JP2012067756A - Exhaust gas after-treatment device of diesel engine - Google Patents

Exhaust gas after-treatment device of diesel engine Download PDF

Info

Publication number
JP2012067756A
JP2012067756A JP2011267308A JP2011267308A JP2012067756A JP 2012067756 A JP2012067756 A JP 2012067756A JP 2011267308 A JP2011267308 A JP 2011267308A JP 2011267308 A JP2011267308 A JP 2011267308A JP 2012067756 A JP2012067756 A JP 2012067756A
Authority
JP
Japan
Prior art keywords
heat
exhaust gas
heat exchanger
heating
doc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011267308A
Other languages
Japanese (ja)
Inventor
Hiroyuki Endo
浩之 遠藤
Tadayuki Motai
匡之 馬渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011267308A priority Critical patent/JP2012067756A/en
Publication of JP2012067756A publication Critical patent/JP2012067756A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas after-treatment device of a diesel engine capable of avoiding deterioration in a fuel consumption ratio without performing control for narrowing down a throttle valve of air supply and exhaust, that is, control for reducing thermal efficiency of the engine and increasing an exhaust gas temperature to make DOC and DPF normal particularly in a low load of the engine.SOLUTION: In the exhaust gas after-treatment device of the diesel engine, a heating heat exchanger 6 storing heat in a heat receiving medium by heat exchange of heat of an exhaust gas after passage through DPF and the heat receiving medium is provided on a downstream side of the DPF 122, a heat radiating heat exchanger 7 radiating heat of the heat receiving medium in the exhaust gas by heat exchange of heat of the heat receiving medium stored by the heating heat exchanger 6 and the exhaust gas in an exhaust gas inlet part of the DOC is provided in the exhaust gas inlet part of the DOC 121 and a heat medium passage 8 is provided between the heating heat exchanger 6 and the heat radiating heat exchanger 7.

Description

本発明は、ディーゼルエンジンのDPF(粒子状物質除去装置)の再生装置等に用いられ、排気ターボ過給機出口の排ガスをDOC(酸化触媒)及びDPF(ディーゼルパティキュレートフィルター)を通して、前記DOCで排ガス中の燃料を酸化させ、前記DPFで前記DOCにて燃料酸化後の排ガス中のPM(粒子状物質)を燃焼させて、該排ガスを浄化するディーゼルエンジンの排ガス後処理装置に関する。   The present invention is used in a DPF (particulate matter removal device) regeneration device or the like of a diesel engine, and the exhaust gas at the outlet of an exhaust turbocharger passes through a DOC (oxidation catalyst) and a DPF (diesel particulate filter), and the DOC. The present invention relates to an exhaust gas aftertreatment device for a diesel engine that oxidizes fuel in exhaust gas, burns PM (particulate matter) in the exhaust gas after fuel oxidation with the DOC by the DPF, and purifies the exhaust gas.

図6はDOC(酸化触媒)及びDPF(ディーゼルパティキュレートフィルター)装置を備えたディーゼルエンジンの全体構成図である。
図6において、ディーゼルエンジン(以下エンジン100という)は、排気タービン109とこれに同軸駆動されるコンプレッサ108を有する排気ターボ過給機110を備えており、該過給機110のコンプレッサ108から吐出された空気は空気管107を通って空気冷却器106に入り、該空気冷却器106で冷却される。
該空気冷却器106で冷却された空気は、吸気スロットル弁105で開度を制御された後、給気管104を通り、シリンダ毎に設けられた給気ポートからエンジン100に吸入される。
エンジン100においては、コモンレール(蓄圧器)102にて蓄圧された高圧燃料が、コモンレール制御装置103により噴射時期及び噴射量を制御され、かかる噴射時期及び噴射量にて、シリンダ毎に設けられた燃料噴射弁101から噴射される。噴射された高圧燃料は前記空気との混合によって燃焼される。
FIG. 6 is an overall configuration diagram of a diesel engine including a DOC (oxidation catalyst) and a DPF (diesel particulate filter) device.
In FIG. 6, a diesel engine (hereinafter referred to as engine 100) includes an exhaust turbocharger 110 having an exhaust turbine 109 and a compressor 108 driven coaxially thereto, and is discharged from the compressor 108 of the supercharger 110. The air enters the air cooler 106 through the air pipe 107 and is cooled by the air cooler 106.
The air cooled by the air cooler 106 is controlled in its opening by the intake throttle valve 105, passes through the air supply pipe 104, and is sucked into the engine 100 from an air supply port provided for each cylinder.
In the engine 100, the high-pressure fuel accumulated in the common rail (pressure accumulator) 102 is controlled in injection timing and injection amount by the common rail control device 103, and the fuel provided for each cylinder at the injection timing and injection amount. It is injected from the injection valve 101. The injected high-pressure fuel is burned by mixing with the air.

また、前記排気集合管111の途中から、EGR(排ガス再循環)管116が分岐されて、排ガス120の一部(EGRガス)はEGR管116を通り、EGRクーラ115で降温され、EGR弁114で流量を制御されて、給気管104の吸気スロットルバルブ105に下流部位に投入される。
そして、エンジン100で燃焼された燃焼ガス即ち排ガス120は、シリンダ毎に設けられた排気ポートが集合した排気集合管111を通って、前記排気ターボ過給機110の排気タービン109を駆動して前記コンプレッサ108の動力源となった後、排気管112を通って排ガス後処理装置1のDOC121に入る。
Further, an EGR (exhaust gas recirculation) pipe 116 is branched from the middle of the exhaust collecting pipe 111, and a part of the exhaust gas 120 (EGR gas) passes through the EGR pipe 116 and is cooled by the EGR cooler 115, and the EGR valve 114. Then, the flow rate is controlled and the intake throttle valve 105 of the supply pipe 104 is introduced into the downstream portion.
The combustion gas burned in the engine 100, that is, the exhaust gas 120, drives the exhaust turbine 109 of the exhaust turbo supercharger 110 through the exhaust collecting pipe 111 in which exhaust ports provided for each cylinder are gathered. After serving as a power source for the compressor 108, the exhaust enters the DOC 121 of the exhaust gas aftertreatment device 1 through the exhaust pipe 112.

そして、該DOC121で排ガス120中の燃料を酸化させて昇温された後、排ガス後処理装置1のDPF122に送り込まれる。
DPF122においては、前記DOCでHC(炭化水素)成分を酸化しこのとき発生する反応熱で、DPF122に堆積されているPM(粒子状物質)が燃焼処理される。燃焼処理され後の排ガスは排気出口管113から外部に排出される。
The DOC 121 is used to oxidize the fuel in the exhaust gas 120 and the temperature is raised, and then sent to the DPF 122 of the exhaust gas aftertreatment device 1.
In the DPF 122, the HC (hydrocarbon) component is oxidized by the DOC, and the PM (particulate matter) deposited on the DPF 122 is combusted by the reaction heat generated at this time. The exhaust gas after the combustion treatment is discharged from the exhaust outlet pipe 113 to the outside.

尚、特許文献(特開2004−339971号公報)においては、その特に図3には、DOC3Aaの下流とDPF3Abとの間に、燃料噴射弁43を配置して該燃料噴射弁43から、所定の時期に燃料を噴射して、DPF3Aの温度を上昇させたDOCおよびDPFをそなえたディーゼルエンジンの排ガス後処理装置が示されている。   In the patent document (Japanese Patent Laid-Open No. 2004-339971), particularly in FIG. 3, a fuel injection valve 43 is arranged between the downstream of the DOC 3 Aa and the DPF 3 Ab, and a predetermined amount from the fuel injection valve 43. An exhaust gas aftertreatment device for a diesel engine having a DOC and a DPF in which fuel is injected at a time to increase the temperature of the DPF 3A is shown.

