exhaust treatment device for an internal combustion engine provided with means for recovering or discarding heat of exhaust gas.

内燃機関の排気管に触媒を設けて、触媒の作用で排気を浄化することが行われている。また、冷間時の浄化向上のために触媒加熱の手段を持ち、触媒を昇温させて活性化を促進する構造とした装置が知られている。例えば、特許文献1には、内燃機関を含む動力源を備える車両において、排気管にガス浄化触媒を設け、その上流に、機関暖機等に使用される燃焼式ヒータからの燃焼ガス通路を接続して、始動時昇温を行う制御装置が提案されている。   A catalyst is provided in an exhaust pipe of an internal combustion engine, and the exhaust gas is purified by the action of the catalyst. There is also known an apparatus having a means for heating a catalyst for improving purification in the cold state, and promoting the activation by raising the temperature of the catalyst. For example, in Patent Document 1, in a vehicle including a power source including an internal combustion engine, a gas purification catalyst is provided in an exhaust pipe, and a combustion gas passage from a combustion heater used for engine warm-up or the like is connected upstream thereof. Thus, a control device that raises the temperature at start-up has been proposed.

しかしながら、特許文献1に記載される制御装置は、触媒を通過した熱が捨てられるため、熱利用効率が悪い欠点がある。これに対し、特許文献2に記載されるような熱回収装置を採用することで、排気の熱を利用することが検討される。   However, the control device described in Patent Document 1 has a drawback in that heat utilization efficiency is poor because heat that has passed through the catalyst is discarded. On the other hand, by employing a heat recovery device as described in Patent Document 2, it is considered to use the heat of the exhaust.

特許文献2には、バイパス経路の外周に、熱交換経路と媒体経路を同心状に配設して、排気ガス経路を、バイパス経路と熱交換経路とに切り替える切替弁を設けた排気熱回収装置が開示されている。この装置は、車両の冷間時において排気ガスを熱交換経路に導くことにより、回収した熱を内燃機関の暖気等に用いるもので、暖気後は排気ガスをバイパス経路へ導いて排出している。
特開2002−47922号公報 特開2008−25557号公報
Patent Document 2 discloses an exhaust heat recovery apparatus in which a heat exchange path and a medium path are concentrically arranged on the outer periphery of a bypass path, and a switching valve for switching the exhaust gas path between the bypass path and the heat exchange path is provided. Is disclosed. This device uses the recovered heat to warm up the internal combustion engine by guiding exhaust gas to the heat exchange path when the vehicle is cold, and exhausts the exhaust gas to the bypass path after warming up. .
JP 2002-47922 A JP 2008-25557 A

しかしながら、特許文献2に記載される熱回収装置は、複数の経路を形成するための管路構成や排気ガスの流れを変えるための構成が複雑である。また、熱媒体が高温条件で劣化するおそれがあることから、劣化を防ぐために排気ガスの流れを変える必要があり、切替弁を設置している。ところが、切替弁は、弁軸を中心に回動可能な弁体が、バイパスパイプの開口端部を開閉する構成であり、高温、腐食環境下での信頼性に欠ける欠点がある。   However, the heat recovery apparatus described in Patent Document 2 has a complicated configuration for forming a plurality of paths and a configuration for changing the flow of exhaust gas. In addition, since the heat medium may be deteriorated under a high temperature condition, it is necessary to change the flow of the exhaust gas in order to prevent the deterioration, and a switching valve is provided. However, the switching valve has a configuration in which a valve body that is rotatable about a valve shaft opens and closes the opening end of the bypass pipe, and has a drawback that it is not reliable in a high temperature and corrosive environment.

そこで、本願発明は、排気通路に触媒を加熱する手段を備える排気処理装置において、発生する熱を効率よく利用して、触媒の昇温制御を効果的に実施可能とすること、さらに、使用する熱媒体の劣化を抑制可能であり、高温、腐食環境下における耐久性を向上させて、高効率で信頼性に優れた排気処理装置の実現を目的とする。   Therefore, the present invention provides an exhaust treatment apparatus having a means for heating a catalyst in an exhaust passage, making it possible to effectively implement the temperature rise control of the catalyst by efficiently using the generated heat, and further use it. The purpose of the present invention is to realize a highly efficient and highly reliable exhaust treatment apparatus that can suppress deterioration of the heat medium, improve durability in high temperature and corrosive environments.

請求項1記載の発明では、内燃機関の排気通路に設けられた触媒と、この触媒を加熱するための加熱手段と、排気の熱を回収するための熱回収手段を備える内燃機関用排気処理装置において、
上記熱回収手段が、上記触媒の上流および下流にそれぞれ設置された一対の熱授受手段と、これら一対の熱授受手段を接続する熱回収流路と、該熱回収流路に設けられた熱媒体搬送手段を有しており、
上記排気通路に排出される排気の温度に応じて、上記加熱手段および上記熱媒体搬送手段の作動および上記熱媒体搬送手段作動時の熱回収の方向を制御する制御手段を設ける。
According to the first aspect of the present invention, an exhaust treatment apparatus for an internal combustion engine comprising a catalyst provided in an exhaust passage of the internal combustion engine, a heating means for heating the catalyst, and a heat recovery means for recovering the heat of the exhaust gas. In
The heat recovery means includes a pair of heat transfer means installed respectively upstream and downstream of the catalyst, a heat recovery flow path connecting the pair of heat transfer means, and a heat medium provided in the heat recovery flow path Have transport means,
Control means is provided for controlling the operation of the heating means and the heat medium transport means and the direction of heat recovery during the operation of the heat medium transport means in accordance with the temperature of the exhaust gas discharged into the exhaust passage.

上記構成において、熱回収手段は、排気の温度が低い時には、加熱手段を作動させるとともに、熱媒体搬送手段によって触媒下流の排気ガスの熱を上流側へ戻し、触媒の温度上昇を促進する。排気の温度が高い時には、触媒上流の排気の熱を下流側へ排出することで、触媒の温度が過度に上昇するのを防止する。したがって、排気熱を効率よく再利用して、また触媒の劣化を防止して、昇温制御を効果的に実施することができるので、高効率で信頼性に優れた排気処理装置を実現できる。   In the above configuration, when the temperature of the exhaust gas is low, the heat recovery unit operates the heating unit and returns the heat of the exhaust gas downstream of the catalyst to the upstream side by the heat medium transport unit to promote the temperature rise of the catalyst. When the temperature of the exhaust gas is high, the temperature of the catalyst is prevented from excessively rising by discharging the heat of the exhaust gas upstream of the catalyst to the downstream side. Therefore, exhaust heat can be efficiently reused, catalyst deterioration can be prevented, and temperature rise control can be performed effectively, so that an exhaust treatment apparatus with high efficiency and excellent reliability can be realized.

請求項2記載の発明では、請求項1の発明において、上記制御手段は、上記排気の温度が上記触媒の活性温度より低い時には、上記加熱手段をオンするとともに、上記熱媒体搬送手段をオンして、上記触媒の下流の熱授受手段で回収した熱を上流の熱授受手段へ戻す。一方、請求項3記載の発明では上記排気の温度が上記触媒の劣化温度以上である時には、上記加熱手段をオフするとともに、上記熱媒体搬送手段をオンして、上記触媒の上流の熱授受手段で回収した熱を下流の熱授受手段を経て廃棄して、上記触媒の昇温および冷却を制御する。   According to a second aspect of the present invention, in the first aspect of the invention, the control means turns on the heating means and turns on the heat medium conveying means when the temperature of the exhaust gas is lower than the activation temperature of the catalyst. Thus, the heat recovered by the heat transfer means downstream of the catalyst is returned to the upstream heat transfer means. On the other hand, in the invention according to claim 3, when the temperature of the exhaust gas is equal to or higher than the deterioration temperature of the catalyst, the heating means is turned off, the heat medium conveying means is turned on, and the heat transfer means upstream of the catalyst. The heat recovered in (1) is discarded through the downstream heat transfer means, and the temperature rise and cooling of the catalyst is controlled.

具体的には、加熱手段のオンオフと熱媒体搬送手段のオンオフを、排気温度に応じて切り換え、熱媒体によって回収される熱の移動を制御することで、触媒を加熱あるいは冷却して効果的な温度制御を実施することができる。   Specifically, the heating means is switched on and off according to the exhaust temperature, and the movement of the heat recovered by the heating medium is controlled to effectively heat or cool the catalyst. Temperature control can be implemented.

請求項4記載の発明では、請求項1または2,3の発明において、上記制御手段は、上記排気の温度が上記触媒の活性温度以上である時には、上記加熱手段をオフする。   According to a fourth aspect of the invention, in the first, second, or third aspect of the invention, the control means turns off the heating means when the temperature of the exhaust gas is equal to or higher than the activation temperature of the catalyst.

