JP2017094754A - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
JP2017094754A
JP2017094754A JP2015225312A JP2015225312A JP2017094754A JP 2017094754 A JP2017094754 A JP 2017094754A JP 2015225312 A JP2015225312 A JP 2015225312A JP 2015225312 A JP2015225312 A JP 2015225312A JP 2017094754 A JP2017094754 A JP 2017094754A
Authority
JP
Japan
Prior art keywords
steering
current
steering angle
correction
angular velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015225312A
Other languages
English (en)
Inventor
杏一 田上
Kyoichi Tagami
杏一 田上
雅祐 岩瀬
Masahiro Iwase
雅祐 岩瀬
詠之 石丸
Eishi Ishimaru
詠之 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Original Assignee
Showa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Corp filed Critical Showa Corp
Priority to JP2015225312A priority Critical patent/JP2017094754A/ja
Publication of JP2017094754A publication Critical patent/JP2017094754A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】操舵フィーリングの低下を抑制しつつ、走行路面状況変化に応じたアシスト力を付与することができる技術を提供する。
【解決手段】操舵トルクに基づいて電動モータに供給する目標電流の基本となる基本目標電流を算出する基本目標電流算出部と、操舵角算出部が検出した操舵角に基づいて算出した目標操舵角速度と実際の操舵角速度との偏差に応じた基本操舵角速度偏差電流Ivfを算出する基本操舵角速度偏差電流算出部281を有し、車両の走行路面の摩擦係数変化に基づいて、基本操舵角速度偏差電流Ivfを補正した補正電流を算出する補正電流決定部28と、基本目標電流と補正電流とに基づいて目標電流を決定する目標電流決定部と、を備える。
【選択図】図6

Description

本発明は、電動パワーステアリング装置に関する。
近年、電動パワーステアリング装置において、路面の変化に対する車両の走行安定性を向上する技術が提案されている。
例えば、特許文献1に記載の電動パワーステアリング装置は、路面からの反力度合いを考慮した補正電流を加える。すなわち、特許文献1に記載の電動パワーステアリング装置は、舵角検出手段と、実舵角速度を演算する演算手段と、舵角に基づきベース修正舵角速度を演算する演算手段と、車速に基づき車速乗算係数値を演算する演算手段と、ベース修正舵角速度に車速乗算係数値を乗算し目標舵角速度を演算する演算手段と、目標舵角速度と実舵角速度との差に基づいてベース修正電流値を演算する演算手段と、アシストベース電流値に修正電流値を加えてアシスト目標電流とする演算手段とを備える。
特開2006−123827号公報
本発明は、操舵フィーリングの低下を抑制しつつ、走行路面状況変化に応じたアシスト力を付与することができる電動パワーステアリング装置を提供することを目的とする。
かかる目的のもと、本発明は、車両のステアリングホイールに加わる操舵力をアシストする電動モータと、前記ステアリングホイールの操舵トルクを検出するトルク検出手段と、前記ステアリングホイールの回転角度である操舵角を検出する操舵角検出手段と、前記トルク検出手段が検出した操舵トルクに基づいて前記電動モータに供給する目標電流の基本となる基本目標電流を算出する基本目標電流算出手段と、前記操舵角検出手段が検出した操舵角に基づいて算出した目標操舵角速度と実際の操舵角速度との操舵角速度偏差に応じた基本操舵角速度偏差電流を算出する基本操舵角速度偏差電流算出手段を有し、前記車両の走行路面の摩擦係数変化に基づいて、前記基本操舵角速度偏差電流を補正した補正電流を算出する補正電流算出手段と、前記基本目標電流算出手段が算出した前記基本目標電流と前記補正電流算出手段が算出した前記補正電流とに基づいて前記目標電流を決定する目標電流決定手段と、を備える電動パワーステアリング装置である。
また、他の観点から捉えると、本発明は、車両のステアリングホイールに加わる操舵力をアシストする電動モータと、前記ステアリングホイールの操舵トルクを検出するトルク検出手段と、前記ステアリングホイールの回転角度である操舵角を検出する操舵角検出手段と、前記トルク検出手段が検出した操舵トルクに基づいて前記電動モータに供給する目標電流の基本となる基本目標電流を算出する基本目標電流算出手段と、前記車両の左側に配置された左側車輪の回転速度と右側に配置された右側車輪の回転速度との差に基づいて推定した推定操舵角と前記操舵角検出手段が検出した検出操舵角との操舵角偏差に応じた操舵角偏差電流を算出する操舵角偏差電流算出手段を有し、前記車両の走行路面の摩擦係数変化に基づいて、前記操舵角偏差電流を補正した補正電流を算出する補正電流算出手段と、前記基本目標電流算出手段が算出した前記基本目標電流と前記補正電流算出手段が算出した前記補正電流とに基づいて前記目標電流を決定する目標電流決定手段と、を備える電動パワーステアリング装置である。
また、他の観点から捉えると、本発明は、車両のステアリングホイールに加わる操舵力をアシストする電動モータと、前記ステアリングホイールの操舵トルクを検出するトルク検出手段と、前記ステアリングホイールの回転角度である操舵角を検出する操舵角検出手段と、前記トルク検出手段が検出した操舵トルクに基づいて前記電動モータに供給する目標電流の基本となる基本目標電流を算出する基本目標電流算出手段と、前記操舵角検出手段が検出した操舵角に基づいて算出した目標操舵角速度と実際の操舵角速度との偏差に応じた基本操舵角速度偏差電流を算出する基本操舵角速度偏差電流算出手段を有し、前記車両の走行路面の摩擦係数変化に基づいて、前記基本操舵角速度偏差電流を補正した第1補正電流を算出するとともに、前記車両の左側に配置された左側車輪の回転速度と右側に配置された右側車輪の回転速度との差に基づいて推定した推定操舵角と前記操舵角検出手段が検出した検出操舵角との操舵角偏差に応じた操舵角偏差電流を算出する操舵角偏差電流算出手段を有し、前記車両の走行路面の摩擦係数変化に基づいて、前記操舵角偏差電流を補正した第2補正電流を算出する補正電流算出手段と、前記基本目標電流算出手段が算出した前記基本目標電流と前記補正電流算出手段が算出した前記第1補正電流及び前記第2補正電流とに基づいて前記目標電流を決定する目標電流決定手段と、を備える電動パワーステアリング装置である。