特開2004−339971号公報JP 2004-339971 A

図6に示されるディーゼルエンジンの排ガス後処理装置は、DPF122再生時には、DOC121の上流側に燃料を供給し、DOC121にて該燃料を酸化させることで、DOC121後の排ガス温度を、DPF122でPMが燃焼する温度(一般的には600〜650℃)まで昇温させる。
この際に、低負荷時でもDOC121が、燃料を酸化させることができる温度(一般的には250℃以上)に到達している必要がある。
The exhaust gas aftertreatment device of the diesel engine shown in FIG. 6 supplies the fuel to the upstream side of the DOC 121 and oxidizes the fuel at the DOC 121 when the DPF 122 is regenerated. The temperature is raised to a combustion temperature (generally 600 to 650 ° C.).
At this time, the DOC 121 needs to reach a temperature (generally 250 ° C. or higher) at which the fuel can be oxidized even at a low load.

エンジンの負荷が低い場合、即ち低負荷時にはDOC121入口の排ガス温度は100〜150℃程度であり、かかる温度ではDOC121にて燃料を酸化させることができない。
このため、従来のエンジンにおいては給気のスロットル弁105を絞ったり、あるいは排気のスロットル弁(図示省略)を 絞るという操作を行って、DOC121入口の排ガス温度を上昇させるための制御を行っている。
かかる排ガス温度を上昇させるための制御は、即ち給気のスロットル弁や排気のスロットル弁を絞る制御は、エンジンの熱効率を低下させる、また結果的にはエンジンの燃料消費率が悪化するという問題がある。
When the engine load is low, that is, when the load is low, the exhaust gas temperature at the inlet of the DOC 121 is about 100 to 150 ° C., and the fuel cannot be oxidized at the DOC 121 at such a temperature.
For this reason, in a conventional engine, control is performed to raise the exhaust gas temperature at the inlet of the DOC 121 by operating the throttle valve 105 for supplying air or the throttle valve (not shown) for exhaust. .
Such control for increasing the exhaust gas temperature, that is, control for restricting the throttle valve for supply air and the throttle valve for exhaust gas has a problem that the thermal efficiency of the engine is lowered and the fuel consumption rate of the engine is deteriorated as a result. is there.

尚、前記特許文献1には、DOCの下流とDPFとの間に、燃料噴射弁から、所定の時期に燃料を噴射して、DPFの温度を上昇させたDOCおよびDPFをそなえた排ガス後処理装置が開示されているのみで、前記問題点を解決する手段は示されていない。   Note that the above-mentioned Patent Document 1 discloses an exhaust gas post-treatment that includes DOC and DPF in which fuel is injected from a fuel injection valve at a predetermined time between the downstream of the DOC and the DPF, and the temperature of the DPF is increased. The device is only disclosed, and no means for solving the above problem is shown.

本発明はかかる従来技術の課題に鑑み、給気、排気のスロットル弁を絞る制御つまりエンジンの熱効率を低下させる制御を行うことなく、且つ燃料消費率の悪化を回避して、エンジンの特に低負荷において、排ガス温度を上昇させDOC、及びDPFを正常にさせ得るディーゼルエンジンの排ガス後処理装置を提供することを目的とする。   In view of the problems of the prior art, the present invention eliminates deterioration of the fuel consumption rate without performing control to throttle the throttle valve for supply and exhaust, that is, control for reducing the thermal efficiency of the engine, and particularly reduces the load on the engine. An object of the present invention is to provide an exhaust gas aftertreatment device for a diesel engine that can raise the exhaust gas temperature to normalize the DOC and DPF.

本発明はかかる課題を解決するもので、エンジンの排気ターボ過給機出口の排ガスをDOC(酸化触媒)及びDPF(ディーゼルパティキュレートフィルター)を通して、前記DOCで排ガス中の燃料を酸化させ、前記DPFで前記DOCにて燃料酸化後の排ガス中のPM(粒子状物質)を燃焼させて該排ガスを浄化するディーゼルエンジンの排ガス後処理装置において、
前記DPFの下流にDPF通過後の排ガスの熱と受熱媒体との熱交換により該受熱媒体に蓄熱する加熱熱交換器を設置し、前記DOCの排ガス入口部に前記加熱熱交換器で蓄熱した受熱媒体の熱と前記DOCの排ガス入口部の排ガスとを熱交換して受熱媒体の熱を排ガス中に放出する放熱熱交換器を設置し、前記加熱熱交換器と放熱熱交換器との間は、前記加熱熱交換器で受熱媒体に蓄熱した熱を外部と遮熱状態で前記放熱熱交換器に送る熱媒体通路を設けたことを特徴とする(請求項1)。
The present invention solves this problem, and exhausts exhaust gas at the exhaust turbocharger outlet of the engine through DOC (oxidation catalyst) and DPF (diesel particulate filter) to oxidize the fuel in the exhaust gas with the DOC, and the DPF In the exhaust gas aftertreatment device for a diesel engine that purifies the exhaust gas by burning PM (particulate matter) in the exhaust gas after fuel oxidation in the DOC,
A heat exchanger that stores heat in the heat receiving medium by heat exchange between the heat of the exhaust gas after passing through the DPF and the heat receiving medium is installed downstream of the DPF, and the heat received by the heating heat exchanger at the exhaust gas inlet of the DOC. A heat dissipating heat exchanger is installed to exchange heat between the heat of the medium and the exhaust gas at the exhaust gas inlet of the DOC, and the heat of the heat receiving medium is released into the exhaust gas. Between the heating heat exchanger and the heat dissipating heat exchanger, A heat medium passage is provided for sending the heat stored in the heat receiving medium by the heating heat exchanger to the heat radiating heat exchanger in a heat shield state with the outside (Claim 1).

かかる発明において、前記加熱熱交換器から熱媒体通路を通って前記放熱熱交換器を循環する熱媒体循環路を形成し、前記熱媒体通路中に前記受熱媒体に循環力を与える移送ポンプを設ける(請求項2)。   In such an invention, a heat medium circulation path that circulates through the heat dissipation heat exchanger from the heating heat exchanger through the heat medium passage is formed, and a transfer pump that provides a circulation force to the heat receiving medium is provided in the heat medium passage. (Claim 2).

また、本発明は、前記排気ターボ過給機の排気タービン入口への排ガス通路から分岐した加熱ガスを通す加熱管を前記加熱熱交換器の受熱媒体入口に接続し、前記加熱熱交換器から前記熱媒体通路を通り前記放熱熱交換器を通って前記放熱熱交換器で排ガス中に熱を放出した後の受熱媒体を、外気中に排出する排出路を設けたことを特徴とする(請求項3)。   In the present invention, a heating pipe for passing a heating gas branched from an exhaust gas passage to an exhaust turbine inlet of the exhaust turbocharger is connected to a heat receiving medium inlet of the heating heat exchanger, and the heating heat exchanger A discharge path for discharging the heat receiving medium after discharging heat into the exhaust gas by the heat dissipation heat exchanger through the heat medium passage through the heat dissipation heat exchanger is provided in the outside air. 3).

