JP2017095736A - Pseudo alloy coated member, aluminium alloy for pseudo alloy coating and aluminium alloy wire for pseudo alloy coating - Google Patents

Pseudo alloy coated member, aluminium alloy for pseudo alloy coating and aluminium alloy wire for pseudo alloy coating Download PDF

Info

Publication number
JP2017095736A
JP2017095736A JP2015225606A JP2015225606A JP2017095736A JP 2017095736 A JP2017095736 A JP 2017095736A JP 2015225606 A JP2015225606 A JP 2015225606A JP 2015225606 A JP2015225606 A JP 2015225606A JP 2017095736 A JP2017095736 A JP 2017095736A
Authority
JP
Japan
Prior art keywords
pseudo
alloy
layer
coating
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015225606A
Other languages
Japanese (ja)
Other versions
JP6633359B2 (en
Inventor
祥延 山田
Yoshinobu Yamada
祥延 山田
貴洋 堺
Takahiro Sakai
貴洋 堺
光二 中本
Koji Nakamoto
光二 中本
出口 隆亮
Takaaki Deguchi
隆亮 出口
大介 長澤
Daisuke Nagasawa
大介 長澤
正憲 遠藤
Masanori Endo
正憲 遠藤
彬 兼子
Akira Kaneko
彬 兼子
雅好 芦澤
Masayoshi Ashizawa
雅好 芦澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Nippon Light Metal Co Ltd
Nikkei Sangyo Co Ltd
Original Assignee
Kurimoto Ltd
Nippon Light Metal Co Ltd
Nikkei Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd, Nippon Light Metal Co Ltd, Nikkei Sangyo Co Ltd filed Critical Kurimoto Ltd
Priority to JP2015225606A priority Critical patent/JP6633359B2/en
Publication of JP2017095736A publication Critical patent/JP2017095736A/en
Application granted granted Critical
Publication of JP6633359B2 publication Critical patent/JP6633359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To further improve the corrosion resistance of an iron or steel pseudo alloy coated member having a Zn-Al based pseudo alloy coating layer on the surface.SOLUTION: The corrosion resistance of a pseudo alloy coated member is improved more than that of a pseudo alloy coated member having a conventional Zn-Al based pseudo alloy coating layer by preventing the self-corrosion of aluminium of a pseudo alloy coating layer formed on the surface of an iron or steel base material by metal spray, by using the pseudo alloy coating layer as a pseudo alloy layer formed by mixing a zinc layer with an aluminium alloy layer including silicon and at least one of manganese and copper, and the corrosion resistant life of the pseudo alloy coated member can be extended.SELECTED DRAWING: None

Description

本発明は、表面に金属溶射によって形成された擬合金被覆層を有する鉄製または鋼製の擬合金被覆部材、及びその製作に用いるアルミニウム合金とその線材に関する。   The present invention relates to an iron or steel pseudo-alloy coating member having a pseudo-alloy coating layer formed by metal spraying on the surface, an aluminum alloy used for the fabrication, and a wire rod thereof.

表面に金属溶射によって形成された擬合金被覆層(以下、単に「被覆層」とも記す。)を有する鉄製または鋼製の擬合金被覆部材は、幅広く使用されており、特に耐食性が要求される用途、例えば地中に埋設される外面溶射管等によく適用される。このような擬合金被覆部材としては、亜鉛とアルミニウムをそれぞれ単独で同時に溶射して亜鉛層とアルミニウム層を混成した擬合金の被覆層を有し、その犠牲陽極作用によって基材を保護するものがある(例えば、特許文献1参照。)。   Iron or steel pseudoalloy-coated members having a pseudoalloy coating layer (hereinafter also simply referred to as “coating layer”) formed by metal spraying on the surface are widely used, and in particular, applications requiring corrosion resistance. For example, it is often applied to an outer surface spray tube buried in the ground. Such a pseudo-alloy coating member has a pseudo-alloy coating layer in which zinc and aluminum are simultaneously thermally sprayed independently and a zinc layer and an aluminum layer are mixed, and the base material is protected by its sacrificial anodic action. (For example, refer to Patent Document 1).

上記の亜鉛とアルミニウムの擬合金被覆層を有する擬合金被覆部材は、亜鉛単独の擬合金被覆層を有するものや、亜鉛とアルミニウムの合金を溶射して形成した被覆層を有するものよりも良好な耐食性を示すが、近年では、特に埋設用途の外面溶射管等において、さらなる耐食性の向上による長寿命化が求められるようになってきている。   The above-mentioned pseudo-alloy coated member having a zinc-aluminum pseudo-alloy coating layer is better than one having a zinc-only pseudo-alloy coating layer or a coating layer formed by spraying an alloy of zinc and aluminum. Although it shows corrosion resistance, in recent years, particularly in an outer surface sprayed tube for use in burial and the like, there has been a demand for longer life by further improving corrosion resistance.