本発明によれば、操舵フィーリングの低下を抑制しつつ、走行路面状況変化に応じたアシスト力を付与することができる。
実施の形態に係る電動パワーステアリング装置の概略構成を示す図である。 制御装置の概略構成図である。 制御部の概略構成図である。 基本目標電流算出部の概略構成図である。 操舵トルクおよび車速とベース電流との対応を示す制御マップの概略図である。 補正電流算出部の概略構成図である。 基本操舵角速度偏差電流算出部の概略構成図である。 操舵角および車速と目標操舵角速度との対応を示す制御マップである。 操舵角速度偏差と基本操舵角速度偏差電流との対応を示す制御マップである。 ラック軸力補正係数設定部の概略構成図である。 ラック軸力偏差とベースラック軸力補正係数との対応を示す制御マップである。 車速とラック軸力車速補正係数との対応を示す制御マップである。 基本車体流れ補正電流算出部の概略構成図である。 車速調整係数と車速との対応を示す制御マップの概略図である。 操舵角偏差とベース車体流れ補正電流との対応を示す制御マップの概略図である。 操舵角補正係数と検出操舵角の絶対値との対応を示す制御マップの概略図である。 トルク補正係数と操舵トルクの絶対値との対応を示す制御マップの概略図である。 車体流れ車速補正係数と車速との対応を示す制御マップの概略図である。 路面摩擦補正係数設定部の概略構成図である。 雨量及び吸入空気温度と、路面摩擦係数低下係数との対応を示す制御マップの概略図である。 (a)は、路面摩擦係数低下係数と操舵角速度摩擦補正係数との対応を示す制御マップの概略図である。(b)は、路面摩擦係数低下係数と車体流れ摩擦補正係数との対応を示す制御マップの概略図である。
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
図1は、実施の形態に係る電動パワーステアリング装置100の概略構成を示す図である。
電動パワーステアリング装置100(以下、単に「ステアリング装置100」と称する場合もある。)は、車両の進行方向を任意に変えるためのかじ取り装置であり、本実施の形態においては車両の一例としての自動車1に適用した構成を例示している。
ステアリング装置100は、自動車1の進行方向を変えるために運転者が操作する車輪(ホイール)状のステアリングホイール(ハンドル)101と、ステアリングホイール101に一体的に設けられたステアリングシャフト102とを備えている。また、ステアリング装置100は、ステアリングシャフト102と自在継手103aを介して連結された上部連結シャフト103と、この上部連結シャフト103と自在継手103bを介して連結された下部連結シャフト108とを備えている。下部連結シャフト108は、ステアリングホイール101の回転に連動して回転する。
また、ステアリング装置100は、転動輪としての左側前輪151,右側前輪152それぞれに連結されたタイロッド104と、タイロッド104に連結されたラック軸105とを備えている。また、ステアリング装置100は、ラック軸105に形成されたラック歯105aとともにラック・ピニオン機構を構成するピニオン106aを備えている。ピニオン106aは、ピニオンシャフト106の下端部に形成されている。これらラック軸105、ピニオンシャフト106などが、ステアリングホイール101の回転操作力を左側前輪151,右側前輪152の転動力として伝達する伝達機構として機能する。ピニオンシャフト106は、左側前輪151,右側前輪152を転動させるラック軸105に対して、回転することにより左側前輪151,右側前輪152を転動させる駆動力(ラック軸力)を加える。
また、ステアリング装置100は、ピニオンシャフト106を収納するステアリングギヤボックス107を有している。ピニオンシャフト106は、ステアリングギヤボックス107内にてトーションバー112を介して下部連結シャフト108と連結されている。そして、ステアリングギヤボックス107の内部には、下部連結シャフト108とピニオンシャフト106との相対回転角度に基づいて、言い換えればトーションバー112の捩れ量に基づいて、ステアリングホイール101に加えられた操舵トルクTを検出するトルク検出手段の一例としてのトルクセンサ109が設けられている。
また、ステアリング装置100は、ステアリングギヤボックス107に支持された電動モータ110と、電動モータ110の駆動力を減速してピニオンシャフト106に伝達する減速機構111とを有している。減速機構111は、例えば、ピニオンシャフト106に固定されたウォームホイール(不図示)と、電動モータ110の出力軸に固定されたウォームギヤ(不図示)などから構成される。電動モータ110は、ピニオンシャフト106に回転駆動力を加えることにより、ラック軸105に左側前輪151,右側前輪152を転動させる駆動力(ラック軸力)を加える。本実施の形態に係る電動モータ110は、電動モータ110の回転角度であるモータ回転角度θに連動した回転角度信号θsを出力するレゾルバ120を有する3相ブラシレスモータである。
また、ステアリング装置100は、ステアリングホイール(ハンドル)101の回転角度である操舵角を検出する操舵角検出手段の一例としての操舵角センサ180を備えている。
また、ステアリング装置100は、電動モータ110の作動を制御する制御装置10を備えている。制御装置10には、上述したトルクセンサ109からの出力信号、操舵角センサ180からの出力信号が入力される。また、制御装置10には、自動車1に搭載される各種の機器を制御するための信号を流す通信を行うネットワーク(CAN)を介して、自動車1の移動速度である車速Vcを検出する車速検出部170からの出力信号が入力される。車速検出部170は、自動車1に備えられて車速Vcを検出するセンサからの出力信号を基に車速Vcを検知する。
また、制御装置10には、ネットワーク(CAN)を介して、自動車1に備えられた車輪の回転速度を検出する車輪速度検出部190からの出力信号が入力される。車輪速度検出部190は、自動車1の前後左右に配置された4つの車輪それぞれの回転速度を検知するセンサからの出力信号を基に4つの車輪それぞれの回転速度を検知する。車輪速度検出部190は、自動車1の左側の前に配置された左側前輪151の回転速度を検出する左側前輪速度検出部191(図13参照)と、右側の前に配置された右側前輪152の回転速度を検出する右側前輪速度検出部192(図13参照)とを備えている。また、車輪速度検出部190は、左側の後に配置された左側後輪(不図示)の回転速度を検出する左側後輪速度検出部193(図13参照)と、右側の後に配置された右側後輪(不図示)の回転速度を検出する右側後輪速度検出部194(図13参照)とを備えている。