また、本発明は、前記排気ターボ過給機の排気タービン入口への排ガス通路から分岐した加熱ガスを通す加熱管を前記加熱熱交換器の受熱媒体入口に接続し、前記加熱熱交換器から前記熱媒体通路を通り前記放熱熱交換器を通って前記放熱熱交換器で排ガス中に熱を放出した後の受熱媒体を、前記DOCの排ガス入口管に接続する戻し通路を設けたことを特徴とする(請求項4)。   In the present invention, a heating pipe for passing a heating gas branched from an exhaust gas passage to an exhaust turbine inlet of the exhaust turbocharger is connected to a heat receiving medium inlet of the heating heat exchanger, and the heating heat exchanger A return passage is provided for connecting the heat receiving medium after releasing heat into the exhaust gas through the heat dissipation heat exchanger through the heat dissipation heat exchanger and into the exhaust gas inlet pipe of the DOC. (Claim 4).

本発明によれば、DPFの下流にDPF通過後の排ガスの熱と受熱媒体との熱交換により該受熱媒体に蓄熱する加熱熱交換器を設置し、DOCの排ガス入口部に前記加熱熱交換器で蓄熱した受熱媒体の熱と前記DOCの排ガス入口部の排ガスとを熱交換して受熱媒体の熱を排ガス中に放出する放熱熱交換器を設置し、前記加熱熱交換器と放熱熱交換器との間は、前記加熱熱交換器で受熱媒体に蓄熱した熱を外部と遮熱状態で前記放熱熱交換器に循環させる熱媒体通路を設け(請求項1)、特に、前記加熱熱交換器から前記熱媒体通路を通って前記放熱熱交換器を循環する熱媒体循環路を形成し、前記熱媒体通路中に前記受熱媒体に循環力を与える移送ポンプを設けて(請求項2)構成することによって、DPF通過後の高温ガス(前記600〜650℃程度)を、前記排ガスの熱と受熱媒体との熱交換により該受熱媒体に蓄熱する加熱熱交換器を用いて受熱媒体に蓄熱し、この受熱媒体の熱を、外部と遮熱状態で前記放熱熱交換器に送る熱媒体通路を通して、前記DOCの排ガス入口部に設置した放熱熱交換器で受けて、該放熱熱交換器で排ガスとを熱交換して受熱媒体の熱を排ガス中に放出する。
これにより、受熱媒体の熱でDOC入口の排ガスを加熱することとなり、DPF通過後の高温(600〜650℃)排ガスの熱を、前記加熱熱交換器と放熱熱交換器を用いて効率良く、DOCの排ガス入口部の排ガス温度を高めることができ、排ガス温度を高めるための燃料の量を低減できる。
According to the present invention, a heating heat exchanger that stores heat in the heat receiving medium by heat exchange between the heat of the exhaust gas after passing through the DPF and the heat receiving medium is installed downstream of the DPF, and the heating heat exchanger is disposed at the exhaust gas inlet of the DOC. A heat-dissipating heat exchanger for exchanging heat between the heat of the heat-receiving medium stored in the exhaust gas and the exhaust gas at the exhaust gas inlet of the DOC and releasing the heat of the heat-receiving medium into the exhaust gas; Is provided with a heat medium passage for circulating the heat stored in the heat receiving medium by the heating heat exchanger to the heat radiating heat exchanger in a heat shield state with the outside (Claim 1), in particular, the heating heat exchanger A heat pump that circulates the heat dissipation heat exchanger through the heat medium passage and a transfer pump that provides a circulation force to the heat receiving medium is provided in the heat medium passage (Claim 2). The hot gas after passing through the DPF 650 ° C.) is stored in the heat receiving medium using a heating heat exchanger that stores heat in the heat receiving medium by heat exchange between the heat of the exhaust gas and the heat receiving medium. Through the heat medium passage sent to the radiant heat exchanger, it is received by the radiant heat exchanger installed at the exhaust gas inlet of the DOC, and the radiant heat exchanger exchanges heat with the exhaust gas so that the heat of the heat receiving medium is contained in the exhaust gas. discharge.
As a result, the exhaust gas at the DOC inlet is heated by the heat of the heat receiving medium, and the heat of the high-temperature (600 to 650 ° C.) exhaust gas after passing through the DPF is efficiently obtained using the heating heat exchanger and the heat radiation heat exchanger. The exhaust gas temperature at the exhaust gas inlet of the DOC can be increased, and the amount of fuel for increasing the exhaust gas temperature can be reduced.

これにより、エンジンの特に低負荷において、DOC入口に排ガス温度を250℃以上のDPF作動温度まで上昇させることが容易となって、従来技術のような、給気、排気のスロットル弁を絞る制御つまりエンジンの熱効率を低下させる制御を行うことなく、且つ排ガス温度を高めるための燃料の量の増加を回避することによって、燃料消費率の悪化の回避効果が大きい。   This makes it easy to raise the exhaust gas temperature at the DOC inlet to a DPF operating temperature of 250 ° C. or higher at a particularly low load of the engine, that is, control to throttle the supply and exhaust throttle valves as in the prior art. Avoiding an increase in the amount of fuel for increasing the exhaust gas temperature without performing control that lowers the thermal efficiency of the engine, the effect of avoiding the deterioration of the fuel consumption rate is great.

また、本発明は、排気ターボ過給機の排気タービン入口への排ガス通路から分岐した加熱ガスを通す加熱管を前記発明と同様な加熱熱交換器の受熱媒体入口に接続し、前記加熱熱交換器から前記熱媒体通路を通り、前記発明と同様な放熱熱交換器を通って前記放熱熱交換器で排ガス中に熱を放出した後の受熱媒体を、外気中に排出する排出路を設けるように構成することによって(請求項3)、加熱熱交換器に、DPF通過後の高温ガス(前記600〜650℃程度)に加えて、排気ターボ過給機出口の排ガス通路から分岐した加熱ガスの熱を加えるので、加熱熱交換器での受熱媒体の温度が前記何れの場合よりも高くなり、排ガス温度を高めるための燃料の量を前記の場合よりもより多く低減できる。   In the present invention, a heating pipe for passing a heating gas branched from an exhaust gas passage to an exhaust turbine inlet of an exhaust turbocharger is connected to a heat receiving medium inlet of a heating heat exchanger similar to the above invention, and the heating heat exchange is performed. A discharge path for discharging the heat receiving medium after releasing heat into the exhaust gas by the heat dissipation heat exchanger through the heat medium passage similar to the invention through the heat medium passage to the outside air. (Claim 3), in addition to the high-temperature gas (about 600 to 650 ° C.) after passing through the DPF, in addition to the high-temperature gas (about 600 to 650 ° C.) after passing through the DPF, Since heat is applied, the temperature of the heat receiving medium in the heating heat exchanger becomes higher than in any of the above cases, and the amount of fuel for increasing the exhaust gas temperature can be reduced more than in the above case.

これにより、エンジンの特に低負荷において、DOC入口に排ガス温度を250℃以上のDPF作動温度まで上昇させることが前記の何れの場合よりも容易となって、従来技術のような、給気、排気のスロットル弁を絞る制御つまりエンジンの熱効率を低下させる制御を行うことなく、且つ排ガス温度を高めるための燃料の量の増加を回避することによって、燃料消費率の悪化の回避効果が大きくなる。
また、排気ターボ過給機出口の排ガス通路から分岐した加熱ガスの速度により、ガスの送り作用が得られるため、前記のような移送ポンプは不要となり、装置コストを低減できる。
This makes it easier to raise the exhaust gas temperature at the DOC inlet to a DPF operating temperature of 250 ° C. or higher at a particularly low load of the engine than in any of the above cases. By avoiding an increase in the amount of fuel for increasing the exhaust gas temperature without performing the control to throttle the throttle valve, that is, the control to reduce the thermal efficiency of the engine, the effect of avoiding the deterioration of the fuel consumption rate is increased.
Further, since the gas feeding action is obtained by the speed of the heated gas branched from the exhaust gas passage at the outlet of the exhaust turbo supercharger, the transfer pump as described above becomes unnecessary, and the apparatus cost can be reduced.