そこで、本出願人は、表面の擬合金被覆層の擬合金を形成するアルミニウムにケイ素を適量添加することによって、従来の擬合金被覆層を有するものよりも優れた耐食性を発揮できるようにした擬合金被覆部材(外面溶射管)を提案した(特許文献2参照。)。   Therefore, the present applicant added a suitable amount of silicon to aluminum forming a pseudoalloy of the surface pseudoalloy coating layer, thereby enabling the pseudo-alloy to exhibit better corrosion resistance than that having a conventional pseudoalloy coating layer. An alloy-coated member (outer surface sprayed tube) has been proposed (see Patent Document 2).

特開平10−264301号公報JP-A-10-264301 特開2012−149336号公報JP 2012-149336 A

しかし、上記特許文献2で提案した擬合金被覆部材でも、今後も高まっていくと考えられる耐食性向上の要求に十分に対応できるとまでは言えない。   However, it cannot be said that the pseudo-alloy-coated member proposed in Patent Document 2 can sufficiently meet the demand for improved corrosion resistance, which is expected to increase in the future.

そこで、本発明は、表面に亜鉛とアルミニウムを主成分とする擬合金(以下、「Zn−Al系擬合金」と称する。)の被覆層を有する鉄製または鋼製の擬合金被覆部材の耐食性を一層向上させることを課題とする。   Therefore, the present invention provides the corrosion resistance of an iron or steel pseudoalloy-coated member having a coating layer of a pseudoalloy mainly composed of zinc and aluminum (hereinafter referred to as "Zn-Al-based pseudoalloy") on the surface. The issue is to further improve.

上記の課題を解決するために、本発明者らはZn−Al系の擬合金被覆層について研究を重ねた結果、その擬合金を形成するアルミニウムに、ケイ素に加えてマンガンと銅の少なくとも一方を適量添加すると、擬合金被覆層の犠牲陽極作用は抑えられるが、擬合金被覆部材の耐食性は向上することを見出した。   In order to solve the above problems, the present inventors have conducted research on a Zn-Al-based pseudo-alloy coating layer. As a result, in addition to silicon, at least one of manganese and copper is added to aluminum forming the pseudo-alloy. It was found that when an appropriate amount is added, the sacrificial anodic action of the pseudo alloy coating layer can be suppressed, but the corrosion resistance of the pseudo alloy coating member is improved.

ここで、ケイ素に加えてマンガンと銅の少なくとも一方をアルミニウムに添加する理由は、アルミニウムの孔食電位を貴側にシフトさせるためである。アルミニウムの孔食電位を貴側にシフトさせることにより、アルミニウム自体の自己腐食が抑制されるので、犠牲陽極作用が小さくなっても、結果として擬合金被覆部材の耐食性を向上させることができると考えられる。   Here, the reason for adding at least one of manganese and copper to aluminum in addition to silicon is to shift the pitting corrosion potential of aluminum to the noble side. By shifting the pitting potential of aluminum to the noble side, self-corrosion of aluminum itself is suppressed, so that even if the sacrificial anodic action is reduced, the corrosion resistance of the pseudo-alloy coated member can be improved as a result. It is done.

そして、上記の知見に基づき、本願の第1の発明は、鉄製または鋼製の基材の表面に金属溶射による擬合金被覆層が形成された擬合金被覆部材において、前記擬合金被覆層を、亜鉛層と、マンガンと銅の少なくとも一方とケイ素を含有するアルミニウム合金層とを混成した擬合金層としたのである。この構成によれば、従来のケイ素を含有するアルミニウム合金を用いてZn−Al系の擬合金被覆層を形成した擬合金被覆部材に比べて、擬合金被覆層の犠牲陽極作用以外のアルミニウムの自己腐食が進みにくく、優れた耐食性を得ることができる。   And based on said knowledge, 1st invention of this application is the pseudoalloy coating member by which the pseudoalloy coating layer by the metal spraying was formed on the surface of the base material made from iron or steel, The said pseudoalloy coating layer, This is a pseudo alloy layer in which a zinc layer, at least one of manganese and copper, and an aluminum alloy layer containing silicon are mixed. According to this configuration, the self-adhesiveness of aluminum other than the sacrificial anodic action of the pseudo-alloy coating layer compared to the conventional pseudo-alloy coating member in which the Zn-Al based pseudo-alloy coating layer is formed using an aluminum alloy containing silicon. Corrosion hardly progresses and excellent corrosion resistance can be obtained.