また、制御装置10には、ネットワーク(CAN)を介して、自動車1に備えられた雨量Qrを検知する雨量検出部195、自動車1に備えられたエンジンの吸入空気の温度Tiを検出する吸入空気温度検出部196などからの出力信号が入力される。雨量検出部195は、自動車1に備えられたワイパーコントローラに設けられており、雨量Qrを検知する雨量センサからの出力信号を基に雨量Qrを検知する。吸入空気温度検出部196は、自動車1に備えられたエンジン制御ECUに設けられており、エンジンの吸入空気の温度を検出する吸気温度センサからの出力信号を基に吸入空気温度Tiを検知する。
以上のように構成されたステアリング装置100は、トルクセンサ109が検出した操舵トルクTに基づいて電動モータ110を駆動し、電動モータ110の駆動力(発生トルク)をピニオンシャフト106に伝達する。これにより、電動モータ110の発生トルクが、ステアリングホイール101に加える運転者の操舵力をアシストする。
次に、制御装置10について説明する。
図2は、制御装置10の概略構成図である。
制御装置10は、CPU、ROM、RAM、バックアップRAM等からなる算術論理演算回路である。
制御装置10には、上述したトルクセンサ109にて検出された操舵トルクTが出力信号に変換されたトルク信号Td、操舵角センサ180にて検出された操舵角である検出操舵角θaが出力信号に変換された操舵角信号θasが入力される。また、制御装置10には、車速検出部170からの車速Vcに対応する出力信号、車輪速度検出部190からの車輪それぞれの回転速度Vhに対応する出力信号、雨量検出部195からの雨量Qrに対応する出力信号、吸入空気温度検出部196からの吸入空気温度Tiに対応する出力信号、レゾルバ120からの回転角度信号θsなどが入力される。
そして、制御装置10は、電動モータ110に供給する目標電流Itを算出(設定)する目標電流算出部20と、目標電流算出部20が算出した目標電流Itに基づいてフィードバック制御などを行う制御部30とを有している。
また、制御装置10は、電動モータ110のモータ回転角度θを算出するモータ回転角度算出部71と、モータ回転角度算出部71にて算出されたモータ回転角度θに基づいて、モータ回転速度Vmを算出するモータ回転速度算出部72とを備えている。また、制御装置10は、ステアリングホイール101の回転角度である操舵角Raをモータ回転角度θに基づき算出する操舵角検出手段の一例としての操舵角算出部73を備えている。
先ずは、目標電流算出部20について詳述する。
目標電流算出部20は、トルク信号Tdおよび車速Vcに対応する出力信号に基づいて電動モータ110に供給する目標電流Itの基本となる基本目標電流Itfを算出(設定)する基本目標電流算出手段の一例としての基本目標電流算出部27を備えている。また、目標電流算出部20は、目標操舵角速度と実際の操舵角速度との操舵角速度偏差に応じて基本目標電流Itfを補正する補正電流(第1補正電流)の一例としての操舵角速度偏差電流Ivや自動車1の車体流れに応じて基本目標電流Itfを補正する補正電流(第2補正電流)の一例としての車体流れ補正電流Irを算出する補正電流算出手段の一例としての補正電流決定部28を備えている。また、目標電流算出部20は、基本目標電流Itf、操舵角速度偏差電流Iv、及び車体流れ補正電流Irに基づいて最終的に目標電流Itを決定する目標電流決定手段の一例としての目標電流決定部29を備えている。
基本目標電流算出部27、補正電流決定部28および目標電流決定部29については後で詳述する。
図3は、制御部30の概略構成図である。
制御部30は、図3に示すように、電動モータ110の作動を制御するモータ駆動制御部31と、電動モータ110を駆動させるモータ駆動部32と、電動モータ110に実際に流れる実電流Imを検出するモータ電流検出部33とを有している。
モータ駆動制御部31は、目標電流算出部20にて最終的に決定された目標電流Itと、モータ電流検出部33にて検出された電動モータ110へ供給される実電流Imとの偏差に基づいてフィードバック制御を行うフィードバック(F/B)制御部40と、電動モータ110をPWM駆動するためのPWM(パルス幅変調)信号を生成するPWM信号生成部60とを有している。
フィードバック制御部40は、目標電流算出部20にて最終的に決定された目標電流Itとモータ電流検出部33にて検出された実電流Imとの偏差を求める偏差演算部41と、その偏差がゼロとなるようにフィードバック処理を行うフィードバック(F/B)処理部42とを有している。
フィードバック(F/B)処理部42は、目標電流Itと実電流Imとが一致するようにフィードバック制御を行うものであり、例えば、偏差演算部41にて算出された偏差に対して、比例要素で比例処理し、積分要素で積分処理し、加算演算部でこれらの値を加算する。
PWM信号生成部60は、フィードバック制御部40からの出力値に基づいて電動モータ110をPWM(パルス幅変調)駆動するためのPWM信号を生成し、生成したPWM信号を出力する。
モータ駆動部32は、所謂インバータであり、例えば、スイッチング素子として6個の独立したトランジスタ(FET)を備え、6個の内の3個のトランジスタは電源の正極側ラインと各相の電気コイルとの間に接続され、他の3個のトランジスタは各相の電気コイルと電源の負極側(アース)ラインと接続されている。そして、6個の中から選択した2個のトランジスタのゲートを駆動してこれらのトランジスタをスイッチング動作させることにより、電動モータ110の駆動を制御する。
モータ電流検出部33は、モータ駆動部32に接続されたシャント抵抗の両端に生じる電圧から電動モータ110に流れる実電流Imの値を検出する。
モータ回転角度算出部71(図2参照)は、レゾルバ120からの回転角度信号θsに基づいてモータ回転角度θを算出する。
モータ回転速度算出部72(図2参照)は、モータ回転角度算出部71が算出したモータ回転角度θに基づいて電動モータ110のモータ回転速度Vmを算出する。
操舵角算出部73(図2参照)は、ステアリングホイール101、減速機構111などが機械的に連結されているためにステアリングホイール101の操舵角度と電動モータ110のモータ回転角度θとの間に相関関係があることに鑑み、モータ回転角度算出部71にて算出されたモータ回転角度θに基づいて操舵角を算出する。操舵角算出部73は、例えば、モータ回転角度算出部71にて定期的(例えば1ミリ秒毎)に算出されたモータ回転角度θの前回値と今回値との差分の積算値に基づいて操舵角を算出する。以下では、操舵角算出部73が算出した操舵角を算出操舵角Raと称す。
〔基本目標電流算出部〕
図4は、基本目標電流算出部27の概略構成図である。