また、本発明は、排気ターボ過給機の排気タービン入口への排ガス通路から分岐した加熱ガスを通す加熱管を前記加熱熱交換器の受熱媒体入口に接続し、前記加熱熱交換器から前記熱媒体通路を通り前記放熱熱交換器を通って前記放熱熱交換器で排ガス中に熱を放出した後の受熱媒体を、前記DOCの排ガス入口管に接続する戻し通路を設けるように構成することによって(請求項4)、加熱熱交換器から熱媒体通路を通り放熱熱交換器を通って放熱熱交換器で排ガス中に熱を放出した後の受熱媒体を、戻し通路により前記DOCの排ガス入口管に戻して、その戻しガスをDOCの排ガス入口管の排ガスを加熱に利用するので、前記の場合よりも排ガス温度を高めるための燃料の量の増加の回避効果が大きくなって、燃料消費率の悪化の回避効果も大きくなる。   In the present invention, a heating pipe for passing a heating gas branched from an exhaust gas passage to an exhaust turbine inlet of an exhaust turbocharger is connected to a heat receiving medium inlet of the heating heat exchanger, and the heating heat exchanger supplies the heat By providing a return passage for connecting the heat receiving medium after releasing heat into the exhaust gas through the heat dissipation heat exchanger through the medium passage to the exhaust gas inlet pipe of the DOC. (Claim 4) The heat receiving medium after releasing heat into the exhaust gas from the heating heat exchanger through the heat medium passage, through the heat medium heat exchanger, and into the exhaust gas by the heat radiation heat exchanger, the exhaust gas inlet pipe of the DOC through the return path Since the return gas is used for heating the exhaust gas of the exhaust gas inlet pipe of the DOC, the effect of avoiding an increase in the amount of fuel for increasing the exhaust gas temperature is greater than in the above case, and the fuel consumption rate is reduced. Avoiding deterioration Fruit also increased.

参考例に係るDOC(酸化触媒)及びDPF(ディーゼルパティキュレートフィルター)装置を備えたディーゼルエンジンの全体構成図である。It is a whole block diagram of the diesel engine provided with the DOC (oxidation catalyst) and DPF (diesel particulate filter) device which concern on a reference example. 参考例に係る排ガス後処理装置の断面図である。It is sectional drawing of the exhaust gas aftertreatment apparatus which concerns on a reference example. 本発明の第1実施形態に係る排ガス後処理装置の断面図である。It is sectional drawing of the exhaust gas post-processing apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る図1対応図である。FIG. 3 is a diagram corresponding to FIG. 1 according to a second embodiment of the present invention. 本発明の第3実施形態に係る図1対応図である。FIG. 6 is a diagram corresponding to FIG. 1 according to a third embodiment of the present invention. 従来技術に係るDOC(酸化触媒)及びDPF(ディーゼルパティキュレートフィルター)装置を備えたディーゼルエンジンの全体構成図であるIt is a whole block diagram of the diesel engine provided with the DOC (oxidation catalyst) and DPF (diesel particulate filter) device concerning a prior art.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to specific examples unless otherwise specifically described. Only.

図1は本発明の基本構成に係る参考例を示し、DOC(酸化触媒)及びDPF(ディーゼルパティキュレートフィルター)装置を備えたディーゼルエンジンの全体構成図である。
図1において、ディーゼルエンジン(以下エンジン100という)は、排気タービン109とこれに同軸駆動されるコンプレッサ108を有する排気ターボ過給機110を備えており、該過給機110のコンプレッサ108から吐出された空気は空気管107を通って空気冷却器106に入り、該空気冷却器106で冷却される。
該空気冷却器106で冷却された空気は、吸気スロットル弁105で開度を制御された後、給気管104を通り、シリンダ毎に設けられた給気ポートからエンジン100に吸入される。
FIG. 1 shows a reference example according to the basic configuration of the present invention, and is an overall configuration diagram of a diesel engine including a DOC (oxidation catalyst) and a DPF (diesel particulate filter) device.
In FIG. 1, a diesel engine (hereinafter referred to as engine 100) includes an exhaust turbocharger 110 having an exhaust turbine 109 and a compressor 108 driven coaxially thereto, and is discharged from the compressor 108 of the supercharger 110. The air enters the air cooler 106 through the air pipe 107 and is cooled by the air cooler 106.
The air cooled by the air cooler 106 is controlled in its opening by the intake throttle valve 105, passes through the air supply pipe 104, and is sucked into the engine 100 from an air supply port provided for each cylinder.

エンジン100においては、コモンレール(蓄圧器)102にて蓄圧された高圧燃料が、コモンレール制御装置103により噴射時期及び噴射量を制御され、かかる噴射時期及び噴射量にて、シリンダ毎に設けられた燃料噴射弁101から噴射される。噴射された高圧燃料は前記空気との混合によって燃焼される。   In the engine 100, the high-pressure fuel accumulated in the common rail (pressure accumulator) 102 is controlled in injection timing and injection amount by the common rail control device 103, and the fuel provided for each cylinder at the injection timing and injection amount. It is injected from the injection valve 101. The injected high-pressure fuel is burned by mixing with the air.

また、前記排気集合管111の途中から、EGR(排ガス再循環)管116が分岐されて、排ガス120の一部(EGRガス)はEGR管116を通り、EGRクーラ115で降温され、EGR弁114で流量を制御されて、給気管104の吸気スロットルバルブ105に下流部位に投入される。
そして、エンジン100で燃焼された燃焼ガス即ち排ガス120は、シリンダ毎に設けられた排気ポートが集合した排気集合管111を通って、前記排気ターボ過給機110の排気タービン109を駆動して前記コンプレッサ108の動力源となった後、排気管112を通って排ガス後処理装置1に入る。
Further, an EGR (exhaust gas recirculation) pipe 116 is branched from the middle of the exhaust collecting pipe 111, and a part of the exhaust gas 120 (EGR gas) passes through the EGR pipe 116 and is cooled by the EGR cooler 115, and the EGR valve 114. Then, the flow rate is controlled and the intake throttle valve 105 of the supply pipe 104 is introduced into the downstream portion.
The combustion gas burned in the engine 100, that is, the exhaust gas 120, drives the exhaust turbine 109 of the exhaust turbo supercharger 110 through the exhaust collecting pipe 111 in which exhaust ports provided for each cylinder are gathered. After becoming the power source of the compressor 108, the exhaust gas after-treatment device 1 is entered through the exhaust pipe 112.

以上の構成は、図6に示す従来技術と同様である。
本発明は、前記排ガス後処理装置1の構成に関するものである。
The above configuration is the same as that of the prior art shown in FIG.
The present invention relates to the configuration of the exhaust gas aftertreatment device 1.