また、本願の第2の発明は、鉄製または鋼製の基材の表面に亜鉛層とアルミニウム合金層からなる擬合金被覆層を形成する際に用いる擬合金被覆用アルミニウム合金において、マンガンと銅の少なくとも一方とケイ素を含有する構成を採用したものであり、本願の第3の発明は、鉄製または鋼製の基材の表面に亜鉛層とアルミニウム合金層からなる擬合金被覆層を形成する金属溶射に用いる擬合金被覆用アルミニウム合金線において、マンガンと銅の少なくとも一方とケイ素を含有する構成を採用したものである。この擬合金被覆用アルミニウム合金あるいは擬合金被覆用アルミニウム合金線は、本願の第1の発明の擬合金被覆部材を製作する際に用いることができる。   The second invention of the present application is a pseudoalloy coating aluminum alloy used for forming a pseudoalloy coating layer comprising a zinc layer and an aluminum alloy layer on the surface of an iron or steel base material. The third invention of the present application employs a structure containing at least one and silicon, and the third invention of the present application is a metal spraying method in which a pseudoalloy coating layer composed of a zinc layer and an aluminum alloy layer is formed on the surface of a base material made of iron or steel. The aluminum alloy wire for pseudo alloy coating used in the present invention employs a structure containing at least one of manganese and copper and silicon. The aluminum alloy wire for pseudo alloy coating or the aluminum alloy wire for pseudo alloy coating can be used when the pseudo alloy coated member of the first invention of the present application is manufactured.

ここで、アルミニウム合金層におけるケイ素の含有量は1.0〜15mass%とすることが好ましい。ケイ素の含有量が1.0mass%未満では耐食性向上の効果が小さく、15mass%を超えると合金線の加工が困難になる。また、マンガンの含有量は0.5〜1.5mass%とすることが好ましい。マンガンの含有量が0.5mass%未満では耐食性向上の効果が小さく、1.5mass%を超えると靱性や伸びを低下させるからである。一方、銅の含有量は0.5〜6.0mass%とするとよい。銅は、耐食性向上のためには0.5mass%以上添加することが好ましいが、6.0mass%を超えて添加すると耐食性を逆に低下させるようになるからである。また、マンガンと銅を上記の含有量範囲で同時に添加しても耐食性の向上が期待できる。   Here, the silicon content in the aluminum alloy layer is preferably 1.0 to 15 mass%. If the silicon content is less than 1.0 mass%, the effect of improving the corrosion resistance is small, and if it exceeds 15 mass%, it becomes difficult to process the alloy wire. Moreover, it is preferable that content of manganese shall be 0.5-1.5 mass%. This is because if the manganese content is less than 0.5 mass%, the effect of improving the corrosion resistance is small, and if it exceeds 1.5 mass%, the toughness and elongation are reduced. On the other hand, the copper content is preferably 0.5 to 6.0 mass%. Copper is preferably added in an amount of 0.5 mass% or more in order to improve the corrosion resistance, but if it exceeds 6.0 mass%, the corrosion resistance will be reduced. Moreover, even if manganese and copper are added simultaneously in the above content range, improvement in corrosion resistance can be expected.

なお、アルミニウム合金の添加元素は、上述した本発明の技術的思想によれば、アルミニウムの孔食電位を貴側にシフトさせる元素であればよく、ケイ素、マンガン、銅に限定されるものではない。   The additive element of the aluminum alloy may be any element that shifts the pitting corrosion potential of aluminum to the noble side according to the technical idea of the present invention described above, and is not limited to silicon, manganese, and copper. .

また、マグネシウムは孔食電位にはほとんど影響を与えないが、不働態保持電流を増加させる効果があるので、アルミニウムの犠牲陽極作用を調節する必要がある場合に適宜添加するとよい。このとき、マグネシウムの含有量は0.04〜3.0mass%とすることが好ましい。マグネシウムの含有量が0.04mass%未満では耐食性向上の効果が小さく、3.0mass%を超えると耐食性を逆に低下させるようになるからである。マグネシウムを添加する際は、マンガンや銅の添加は必ずしも必要ではない。   Magnesium has little effect on the pitting potential, but has the effect of increasing the passive state holding current, so it may be added as appropriate when the sacrificial anodic action of aluminum needs to be adjusted. At this time, the magnesium content is preferably 0.04 to 3.0 mass%. This is because if the magnesium content is less than 0.04 mass%, the effect of improving the corrosion resistance is small, and if it exceeds 3.0 mass%, the corrosion resistance is reduced. When adding magnesium, it is not always necessary to add manganese or copper.