具体的には、排気ガスの熱で触媒温度を活性温度以上に保持することができる場合には、加熱手段の作動を停止することで、エネルギーロスをなくし、より効果的な温度制御を実現できる。   Specifically, when the catalyst temperature can be maintained at the activation temperature or higher with the heat of the exhaust gas, energy loss is eliminated and more effective temperature control can be realized by stopping the operation of the heating means. .

請求項5記載の発明では、請求項1ないし4の発明において、上記熱回収流路が、上記一対の熱授受手段に両端がそれぞれ接続される一対の熱媒体流路を有し、これら一対の熱媒体流路と上記一対の熱授受手段とが熱媒体の循環路を形成して、排気の熱を上記熱授受手段の一方から他方へ移動させる。   According to a fifth aspect of the present invention, in the first to fourth aspects of the invention, the heat recovery flow path includes a pair of heat medium flow paths that are respectively connected at both ends to the pair of heat transfer means. The heat medium flow path and the pair of heat transfer means form a heat medium circulation path to move the heat of the exhaust gas from one of the heat transfer means to the other.

具体的には、一対の熱授受手段を一対の熱媒体流路で連結し、熱媒体が熱回収通路を循環する構成とすることで、容易に一方で回収した熱を他方へ移動させることができるので、熱の回収、再利用を効率よく実施することができる。   Specifically, a pair of heat transfer means are connected by a pair of heat medium flow paths, and the heat medium circulates through the heat recovery passage, so that the heat recovered on the one hand can be easily moved to the other. Therefore, heat recovery and reuse can be performed efficiently.

請求項6記載の発明は、請求項5に記載の内燃機関用排気処理装置において、上記熱授受手段は、上記排気通路の外周に接して配置され、上記一対の熱媒体流路にそれぞれ連通する入口と出口を設けた熱授受室を備え、該熱授受室内を通過する熱媒体が上記排気通路の排気と熱交換を行う。   According to a sixth aspect of the present invention, in the exhaust gas processing apparatus for an internal combustion engine according to the fifth aspect, the heat transfer means is disposed in contact with the outer periphery of the exhaust passage and communicates with the pair of heat medium flow paths. A heat transfer chamber having an inlet and an outlet is provided, and a heat medium passing through the heat transfer chamber exchanges heat with the exhaust in the exhaust passage.

具体的には、熱授受手段を排気通路を取り巻くように形成され、内部を熱媒体が流通する熱授受室にて構成すると、熱媒体と排気ガスとの熱交換を効率よく行って、排気の熱を回収、再利用することができる。   Specifically, when the heat transfer means is formed so as to surround the exhaust passage and the inside is constituted by a heat transfer chamber through which the heat medium flows, the heat exchange between the heat medium and the exhaust gas is efficiently performed, and the exhaust Heat can be recovered and reused.

請求項7記載の発明では、請求項6の発明の構成において、上記熱授受室を、上記排気通路の外周を取り巻く二重筒状に形成し、その内側室および外側室のいずれか一方に上記熱媒体流路からの熱媒体を流通させる流路の切換手段を設けて、熱授受量を調節可能とする。   According to a seventh aspect of the present invention, in the configuration of the sixth aspect of the invention, the heat transfer chamber is formed in a double cylinder shape surrounding the outer periphery of the exhaust passage, and the inner chamber or the outer chamber is provided with the above-described heat transfer chamber. A flow path switching means for circulating the heat medium from the heat medium flow path is provided so that the heat transfer amount can be adjusted.

熱授受室で同心状に形成された内側室および外側室にて構成することもできる。例えば、排気温度が低い場合には、熱媒体を内側室に流通させて熱を回収し、外側室を保温層として使用することで昇温効率を高める。また、排気温度が高い場合には、熱媒体を外側室に流通させて熱媒体の劣化を防止し、内側室を断熱層として利用する。このように排気温度に応じて、熱媒体の流路を変えることで受熱量を変更し、最適な温度制御を実現できる。   It can also be constituted by an inner chamber and an outer chamber formed concentrically in the heat transfer chamber. For example, when the exhaust temperature is low, the heat medium is circulated through the inner chamber to recover heat, and the outer chamber is used as a heat retaining layer to increase the temperature raising efficiency. When the exhaust temperature is high, the heat medium is circulated to the outer chamber to prevent the heat medium from being deteriorated, and the inner chamber is used as a heat insulating layer. In this way, the amount of heat received can be changed by changing the flow path of the heat medium according to the exhaust gas temperature, and optimal temperature control can be realized.

請求項8記載の発明では、請求項6または7に記載の内燃機関用排気処理装置において、上記熱媒体流路から上記熱授受室に導入される熱媒体を切り換える手段を設ける。   According to an eighth aspect of the present invention, in the exhaust gas treatment apparatus for an internal combustion engine according to the sixth or seventh aspect, a means for switching the heat medium introduced into the heat transfer chamber from the heat medium flow path is provided.

好適には、熱授受手段に導入される熱媒体の種類を変更することもできる。例えば熱媒体が劣化するおそれがある高温となった時に、上記熱媒体流路から上記熱授受室に導入される熱媒体を、高温で劣化しない熱媒体に切り換えることで、熱回収性能を維持しつつ信頼性を高めることができる。   Preferably, the type of the heat medium introduced into the heat transfer means can be changed. For example, the heat recovery performance is maintained by switching the heat medium introduced from the heat medium flow path into the heat transfer chamber to a heat medium that does not deteriorate at a high temperature when the heat medium is at a high temperature that may deteriorate. The reliability can be improved.

請求項9記載の発明では、請求項1ないし8の発明の構成において、上記熱回収手段が、上記触媒の下流の熱授受手段から内燃機関の他の部位へ熱を供給する第2の熱回収通路を有している。   According to a ninth aspect of the invention, in the configuration of the first to eighth aspects of the invention, the heat recovery means supplies a second heat recovery for supplying heat from the heat transfer means downstream of the catalyst to other parts of the internal combustion engine. Has a passage.

触媒の温度制御が不要な安定な条件下において、例えば暖房等への熱使用が要求される場合には、熱授受手段で回収した排気の熱を、第2の熱回収通路から他の部位へ供給することもでき、より効果的に排気の熱を再利用することができる。   For example, when heat is required for heating under stable conditions that do not require temperature control of the catalyst, the heat of the exhaust recovered by the heat transfer means is transferred from the second heat recovery passage to another part. It can also be supplied, and the heat of the exhaust can be reused more effectively.

(第1実施形態)
以下、本発明を適用した内燃機関用排気処理装置を図面に基づいて説明する。図1〜4は本発明の第1実施形態であり、図1は排気処理装置全体の基本構成を、図2〜4はその動作を、図5、6はその効果を説明する図である。図1において、内燃機関であるエンジン1は、ガソリン燃料やディーゼル燃料等の燃焼により動力を発生する一般的な構成のもので、各気筒の燃焼室に連結される排気通路である排気管11を有し、燃料の燃焼による排気ガスを排出する。
(First embodiment)
Hereinafter, an exhaust treatment apparatus for an internal combustion engine to which the present invention is applied will be described with reference to the drawings. 1 to 4 show a first embodiment of the present invention, FIG. 1 is a diagram illustrating the basic configuration of the entire exhaust treatment apparatus, FIGS. 2 to 4 are its operations, and FIGS. In FIG. 1, an engine 1 that is an internal combustion engine has a general configuration that generates power by combustion of gasoline fuel, diesel fuel, or the like, and an exhaust pipe 11 that is an exhaust passage connected to a combustion chamber of each cylinder. And exhaust gas from combustion of fuel.

排気管11には、排気ガスに含まれる有害成分を浄化処理する触媒2が配設され、その上流側に、触媒2を加熱するための加熱手段21が設置される。触媒2は、例えばガソリンエンジン用として知られる公知の三元触媒、NOx触媒や、ディーゼルエンジン用の触媒付DPF(ディーゼルパティキュレートフィルタ)等のいずれであってもよく、通常、セラミックハニカム構造体よりなる担体に触媒金属成分を担持させた公知の構成を有する。   The exhaust pipe 11 is provided with a catalyst 2 for purifying harmful components contained in the exhaust gas, and a heating means 21 for heating the catalyst 2 is installed upstream thereof. The catalyst 2 may be any of a known three-way catalyst known for gasoline engines, a NOx catalyst, a DPF with a catalyst for diesel engines (diesel particulate filter), etc. It has a known structure in which a catalytic metal component is supported on a carrier.