図2は、参考例に係る排ガス後処理装置の断面図である。
図2及び図1において、前記排気管112を通った排ガスは、排ガス後処理装置1の入口室123から前記DOC121及びDPF122に入る。
即ち前記エンジン100からの排ガスは、前記排気管112から排ガス後処理装置1の入口室123を通ってDOC121に入る。
FIG. 2 is a cross-sectional view of an exhaust gas aftertreatment device according to a reference example.
2 and 1, the exhaust gas that has passed through the exhaust pipe 112 enters the DOC 121 and the DPF 122 from the inlet chamber 123 of the exhaust gas aftertreatment device 1.
That is, the exhaust gas from the engine 100 enters the DOC 121 from the exhaust pipe 112 through the inlet chamber 123 of the exhaust gas aftertreatment device 1.

本発明においては、かかる排ガス後処理装置1を次のように構成している。
即ち、図2及び図1において、ケース122a内には、DOC121と間隔123aを隔ててDPF122が収納されている。
前記DPF122の下流の下流室124には、DPF122通過後の排ガスの熱を受熱する伝熱板3を設置し、前記DOC121の排ガス入口部を構成する上流室123には、前記伝熱板3から伝送された熱を放出する放熱板2を設置している。
そして、前記伝熱板3と放熱板2との間を、外部との間に遮熱性を有する熱伝導体4で接続している。
In the present invention, the exhaust gas aftertreatment device 1 is configured as follows.
That is, in FIGS. 2 and 1, the DPF 122 is accommodated in the case 122 a with a distance 123 a from the DOC 121.
The downstream chamber 124 downstream of the DPF 122 is provided with a heat transfer plate 3 that receives the heat of the exhaust gas after passing through the DPF 122, and the upstream chamber 123 that constitutes the exhaust gas inlet portion of the DOC 121 is provided with the heat transfer plate 3. A heat radiating plate 2 that releases the transmitted heat is provided.
The heat transfer plate 3 and the heat radiating plate 2 are connected to each other by a heat conductor 4 having heat shielding properties.

前記伝熱板3及び放熱板2は、多くの孔が穿孔された多孔板、あるいは扁平状に且つ排ガス通過が可能に設けられた伝熱チューブの何れかよりなり、また前記熱伝導体4は遮熱性を有する熱伝導体即ちヒートパイプ(金属管の中に冷媒を入れ、液体の蒸発と凝縮の潜熱を利用して熱移動、排熱を行う)、あるいは外部への放熱機能を遮断した伝熱パイプにより構成されている。このように、かかる伝熱板3及び放熱板2及び熱伝導体4は、きわめて簡単かつ低コストの装置で構成されている。   The heat transfer plate 3 and the heat radiating plate 2 are either a perforated plate in which many holes are perforated or a heat transfer tube that is flat and capable of passing exhaust gas. Heat conductor with heat insulation, that is, a heat pipe (a refrigerant is put in a metal tube, and heat transfer and exhaust heat are performed by using the latent heat of evaporation and condensation of liquid), or the heat transfer function is cut off to the outside. It consists of a heat pipe. As described above, the heat transfer plate 3, the heat radiating plate 2, and the heat conductor 4 are configured by a very simple and low-cost apparatus.

かかる参考例において、前記DPF122では、該DPF122に堆積したPMを燃焼させ、燃焼ガスは出口室124から排気出口管113に排出される。このときの、DPF122通過後の排ガス温度は600〜650℃と高温である。
参考例においては、前記伝熱板3を用いて、該伝熱板3を前記600〜650℃程度の排ガス温度で加熱し、この伝熱板3を、外部との間に遮熱性を有する熱伝導体4を介して、DOC121の排ガス入口部を構成する上流室123に設置された放熱板2に接続し、該熱伝導体4からの伝熱板3の熱を放熱板2に伝達して、該放熱板2によりDOC121入口の排ガス中に放熱して、DOC121入口の排ガスを加熱している。
これにより、DPF122通過後の高温(600〜650℃)排ガスの熱を用いて、DOC121の排ガス入口部の排ガス温度を高めることができ、従って、排ガス温度を高めるための燃料の量を低減できる。
この場合、前記DOC121とDPF122との間隔123aの温度は、250〜600℃程度となり、エンジン100の低負荷でもDPF122の作動に十分な温度である。
In the reference example, the DPF 122 burns PM deposited on the DPF 122, and the combustion gas is discharged from the outlet chamber 124 to the exhaust outlet pipe 113. At this time, the exhaust gas temperature after passing through the DPF 122 is as high as 600 to 650 ° C.
In the reference example, the heat transfer plate 3 is used to heat the heat transfer plate 3 at an exhaust gas temperature of about 600 to 650 ° C., and the heat transfer plate 3 is heat having heat shielding properties with the outside. It connects to the heat sink 2 installed in the upstream chamber 123 that constitutes the exhaust gas inlet of the DOC 121 through the conductor 4, and transfers the heat of the heat transfer plate 3 from the heat conductor 4 to the heat sink 2. The heat radiating plate 2 radiates heat into the exhaust gas at the entrance of the DOC 121 to heat the exhaust gas at the entrance of the DOC 121.
Thereby, the exhaust gas temperature at the exhaust gas inlet portion of the DOC 121 can be increased using the heat of the high-temperature (600 to 650 ° C.) exhaust gas after passing through the DPF 122, and therefore the amount of fuel for increasing the exhaust gas temperature can be reduced.
In this case, the temperature of the gap 123a between the DOC 121 and the DPF 122 is about 250 to 600 ° C., which is a temperature sufficient for the operation of the DPF 122 even at a low load of the engine 100.

これにより、エンジン100の特に低負荷において、DOC121入口に排ガス温度を250℃以上のDPF作動温度まで上昇させることが可能となって、従来技術のような、給気のスロットル弁105や排気のスロットル弁を絞る制御つまりエンジン100の熱効率を低下させる制御を行うことがなくなる。また、排ガス温度を高めるための燃料の量の増加を回避することによって燃料消費率の悪化を回避できる。   This makes it possible to raise the exhaust gas temperature at the inlet of the DOC 121 to a DPF operating temperature of 250 ° C. or higher at a particularly low load of the engine 100. There is no need to perform control to throttle the valve, that is, control to reduce the thermal efficiency of the engine 100. Further, the deterioration of the fuel consumption rate can be avoided by avoiding an increase in the amount of fuel for increasing the exhaust gas temperature.

(第1実施形態)
図3は、第1実施形態に係る排ガス後処理装置の断面図である。
この第1実施形態においては、前記DPF122の下流室124にDPF122通過後の排ガスの熱と受熱媒体との熱交換により該受熱媒体に蓄熱する加熱熱交換器6を設置し、前記DOC121の排ガス入口部(上流室123)に放熱熱交換器7を設置し、前記加熱熱交換器6で蓄熱した受熱媒体の熱を前記DOC121の排ガス入口部(上流室123)の排ガス中に放出する。前記加熱熱交換器6と放熱熱交換器7との間は、前記加熱熱交換器6で受熱媒体に蓄熱した熱を、外部と遮熱状態で前記放熱熱交換器7に循環させる熱媒体通路8を設けている。
(First embodiment)
FIG. 3 is a cross-sectional view of the exhaust gas aftertreatment device according to the first embodiment.
In the first embodiment, a heating heat exchanger 6 that stores heat in the heat receiving medium by heat exchange between the heat of the exhaust gas after passing through the DPF 122 and the heat receiving medium is installed in the downstream chamber 124 of the DPF 122, and the exhaust gas inlet of the DOC 121 The heat radiating heat exchanger 7 is installed in the section (upstream chamber 123), and the heat of the heat receiving medium stored in the heating heat exchanger 6 is released into the exhaust gas at the exhaust gas inlet section (upstream chamber 123) of the DOC 121. Between the heating heat exchanger 6 and the radiant heat exchanger 7, a heat medium passage that circulates the heat stored in the heat receiving medium by the heating heat exchanger 6 to the radiant heat exchanger 7 in a heat shield state from the outside. 8 is provided.