また、後述する本発明の実施形態においてはアルミニウム合金を線材に加工した上で基材表面への溶射被覆を行っているが、本発明のアルミニウム合金の形状は線状に限ったものではなく、擬合金被覆が形成できるのであればどのような形態であってもよい。例えば粉末として吹き付けて使用することで、擬合金皮膜を形成することも考えられる。   In addition, in the embodiment of the present invention to be described later, after the aluminum alloy is processed into a wire rod, thermal spray coating is performed on the substrate surface, but the shape of the aluminum alloy of the present invention is not limited to a linear shape, Any form may be used as long as the pseudoalloy coating can be formed. For example, it may be possible to form a pseudoalloy film by spraying it as a powder.

上述したように、本発明は、擬合金被覆部材の表面の擬合金被覆層を、亜鉛層と、マンガンと銅の少なくとも一方とケイ素を含有するアルミニウム合金層とを混成した擬合金層とすることにより、擬合金被覆層のアルミニウムの自己腐食が進みにくくなるようにしたので、従来のZn−Al系の擬合金被覆層を有するものよりも擬合金被覆部材の耐食性を向上させ、耐食寿命を延長することができる。   As described above, in the present invention, the pseudo alloy coating layer on the surface of the pseudo alloy coating member is a pseudo alloy layer in which a zinc layer, an aluminum alloy layer containing silicon and at least one of manganese and copper are mixed. As a result, the self-corrosion of aluminum in the pseudo-alloy coating layer is made difficult to proceed, so that the corrosion resistance of the pseudo-alloy coating member is improved and the corrosion resistance life is extended compared to the conventional one having a Zn-Al based pseudo-alloy coating layer. can do.

本発明の実施形態の擬合金被覆部材は、鉄製または鋼製の基材の表面に、金属溶射によって、亜鉛層と、1070合金(不純物としての鉄0.25mass%以下、マグネシウム0.03mass%以下、亜鉛0.04mass%以下を含むアルミニウム合金)に5mass%のケイ素を添加し、さらに0.8mass%のマンガンまたは0.7mass%の銅を添加したアルミニウム合金層とが混じり合った擬合金被覆層を形成したものである。また、本発明の実施形態のアルミニウム合金は上記アルミニウム合金層と同じ成分のアルミニウム合金であり、本発明の実施形態のアルミニウム合金線は上記アルミニウム合金を伸線加工したものである。このうち、アルミニウム合金層にマンガンを含有するものを実施例1、アルミニウム合金層に銅を含有するものを実施例2と称する。   The pseudo-alloy-coated member of the embodiment of the present invention has a zinc layer and 1070 alloy (iron 0.25 mass% or less as an impurity, magnesium 0.03 mass% or less as an impurity) by metal spraying on the surface of a base material made of iron or steel. , An aluminum alloy containing 0.04 mass% or less of zinc) and a pseudo alloy coating layer in which 5 mass% of silicon is added and 0.8 mass% of manganese or 0.7 mass% of copper is added to the aluminum alloy layer. Is formed. The aluminum alloy of the embodiment of the present invention is an aluminum alloy having the same components as the aluminum alloy layer, and the aluminum alloy wire of the embodiment of the present invention is obtained by drawing the aluminum alloy. Of these, the aluminum alloy layer containing manganese is referred to as Example 1, and the aluminum alloy layer containing copper is referred to as Example 2.

本発明の実施形態において、アルミニウム合金線はいずれも以下のような方法で作製した。その手順は、まず、上記アルミニウム合金を鋳造し、100mmφの円柱モールドを作製する。そして、その円柱モールドを炉内において500℃で1時間保持した後、押出し加工にて4.6mmφに形成し、伸線加工(伸線−焼鈍−伸線)にて2.0mmφのアルミニウム合金線とした。   In the embodiment of the present invention, all aluminum alloy wires were produced by the following method. The procedure is as follows. First, the aluminum alloy is cast to produce a 100 mmφ cylindrical mold. The cylindrical mold is held in a furnace at 500 ° C. for 1 hour, then formed into 4.6 mmφ by extrusion, and 2.0 mmφ aluminum alloy wire by drawing (drawing-annealing-drawing). It was.