基本目標電流算出部27は、基本目標電流Itfを設定する上でベースとなるベース電流Ibを算出するベース電流算出部21と、電動モータ110の慣性モーメントを打ち消すためのイナーシャ補償電流Isを算出するイナーシャ補償電流算出部22と、電動モータ110の回転を制限するダンパー補償電流Idを算出するダンパー補償電流算出部23とを備えている。また、基本目標電流算出部27は、ベース電流算出部21、イナーシャ補償電流算出部22、ダンパー補償電流算出部23にて算出された値に基づいて基本目標電流Itfを決定する基本目標電流決定部25を備えている。また、基本目標電流算出部27は、トルクセンサ109にて検出された操舵トルクT(トルク信号Td)の位相を補償する位相補償部26を備えている。
図5は、操舵トルクTおよび車速Vcとベース電流Ibとの対応を示す制御マップの概略図である。
ベース電流算出部21は、位相補償部26にてトルク信号Tdが位相補償されたトルク信号Tsと、車速検出部170からの車速Vcに対応する出力信号とに基づいて図5例示の制御マップよりベース電流Ibを算出する。
イナーシャ補償電流算出部22は、トルク信号Tsと、車速Vcに対応する出力信号とに基づいて電動モータ110およびシステムの慣性モーメントを打ち消すためのイナーシャ補償電流Isを算出する。
ダンパー補償電流算出部23は、トルク信号Tsと、車速Vcに対応する出力信号と、電動モータ110のモータ回転速度Vmとに基づいて、電動モータ110の回転を制限するダンパー補償電流Idを算出する。
基本目標電流決定部25は、ベース電流算出部21にて算出されたベース電流Ib、イナーシャ補償電流算出部22にて算出されたイナーシャ補償電流Isおよびダンパー補償電流算出部23にて算出されたダンパー補償電流Idに基づいて基本目標電流Itfを決定する。基本目標電流決定部25は、例えば、ベース電流Ibに、イナーシャ補償電流Isを加算するとともにダンパー補償電流Idを減算して得た電流を基本目標電流Itfとして決定する。
〔補正電流決定部〕
次に、補正電流決定部28について詳述する。
図6は、補正電流決定部28の概略構成図である。
補正電流決定部28は、上述した操舵角速度偏差電流Ivの基本となる基本操舵角速度偏差電流Ivfを算出する基本操舵角速度偏差電流算出手段の一例としての基本操舵角速度偏差電流算出部281を備えている。また、補正電流決定部28は、ラック軸105に生じる軸力に基づいて基本操舵角速度偏差電流算出部281が算出した基本操舵角速度偏差電流Ivfを補正するための補正係数であるラック軸力補正係数Krを設定するラック軸力補正係数設定部282を備えている。また、補正電流決定部28は、車両の走行路面の摩擦係数変化に基づいて基本操舵角速度偏差電流算出部281が算出した基本操舵角速度偏差電流Ivfを補正するための補正係数である操舵角速度摩擦補正係数Kwvを設定する路面摩擦補正係数設定部283を備えている。さらに、路面摩擦補正係数設定部283は、路面摩擦に基づいて後述する基本車体流れ補正電流算出部285が算出した基本車体流れ補正電流Irfを補正するための補正係数である車体流れ摩擦補正係数Kwrを設定する。
また、補正電流決定部28は、基本操舵角速度偏差電流算出部281が算出した基本操舵角速度偏差電流Ivfと、ラック軸力補正係数設定部282が設定したラック軸力補正係数Krと、路面摩擦補正係数設定部283が設定した操舵角速度摩擦補正係数Kwvとに基づいて操舵角速度偏差電流Ivを決定する操舵角速度偏差電流決定部284を備えている。
また、補正電流決定部28は、上述した車体流れ補正電流Irの基本となる基本車体流れ補正電流Irf(操舵角偏差電流の一例)を算出する基本車体流れ補正電流算出部285(操舵角偏差電流算出手段の一例)を備えている。また、補正電流決定部28は、基本車体流れ補正電流算出部285が算出した基本車体流れ補正電流Irfと、路面摩擦補正係数設定部283が設定した車体流れ摩擦補正係数Kwrとに基づいて車体流れ補正電流Irを決定する車体流れ補正電流決定部286を備えている。
(基本操舵角速度偏差電流算出部)
図7は、基本操舵角速度偏差電流算出部281の概略構成図である。
基本操舵角速度偏差電流算出部281は、操舵角算出部73にて算出された算出操舵角Raと車速検出部170からの車速Vcとに基づいて目標の操舵角速度である目標操舵角速度Vrtを算出する目標操舵角速度算出部281aと、実際の操舵角速度である実操舵角速度Vraを算出する実操舵角速度算出部281bとを備えている。また、基本操舵角速度偏差電流算出部281は、目標操舵角速度算出部281aが算出した目標操舵角速度Vrtと実操舵角速度算出部281bが算出した実操舵角速度Vraとの偏差である操舵角速度偏差ΔVrを算出する操舵角速度偏差算出部281cと、操舵角速度偏差算出部281cが算出した操舵角速度偏差ΔVrに基づいて基本操舵角速度偏差電流Ivfを決定する基本操舵角速度偏差電流決定部281dとを備えている。
そして、基本操舵角速度偏差電流算出部281は、目標操舵角速度算出部281a、実操舵角速度算出部281b、操舵角速度偏差算出部281c、基本操舵角速度偏差電流決定部281dが後述する処理を予め設定された一定時間(例えば4ミリ秒)ごとに繰り返し実行することにより基本操舵角速度偏差電流Ivfを算出(設定)する。
図8は、算出操舵角Raおよび車速Vcと目標操舵角速度Vrtとの対応を示す制御マップである。
目標操舵角速度算出部281aは、操舵角算出部73にて算出された算出操舵角Raと車速検出部170からの車速Vcとに応じた目標操舵角速度Vrtを算出する。目標操舵角速度算出部281aは、例えば、予め経験則に基づいて作成しROMに記憶しておいた、算出操舵角Raおよび車速Vcと目標操舵角速度Vrtとの対応を示す図8に例示した制御マップに、算出操舵角Raおよび車速Vcを代入することにより目標操舵角速度Vrtを算出する。
実操舵角速度算出部281bは、操舵角算出部73にて算出された算出操舵角Raに基づいて実際の算出操舵角Raに対する変化速度である実操舵角速度Vraを算出する。実操舵角速度算出部281bは、操舵角算出部73にて算出された算出操舵角Raを時間微分することにより実操舵角速度Vraを算出する。
操舵角速度偏差算出部281cは、目標操舵角速度算出部281aが算出した目標操舵角速度Vrtから実操舵角速度算出部281bが算出した実操舵角速度Vraを減算することにより操舵角速度偏差ΔVrを算出する。
図9は、操舵角速度偏差ΔVrと基本操舵角速度偏差電流Ivfとの対応を示す制御マップである。
基本操舵角速度偏差電流決定部281dは、操舵角速度偏差算出部281cにて算出された操舵角速度偏差ΔVrに応じた基本操舵角速度偏差電流Ivfを算出する。基本操舵角速度偏差電流決定部281dは、例えば、予め経験則に基づいて作成しROMに記憶しておいた、操舵角速度偏差ΔVrと基本操舵角速度偏差電流Ivfとの対応を示す図9に例示した制御マップに、操舵角速度偏差ΔVrを代入することにより基本操舵角速度偏差電流Ivfを算出する。