加熱手段21には、燃料の燃焼熱を利用する燃料燃焼方式の加熱装置を使用することが望ましい。この装置は、例えば、図示しない燃料供給路から供給される燃料を、燃焼室に導入して着火燃焼させ、その燃焼熱で排気を加熱した後、触媒2に導入する構成であり、排気を速やかに昇温して高効率で触媒2を加熱できる利点がある。また、燃焼量の制御により触媒2の温度を安定して制御できる。その他、公知の車両用ヒータ、例えば、通電により発熱する電気式ヒータを加熱手段21として使用することもできる。   As the heating means 21, it is desirable to use a fuel combustion type heating device that uses the combustion heat of the fuel. For example, this apparatus is configured such that fuel supplied from a fuel supply passage (not shown) is introduced into a combustion chamber, ignited and combusted, exhaust gas is heated with the combustion heat, and then introduced into the catalyst 2. There is an advantage that the catalyst 2 can be heated with high efficiency and heated with high efficiency. Further, the temperature of the catalyst 2 can be stably controlled by controlling the combustion amount. In addition, a known vehicle heater, for example, an electric heater that generates heat when energized can be used as the heating means 21.

加熱手段21の上流には、エンジン1から排出される排気温度を検出する温度センサ22が配設される。制御手段であるECU3は、温度センサ22の検出結果を基に、加熱手段21を作動させるとともに、本発明の特徴である熱回収手段4の作動を制御して、触媒2の始動時昇温を実施し、さらには始動後の温度が適切に保持されるように制御する。この特徴部分について、以下に詳述する。   A temperature sensor 22 that detects the exhaust gas temperature discharged from the engine 1 is disposed upstream of the heating means 21. The ECU 3 as the control means operates the heating means 21 based on the detection result of the temperature sensor 22 and controls the operation of the heat recovery means 4 which is a feature of the present invention to increase the temperature rise at the start of the catalyst 2. Control is performed so that the temperature after starting is properly maintained. This characteristic part will be described in detail below.

熱回収手段4は、加熱手段21と温度センサ22の間の排気管11に設置される熱授受手段41と、触媒2の下流の排気管11に設置される熱授受手段42と、これら熱授受手段41、42を接続する熱回収通路43と、熱回収通路43内に熱媒体を流通させるための熱媒体搬送手段44とを有している。熱回収通路43は、熱授受手段41から熱授受手段42へ向かう第1流路431と、熱授受手段42から熱授受手段41へ向かう第2流路432とを備え、これら第1流路431、第2流路432を流通する熱媒体を介して、熱授受手段41、42間の熱移動を行う熱媒体の循環路を形成している。熱媒体としては、例えば、エンジン冷却水(クーラント液)や、エンジンオイル等を使用することができる。   The heat recovery means 4 includes a heat transfer means 41 installed in the exhaust pipe 11 between the heating means 21 and the temperature sensor 22, a heat transfer means 42 installed in the exhaust pipe 11 downstream of the catalyst 2, and these heat transfers. A heat recovery passage 43 connecting the means 41 and 42 and a heat medium transporting means 44 for circulating the heat medium in the heat recovery passage 43 are provided. The heat recovery passage 43 includes a first flow path 431 from the heat transfer means 41 to the heat transfer means 42 and a second flow path 432 from the heat transfer means 42 to the heat transfer means 41, and these first flow paths 431. A heat medium circulation path for transferring heat between the heat transfer means 41 and 42 is formed via the heat medium flowing through the second flow path 432. As the heat medium, for example, engine cooling water (coolant liquid), engine oil, or the like can be used.

熱授受手段41、42は、排気管11の外周側に同心状に配設される両端閉鎖の筒状体からなり、筒壁と排気管11の外周壁との間に形成される環状空間部が、熱授受室41a、42aとなる。熱授受手段41、42の熱授受室41a、42aは、第1流路431または第2流路432に接続される熱媒体の入口および出口を有し、排気管11の外周壁を介して排気ガスと熱媒体との熱交換を行う。この時、熱授受手段41の入口には第2流路432が、出口には第1流路431が接続され、熱授受手段42の入口には第1流路431が、出口には第2流路432が接続される。   The heat transfer means 41 and 42 are formed of a cylindrical body closed at both ends concentrically disposed on the outer peripheral side of the exhaust pipe 11, and an annular space formed between the cylindrical wall and the outer peripheral wall of the exhaust pipe 11. Are the heat transfer chambers 41a and 42a. The heat transfer chambers 41 a and 42 a of the heat transfer means 41 and 42 have a heat medium inlet and outlet connected to the first flow path 431 or the second flow path 432, and are exhausted through the outer peripheral wall of the exhaust pipe 11. Performs heat exchange between gas and heat medium. At this time, the second flow path 432 is connected to the inlet of the heat transfer means 41, the first flow path 431 is connected to the outlet, the first flow path 431 is connected to the inlet of the heat transfer means 42, and the second flow path is set to the outlet. A flow path 432 is connected.

なお、図1は、本実施形態の構成を模式的に示すもので、第1流路431および第2流路432の流路構成や配置、これら流路431、432と熱授受室41a、42との接続構造、入口および出口の配置等は、適宜設定される。通常は、熱授受室41a、42となる環状空間部の一端側と他端側に、それぞれ入口と出口とが形成されるように配置することで、熱授受室41a、42内に入口から出口へ向かう環状流路が形成され、熱媒体がスムーズに流れて排気ガスと熱交換する。   FIG. 1 schematically shows the configuration of the present embodiment. The flow channel configuration and arrangement of the first flow channel 431 and the second flow channel 432, and the flow channels 431 and 432 and the heat transfer chambers 41a and 42 are shown. And the arrangement of the inlet and outlet, etc. are set as appropriate. Usually, by arranging the inlet and the outlet at the one end side and the other end side of the annular space portion to be the heat transfer chambers 41a and 42, respectively, the outlets from the inlet to the heat transfer chambers 41a and 42 are provided. An annular flow path is formed, and the heat medium flows smoothly to exchange heat with the exhaust gas.

熱媒体搬送手段44は、熱回収通路43に介設されるポンプを備え、ECU3によって制御されて、熱媒体を所定の方向に流通させる。ポンプは、第1流路431および第2流路432のそれぞれに設ける必要はなく、熱授受手段41、42間の熱媒体の循環と、熱移動が十分可能であれば、いずれか一方に設けてもよい。ECU3は、温度センサ22によって検出される排気ガスの温度に応じて熱媒体搬送手段44をオンオフ動作させ、熱授受手段41から熱授受手段42へ、あるいは熱授受手段42から熱授受手段42へ排気の熱を移動させる。熱移動が不要な場合には、熱媒体搬送手段44を停止させる。   The heat medium conveying means 44 includes a pump interposed in the heat recovery passage 43, and is controlled by the ECU 3 to circulate the heat medium in a predetermined direction. The pump does not need to be provided in each of the first flow path 431 and the second flow path 432, and is provided in either one of the heat transfer means 41 and 42 as long as circulation and heat transfer are sufficiently possible. May be. The ECU 3 turns on / off the heat medium transport means 44 according to the temperature of the exhaust gas detected by the temperature sensor 22, and exhausts the heat from the heat transfer means 41 to the heat transfer means 42 or from the heat transfer means 42 to the heat transfer means 42. Move the heat. When the heat transfer is unnecessary, the heat medium transporting unit 44 is stopped.

図2〜4により、上記構成の排気処理装置におけるECU3の動作を説明する。ECU3は、エンジン1の始動時に昇温制御を行って、触媒2の温度を活性温度まで速やかに昇温させる一方、触媒2の温度が劣化温度を超えないように保持して、安定した浄化性能を維持させる。この時、熱回収手段4による熱の再利用により効果的な温度制御を可能にする。また、触媒2の温度制御に使用されない余剰の熱を、他の部位に供給することで、発生する熱をより効果的に再利用する。   2 to 4, the operation of the ECU 3 in the exhaust processing apparatus having the above configuration will be described. The ECU 3 performs temperature increase control at the time of starting the engine 1 to quickly increase the temperature of the catalyst 2 to the activation temperature, while maintaining the temperature of the catalyst 2 so as not to exceed the deterioration temperature, and stable purification performance. To maintain. At this time, effective temperature control is enabled by reusing heat by the heat recovery means 4. In addition, surplus heat that is not used for temperature control of the catalyst 2 is supplied to other parts, so that the generated heat is more effectively reused.

図2は、エンジン1からの排気温度が、触媒2の活性温度より低い場合で、ECU3は加熱手段21を作動させて、加熱した排気を触媒2に導入する。同時に、熱回収手段4の熱媒体搬送手段44を作動させ、熱回収通路43に熱媒体を循環させる。冷間時には、エンジン1の排気温度が低く、触媒2による排気浄化性能が低下するが、本実施形態では、まず、加熱手段21にて排気ガスが加熱され、さらにその下流側の触媒2を加熱する。触媒2を通過した排気ガスは、次いで、熱授受手段42を通過する際に、熱授受室42aを流通する熱媒体と熱交換し、熱を放出した後、外部へ排出される。   FIG. 2 shows a case where the exhaust temperature from the engine 1 is lower than the activation temperature of the catalyst 2, and the ECU 3 operates the heating means 21 to introduce the heated exhaust gas into the catalyst 2. At the same time, the heat medium conveying means 44 of the heat recovery means 4 is operated to circulate the heat medium in the heat recovery passage 43. When the engine is cold, the exhaust temperature of the engine 1 is low and the exhaust purification performance of the catalyst 2 is reduced. In this embodiment, the exhaust gas is first heated by the heating means 21 and further the catalyst 2 downstream is heated. To do. Next, when the exhaust gas that has passed through the catalyst 2 passes through the heat transfer means 42, it exchanges heat with the heat medium flowing through the heat transfer chamber 42 a, releases the heat, and is then discharged to the outside.