上記実施形態(実施例1、2)の擬合金被覆部材の耐食性を確認するために、以下に述べる第1および第2の耐食試験を行った。   In order to confirm the corrosion resistance of the pseudo alloy-coated members of the above-described embodiments (Examples 1 and 2), the following first and second corrosion resistance tests were performed.

まず、第1の耐食試験では、実施例1、2の試験片として、サンドブラスト処理を施した150mm×70mm×2.0mmの軟鋼板の表面に、亜鉛の線材と、ケイ素に加えてマンガンまたは銅を添加したアルミニウム合金の線材とを体積比1:1でアーク溶射して、260g/mの擬合金被覆層を形成したものを作製した。 First, in the first corrosion resistance test, as a test piece of Examples 1 and 2, on the surface of a 150 mm × 70 mm × 2.0 mm mild steel plate subjected to sandblasting, in addition to zinc wire and silicon, manganese or copper Was produced by arc spraying with an aluminum alloy wire added with a volume ratio of 1: 1 to form a pseudo-alloy coating layer of 260 g / m 2 .

また、比較例1として、擬合金被覆層を亜鉛とケイ素のみを添加したアルミニウム合金とで形成した試験片を作製した。その作製方法は、実施例1、2の場合と溶射用の金属線材の材質が異なるだけで、同じ溶射方法でほぼ同量の擬合金被覆層が形成されるようにした。   Moreover, as Comparative Example 1, a test piece in which a pseudo alloy coating layer was formed with an aluminum alloy to which only zinc and silicon were added was prepared. The production method was such that the same amount of the pseudoalloy coating layer was formed by the same thermal spraying method except that the materials of the metal wire for thermal spraying differed from those in Examples 1 and 2.

なお、各試験片の作製において溶射線として用いた各線材は直径2mmのものであり、そのうちのアルミニウム合金の線材の主な添加元素の含有量は表1に示すとおりである。また、表1では、後述する第2の耐食試験で用いた比較例2の試験片の数値も合わせて示している。   In addition, each wire used as a thermal spray line in preparation of each test piece has a diameter of 2 mm, and the content of main additive elements in the aluminum alloy wire among them is as shown in Table 1. Moreover, in Table 1, the numerical value of the test piece of the comparative example 2 used by the 2nd corrosion resistance test mentioned later is also shown collectively.

Figure 2017095736
Figure 2017095736

そして、各試験片に対して、JIS K5600−7−9の附属書Cに規定されるサイクル腐食試験(サイクルA:塩水噴霧2hr→乾燥4hr→湿潤2hrのサイクルを繰り返す)を行い、30日後に擬合金被覆層から腐食生成物を除去して重量減少量を測定した。なお、腐食生成物の除去には、二クロム酸アンモニウムとアンモニアとの混合溶液を用いた。各試験片の重量減少量の測定結果を表2に示す。   Each test piece was subjected to a cycle corrosion test (cycle A: repeated salt spray 2 hr → dry 4 hr → wet 2 hr) specified in Annex C of JIS K5600-7-9, and after 30 days. Corrosion products were removed from the pseudoalloy coating layer and the weight loss was measured. For removing the corrosion product, a mixed solution of ammonium dichromate and ammonia was used. Table 2 shows the measurement results of the weight loss of each test piece.

Figure 2017095736
表2からわかるように、実施例1、2の重量減少量すなわち擬合金被覆層の腐食量は、いずれも比較例1の半分程度以下となっている。これにより、実施例1、2は比較例1に比べて擬合金被覆層の犠牲陽極作用が抑えられるとしても、それ以上にアルミニウムの自己腐食が進みにくくなる効果が大きく、優れた耐食性を有していることが確認された。
Figure 2017095736
As can be seen from Table 2, the weight loss amount of Examples 1 and 2, that is, the corrosion amount of the pseudo alloy coating layer, is about half or less of Comparative Example 1. As a result, even though the sacrificial anodic action of the pseudo-alloy coating layer is suppressed compared to Comparative Example 1, Examples 1 and 2 have a greater effect of preventing the self-corrosion of aluminum from proceeding further, and have excellent corrosion resistance. It was confirmed that

次に、第2の耐食試験では、呼び径100mmの鋳鉄管の外面に溶射・封孔処理・合成樹脂塗装を施して、90mm×150mmの大きさに切り出した試験片を作製した。その試験片としては、第1の耐食試験と同じ実施例1、2および比較例1のものに加えて、比較例1の擬合金被覆層を形成するアルミニウム合金中のケイ素含有量を12mass%に増量したものを作製し、これを比較例2とした(表1参照)。   Next, in the second corrosion resistance test, the outer surface of a cast iron pipe having a nominal diameter of 100 mm was subjected to thermal spraying, sealing treatment, and synthetic resin coating to produce a test piece cut out to a size of 90 mm × 150 mm. As the test piece, in addition to those in Examples 1 and 2 and Comparative Example 1 which are the same as those in the first corrosion resistance test, the silicon content in the aluminum alloy forming the pseudo-alloy coating layer of Comparative Example 1 is set to 12 mass%. An increased amount was prepared and used as Comparative Example 2 (see Table 1).