そして、かかる第1実施形態においては、前記加熱熱交換器6から前記熱媒体通路8を通って前記放熱熱交換器7を循環する熱媒体循環路8aを形成し、熱媒体通路8中に前記受熱媒体に循環力を与える移送ポンプ9を設けている。   And in this 1st Embodiment, the heat-medium circulation path 8a which circulates through the said heat-radiation heat exchanger 7 through the said heat-medium channel | path 8 from the said heating heat exchanger 6 is formed, and the said heat-medium channel | path 8 contains the said A transfer pump 9 for providing a circulation force to the heat receiving medium is provided.

かかる第1実施形態によれば、DPF122通過後の高温ガス(前記600〜650℃程度)を、前記排ガスの熱と受熱媒体との熱交換により該受熱媒体に蓄熱する加熱熱交換器6を用いて受熱媒体に蓄熱し、この受熱媒体の熱を、外部と遮熱状態で前記放熱熱交換器に送る熱媒体通路8を通して、前記DOC121の排ガス入口部即ち上流室123に設置した放熱熱交換器7で受けて、該放熱熱交換器7で排ガスと熱交換して受熱媒体の熱を排ガス中に放出している。   According to the first embodiment, the heating heat exchanger 6 that stores the high-temperature gas (about 600 to 650 ° C.) after passing through the DPF 122 in the heat receiving medium by heat exchange between the heat of the exhaust gas and the heat receiving medium is used. The heat-dissipating heat exchanger is installed in the exhaust gas inlet portion of the DOC 121, that is, the upstream chamber 123 through the heat medium passage 8 that stores heat in the heat-receiving medium and sends the heat of the heat-receiving medium to the heat-dissipating heat exchanger in a heat-shielded state from the outside 7 and the heat radiating heat exchanger 7 exchanges heat with the exhaust gas to release the heat of the heat receiving medium into the exhaust gas.

これにより、前記受熱媒体の熱でDOC121入口の排ガスを加熱することとなり、DPF122通過後の高温(600〜650℃)排ガスの熱を、前記加熱熱交換器6と放熱熱交換器7を用いて効率良く、DOC121の排ガス入口部(上流室123)の排ガス温度を高めることができ、排ガス温度を高めるための燃料の量を低減できる。   As a result, the exhaust gas at the inlet of the DOC 121 is heated by the heat of the heat receiving medium, and the heat of the high-temperature (600 to 650 ° C.) exhaust gas after passing through the DPF 122 is converted using the heating heat exchanger 6 and the heat radiation heat exchanger 7. The exhaust gas temperature at the exhaust gas inlet (upstream chamber 123) of the DOC 121 can be increased efficiently, and the amount of fuel for increasing the exhaust gas temperature can be reduced.

従って、エンジンの特に低負荷において、DOC121入口に排ガス温度を必要な250℃以上のDPF作動温度まで上昇させることが前記参考例の場合よりも容易となって、従来技術のような、給気のスロットル弁105や排気のスロットル弁を絞る制御つまりエンジンの熱効率を低下させる制御を行うのを回避できる。
また、排ガス温度を高めるための燃料の量の増加を回避できることによって、前記参考例の場合よりも、燃料消費率の悪化の回避効果が大きくなる。
その他の構成は、前記参考例(図2)と同様であり、これと同一の部材は同一の符号で示す。
Accordingly, it is easier to raise the exhaust gas temperature at the inlet of the DOC 121 to the required DPF operating temperature of 250 ° C. or higher at a particularly low load of the engine than in the case of the above reference example. It is possible to avoid performing control to throttle the throttle valve 105 and the exhaust throttle valve, that is, control to reduce the thermal efficiency of the engine.
Further, since the increase in the amount of fuel for increasing the exhaust gas temperature can be avoided, the effect of avoiding the deterioration of the fuel consumption rate becomes greater than in the case of the reference example.
Other configurations are the same as those of the reference example (FIG. 2), and the same members are denoted by the same reference numerals.

(第2実施形態)
図4は、本発明の第2実施形態に係る図1対応図である。
この第2実施形態においては、排気ターボ過給機110の排気タービン109出口の排気管112から分岐した加熱ガスを通す加熱管11を前記第1実施形態と同様な加熱熱交換器6の受熱媒体入口に接続している。
さらに、加熱熱交換器か6から前記熱媒体通路8を通り、前記第1実施形態と同様な放熱熱交換器7を通って、該放熱熱交換器7で排ガス入口部の上流室123で排ガス中に熱を放出した後の受熱媒体を、外気中に排出する排出路11bを設けている。
(Second Embodiment)
FIG. 4 is a diagram corresponding to FIG. 1 according to the second embodiment of the present invention.
In the second embodiment, the heating pipe 11 through which the heated gas branched from the exhaust pipe 112 at the outlet of the exhaust turbine 109 of the exhaust turbocharger 110 passes is the heat receiving medium of the heating heat exchanger 6 similar to the first embodiment. Connected to the entrance.
Further, the heat exchanger 6 passes through the heat medium passage 8, passes through the heat dissipating heat exchanger 7 similar to that of the first embodiment, and the heat dissipating heat exchanger 7 exhausts the exhaust gas in the upstream chamber 123 at the exhaust gas inlet. A discharge path 11b for discharging the heat receiving medium after releasing heat into the outside air is provided.

このように構成すれば、加熱熱交換器6に、DPF122通過後の高温ガス(前記600〜650℃程度)に加えて、排気ターボ過給機110の排気タービン109の入口から分岐した加熱ガスを通す加熱管11を、前記第1実施形態と同様な加熱熱交換器6の受熱媒体入口に接続している。
従って、加熱熱交換器6に、DPF122通過後の高温ガス(前記600〜650℃程度)に加えて、排気ターボ過給機110の排気タービン109出口の排気管112から分岐した加熱管11により、加熱ガスの熱を加えるので、加熱熱交換器6での受熱媒体の温度が前記参考例、第1実施形態の何れの場合よりも高くなり、排ガス温度を高めるための燃料の量を前記参考例、第1実施形態の場合よりもより多く低減できる。
With this configuration, in addition to the high-temperature gas (about 600 to 650 ° C.) after passing through the DPF 122, the heating gas branched from the inlet of the exhaust turbine 109 of the exhaust turbocharger 110 is supplied to the heating heat exchanger 6. The heating tube 11 to be passed is connected to the heat receiving medium inlet of the heating heat exchanger 6 similar to the first embodiment.
Therefore, in addition to the high-temperature gas (about 600 to 650 ° C.) after passing through the DPF 122, the heating pipe 11 branched from the exhaust pipe 112 at the outlet of the exhaust turbine 109 of the exhaust turbocharger 110 is supplied to the heating heat exchanger 6. Since the heat of the heating gas is applied, the temperature of the heat receiving medium in the heating heat exchanger 6 becomes higher than in the case of either the reference example or the first embodiment, and the amount of fuel for increasing the exhaust gas temperature is set to the reference example. This can be reduced more than in the first embodiment.