熱媒体により回収された熱は、熱回収通路43の第2流路432から、触媒2の上流側の熱授受手段41に導入される。熱媒体は、熱授受室41aを通過する間に、より低温の排気ガスと熱交換し、熱を放出した後、第1流路431を経て再び熱授受手段42へ循環される。排気ガスは下流側から運ばれた熱によって昇温し、さらに加熱手段21によって加熱される。触媒2は、より高温となった排気の熱によって、速やかに昇温され、活性温度に到達するので、初期の浄化性能を大きく向上させることができる。   The heat recovered by the heat medium is introduced from the second flow path 432 of the heat recovery passage 43 to the heat transfer means 41 on the upstream side of the catalyst 2. While passing through the heat transfer chamber 41a, the heat medium exchanges heat with a lower temperature exhaust gas, releases heat, and then circulates again to the heat transfer means 42 via the first flow path 431. The exhaust gas is heated by heat carried from the downstream side, and further heated by the heating means 21. Since the temperature of the catalyst 2 is quickly raised by the heat of the exhaust gas that has become higher and reaches the activation temperature, the initial purification performance can be greatly improved.

図3は、例えばエンジン1が高負荷運転状態にあるために、排気温度が触媒2の劣化温度より高い場合で、触媒2の温度が過度に上昇して劣化をまねくおそれがある。そこで、ECU3は加熱手段21の作動を停止して、排気ガスが加熱されないようにする。同時に、熱回収手段4の熱媒体搬送手段44を作動させ、熱回収通路43に熱媒体を循環させる。エンジン1の排気温度が高い時には、排気ガスが熱授受手段42を通過する際に、相対的に温度の低い熱授受室42aの熱媒体と熱交換し、熱を放出した後、触媒2に供給される。   FIG. 3 shows a case where, for example, the engine 1 is in a high-load operation state, the exhaust temperature is higher than the deterioration temperature of the catalyst 2, and the temperature of the catalyst 2 may rise excessively, leading to deterioration. Therefore, the ECU 3 stops the operation of the heating means 21 so that the exhaust gas is not heated. At the same time, the heat medium conveying means 44 of the heat recovery means 4 is operated to circulate the heat medium in the heat recovery passage 43. When the exhaust temperature of the engine 1 is high, when the exhaust gas passes through the heat transfer means 42, it exchanges heat with the heat medium in the heat transfer chamber 42 a having a relatively low temperature, releases the heat, and then supplies the heat to the catalyst 2. Is done.

したがって、触媒2に導入される排気温度を低下させることができ、触媒2の過昇温を防止して、劣化による触媒性能の低下を抑制する。これにより、触媒2の温度が適正な範囲に保持され、安定した浄化性能を発揮する。一方、上流側の熱授受手段42にて回収された熱は、熱媒体によって熱回収通路43の第1流路431から、触媒2の下流側の熱授受手段42に運ばれる。触媒2を通過した排気ガスは、さらに温度が低下しているので、熱授受手段42の熱授受室42aを流通する熱媒体から、熱を受け取って外部へ排出される。放熱により温度が低下した熱媒体は、第2流路432を経て再び熱授受手段41へ循環される。   Therefore, the temperature of the exhaust gas introduced into the catalyst 2 can be lowered, the excessive temperature rise of the catalyst 2 is prevented, and the deterioration of the catalyst performance due to deterioration is suppressed. Thereby, the temperature of the catalyst 2 is maintained in an appropriate range, and a stable purification performance is exhibited. On the other hand, the heat recovered by the heat transfer means 42 on the upstream side is carried by the heat medium from the first flow path 431 of the heat recovery passage 43 to the heat transfer means 42 on the downstream side of the catalyst 2. Since the temperature of the exhaust gas that has passed through the catalyst 2 is further lowered, it receives heat from the heat medium flowing through the heat transfer chamber 42a of the heat transfer means 42 and is discharged outside. The heat medium whose temperature has decreased due to heat radiation is circulated to the heat transfer means 41 again via the second flow path 432.

図4は、エンジン1が安定走行状態にあり、排気温度が触媒2の活性温度より高い場合(かつ劣化温度より低い場合)で、排気の熱により触媒2を十分加熱できるので、ECU3は加熱手段21の作動を停止する。また、触媒2の下流の熱を回収して上流へ運んだり、逆に、上流の熱を下流へ廃棄したりする必要もないので、熱回収手段4の熱媒体搬送手段44の作動も停止する。これにより、触媒2の温度を安定して活性温度以上に保持し、高い浄化性能を発揮できる。   FIG. 4 shows that when the engine 1 is in a stable running state and the exhaust temperature is higher than the activation temperature of the catalyst 2 (and lower than the deterioration temperature), the catalyst 2 can be sufficiently heated by the heat of the exhaust. 21 is stopped. Further, there is no need to collect the heat downstream of the catalyst 2 and carry it upstream, or conversely, discard the heat upstream, so that the operation of the heat medium conveying means 44 of the heat recovery means 4 is also stopped. . Thereby, the temperature of the catalyst 2 can be stably maintained above the activation temperature, and high purification performance can be exhibited.

ただし、この状態では、排気ガスが比較的高い温度を保ったまま、排出されてしまう。そこで、図示するように、車両の他の部位に排気の熱を運ぶための第2の熱回収通路45と、熱媒体搬送手段46を設けることができる。第2の熱回収通路45は、例えば、車室暖房手段5と熱媒体搬送手段46を介して接続され、さらにエンジン1に接続される。第2の熱回収通路45は、熱回収通路43と同様、触媒2の下流側の熱授受手段42に接続され、熱授受室42aに熱媒体を導入する方向に流れる第1流路451と、車室暖房手段5へ熱媒体を送出する方向へ流れる第2流路452を有している。車室暖房手段5とエンジン1を接続する往復流路は、通常公知のエンジン冷却水通路51、52によって構成される。   However, in this state, the exhaust gas is discharged while maintaining a relatively high temperature. Therefore, as shown in the drawing, a second heat recovery passage 45 for transporting the heat of the exhaust to other parts of the vehicle and a heat medium transport means 46 can be provided. The second heat recovery passage 45 is connected to, for example, the vehicle compartment heating means 5 and the heat medium transport means 46 and further connected to the engine 1. Similarly to the heat recovery passage 43, the second heat recovery passage 45 is connected to the heat transfer means 42 on the downstream side of the catalyst 2, and the first flow path 451 flows in the direction of introducing the heat medium into the heat transfer chamber 42a. It has the 2nd flow path 452 which flows into the direction which sends out a thermal medium to the vehicle interior heating means 5. As shown in FIG. A reciprocating flow path connecting the vehicle compartment heating means 5 and the engine 1 is constituted by generally known engine cooling water passages 51 and 52.

上記構成によれば、排気温度が触媒2の活性温度より高く、かつエンジン暖機が終了しておらず、車室暖房が必要な場合には、加熱手段21と熱媒体搬送手段44はオフとし、熱媒体搬送手段46のみ作動させる。これにより、触媒2の下流側の熱授受手段42に導入された比較的高温の排気ガスが、熱授受室42aを通過する熱媒体と熱交換し、熱を放出した後、排出される。回収された熱は、熱回収通路45の第2流路452から熱媒体搬送手段46を経て、車室暖房手段5へ、さらにエンジン1へ供給され、これらを加熱する。その後、熱媒体は、第2の熱回収通路45の第1流路451から再び熱授受手段42へ循環される。   According to the above configuration, when the exhaust gas temperature is higher than the activation temperature of the catalyst 2 and the engine warm-up is not completed and the vehicle compartment heating is necessary, the heating unit 21 and the heat medium transport unit 44 are turned off. Only the heat medium conveying means 46 is operated. Thereby, the relatively high-temperature exhaust gas introduced into the heat transfer means 42 on the downstream side of the catalyst 2 exchanges heat with the heat medium passing through the heat transfer chamber 42a, and is discharged after releasing the heat. The recovered heat is supplied from the second flow path 452 of the heat recovery passage 45 through the heat medium conveying means 46 to the vehicle compartment heating means 5 and further to the engine 1 to heat them. Thereafter, the heat medium is circulated again from the first flow path 451 of the second heat recovery passage 45 to the heat transfer means 42.