ここで、各試験片に対する溶射方法は第1の耐食試験と同じであり、各試験片の外面に270〜284g/mの擬合金被覆層を形成した。また、封孔処理では、コロイダルシリカを含有する水系アクリル樹脂封孔処理剤(商品名:クリモトコートTSブロック)を用いて、100g/mの封孔処理層を形成している。そして、合成樹脂塗装では、1次塗装として水系アクリル樹脂塗料(商品名:クリモトコートWRグレー)を、2次塗装として溶剤系アクリル樹脂塗料(商品名:クリモトコートAC−1−SRグレー)をそれぞれ塗布し、2コートの塗膜(1次:約60μm、2次:約20μm)を形成している。 Here, the thermal spraying method for each test piece was the same as in the first corrosion resistance test, and a 270-284 g / m 2 pseudo-alloy coating layer was formed on the outer surface of each test piece. In the sealing treatment, a sealing treatment layer of 100 g / m 2 is formed using a water-based acrylic resin sealing treatment agent (trade name: Kurimoto Coat TS block) containing colloidal silica. In the synthetic resin coating, water-based acrylic resin paint (trade name: Kurimoto Coat WR Gray) is used as the primary coating, and solvent-based acrylic resin paint (trade name: Kurimoto Coat AC-1-SR gray) is used as the secondary coating. It is applied to form a two-coat film (primary: about 60 μm, secondary: about 20 μm).

そして、各試験片の中央部に幅0.3mm、長さ50mmで鉄素地に達する深さのクロスカットを入れた後、各試験片に対して第1の耐食試験と同じサイクル腐食試験を行い、120日後に試験片端部から10mmの範囲を除く塗装面を観察した。その結果、いずれの試験片も鉄素地からの赤錆の発生や塗膜の膨れ・剥がれはなかったが、白錆の発生量については比較例1>比較例2>実施例1>実施例2となっており、この第2の耐食試験でも、実施例1、2が比較例1、2よりも擬合金被覆層のアルミニウムの自己腐食が進みにくく、耐食性に優れていることが確認された。   And after putting the crosscut of the depth which reaches the iron base with width 0.3mm and length 50mm in the center part of each test piece, the same cycle corrosion test as the 1st corrosion resistance test is done to each test piece After 120 days, the coated surface excluding the range of 10 mm from the end of the test piece was observed. As a result, none of the test pieces produced red rust from the iron base or the bulging / peeling of the coating, but the amount of white rust produced was Comparative Example 1> Comparative Example 2> Example 1> Example 2. In this second corrosion resistance test, it was confirmed that Examples 1 and 2 were more resistant to self-corrosion of aluminum in the pseudo alloy coating layer than Comparative Examples 1 and 2 and were excellent in corrosion resistance.

Claims (3)

鉄製または鋼製の基材の表面に擬合金被覆層が形成された擬合金被覆部材において、前記擬合金被覆層が、亜鉛層と、マンガンと銅の少なくとも一方とケイ素を含有するアルミニウム合金層とを混成した擬合金層であることを特徴とする擬合金被覆部材。   In a pseudo alloy coating member in which a pseudo alloy coating layer is formed on the surface of an iron or steel base material, the pseudo alloy coating layer includes a zinc layer, an aluminum alloy layer containing at least one of manganese and copper, and silicon. A pseudo-alloy-coated member characterized by being a pseudo-alloy layer hybridized. 鉄製または鋼製の基材の表面に亜鉛層とアルミニウム合金層からなる擬合金被覆層を形成する際に用いる擬合金被覆用アルミニウム合金において、マンガンと銅の少なくとも一方とケイ素を含有することを特徴とする擬合金被覆用アルミニウム合金。   A pseudo-alloy coating aluminum alloy used for forming a pseudo-alloy coating layer composed of a zinc layer and an aluminum alloy layer on the surface of an iron or steel base material, comprising at least one of manganese, copper and silicon Aluminum alloy for pseudo alloy coating. 鉄製または鋼製の基材の表面に亜鉛層とアルミニウム合金層からなる擬合金被覆層を形成する金属溶射に用いる擬合金被覆用アルミニウム合金線において、マンガンと銅の少なくとも一方とケイ素を含有することを特徴とする擬合金被覆用アルミニウム合金線。   In an aluminum alloy wire for pseudoalloy coating used for metal spraying to form a pseudoalloy coating layer composed of a zinc layer and an aluminum alloy layer on the surface of an iron or steel base material, it contains at least one of manganese, copper and silicon. An aluminum alloy wire for pseudo alloy coating.
JP2015225606A 2015-11-18 2015-11-18 Pseudo-alloy-coated member, aluminum alloy for pseudo-alloy coating, and aluminum alloy wire for pseudo-alloy coating Active JP6633359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015225606A JP6633359B2 (en) 2015-11-18 2015-11-18 Pseudo-alloy-coated member, aluminum alloy for pseudo-alloy coating, and aluminum alloy wire for pseudo-alloy coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015225606A JP6633359B2 (en) 2015-11-18 2015-11-18 Pseudo-alloy-coated member, aluminum alloy for pseudo-alloy coating, and aluminum alloy wire for pseudo-alloy coating