(ラック軸力補正係数設定部)
図10は、ラック軸力補正係数設定部282の概略構成図である。
ラック軸力補正係数設定部282は、図10に示すように、ラック軸105に生じる規範となる軸力である規範ラック軸力Frmを算出する規範ラック軸力算出手段の一例としての規範ラック軸力算出部282aと、ラック軸105に生じる実際の軸力である実ラック軸力Fraを算出する実ラック軸力算出手段の一例としての実ラック軸力算出部282bとを備えている。また、ラック軸力補正係数設定部282は、規範ラック軸力算出部282aが算出した規範ラック軸力Frmと実ラック軸力算出部282bが算出した実ラック軸力Fraとの偏差であるラック軸力偏差ΔFrを算出するラック軸力偏差算出部282cと、ラック軸力偏差算出部282cが算出したラック軸力偏差ΔFrに基づいてラック軸力補正係数Krのベースとなるベースラック軸力補正係数Krbを設定するベースラック軸力補正係数設定部282dと、車速Vcに基づいてベースラック軸力補正係数Krbを補正するためラック軸力車速補正係数Kvvを設定するラック軸力車速補正係数設定部282eと、ベースラック軸力補正係数Krbとラック軸力車速補正係数Kvvとに基づいてラック軸力補正係数Krを決定するラック軸力補正係数決定部282fとを備えている。
そして、ラック軸力補正係数設定部282は、規範ラック軸力算出部282a、実ラック軸力算出部282b、ラック軸力偏差算出部282c、ベースラック軸力補正係数設定部282d、ラック軸力車速補正係数設定部282e、ラック軸力補正係数決定部282fが後述する処理を予め設定された一定時間(例えば4ミリ秒)ごとに繰り返し実行することによりラック軸力補正係数Krを算出(設定)する。
規範ラック軸力算出部282aは、操舵角算出部73にて算出された算出操舵角Raと車速検出部170からの車速Vcとに基づいて規範ラック軸力Frmを算出する。つまり、規範ラック軸力算出部282aは、算出操舵角Raと車速Vcとに応じた規範ラック軸力Frmを算出する。なお、規範ラック軸力算出部282aは、例えば、予め経験則に基づいて作成しROMに記憶しておいた、算出操舵角Raおよび車速Vcと規範ラック軸力Frmとの対応を示す制御マップ又は算出式に、算出操舵角Raおよび車速Vcを代入することにより規範ラック軸力Frmを算出する。
実ラック軸力算出部282bは、トルクセンサ109にて検出された操舵トルクTと、モータ回転角度算出部71にて算出されたモータ回転角度θと、モータ電流検出部33にて検出された実電流Imとに基づいて実ラック軸力Fraを算出する。
ここで、実ラック軸力Fraは、本実施の形態に係るステアリング装置100がピニオンアシスト装置であることから、ピニオンシャフト106から与えられる軸力に等しいとして、ピニオンシャフト106に加えられたピニオントルクTpに基づいて算出する。実ラック軸力Fraは、ピニオントルクTpをピニオン106aのピッチ円半径rpで除算した値である(Fra=Tp/rp)。
ピニオントルクTpは、ステアリングホイール101を介して運転者から加えられる操舵トルクTと電動モータ110の出力軸トルクToが減速機構により増大されて加えられるモータトルクTmとを加算したトルクと推定することができる(Tp=T+Tm)。
操舵トルクTは、トルクセンサ109からのトルク信号Tdに基づいて検出することができる。
モータトルクTmは、出力軸トルクToに減速機構111の減速比(ギア比)Nを乗算した値である(Tm=To×N)。
出力軸トルクToは、モータ回転角度算出部71にて算出されたモータ回転角度θおよびモータ電流検出部33にて検出された実電流Imを、予めROMに記憶しておいた算出式に代入することにより算出することができる。なお、モータ回転角度算出部71にて算出されたモータ回転角度θを用いる代わりに、モータ逆起電力から所定の式により算出したモータ回転角度θを用いてもよい。また、ピニオンアシスト装置にかぎらずに、ラックアシスト装置であってもよい。この場合は、モータトルクTmからラック軸に設けられた回転変換機構のネジ径(送りピッチ)に基づいて、モータトルクTmによるラック軸力を算出し、操舵トルクTによるラック軸力に加算することでラック軸力Fraを算出できる。さらに、ラック軸に軸力荷重センサを設けて直接ラック軸力Fraを検知してもよい。
ラック軸力偏差算出部282cは、実ラック軸力算出部282bが算出した実ラック軸力Fraから規範ラック軸力算出部282aが算出した規範ラック軸力Frmを減算することによりラック軸力偏差ΔFrを算出する(ΔFr=Fra−Frm)。
図11は、ラック軸力偏差ΔFrとベースラック軸力補正係数Krbとの対応を示す制御マップである。
ベースラック軸力補正係数設定部282dは、ラック軸力偏差算出部282cが算出したラック軸力偏差ΔFrに応じたベースラック軸力補正係数Krbを算出する。ベースラック軸力補正係数設定部282dは、例えば、予め経験則に基づいて作成しROMに記憶しておいた、ラック軸力偏差ΔFrとベースラック軸力補正係数Krbとの対応を示す図11に例示した制御マップに、ラック軸力偏差ΔFrを代入することによりベースラック軸力補正係数Krbを算出する。
なお、図11に示した制御マップにおいては、ラック軸力偏差ΔFrがプラス方向に大きくなるほど、言い換えれば、実ラック軸力Fraが規範ラック軸力Frmよりも大きいほどベースラック軸力補正係数Krbがプラス方向に大きくなるように設定されている。また、図11に示した制御マップにおいては、ラック軸力偏差ΔFrがマイナス方向に大きくなるほど、言い換えれば、規範ラック軸力Frmが実ラック軸力Fraよりも大きいほどベースラック軸力補正係数Krbがマイナス方向に大きくなるように設定されている。
図12は、車速Vcとラック軸力車速補正係数Kvvとの対応を示す制御マップである。
ラック軸力車速補正係数設定部282eは、車速Vcに応じたラック軸力車速補正係数Kvvを設定する。ラック軸力車速補正係数設定部282eは、例えば、予め経験則に基づいて作成しROMに記憶しておいた、車速Vcとラック軸力車速補正係数Kvvとの対応を示す図12に例示した制御マップに、車速Vcを代入することによりラック軸力車速補正係数Kvvを算出する。
ラック軸力補正係数決定部282fは、ベースラック軸力補正係数設定部282dが算出したベースラック軸力補正係数Krbとラック軸力車速補正係数設定部282eが算出したラック軸力車速補正係数Kvvとを乗算することにより得た値に1を加算することにより得た値をラック軸力補正係数Krとして決定する(Kr=1+Krb×Kvv)。
(操舵角速度偏差電流決定部)
操舵角速度偏差電流決定部284(図6参照)は、基本操舵角速度偏差電流算出部281が算出した基本操舵角速度偏差電流Ivfと、ラック軸力補正係数設定部282が設定したラック軸力補正係数Krと、路面摩擦補正係数設定部283が設定した操舵角速度摩擦補正係数Kwvとを乗算することにより得た値を操舵角速度偏差電流Ivとして決定する(Iv=Ivf×Kr×Kwv)。