図5は、本実施形態の構成による触媒2の昇温効果を示すもので、エンジン1の始動時に、加熱手段21および熱媒体搬送手段44の両方をオンとして、熱回収による触媒2の加熱を行った場合の触媒温度の時間変化を、加熱手段21のみをオンとした場合、加熱手段21および熱媒体搬送手段44の両方をオフとした場合と比較している。図に明らかなように、何も作動させない場合に対して加熱手段21を作動させると、触媒2の温度上昇の開始が早まり、活性温度に達するまでの時間が短縮されるが、加熱手段21に加えて熱媒体搬送手段44を作動させることで、触媒2の温度上昇の開始をさらに早め、その後の急速な温度上昇によって、速やかに活性温度まで昇温させることができる。   FIG. 5 shows the temperature increase effect of the catalyst 2 according to the configuration of the present embodiment. When the engine 1 is started, both the heating means 21 and the heat medium conveying means 44 are turned on to heat the catalyst 2 by heat recovery. The time change of the catalyst temperature in the case of being performed is compared with the case where only the heating means 21 is turned on and the case where both the heating means 21 and the heat medium conveying means 44 are turned off. As is apparent from the figure, when the heating means 21 is activated in the case where nothing is activated, the start of the temperature rise of the catalyst 2 is accelerated and the time until the activation temperature is reached is shortened. In addition, by operating the heat medium conveying means 44, the start of the temperature rise of the catalyst 2 can be further accelerated, and the temperature can be quickly raised to the activation temperature by the rapid temperature rise thereafter.

また、図6は、本実施形態の構成による触媒2の冷却効果を示すもので、高負荷時等にエンジン1から高温の排気ガスが排出された場合、触媒2の温度が劣化温度を超えることがある。このような場合でも、熱媒体搬送手段44を作動させて、排気ガスの熱を触媒2に導入される前に回収することで、触媒2の温度を低下させ、劣化温度より十分低い温度にすることができる。この効果は、熱媒体の搬送速度に比例し、搬送速度が大きいほど、触媒2の温度を大きく低下させることができる。   FIG. 6 shows the cooling effect of the catalyst 2 according to the configuration of the present embodiment. When high-temperature exhaust gas is discharged from the engine 1 at a high load or the like, the temperature of the catalyst 2 exceeds the deterioration temperature. There is. Even in such a case, the temperature of the catalyst 2 is lowered by operating the heat medium conveying means 44 and recovering the heat of the exhaust gas before being introduced into the catalyst 2, so that the temperature is sufficiently lower than the deterioration temperature. be able to. This effect is proportional to the conveyance speed of the heat medium, and the temperature of the catalyst 2 can be greatly reduced as the conveyance speed increases.

(第2実施形態)
図7〜12は本発明の第2実施形態であり、熱媒体の劣化を防止するための構造を備えている。図7〜9は熱授受手段41、42の他の構成例を、図10は、それら熱授受手段41、42を使用した排気浄化装置の全体構成を示す。図11は、熱媒体搬送手段44の具体的構成例を、図12はその作動を説明するタイムチャートである。
(Second Embodiment)
FIGS. 7-12 is 2nd Embodiment of this invention, and is provided with the structure for preventing deterioration of a thermal medium. 7 to 9 show other examples of the configuration of the heat transfer means 41 and 42, and FIG. 10 shows the overall configuration of the exhaust purification apparatus using the heat transfer means 41 and 42. FIG. 11 is a specific configuration example of the heat medium conveying means 44, and FIG. 12 is a time chart for explaining the operation thereof.

図7において、本実施形態の熱授受手段41、42は、排気管11の外周側に同心状に配設される両端閉鎖の二重筒状に形成し、その内周側に形成される環状空間部を、内側室41b、42b、外周側に形成される環状空間部を、外側室41c、42cとしている。これら内側室41b、42b、外側室41c、42cにて、熱授受室41a、42aを構成する。そして、図7〜9に示すように、エンジン1からの排気温度に応じて、熱回収通路43の第1、第2流路431、432から、内側室41b、42b、外側室41c、42cへの熱媒体の導入を切り換える。   In FIG. 7, the heat transfer means 41 and 42 of the present embodiment are formed in a double cylinder shape having both ends closed concentrically disposed on the outer peripheral side of the exhaust pipe 11, and an annular shape formed on the inner peripheral side thereof. The space portions are inner chambers 41b and 42b, and the annular space portions formed on the outer peripheral side are outer chambers 41c and 42c. These inner chambers 41b and 42b and outer chambers 41c and 42c constitute heat transfer chambers 41a and 42a. Then, as shown in FIGS. 7 to 9, depending on the exhaust temperature from the engine 1, the first and second flow paths 431 and 432 of the heat recovery passage 43 go to the inner chambers 41 b and 42 b and the outer chambers 41 c and 42 c. Switch the introduction of the heating medium.

図10に示すように、本実施形態では、熱回収通路43の第1流路431、第2流路432を、それぞれ内側流路431a、432a、外側流路431b、432bを有する二重通路構造に形成する。図7、8に示すように、内側流路431a、432aは、熱授受室41a、42aの内側室41b、42bに、外側流路431b、432bは、熱授受室41a、42aの外側室41c、42cに接続される。内側室41b、42b、外側室41c、42cへの接続部は、入口と出口が環状空間部の両端に位置して、熱媒体が内部をスムーズに流れるようにする。また、内側室41b、42bと外側室41c、42cは、入口と出口が反対側に位置して、流れ方向が対向するように構成されている。   As shown in FIG. 10, in the present embodiment, the first flow path 431 and the second flow path 432 of the heat recovery path 43 have a double path structure having inner flow paths 431a and 432a and outer flow paths 431b and 432b, respectively. To form. As shown in FIGS. 7 and 8, the inner flow paths 431a and 432a are the inner chambers 41b and 42b of the heat transfer chambers 41a and 42a, and the outer flow paths 431b and 432b are the outer chambers 41c of the heat transfer chambers 41a and 42a. 42c. The connecting portions to the inner chambers 41b and 42b and the outer chambers 41c and 42c have inlets and outlets positioned at both ends of the annular space so that the heat medium flows smoothly through the inside. Further, the inner chambers 41b and 42b and the outer chambers 41c and 42c are configured such that the inlet and the outlet are located on the opposite sides and the flow directions are opposed to each other.

本実施形態では、熱回収通路43のうち、熱授受手段41から熱授受手段41へ向かう第2流路432の途中に、熱媒体搬送手段44を配設している。熱媒体搬送手段44は、図11に詳細を示すように、熱授受手段41と内側流路431a、外側流路431bを介して連通する熱媒体タンク441と、開閉弁442を介して熱媒体タンク441と連結されるポンプ444と、熱授受手段42側の内側流路431a、外側流路431bへ、熱媒体を供給する流路の切換手段としての流路切換弁445を有している。   In the present embodiment, in the heat recovery passage 43, the heat medium transport unit 44 is disposed in the middle of the second flow path 432 from the heat transfer unit 41 to the heat transfer unit 41. As shown in detail in FIG. 11, the heat medium transport means 44 includes a heat medium tank 441 communicating with the heat transfer means 41 via the inner flow path 431a and the outer flow path 431b, and a heat medium tank via the on-off valve 442. And a flow path switching valve 445 as a flow path switching means for supplying a heat medium to the inner flow path 431a and the outer flow path 431b on the heat transfer means 42 side.

開閉弁442とポンプ444の間には、空気取り入れ弁443が接続される。これにより、開閉弁442が閉じた状態でポンプ444を作動させると、ポンプ負圧により空気を吸い込むことができる。さらに、流路切換弁445を切り換えることで、内側流路431a、外側流路431bへ、熱媒体および空気のいずれかを導入することができる。また、熱授受手段42側の内側流路431a、外側流路431bは、それぞれ逆流防止弁446、447を介して熱媒体タンク441への合流通路に接続される。熱媒体タンク441には、空気抜き弁448が設けられ、内側流路431a、外側流路431bから流入する空気を排出して、熱媒体のみを貯留する。   An air intake valve 443 is connected between the on-off valve 442 and the pump 444. Accordingly, when the pump 444 is operated with the on-off valve 442 closed, air can be sucked in by the pump negative pressure. Further, by switching the flow path switching valve 445, either the heat medium or the air can be introduced into the inner flow path 431a and the outer flow path 431b. Further, the inner flow path 431a and the outer flow path 431b on the side of the heat transfer means 42 are connected to a merging passage to the heat medium tank 441 via backflow prevention valves 446 and 447, respectively. The heat medium tank 441 is provided with an air vent valve 448, which discharges air flowing in from the inner flow path 431a and the outer flow path 431b and stores only the heat medium.