これにより、エンジン100の特に低負荷において、DOC121入口に排ガス温度を250℃以上のDPF122作動温度まで上昇させることが、前記参考例、第1実施形態よりも容易となって、従来技術のような、給気スロットル弁105や排気のスロットル弁を絞る制御つまりエンジンの熱効率を低下させる制御を行うのを回避できる。
また、排ガス温度を高めるための燃料の量の増加を回避できることによって、前記参考例、第1実施形態の場合よりも、燃料消費率の悪化の回避効果が大きくなる。
また、排気ターボ過給機110の排気タービン109出口の排気管112から分岐した加熱管11での加熱ガスの速度により、ガスの送り作用が得られるため、前記第1実施形態のような移送ポンプ9は不要となり、装置コストを低減できる。
その他の構成は、前記参考例(図1)と同様であり、これと同一の部材は同一の符号で示す。
As a result, it is easier to raise the exhaust gas temperature at the inlet of the DOC 121 to the DPF 122 operating temperature of 250 ° C. or higher at the low load of the engine 100 than in the reference example and the first embodiment. Therefore, it is possible to avoid performing control for reducing the supply throttle valve 105 and the exhaust throttle valve, that is, control for reducing the thermal efficiency of the engine.
Moreover, since the increase in the amount of fuel for increasing the exhaust gas temperature can be avoided, the effect of avoiding the deterioration of the fuel consumption rate is greater than in the case of the reference example and the first embodiment.
Further, since the gas feed action is obtained by the heating gas speed in the heating pipe 11 branched from the exhaust pipe 112 at the outlet of the exhaust turbine 109 of the exhaust turbocharger 110, the transfer pump as in the first embodiment is obtained. No. 9 becomes unnecessary, and the apparatus cost can be reduced.
Other configurations are the same as those of the reference example (FIG. 1), and the same members are denoted by the same reference numerals.

(第3実施形態)
図5は、本発明の第3実施形態に係る図1対応図である。
この第3実施形態においては、前記第2実施形態に、放熱熱交換器7出口の放熱ガスを前記DOC121の排気管112に接続する戻し通路13を設けている。
即ち、排気ターボ過給機110の排気タービン109の入口から分岐した加熱ガスを通す加熱管11を前記加熱熱交換器6の受熱媒体入口に接続し、前記加熱熱交換器6から前記熱媒体通路8を通り、前記放熱熱交換器7で排ガス中に熱を放出した後の受熱媒体を、前記DOC121の排気管112に接続する戻し通路13を設けている。
(Third embodiment)
FIG. 5 is a block diagram corresponding to FIG. 1 according to the third embodiment of the present invention.
In the third embodiment, a return passage 13 is provided in the second embodiment to connect the heat radiation gas at the outlet of the heat radiation heat exchanger 7 to the exhaust pipe 112 of the DOC 121.
That is, the heating pipe 11 through which the heating gas branched from the inlet of the exhaust turbine 109 of the exhaust turbocharger 110 is connected to the heat receiving medium inlet of the heating heat exchanger 6, and the heating medium passage extends from the heating heat exchanger 6. 8, a return passage 13 is provided for connecting the heat receiving medium after the heat is released into the exhaust gas by the radiative heat exchanger 7 to the exhaust pipe 112 of the DOC 121.

かかる第3実施形態によれば、加熱熱交換器6から熱媒体通路8を通り放熱熱交換器7を通って該放熱熱交換器7で排ガス中に熱を放出した後の受熱媒体を、戻し通路13により前記DOC121の排気管112に戻して、その戻しガスをDOC121の排ガス入口管の排ガスの加熱に利用できるので、前記の第2実施形態よりも排ガス温度を高めるための燃料の量の増加の回避効果が大きくなって、燃料消費率の悪化の回避効果も大きくなる。
その他の構成は、前記参考例(図1)と同様であり、これと同一の部材は同一の符号で示す。
According to the third embodiment, the heat receiving medium after releasing heat into the exhaust gas by the heat radiating heat exchanger 7 through the heat medium passage 8 from the heating heat exchanger 6 and the heat radiating heat exchanger 7 is returned. Since the return gas can be returned to the exhaust pipe 112 of the DOC 121 by the passage 13 and the return gas can be used for heating the exhaust gas of the exhaust gas inlet pipe of the DOC 121, an increase in the amount of fuel for increasing the exhaust gas temperature as compared with the second embodiment. As a result, the effect of avoiding the deterioration of the fuel consumption rate is also increased.
Other configurations are the same as those of the reference example (FIG. 1), and the same members are denoted by the same reference numerals.

本発明によれば、給気、排気のスロットル弁を絞る制御つまりエンジンの熱効率を低下させる制御を行うことなく、且つ燃料消費率の悪化を回避して、エンジンの特に低負荷において、排ガス温度を上昇させDOC、及びDPFを正常にさせ得るディーゼルエンジンの排ガス後処理装置を提供できる。   According to the present invention, the exhaust gas temperature can be reduced, particularly at a low load of the engine, without performing control for reducing the throttle valve for supply and exhaust, that is, control for reducing the thermal efficiency of the engine, and avoiding deterioration of the fuel consumption rate. It is possible to provide an exhaust gas aftertreatment device for a diesel engine that can be raised to normalize DOC and DPF.

1 排ガス後処理装置
2 放熱板
3 伝熱板
4 熱伝導体
6 加熱熱交換器
7 放熱熱交換器
8 熱媒体通路
8a 熱媒体循環路
9 移送ポンプ
11 加熱管
11b 排出路
13 戻し通路
100 エンジン
101 燃料噴射弁
102 コモンレール(蓄圧器)
103 コモンレール制御装置
104 給気管
105 給気スロットルバルブ
110 排気ターボ過給機
111 排気集合管
112 排気管
116 EGR(排ガス再循環)管
120 排ガス
121 DOC
122 DPF
DESCRIPTION OF SYMBOLS 1 Exhaust gas post-processing apparatus 2 Heat sink 3 Heat transfer plate 4 Heat conductor 6 Heating heat exchanger 7 Heat dissipation heat exchanger 8 Heat medium passage 8a Heat medium circulation path 9 Transfer pump 11 Heating pipe 11b Discharge path 13 Return path 100 Engine 101 Fuel injection valve 102 Common rail (pressure accumulator)
DESCRIPTION OF SYMBOLS 103 Common rail control apparatus 104 Air supply pipe 105 Supply air throttle valve 110 Exhaust turbo supercharger 111 Exhaust gas collection pipe 112 Exhaust pipe 116 EGR (exhaust gas recirculation) pipe 120 Exhaust gas 121 DOC
122 DPF

Claims (4)