操舵角速度偏差電流決定部284は、上述した手法にて算出した操舵角速度偏差電流IvをRAMなどの記憶領域に記憶する。
(基本車体流れ補正電流算出部)
図13は、基本車体流れ補正電流算出部285の概略構成図である。
基本車体流れ補正電流算出部285は、車輪速度の左右差から操舵角を推定する操舵角推定部285aと、操舵角推定部285aが推定した推定操舵角θcと、操舵角センサ180にて検出された検出操舵角θaとの操舵角偏差Δθを算出する操舵角偏差算出部285bとを備えている。
また、基本車体流れ補正電流算出部285は、操舵角偏差算出部285bが算出した操舵角偏差Δθの複数の値を平均化する平均化部285cと、平均化部285cが平均化した値に基づいて基本車体流れ補正電流Irfのベースとなるベース車体流れ補正電流Irbを算出するベース車体流れ補正電流算出部285dとを備えている。
また、基本車体流れ補正電流算出部285は、操舵角センサ180にて検出された検出操舵角θaに応じてベース車体流れ補正電流Irbを補正するための操舵角補正係数Kθを設定する操舵角補正係数設定部285eを備えている。
また、基本車体流れ補正電流算出部285は、トルクセンサ109にて検出された操舵トルクTに応じてベース車体流れ補正電流Irbを補正するためのトルク補正係数Ktを設定するトルク補正係数設定部285fを備えている。
また、基本車体流れ補正電流算出部285は、車速センサ170にて検出された車速Vcに応じてベース車体流れ補正電流Irbを補正するための車体流れ車速補正係数Kvcを設定する車体流れ車速補正係数設定部285gを備えている。
また、基本車体流れ補正電流算出部285は、ベース車体流れ補正電流算出部285dが算出したベース車体流れ補正電流Irbと、操舵角補正係数設定部285eが設定した操舵角補正係数Kθと、トルク補正係数設定部285fが設定したトルク補正係数Ktと、車体流れ車速補正係数設定部285gが設定した車体流れ車速補正係数Kvcとに基づいて基本車体流れ補正電流Irfを決定する基本車体流れ補正電流決定部285hを備えている。
そして、基本車体流れ補正電流算出部285は、操舵角推定部285a、操舵角偏差算出部285b、平均化部285c、ベース車体流れ補正電流算出部285d、操舵角補正係数設定部285e、トルク補正係数設定部285f、車体流れ車速補正係数設定部285gおよび基本車体流れ補正電流決定部285hが後述する処理を予め設定された一定時間(例えば4ミリ秒)ごとに繰り返し実行することにより基本車体流れ補正電流Irfを算出(設定)する。
操舵角推定部285aは、自動車1の左側に配置された車輪の回転速度と右側に配置された車輪の回転速度との車輪速度差ΔVhを算出する車輪速度差算出部285aaと、車輪速度差算出部285aaが算出した車輪速度差ΔVhを操舵角に換算する操舵角換算部285abとを備えている。また、操舵角推定部285aは、車速検出部170からの車速Vcに応じて操舵角換算部285abが換算した換算操舵角θeを調整するための車速調整係数Kvaを設定する車速調整係数設定部285acを備えている。また、操舵角推定部285aは、操舵角換算部285abが換算した換算操舵角θeと車速調整係数設定部285acが設定した車速調整係数Kvaとを乗算することにより推定操舵角θcを算出する推定操舵角算出部285adを備えている。
車輪速度差算出部285aaは、右側前輪速度検出部192からの右側前輪152の回転速度である右側前輪速度Vh2と右側後輪速度検出部194からの右側後輪(不図示)の回転速度である右側後輪速度Vh4とを加算した値から、左側前輪速度検出部191からの左側前輪151の回転速度である左側前輪速度Vh1と、左側後輪速度検出部193からの左側後輪(不図示)の回転速度である左側後輪速度Vh3とを減算することにより車輪速度差ΔVhを算出する(ΔVh=Vh2+Vh4−Vh1−Vh3)。
操舵角換算部285abは、自動車1の左側に配置された車輪の回転速度と右側に配置された車輪の回転速度との車輪速度差ΔVhと操舵角との間に相関関係があることに鑑み予め定められた換算係数αを、車輪速度差算出部285aaが算出した車輪速度差ΔVhに乗算することにより車輪速度差ΔVhを操舵角に換算する。操舵角換算部285abが換算した操舵角を換算操舵角θeとすると、換算操舵角θe=ΔVh×αである。
車速調整係数設定部285acは、操舵角換算部285abが換算した換算操舵角θeに対して車速Vcに応じた調整を行うための車速調整係数Kvaを設定する。
図14は、車速調整係数Kvaと車速Vcとの対応を示す制御マップの概略図である。
車速調整係数設定部285acは、車速検出部170からの車速Vcに基づいて車速調整係数Kvaを設定する。車速調整係数設定部285acは、例えば、予め経験則に基づいて作成しROMに記憶しておいた、車速調整係数Kvaと車速Vcとの対応を示す図14に例示した制御マップに、車速Vcを代入することにより車速調整係数Kvaを算出する。なお、図14は、運転者によるステアリングホイール101の回転角度が同じでも車速Vcが倍なら車輪速度も倍となることを考慮して作成されている。
推定操舵角算出部285adは、操舵角換算部285abが換算した換算操舵角θeと車速調整係数設定部285acが設定した車速調整係数Kvaとを乗算することにより推定操舵角θcを算出する(θc=θe×Kva)。
以上のように構成された操舵角推定部285aは、例えば自動車1が傾斜した路面を走行しているときには車体が傾き、自動車1の左側に配置された車輪の回転速度と右側に配置された車輪の回転速度との車輪速度差ΔVhが零ではなくなることに鑑み、車輪速度差ΔVhに相当する操舵角を推定する。
操舵角偏差算出部285bは、操舵角センサ180にて検出された検出操舵角θaから操舵角推定部285aにて推定された推定操舵角θcを減算することにより操舵角偏差Δθを算出する(Δθ=θa−θc)。
平均化部285cは、操舵角偏差算出部285bが予め設定された一定時間ごとに繰り返し実行することにより算出した操舵角偏差Δθの現時点から過去N個分の値を平均化する。平均化部285cは、FIRフィルタであることを例示することができる。また、Nは100であることを例示することができる。
図15は、操舵角偏差Δθとベース車体流れ補正電流Irbとの対応を示す制御マップの概略図である。
ベース車体流れ補正電流算出部285dは、平均化部285cにて平均化された操舵角偏差Δθに基づいてベース車体流れ補正電流Irbを算出する。つまり、ベース車体流れ補正電流算出部285dは、平均化部285cにて平均化された操舵角偏差Δθに応じたベース車体流れ補正電流Irbを算出する。なお、ベース車体流れ補正電流算出部285dは、例えば、予め経験則に基づいて作成しROMに記憶しておいた、操舵角偏差Δθとベース車体流れ補正電流Irbとの対応を示す図15に例示した制御マップに、平均化部285cにて平均化された操舵角偏差Δθを代入することによりベース車体流れ補正電流Irbを算出する。