Publications (2)

Publication Number Publication Date
JP2017095736A true JP2017095736A (en) 2017-06-01
JP6633359B2 JP6633359B2 (en) 2020-01-22

Family

ID=58803302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015225606A Active JP6633359B2 (en) 2015-11-18 2015-11-18 Pseudo-alloy-coated member, aluminum alloy for pseudo-alloy coating, and aluminum alloy wire for pseudo-alloy coating

Country Status (1)

Country Link
JP (1) JP6633359B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018162476A (en) * 2017-03-24 2018-10-18 株式会社栗本鐵工所 Corrosion-proof material, corrosion resistant member using the same, and cast iron pipe

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528934A (en) * 1975-07-11 1977-01-24 Nippon Steel Corp Manganeseeseries compound material for highly corrosionnresistant metal sprayycoating
JPH06330263A (en) * 1993-05-24 1994-11-29 Sumitomo Light Metal Ind Ltd Production of high toughness al-si series alloy
JPH10226839A (en) * 1997-02-19 1998-08-25 Sumitomo Electric Ind Ltd High strength aluminum alloy wire-coil spring and its production
JPH10264301A (en) * 1997-03-26 1998-10-06 Kurimoto Ltd Method for corrosion-proof coating of steel pipe, and steel pipe provided with corrosion-proof coating
JPH11230482A (en) * 1998-02-19 1999-08-27 Kubota Corp Method for preventing corrosion of outer surface of ductile cast iron pipe
JP2001316793A (en) * 2000-05-08 2001-11-16 Kubota Corp Cast iron tube with surface corrosion protection and its production method
JP2003328106A (en) * 2002-05-10 2003-11-19 Kubota Corp Method for depositing corrosion protective film
JP2004035959A (en) * 2002-07-04 2004-02-05 Fujikura Ltd Composite wire of corrosion resistant aluminum or aluminum alloy
JP2004202579A (en) * 2002-12-12 2004-07-22 Showa Denko Kk Aluminum alloy brazing filler metal, brazing material, article and manufacturing method using it, brazing heat exchange tube, heat exchanger using it and its manufacturing method
JP2005207728A (en) * 2003-12-24 2005-08-04 Showa Denko Kk Heat exchanger and manufacturing method therefor
WO2011115133A1 (en) * 2010-03-16 2011-09-22 古河スカイ株式会社 Expanded tube-to-tubesheet joint type heat exchanger, and tube material and fin material for heat exchanger
JP2012149336A (en) * 2010-12-28 2012-08-09 Kurimoto Ltd Tube with thermally sprayed outer surface
JP2014025551A (en) * 2012-07-27 2014-02-06 Nippon Chutetsukan Kk Pipe line constituent member subjected to outer surface anticorrosion coating and method for manufacturing the same
JP2014181349A (en) * 2013-03-18 2014-09-29 Kurimoto Ltd External surface spray coated pipe