ECU3は、第1の実施形態と同様、温度センサ22の検出結果に基づいて、加熱手段21と熱回収手段4の熱媒体搬送手段44を制御し、触媒2の温度制御を行う。本実施形態では、熱媒体搬送手段44の開閉弁442とポンプ444のオンオフ、流路切換弁445の切り換えによって、熱授受手段41、42の内側室41b、42b、外側室41c、42cへの熱媒体の導入を制御し、熱媒体の劣化を防止しつつ効果的な熱回収を実施する。   The ECU 3 controls the temperature of the catalyst 2 by controlling the heating means 21 and the heat medium conveying means 44 of the heat recovery means 4 based on the detection result of the temperature sensor 22 as in the first embodiment. In the present embodiment, heat to the inner chambers 41b and 42b and the outer chambers 41c and 42c of the heat transfer means 41 and 42 is achieved by turning on and off the on-off valve 442 and the pump 444 of the heat medium transport means 44 and switching the flow path switching valve 445. Effective heat recovery is performed while controlling the introduction of the medium and preventing the heat medium from deteriorating.

上記構成の排気処理装置におけるECU3の動作を、図12を参照しながら図7〜9により説明する。ここでは、熱媒体をクーラント液とし、その劣化温度が例えば180℃(内側室41b、42b)、500℃(外側室41c、42c)、触媒活性温度が例えば250℃、触媒劣化温度が例えば500℃であるとして説明する。図7は、エンジン1からの排気温度が、触媒2の活性温度より低い場合で、ECU3は図10の加熱手段21を作動させて加熱した排気を触媒2に導入する。同時に、熱媒体搬送手段44の開閉弁442を開き、ポンプ444を作動させて、熱回収通路43に熱媒体を循環させる。流路切換弁445は第2流路432の内側流路432a側に切り換えられる。   The operation of the ECU 3 in the exhaust processing apparatus having the above configuration will be described with reference to FIGS. Here, the heat medium is a coolant liquid, and its deterioration temperature is, for example, 180 ° C. (inner chambers 41b, 42b), 500 ° C. (outer chamber 41c, 42c), the catalyst activation temperature is, for example, 250 ° C., and the catalyst deterioration temperature is, for example, 500 ° C. It explains as being. FIG. 7 shows a case where the exhaust temperature from the engine 1 is lower than the activation temperature of the catalyst 2. The ECU 3 operates the heating means 21 in FIG. 10 to introduce the heated exhaust gas into the catalyst 2. At the same time, the on-off valve 442 of the heat medium conveying means 44 is opened and the pump 444 is operated to circulate the heat medium in the heat recovery passage 43. The channel switching valve 445 is switched to the inner channel 432 a side of the second channel 432.

これにより、図7に示すように、熱授受手段41、42の熱授受室41a、42aには、内側室41b、42bに熱媒体が導入される。この時、外側室41c、42cには空気の層が形成され、熱媒体の流通する内側室41b、42bから外部への放熱を防止する保温層として機能する。すなわち、熱授受手段42の内側室42bでは熱媒体が排気ガスの熱を効率よく受熱し、回収通路432を経て熱授受手段41の内側室41bへ導入されて、回収した熱を外部へ逃がすことなく、排気ガスと熱交換することができる。したがって、排気熱をより効果的に利用して触媒2の温度上昇を促進することができる。   As a result, as shown in FIG. 7, the heat medium is introduced into the inner chambers 41b and 42b in the heat transfer chambers 41a and 42a of the heat transfer means 41 and 42, respectively. At this time, an air layer is formed in the outer chambers 41c and 42c, and functions as a heat insulating layer that prevents heat radiation from the inner chambers 41b and 42b through which the heat medium flows. That is, in the inner chamber 42 b of the heat transfer means 42, the heat medium efficiently receives the heat of the exhaust gas, and is introduced into the inner chamber 41 b of the heat transfer means 41 through the recovery passage 432 to release the recovered heat to the outside. Heat exchange with exhaust gas. Therefore, the temperature rise of the catalyst 2 can be promoted by using the exhaust heat more effectively.

図8は、エンジン1からの排気温度が、熱媒体の劣化温度(例えば180℃)より高い場合で、ECU3はこれに先立ち、図10の加熱手段21をオン、熱媒体搬送手段44のポンプ444をオン、流路切換弁445を第2流路432の内側流路432a側に切り換えた状態で、開閉弁442を閉じる(図12参照)。すると、熱媒体を熱媒体タンク441からの供給が停止され、ポンプ444負圧で空気取り入れ弁433が開弁するために、空気が流路切換弁445から第2流路432の内側流路432aへ吸い込まれる。   FIG. 8 shows the case where the exhaust temperature from the engine 1 is higher than the deterioration temperature (for example, 180 ° C.) of the heat medium. Prior to this, the ECU 3 turns on the heating means 21 in FIG. 10 and the pump 444 of the heat medium conveying means 44. Is turned on, and the on-off valve 442 is closed with the flow path switching valve 445 switched to the inner flow path 432a side of the second flow path 432 (see FIG. 12). Then, supply of the heat medium from the heat medium tank 441 is stopped, and the air intake valve 433 is opened by the negative pressure of the pump 444, so that the air flows from the flow path switching valve 445 to the inner flow path 432a of the second flow path 432. Sucked into.

これにより、図8に示すように、熱授受手段41、42の熱授受室41a、42aには、内側室41b、42bに空気が導入される。次いで、流路切換弁445を第2流路432の外側流路432b側に切り換え、この状態で、開閉弁442を開くと、熱媒体タンク441から第2流路432の外側流路432bへ熱媒体が供給され、熱授受室41a、42aの外側室41c、42cに熱媒体が導入される。この時、内側室41b、42bの空気の層は、外側室41c、42cと排気管11の間に介在する断熱層として機能する。すなわち、外側室41c、42cの熱媒体が、高温の排気ガスが流通する排気管11と直接接触しないようにすることで、熱媒体の劣化を防止しながら、効果的に熱交換を行って、回収した熱を再利用し、触媒2を速やかに活性温度まで上昇させることができる。   Thereby, as shown in FIG. 8, air is introduced into the inner chambers 41b and 42b in the heat transfer chambers 41a and 42a of the heat transfer means 41 and 42, respectively. Next, when the flow path switching valve 445 is switched to the outer flow path 432b side of the second flow path 432 and the on-off valve 442 is opened in this state, heat is transferred from the heat medium tank 441 to the outer flow path 432b of the second flow path 432. The medium is supplied, and the heat medium is introduced into the outer chambers 41c and 42c of the heat transfer chambers 41a and 42a. At this time, the air layer in the inner chambers 41 b and 42 b functions as a heat insulating layer interposed between the outer chambers 41 c and 42 c and the exhaust pipe 11. That is, by preventing the heat medium in the outer chambers 41c and 42c from coming into direct contact with the exhaust pipe 11 through which the high-temperature exhaust gas flows, heat exchange is effectively performed while preventing deterioration of the heat medium, The recovered heat can be reused to rapidly raise the catalyst 2 to the activation temperature.

図12において、エンジン1からの排気温度が触媒2の活性温度(例えば250℃)に到達したら、触媒2を加熱する加熱手段21を停止する。さらにエンジン1からの排気温度が上昇し、外側室41c、42cを流通する熱媒体の劣化温度(例えば500℃)近傍となったら、ECU3は熱媒体搬送手段44の開閉弁442を閉じる。すると、ポンプ444負圧で空気取り入れ弁433が開弁するために、空気が流路切換弁445から第2流路432の外側流路432bへ吸い込まれ、外側室41c、42cへ導入される。次いで、ポンプ444をオフとすると、熱授受室41a、42aの内側室41b、42b、外側室41c、42cともに、空気層(滞留)となる。   In FIG. 12, when the exhaust temperature from the engine 1 reaches the activation temperature of the catalyst 2 (for example, 250 ° C.), the heating means 21 for heating the catalyst 2 is stopped. Further, when the exhaust temperature from the engine 1 rises and approaches the deterioration temperature (for example, 500 ° C.) of the heat medium flowing through the outer chambers 41 c and 42 c, the ECU 3 closes the on-off valve 442 of the heat medium transport unit 44. Then, since the air intake valve 433 is opened by the negative pressure of the pump 444, air is sucked from the flow path switching valve 445 into the outer flow path 432b of the second flow path 432 and introduced into the outer chambers 41c and 42c. Next, when the pump 444 is turned off, the inner chambers 41b and 42b and the outer chambers 41c and 42c of the heat transfer chambers 41a and 42a become air layers (retention).

図9は、エンジン1からの排気温度が、触媒の劣化温度(例えば900℃)よりさらに高くなった場合で、ECU3は、熱授受室41a、42aの内側室41b、42b、外側室41c、42cともに、空気層となっている図示の状態のまま、図10の熱媒体搬送手段44の流路切換弁445を第1流路432の内側流路432a側に切り換え、この状態で、ポンプ444を作動させる。   FIG. 9 shows the case where the exhaust temperature from the engine 1 is further higher than the catalyst deterioration temperature (for example, 900 ° C.). In the state where both are air layers, the flow path switching valve 445 of the heat transfer means 44 in FIG. 10 is switched to the inner flow path 432a side of the first flow path 432, and in this state, the pump 444 is turned on. Operate.