操舵角補正係数設定部285eは、ベース車体流れ補正電流算出部285dにて算出されたベース車体流れ補正電流Irbに対して検出操舵角θaに応じた補正を行うための操舵角補正係数Kθを設定する。
図16は、操舵角補正係数Kθと検出操舵角θaの絶対値|θa|との対応を示す制御マップの概略図である。
操舵角補正係数設定部285eは、操舵角センサ180にて検出された検出操舵角θaに基づいて操舵角補正係数Kθを設定する。操舵角補正係数設定部285eは、例えば、予め経験則に基づいて作成しROMに記憶しておいた、操舵角補正係数Kθと検出操舵角θaとの対応を示す図16に例示した制御マップに、検出操舵角θaの絶対値|θa|を代入することにより操舵角補正係数Kθを算出する。
操舵角補正係数Kθは、運転者によるステアリングホイール101の回転角度の絶対値が予め定められた基準操舵角θ0よりも大きい場合には基本車体流れ補正電流Irfが小さくなるように設定されている。つまり、理想的には、検出操舵角θaの絶対値|θa|が基準操舵角θ0以下である場合には操舵角補正係数Kθは1で、検出操舵角θaの絶対値|θa|が基準操舵角θ0より大きい場合には操舵角補正係数Kθは1から零まで漸減した後、零に設定されている。これは、検出操舵角θaの絶対値|θa|が基準操舵角θ0よりも大きい場合には運転者が故意に自動車1を旋回させるべくステアリングホイール101を回転させていると考えられるからであり、運転者の操作を阻害しないようにするためである。なお、図16に示すように、検出操舵角θaの絶対値|θa|が基準操舵角θ0近傍である場合には検出操舵角θaの絶対値|θa|が大きくなるに従って操舵角補正係数Kθが1から徐々に小さくなるように設定されている。また、操舵角補正係数Kθが零近傍である場合には検出操舵角θaの絶対値|θa|が大きくなるに従って徐々に操舵角補正係数Kθが零に近づくように設定されている。
トルク補正係数設定部285fは、ベース車体流れ補正電流算出部285dにて算出されたベース車体流れ補正電流Irbに対して操舵トルクTに応じた補正を行うためのトルク補正係数Ktを設定する。
図17は、トルク補正係数Ktと操舵トルクTの絶対値|T|との対応を示す制御マップの概略図である。
トルク補正係数設定部285fは、トルクセンサ109にて検出された操舵トルクTに基づいてトルク補正係数Ktを設定する。トルク補正係数設定部285fは、例えば、予め経験則に基づいて作成しROMに記憶しておいた、トルク補正係数Ktと操舵トルクTの絶対値|T|との対応を示す図17に例示した制御マップに、操舵トルクTの絶対値|T|を代入することによりトルク補正係数Ktを算出する。
トルク補正係数Ktは、運転者によるステアリングホイール101の操作負荷が予め定められた基準トルクT0よりも大きい場合には基本車体流れ補正電流Irfが小さくなるように設定されている。つまり、理想的には、操舵トルクTの絶対値|T|が基準トルクT0以下である場合にはトルク補正係数Ktは1で、操舵トルクTの絶対値|T|が基準トルクT0より大きい場合にはトルク補正係数Ktは1から零まで漸減した後、零に設定されている。これは、操舵トルクTの絶対値|T|が基準トルクT0よりも大きい場合には運転者が故意に自動車1を旋回させるべくステアリングホイール101を回転させていると考えられるからであり、運転者の操作を阻害しないようにするためである。なお、図17に示すように、操舵トルクTの絶対値|T|が基準トルクT0近傍である場合には操舵トルクTが大きくなるに従ってトルク補正係数Ktが1から徐々に小さくなるように設定されている。また、トルク補正係数Ktが零近傍である場合には操舵トルクTの絶対値|T|が大きくなるに従って徐々にトルク補正係数Ktが零に近づくように設定されている。
車体流れ車速補正係数設定部285gは、ベース車体流れ補正電流算出部285dにて算出されたベース車体流れ補正電流Irbに対して車速Vcに応じた補正を行うための車体流れ車速補正係数Kvcを設定する。
図18は、車体流れ車速補正係数Kvcと車速Vcとの対応を示す制御マップの概略図である。
車体流れ車速補正係数設定部285gは、車速検出部170からの車速Vcに基づいて車体流れ車速補正係数Kvcを設定する。車体流れ車速補正係数設定部285gは、例えば、予め経験則に基づいて作成しROMに記憶しておいた、車体流れ車速補正係数Kvcと車速Vcとの対応を示す図18に例示した制御マップに、車速Vcを代入することにより車体流れ車速補正係数Kvcを算出する。図18においては、自動車1が低速、高速の場合に、基本車体流れ補正電流Irfが小さくなるように車体流れ車速補正係数Kvcは設定されている。
基本車体流れ補正電流決定部285hは、ベース車体流れ補正電流算出部285dが算出したベース車体流れ補正電流Irbと、操舵角補正係数設定部285eが設定した操舵角補正係数Kθと、トルク補正係数設定部285fが設定したトルク補正係数Ktと、車体流れ車速補正係数設定部285gが設定した車体流れ車速補正係数Kvcとを乗算することにより基本車体流れ補正電流Irfを決定する(Irf=Irb×Kθ×Kt×Kvc)。
以上のように構成された基本車体流れ補正電流算出部285においては、操舵角推定部285aが車輪速度差ΔVhに相当する操舵角を推定し、操舵角偏差算出部285bが操舵角センサ180にて検出された検出操舵角θaと推定操舵角θcとの操舵角偏差Δθを算出する。この操舵角偏差Δθが、例えば傾斜した路面を直進走行するために運転者が実際に操作して回転させている操舵角に相当すると考えられる。言い換えれば、操舵角偏差Δθの分、運転者がステアリングホイール101を回転させるために力を加えていると考えられる。かかる事項に鑑み、基本車体流れ補正電流Irfが操舵角偏差Δθの分の運転者の負荷を減らす電流量となるように、ベース車体流れ補正電流算出部285dが、図15に例示した制御マップを用いてベース車体流れ補正電流Irbを算出する。
なお、図15においては、操舵角偏差Δθの絶対値|Δθ|が大きくなるに従って運転者がステアリングホイール101を回転させる負荷が大きくなることに鑑み、操舵角偏差Δθの絶対値|Δθ|が大きくなるに従ってベース車体流れ補正電流Irbの絶対値が大きくなるように設定されている。
また、本実施の形態に係る基本車体流れ補正電流算出部285においては、平均化部285cが操舵角偏差Δθの現時点から過去N個分の値を平均化することにより、車輪速度検出部190からの出力信号のノイズ除去を行い、信号分解能を向上させている。
また、本実施の形態に係る基本車体流れ補正電流算出部285においては、操舵角補正係数Kθ、トルク補正係数Ktおよび車体流れ車速補正係数Kvcなどを用いてベース車体流れ補正電流算出部285dにて算出されたベース車体流れ補正電流Irbを補正して基本車体流れ補正電流Irfを決定する。これにより、運転者が故意に自動車1を旋回させるべくステアリングホイール101を回転させている場面では運転者の操作を阻害しないようにしている。