エンジンの排気ターボ過給機出口の排ガスをDOC及びDPFを通して、前記DOCで排ガス中の燃料を酸化させ、前記DPFで前記DOCにて燃料酸化後の排ガス中のPMを燃焼させて該排ガスを浄化するディーゼルエンジンの排ガス後処理装置において、
前記DPFの下流にDPF通過後の排ガスの熱と受熱媒体との熱交換により該受熱媒体に蓄熱する加熱熱交換器を設置し、前記DOCの排ガス入口部に前記加熱熱交換器で蓄熱した受熱媒体の熱と前記DOCの排ガス入口部の排ガスとを熱交換して受熱媒体の熱を排ガス中に放出する放熱熱交換器を設置し、前記加熱熱交換器と放熱熱交換器との間には、前記加熱熱交換器で受熱媒体に蓄熱した熱を外部と遮熱状態で前記放熱熱交換器に送る熱媒体通路を設けたことを特徴とするディーゼルエンジンの排ガス後処理装置。
The exhaust gas at the outlet of the engine turbocharger passes through the DOC and DPF, oxidizes the fuel in the exhaust gas with the DOC, and burns the PM in the exhaust gas after the fuel oxidation with the DOC with the DPF to purify the exhaust gas. In the exhaust gas aftertreatment device for diesel engines,
A heat exchanger that stores heat in the heat receiving medium by heat exchange between the heat of the exhaust gas after passing through the DPF and the heat receiving medium is installed downstream of the DPF, and the heat received by the heating heat exchanger at the exhaust gas inlet of the DOC. A heat dissipating heat exchanger is provided for exchanging heat between the heat of the medium and the exhaust gas at the exhaust gas inlet of the DOC to release the heat of the heat receiving medium into the exhaust gas, and between the heating heat exchanger and the heat dissipating heat exchanger. Is an exhaust gas aftertreatment device for a diesel engine, characterized in that a heat medium passage is provided for sending heat stored in a heat receiving medium by the heating heat exchanger to the heat radiating heat exchanger in a heat shield state from the outside.
前記加熱熱交換器から熱媒体通路を通って前記放熱熱交換器を循環する熱媒体循環路を形成し、前記熱媒体通路中に前記受熱媒体に循環力を与える移送ポンプを設けたことを特徴とする請求項1記載のディーゼルエンジンの排ガス後処理装置。   A heat medium circulation path that circulates through the heat dissipation heat exchanger from the heating heat exchanger through the heat medium passage is formed, and a transfer pump that provides a circulation force to the heat receiving medium is provided in the heat medium passage. The exhaust gas aftertreatment device for a diesel engine according to claim 1. 前記排気ターボ過給機の排気タービン入口への排ガス通路から分岐した加熱ガスを通す加熱管を前記加熱熱交換器の受熱媒体入口に接続し、前記加熱熱交換器から前記熱媒体通路を通り前記放熱熱交換器を通って前記放熱熱交換器で排ガス中に熱を放出した後の受熱媒体を、外気中に排出する排出路を設けたことを特徴とする請求項1記載のディーゼルエンジンの排ガス後処理装置。   A heating pipe for passing a heating gas branched from an exhaust gas passage to an exhaust turbine inlet of the exhaust turbocharger is connected to a heat receiving medium inlet of the heating heat exchanger, and the heating heat exchanger passes through the heating medium passage to pass through the heating medium passage. The exhaust gas of a diesel engine according to claim 1, further comprising a discharge path for discharging the heat receiving medium after releasing heat into the exhaust gas through the heat dissipation heat exchanger into the exhaust gas. Post-processing device. 前記排気ターボ過給機の排気タービン入口への排ガス通路から分岐した加熱ガスを通す加熱管を前記加熱熱交換器の受熱媒体入口に接続し、前記加熱熱交換器から前記熱媒体通路を通り前記放熱熱交換器を通って前記放熱熱交換器で排ガス中に熱を放出した後の受熱媒体を、前記DOCの排ガス入口管に接続する戻し通路を設けたことを特徴とする請求項1記載のディーゼルエンジンの排ガス後処理装置。
A heating pipe for passing a heating gas branched from an exhaust gas passage to an exhaust turbine inlet of the exhaust turbocharger is connected to a heat receiving medium inlet of the heating heat exchanger, and the heating heat exchanger passes through the heating medium passage to pass through the heating medium passage. The return passage which connects the heat receiving medium after releasing heat in exhaust gas with the radiant heat exchanger through the radiant heat exchanger to the exhaust gas inlet pipe of the DOC is provided. Diesel engine exhaust gas aftertreatment device.
JP2011267308A 2011-12-06 2011-12-06 Exhaust gas after-treatment device of diesel engine Pending JP2012067756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011267308A JP2012067756A (en) 2011-12-06 2011-12-06 Exhaust gas after-treatment device of diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011267308A JP2012067756A (en) 2011-12-06 2011-12-06 Exhaust gas after-treatment device of diesel engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008240509A Division JP5022328B2 (en) 2008-09-19 2008-09-19 Diesel engine exhaust gas aftertreatment system

Publications (1)

Publication Number Publication Date
JP2012067756A true JP2012067756A (en) 2012-04-05

Family

ID=46165278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011267308A Pending JP2012067756A (en) 2011-12-06 2011-12-06 Exhaust gas after-treatment device of diesel engine

Country Status (1)

Country Link
JP (1) JP2012067756A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6322321U (en) * 1986-07-30 1988-02-15
JPH11336610A (en) * 1998-05-22 1999-12-07 Toyota Auto Body Co Ltd Cogeneration system
JP2005282503A (en) * 2004-03-30 2005-10-13 Honda Motor Co Ltd Heating device for automobile
JP2005299474A (en) * 2004-04-09 2005-10-27 Isuzu Motors Ltd Exhaust gas purification system
JP2006527819A (en) * 2003-06-18 2006-12-07 ボルボ ラストバグナー アーベー Device for adjusting the temperature of exhaust gas
JP2010038072A (en) * 2008-08-06 2010-02-18 Denso Corp Exhaust treatment device for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6322321U (en) * 1986-07-30 1988-02-15
JPH11336610A (en) * 1998-05-22 1999-12-07 Toyota Auto Body Co Ltd Cogeneration system
JP2006527819A (en) * 2003-06-18 2006-12-07 ボルボ ラストバグナー アーベー Device for adjusting the temperature of exhaust gas
JP2005282503A (en) * 2004-03-30 2005-10-13 Honda Motor Co Ltd Heating device for automobile
JP2005299474A (en) * 2004-04-09 2005-10-27 Isuzu Motors Ltd Exhaust gas purification system
JP2010038072A (en) * 2008-08-06 2010-02-18 Denso Corp Exhaust treatment device for internal combustion engine

Similar Documents

Publication Publication Date Title
US7251932B2 (en) Exhaust system and method for controlling exhaust gas flow and temperature through regenerable exhaust gas treatment devices
US20080083215A1 (en) Standalone thermal energy recycling device for engine after-treatment systems
WO2008030314A1 (en) Emissions reduction system
EP2982842B1 (en) System for reducing harmful emissions of an internal combustion engine
US20060196176A1 (en) Apparatus for adjusting the temperature of exhaust gases
JP5030911B2 (en) Diesel engine exhaust gas aftertreatment system
CN109944669B (en) Engine
JP5352676B2 (en) Internal combustion engine system and particulate filter device for internal combustion engine system
US9003792B2 (en) Exhaust aftertreatment and exhaust gas recirculation systems
JP5022328B2 (en) Diesel engine exhaust gas aftertreatment system
JP2019112949A (en) engine
JP6901963B2 (en) engine
JP2018003667A (en) Cooling device for exhaust emission control system
JP2016211486A (en) Exhaust emission control system
JP5604912B2 (en) Automotive exhaust purification system
JP2012067756A (en) Exhaust gas after-treatment device of diesel engine
JP4400378B2 (en) Exhaust gas purification device for internal combustion engine
JP6183170B2 (en) Engine heat removal control system
JP2019112952A (en) engine
JP2015068266A (en) Exhaust emission control system and exhaust emission control method
GB2533157B (en) Thermal energy management system and method
JP2010285967A (en) Internal combustion engine
US10794298B2 (en) Engine
JP2015055207A (en) Exhaust emission control device temperature rising system and temperature rising method for exhaust emission control device for internal combustion engine
JP2015055206A (en) Exhaust emission control device temperature rising system and temperature rising method for exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702