これにより、熱授受手段41、42間を、熱媒体としての空気が流通する。すなわち、開閉弁442が閉じているために、ポンプ444負圧で空気取り入れ弁433から空気が取り込まれ、流路切換弁445から第2流路432の内側流路432aを経て、触媒2上流の熱授受手段41へ供給される。熱授受手段41では、熱授受室41aの内側室41bを流通する空気に、高温の排気ガスの熱が放出され、第1流路431の内側流路431aを経て、触媒2下流の熱授受手段42へ送出される。熱授受手段42では、熱授受室42aの内側室41bを流通する空気によって運ばれた熱が、相対的に低温の排気ガスに放出される。したがって、触媒2に、劣化温度を超える高温の排気ガスが流入するのを防止し、劣化を抑制して、良好な浄化性能を発揮することができる。   As a result, air as a heat medium flows between the heat transfer means 41 and 42. In other words, since the on-off valve 442 is closed, air is taken in from the air intake valve 433 at a negative pressure of the pump 444, passes through the inner flow path 432a of the second flow path 432 from the flow path switching valve 445, and is upstream of the catalyst 2. It is supplied to the heat transfer means 41. In the heat transfer means 41, the heat of the high-temperature exhaust gas is released into the air flowing through the inner chamber 41b of the heat transfer chamber 41a, and the heat transfer means downstream of the catalyst 2 through the inner flow path 431a of the first flow path 431. 42. In the heat transfer means 42, the heat carried by the air flowing through the inner chamber 41b of the heat transfer chamber 42a is released to the relatively low temperature exhaust gas. Therefore, it is possible to prevent the exhaust gas having a high temperature exceeding the deterioration temperature from flowing into the catalyst 2, suppress the deterioration, and exhibit good purification performance.

以上のように、本発明によれば、排気ガスの熱を有効に再利用して触媒の昇温を行う一方、高温の排気ガスによる熱媒体や触媒の劣化を抑制して、効率よい温度制御を実現できる。よって、簡易な構成で高性能かつ信頼性に優れた排気処理装置を得ることができる。   As described above, according to the present invention, the temperature of the catalyst is increased by effectively reusing the heat of the exhaust gas, while the temperature of the catalyst is efficiently controlled by suppressing the deterioration of the heat medium and the catalyst due to the high-temperature exhaust gas. Can be realized. Therefore, it is possible to obtain an exhaust treatment apparatus having a simple configuration and high performance and excellent reliability.

本発明の第1実施形態における内燃機関用排気処理装置の全体構成図である。1 is an overall configuration diagram of an exhaust treatment apparatus for an internal combustion engine according to a first embodiment of the present invention. 本発明の第1実施形態の動作(排気温度が触媒活性温度より低い場合)を説明する図である。It is a figure explaining the operation | movement (when exhaust gas temperature is lower than catalyst activation temperature) of 1st Embodiment of this invention. 本発明の第1実施形態の動作(排気温度が触媒劣化温度より高い場合)を説明する図である。It is a figure explaining the operation | movement (when exhaust gas temperature is higher than catalyst deterioration temperature) of 1st Embodiment of this invention. 本発明の第1実施形態の動作(排気温度が触媒活性温度より高い場合)を説明する図であり、第1実施形態の基本構成に第2の熱回収手段を設けた図である。It is a figure explaining operation | movement (when exhaust gas temperature is higher than catalyst activation temperature) of 1st Embodiment of this invention, and is the figure which provided the 2nd heat recovery means in the basic composition of 1st Embodiment. 本発明の第1実施形態における昇温効果を説明するための図である。It is a figure for demonstrating the temperature rising effect in 1st Embodiment of this invention. 本発明の第1実施形態における冷却効果を説明するための図である。It is a figure for demonstrating the cooling effect in 1st Embodiment of this invention. 本発明の第2実施形態における排気処理装置の主要部断面図であり、排気温度が触媒活性温度より高い場合の動作を説明する図である。It is principal part sectional drawing of the exhaust-gas treatment apparatus in 2nd Embodiment of this invention, and is a figure explaining operation | movement when exhaust gas temperature is higher than catalyst activation temperature. 本発明の第2実施形態における排気処理装置の主要部断面図であり、排気温度が熱媒体劣化温度より高い場合の動作を説明する図である。It is principal part sectional drawing of the exhaust-gas treatment apparatus in 2nd Embodiment of this invention, and is a figure explaining operation | movement when exhaust gas temperature is higher than heat-medium degradation temperature. 本発明の第2実施形態における排気処理装置の主要部断面図であり、排気温度が触媒劣化温度より高い場合の動作を説明する図でる。It is principal part sectional drawing of the exhaust-gas treatment apparatus in 2nd Embodiment of this invention, and is a figure explaining operation | movement when exhaust gas temperature is higher than catalyst deterioration temperature. 本発明の第2実施形態における内燃機関用排気処理装置の全体構成図である。It is a whole block diagram of the exhaust-air-treatment device for internal combustion engines in 2nd Embodiment of this invention. 本発明の第2実施形態における内燃機関用排気処理装置の主要部である熱媒体搬送手段の構成を示す図である。It is a figure which shows the structure of the thermal-medium conveyance means which is the principal part of the exhaust-air-treatment apparatus for internal combustion engines in 2nd Embodiment of this invention. 本発明の第2実施形態の排気処理装置における制御手段の動作を説明するための図である。It is a figure for demonstrating operation | movement of the control means in the exhaust processing apparatus of 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 エンジン
11 排気管(排気通路)
2 触媒
21 加熱手段
3 ECU(制御手段)
4 熱回収手段
41、42 熱授受手段
41a、42a 熱授受室
41b、42b 内側室
41c、42c 外側室
43 熱回収通路
431 第1流路
432 第2流路
44 熱媒体搬送手段
441 熱媒体タンク
442 開閉弁
443 空気取り入れ弁
444 ポンプ
445 流路切換弁
1 Engine 11 Exhaust pipe (exhaust passage)
2 Catalyst 21 Heating means 3 ECU (Control means)
4 Heat recovery means 41, 42 Heat transfer means 41a, 42a Heat transfer chamber 41b, 42b Inner chamber 41c, 42c Outer chamber 43 Heat recovery passage 431 First flow path 432 Second flow path 44 Heat medium transport means 441 Heat medium tank 442 On-off valve 443 Air intake valve 444 Pump 445 Flow path switching valve

Claims (9)