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528934A (en) * 1975-07-11 1977-01-24 Nippon Steel Corp Manganeseeseries compound material for highly corrosionnresistant metal sprayycoating
JPH06330263A (en) * 1993-05-24 1994-11-29 Sumitomo Light Metal Ind Ltd Production of high toughness al-si series alloy
JPH10226839A (en) * 1997-02-19 1998-08-25 Sumitomo Electric Ind Ltd High strength aluminum alloy wire-coil spring and its production
JPH10264301A (en) * 1997-03-26 1998-10-06 Kurimoto Ltd Method for corrosion-proof coating of steel pipe, and steel pipe provided with corrosion-proof coating
JPH11230482A (en) * 1998-02-19 1999-08-27 Kubota Corp Method for preventing corrosion of outer surface of ductile cast iron pipe
JP2001316793A (en) * 2000-05-08 2001-11-16 Kubota Corp Cast iron tube with surface corrosion protection and its production method
JP2003328106A (en) * 2002-05-10 2003-11-19 Kubota Corp Method for depositing corrosion protective film
JP2004035959A (en) * 2002-07-04 2004-02-05 Fujikura Ltd Composite wire of corrosion resistant aluminum or aluminum alloy
JP2004202579A (en) * 2002-12-12 2004-07-22 Showa Denko Kk Aluminum alloy brazing filler metal, brazing material, article and manufacturing method using it, brazing heat exchange tube, heat exchanger using it and its manufacturing method
JP2005207728A (en) * 2003-12-24 2005-08-04 Showa Denko Kk Heat exchanger and manufacturing method therefor
WO2011115133A1 (en) * 2010-03-16 2011-09-22 古河スカイ株式会社 Expanded tube-to-tubesheet joint type heat exchanger, and tube material and fin material for heat exchanger
JP2012149336A (en) * 2010-12-28 2012-08-09 Kurimoto Ltd Tube with thermally sprayed outer surface
JP2014025551A (en) * 2012-07-27 2014-02-06 Nippon Chutetsukan Kk Pipe line constituent member subjected to outer surface anticorrosion coating and method for manufacturing the same
JP2014181349A (en) * 2013-03-18 2014-09-29 Kurimoto Ltd External surface spray coated pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018162476A (en) * 2017-03-24 2018-10-18 株式会社栗本鐵工所 Corrosion-proof material, corrosion resistant member using the same, and cast iron pipe

Also Published As

Publication number Publication date
JP6633359B2 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
MY193467A (en) Hot-dip al-zn-mg-si-sr coated steel sheet and method of producing same
JP2021508779A (en) Zinc alloy plated steel with excellent corrosion resistance and surface smoothness and its manufacturing method
JP2007284718A (en) Zn-Al ALLOY HOT-DIP PLATED STEEL SHEET SUPERIOR IN CORROSION RESISTANCE AND WORKABILITY, AND PRODUCTION METHOD THEREFOR
JP6658412B2 (en) Structural steel materials and structures with excellent coating durability
MX2019011384A (en) HOT-DIPPED Al COATED STEEL SHEET AND METHOD FOR PRODUCING SAME.
WO2011152381A1 (en) Hot dipped aluminum alloy coated steel material with excellent cut edge surface corrosion resistance and processed part corrosion resistance, and method for producing same
JP2016520162A5 (en)
JP5733667B2 (en) External spray tube
MX2021006198A (en) Steel sheet plated with al-fe for hot press forming having excellent corrosion resistance and spot weldability, and manufacturing method thereof.
JP7546055B2 (en) Hot-dip alloy-plated steel material with excellent corrosion resistance and its manufacturing method
JP2017095736A (en) Pseudo alloy coated member, aluminium alloy for pseudo alloy coating and aluminium alloy wire for pseudo alloy coating
JP2014181349A (en) External surface spray coated pipe
CN105970072A (en) Aluminum alloy
JP5693675B2 (en) Anti-corrosion pipe and manufacturing method thereof
JP6743524B2 (en) Anti-corrosion coated steel and its manufacturing method, anti-corrosion method for coated steel
WO2019008405A1 (en) A metallic substrate bearing a cold sprayed coating
JP6422521B2 (en) Anticorrosion material, corrosion resistant member and cast iron pipe using the same
JP5594998B2 (en) Anticorrosive body and manufacturing method thereof
JP5945185B2 (en) Method for manufacturing pipe component with anti-corrosion coating on outer surface
JP5995438B2 (en) Method for manufacturing outer surface anticorrosive body
JP2010018838A (en) Steel structure coated with aluminum alloy, and corrosion protective coating method for the same
MX2018015823A (en) High strength galvannealed steel sheet and production method therefor.
JP2009019218A (en) Wire rod for thermal spraying and thermal-sprayed coating formed by using the same
JP6646493B2 (en) Iron-based metal member having a metal spray coating layer
JP5721882B2 (en) Method for manufacturing outer surface anticorrosive body

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20151204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191212

R150 Certificate of patent or registration of utility model

Ref document number: 6633359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250