内燃機関の排気通路に設けられた触媒と、この触媒を加熱するための加熱手段と、排気の熱を回収するための熱回収手段を備える内燃機関用排気処理装置において、
上記熱回収手段が、上記触媒の上流および下流にそれぞれ設置された一対の熱授受手段と、これら一対の熱授受手段を接続する熱回収流路と、該熱回収流路に設けられた熱媒体搬送手段を有しており、
上記排気通路に排出される排気の温度に応じて、上記加熱手段および上記熱媒体搬送手段の作動および上記熱媒体搬送手段作動時の熱回収の方向を制御する制御手段を設けたことを特徴とする内燃機関用排気処理装置。
In an exhaust treatment apparatus for an internal combustion engine comprising a catalyst provided in an exhaust passage of an internal combustion engine, a heating means for heating the catalyst, and a heat recovery means for recovering heat of the exhaust,
The heat recovery means includes a pair of heat transfer means installed respectively upstream and downstream of the catalyst, a heat recovery flow path connecting the pair of heat transfer means, and a heat medium provided in the heat recovery flow path Have transport means,
According to the present invention, there is provided control means for controlling the operation of the heating means and the heat medium transport means and the direction of heat recovery when the heat medium transport means is operated according to the temperature of the exhaust gas discharged to the exhaust passage. An exhaust treatment device for an internal combustion engine.
請求項1記載の内燃機関用排気処理装置において、上記制御手段は、
上記排気の温度が上記触媒の活性温度より低い時には、上記加熱手段をオンするとともに、上記熱媒体搬送手段をオンして、上記触媒の下流の熱授受手段で回収した熱を上流の熱授受手段へ戻すことを特徴とする内燃機関用排気処理装置。
The exhaust treatment device for an internal combustion engine according to claim 1, wherein the control means includes:
When the temperature of the exhaust gas is lower than the activation temperature of the catalyst, the heating means is turned on, the heat medium conveying means is turned on, and the heat recovered by the heat transfer means downstream of the catalyst is upstream heat transfer means. An exhaust treatment apparatus for an internal combustion engine characterized by being returned to
請求項1記載の内燃機関用排気処理装置において、上記排気の温度が上記触媒の劣化温度以上である時には、上記加熱手段をオフするとともに、上記熱媒体搬送手段をオンして、上記触媒の上流の熱授受手段で回収した熱を下流の熱授受手段を経て廃棄して、上記触媒の昇温および冷却を制御することを特徴とする内燃機関用排気処理装置。   2. The exhaust gas treatment apparatus for an internal combustion engine according to claim 1, wherein when the temperature of the exhaust gas is equal to or higher than the deterioration temperature of the catalyst, the heating means is turned off and the heat medium conveying means is turned on to upstream the catalyst. An exhaust processing apparatus for an internal combustion engine, wherein the heat recovered by the heat transfer means is discarded through the downstream heat transfer means to control the temperature rise and cooling of the catalyst. 請求項1ないし3のいずれか1項に記載の内燃機関用排気処理装置において、上記制御手段は、上記排気の温度が上記触媒の活性温度以上である時には、上記加熱手段をオフすることを特徴とする内燃機関用排気処理装置。   4. The exhaust treatment device for an internal combustion engine according to claim 1, wherein the control means turns off the heating means when the temperature of the exhaust gas is equal to or higher than the activation temperature of the catalyst. An exhaust treatment device for an internal combustion engine. 請求項1ないし4のいずれか1項に記載の内燃機関用排気処理装置において、上記熱回収流路が、上記一対の熱授受手段に両端がそれぞれ接続される一対の熱媒体流路を有し、これら一対の熱媒体流路と上記一対の熱授受手段とが熱媒体の循環路を形成して、排気の熱を上記熱授受手段の一方から他方へ移動させることを特徴とする内燃機関用排気処理装置。   5. The exhaust gas treatment apparatus for an internal combustion engine according to claim 1, wherein the heat recovery flow path has a pair of heat medium flow paths that are respectively connected at both ends to the pair of heat transfer means. The pair of heat medium flow paths and the pair of heat transfer means form a heat medium circulation path to move the heat of exhaust gas from one of the heat transfer means to the other. Exhaust treatment device. 請求項5に記載の内燃機関用排気処理装置において、上記熱授受手段は、上記排気通路の外周に接して配置され、上記一対の熱媒体流路にそれぞれ連通する入口と出口を設けた熱授受室を備え、該熱授受室内を通過する熱媒体が上記排気通路の排気と熱交換を行うことを特徴とする内燃機関用排気処理装置。   6. The exhaust gas processing apparatus for an internal combustion engine according to claim 5, wherein the heat transfer means is disposed in contact with an outer periphery of the exhaust passage and has an inlet and an outlet respectively communicating with the pair of heat medium flow paths. An exhaust treatment apparatus for an internal combustion engine, comprising: a chamber, wherein a heat medium passing through the heat transfer chamber exchanges heat with the exhaust in the exhaust passage. 請求項6に記載の内燃機関用排気処理装置において、上記熱授受室を、上記排気通路の外周を取り巻く二重筒状に形成し、その内側室および外側室のいずれか一方に上記熱媒体流路からの熱媒体を流通させる流路の切換手段を設けて、熱授受量を調節可能としたことを特徴とする内燃機関用排気処理装置。   The exhaust treatment device for an internal combustion engine according to claim 6, wherein the heat transfer chamber is formed in a double cylinder shape surrounding the outer periphery of the exhaust passage, and the heat medium flow is provided in one of the inner chamber and the outer chamber. An exhaust treatment apparatus for an internal combustion engine, characterized in that a flow path switching means for circulating a heat medium from the path is provided so that the amount of heat exchange can be adjusted. 請求項6または7に記載の内燃機関用排気処理装置において、上記熱媒体流路から上記熱授受室に導入される熱媒体を切り換える手段を設けたことを特徴とする内燃機関用排気処理装置。   8. An exhaust treatment apparatus for an internal combustion engine according to claim 6 or 7, further comprising means for switching the heat medium introduced from the heat medium flow path into the heat transfer chamber. 請求項1ないし8のいずれか1項に記載の内燃機関用排気処理装置において、上記熱回収手段が、上記触媒の下流の熱授受手段から内燃機関の他の部位へ熱を供給する第2の熱回収通路を有していることを特徴とする内燃機関用排気処理装置。   9. The exhaust gas treatment apparatus for an internal combustion engine according to claim 1, wherein the heat recovery means supplies heat from a heat transfer means downstream of the catalyst to other parts of the internal combustion engine. An exhaust treatment apparatus for an internal combustion engine having a heat recovery passage.
JP2008203276A 2008-08-06 2008-08-06 Exhaust treatment device for internal combustion engine Active JP4715883B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008203276A JP4715883B2 (en) 2008-08-06 2008-08-06 Exhaust treatment device for internal combustion engine
DE102009027350A DE102009027350A1 (en) 2008-08-06 2009-06-30 Exhaust treatment device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008203276A JP4715883B2 (en) 2008-08-06 2008-08-06 Exhaust treatment device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010038072A JP2010038072A (en) 2010-02-18
JP4715883B2 true JP4715883B2 (en) 2011-07-06

Family

ID=41528297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008203276A Active JP4715883B2 (en) 2008-08-06 2008-08-06 Exhaust treatment device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4715883B2 (en)
DE (1) DE102009027350A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4941445B2 (en) * 2008-10-01 2012-05-30 トヨタ自動車株式会社 Exhaust heat recovery device
DE102011013129A1 (en) * 2010-03-04 2011-12-15 Mann + Hummel Gmbh System for using heat energy of exhaust gas of combustion engine of motor car, has mixing chamber provided with fluid inlet and fluid outlet, where fluid in mixing chamber is heated by exhaust line
JP5995400B2 (en) * 2010-10-14 2016-09-21 三菱重工業株式会社 Marine exhaust gas denitration equipment
JP2012067756A (en) * 2011-12-06 2012-04-05 Mitsubishi Heavy Ind Ltd Exhaust gas after-treatment device of diesel engine
WO2016076814A1 (en) * 2014-11-13 2016-05-19 Ford Otomotiv Sanayi Anonim Sirketi An exhaust gas heating and energy recovery system
DE102016215919A1 (en) * 2016-08-24 2018-03-01 Mtu Friedrichshafen Gmbh Internal combustion engine with a heat transport device for transporting heat from an exhaust gas recirculation path into an exhaust gas line
IT201800010826A1 (en) * 2018-12-05 2020-06-05 Fpt Motorenforschung Ag SYSTEM FOR THE THERMAL MANAGEMENT OF AN EXHAUSTED GAS AFTER-TREATMENT SYSTEM

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868318A (en) * 1994-08-26 1996-03-12 Komatsu Ltd Exhaust gas heat recovery device for internal combustion engine having exhaust emission control device and its controlling method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047922A (en) 2000-07-31 2002-02-15 Toyota Motor Corp Control device for hybrid vehicle
JP2008025557A (en) 2006-07-19 2008-02-07 Sango Co Ltd Exhaust heat recovery device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868318A (en) * 1994-08-26 1996-03-12 Komatsu Ltd Exhaust gas heat recovery device for internal combustion engine having exhaust emission control device and its controlling method

Also Published As

Publication number Publication date
JP2010038072A (en) 2010-02-18
DE102009027350A1 (en) 2010-02-18

Similar Documents

Publication Publication Date Title
JP4715883B2 (en) Exhaust treatment device for internal combustion engine
JP5018592B2 (en) Waste heat recovery device
US11428132B2 (en) Method for operating a drive device and corresponding drive device
US20110131962A1 (en) Exhaust heat recovery system
EP2998536B1 (en) An arrangement and a control method of an engine cooling system
JP2003193832A (en) Exhaust device for heat engine
JP5867151B2 (en) Exhaust gas purification device for internal combustion engine
JP5799886B2 (en) Control device for cooling system
JP2008285997A (en) Exhaust gas treatment device of engine
JP6056201B2 (en) Engine warm-up device
JP2005016364A (en) Engine cooling device
JP6028397B2 (en) Vehicle heating system
JP6024217B2 (en) Gearbox warm-up device
JP2018119423A (en) Engine cooling system
CN109404101B (en) Exhaust system
JP2013092106A (en) Exhaust gas cleaning device for internal combustion engine
JP2007024022A (en) Exhaust emission control device
JP2005264857A (en) Warming-up method and warming-up device of internal combustion engine
JP2004270487A (en) Device for using exhaust heat of engine
JP4400378B2 (en) Exhaust gas purification device for internal combustion engine
CN114641605A (en) Method for operating an exhaust gas purification system arranged in an exhaust line of an internal combustion engine, and exhaust gas purification system
JP2004132189A (en) Thermal storage system for vehicle
JP7388466B2 (en) Internal combustion engine warm-up device
JP7273572B2 (en) warming device
JP2003083057A (en) Heat recovery device for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250