なお、上述した実施の形態においては、ベース車体流れ補正電流算出部285dにて算出されたベース車体流れ補正電流Irbを、操舵角補正係数Kθ、トルク補正係数Kt及び車体流れ車速補正係数Kvcを用いて補正しているが、特にかかる態様に限定されない。基本車体流れ補正電流決定部285hは、ベース基本車体流れ補正電流算出部285dが算出したベース車体流れ補正電流Irbと、操舵角補正係数Kθ、トルク補正係数Ktおよび車体流れ車速補正係数Kvcの少なくとも一つの補正係数とを乗算することにより得た値を基本車体流れ補正電流Irfとして決定してもよい。
(車体流れ補正電流決定部)
車体流れ補正電流決定部286は、基本車体流れ補正電流算出部285が算出した基本車体流れ補正電流Irfと、路面摩擦補正係数設定部283が設定した車体流れ摩擦補正係数Kwrとを乗算することにより得た値を車体流れ補正電流Irとして決定する(Ir=Irf×Kwr)。
車体流れ補正電流決定部286は、上述した手法にて算出した車体流れ補正電流IrをRAMなどの記憶領域に記憶する。
(路面摩擦補正係数設定部)
図19は、路面摩擦補正係数設定部283の概略構成図である。
路面摩擦補正係数設定部283は、路面の摩擦係数の低下の度合いを示す係数である路面摩擦係数低下係数Jを設定する路面摩擦係数低下係数設定部283aを備えている。また、路面摩擦補正係数設定部283は、路面摩擦係数低下係数設定部283aが設定した路面摩擦係数低下係数Jに基づいて、操舵角速度摩擦補正係数Kwvを設定する操舵角速度摩擦補正係数設定部283bと、車体流れ摩擦補正係数Kwrを設定する車体流れ摩擦補正係数設定部283cとを備えている。路面摩擦補正係数設定部283は、例えば雨天時や気温低下時などには路面の摩擦係数が低下するなど、路面状況によって路面の摩擦係数が変化し、路面からの反力が変化することに鑑み、路面摩擦係数に基づいて操舵角速度偏差電流Ivや車体流れ補正電流Irを変更する補正係数を設定する。
図20は、雨量Qr及び吸入空気温度Tiと、路面摩擦係数低下係数Jとの対応を示す制御マップの概略図である。
路面摩擦係数低下係数設定部283aは、雨量検出部195からの雨量Qrに対応する出力信号と、吸入空気温度検出部196からの吸入空気温度Tiに対応する出力信号とに基づいて路面摩擦係数低下係数Jを算出する。つまり、路面摩擦係数低下係数設定部283aは、雨量Qrと吸入空気温度Tiとに応じた路面摩擦係数低下係数Jを算出する。なお、路面摩擦係数低下係数設定部283aは、例えば、予め経験則に基づいて作成しROMに記憶しておいた、雨量Qr及び吸入空気温度Tiと、路面摩擦係数低下係数Jとの対応を示す図20に例示した制御マップに、雨量Qr及び吸入空気温度Tiを代入することにより路面摩擦係数低下係数Jを算出する。なお、路面摩擦係数低下係数Jは、路面の摩擦係数が小さくなるほど大きくなる。
図20に示した制御マップにおいては、路面摩擦係数低下係数Jは、雨量Qrが予め定められた値よりも多い場合には吸入空気温度Tiが低いほど大きくなるように定められている。また、吸入空気温度Tiが同じである場合、雨量Qrが吸入空気温度Ti毎に予め定められた下限基準値よりも多いほど、路面摩擦係数低下係数Jは大きくなるように定められている。ただし、雨量Qrが吸入空気温度Ti毎に予め定められた上限基準値よりも多い場合には、路面摩擦係数低下係数Jは一定となるように定められている。これらは、路面が濡れているほど路面の摩擦係数は小さく、また、気温が低いほど路面の摩擦係数は小さいと考えられるからである。なお、雨量検出部195から取得する雨量Qrは、所定期間内に降った雨の量であることを例示することができる。また、雨量検出部195から取得する雨量Qrは、自動車1に備えられたワイパーの間欠時間が短いほど大きな値であってもよい。
図21(a)は、路面摩擦係数低下係数Jと操舵角速度摩擦補正係数Kwvとの対応を示す制御マップの概略図である。
操舵角速度摩擦補正係数設定部283bは、路面摩擦係数低下係数Jに応じた操舵角速度摩擦補正係数Kwvを算出する。なお、操舵角速度摩擦補正係数設定部283bは、例えば、予め経験則に基づいて作成しROMに記憶しておいた、路面摩擦係数低下係数Jと操舵角速度摩擦補正係数Kwvとの対応を示す図21(a)に例示した制御マップに、路面摩擦係数低下係数Jを代入することにより操舵角速度摩擦補正係数Kwvを算出する。
図21(a)に示した制御マップにおいては、操舵角速度摩擦補正係数Kwvは、路面摩擦係数低下係数Jが予め定められた第1基準低下係数J1以下である場合には1である。そして、路面摩擦係数低下係数Jが第1基準低下係数J1よりも大きい場合には、路面摩擦係数低下係数Jが大きいほど操舵角速度摩擦補正係数Kwvが大きくなるように設定されている。ただし、路面摩擦係数低下係数Jが予め定められた上限値よりも大きい場合には、操舵角速度摩擦補正係数Kwvは一定となるように定められている。路面摩擦係数低下係数Jが大きいほど、言い換えれば路面の摩擦係数が小さいほど、路面から外乱を受けたときにステアリングホイール101が回転し易くなる。路面からの外乱が同じであるとしても、路面の摩擦係数が小さいほどステアリングホイール101(ハンドル)が取られ易くなるのを抑制するべく操舵角速度偏差電流Ivを増加するように、路面摩擦係数低下係数Jに応じた操舵角速度摩擦補正係数Kwvを設定している。
図21(b)は、路面摩擦係数低下係数Jと車体流れ摩擦補正係数Kwrとの対応を示す制御マップの概略図である。
車体流れ摩擦補正係数設定部283cは、路面摩擦係数低下係数Jに応じた車体流れ摩擦補正係数Kwrを算出する。なお、車体流れ摩擦補正係数設定部283cは、例えば、予め経験則に基づいて作成しROMに記憶しておいた、路面摩擦係数低下係数Jと車体流れ摩擦補正係数Kwrとの対応を示す図21(b)に例示した制御マップに、路面摩擦係数低下係数Jを代入することにより車体流れ摩擦補正係数Kwrを算出する。
図21(b)に示した制御マップにおいては、車体流れ摩擦補正係数Kwrは、路面摩擦係数低下係数Jが予め定められた第2基準低下係数J2以下である場合には1である。そして、路面摩擦係数低下係数Jが第2基準低下係数J2よりも大きい場合には、路面摩擦係数低下係数Jが大きいほど車体流れ摩擦補正係数Kwrが小さくなるように設定されている。ただし、路面摩擦係数低下係数Jが予め定められた上限値よりも大きい場合には、車体流れ摩擦補正係数Kwrは一定となるように定められている。路面摩擦係数低下係数Jが大きいほど、言い換えれば路面の摩擦係数が小さいほど、ステアリングホイール101が回転し易くなる。路面の傾斜が同じである場合には路面の摩擦係数が小さいほど運転者によるステアリングホイール101の操作負荷が小さくなるため車体流れ補正電流Irを小さくするように、路面摩擦係数低下係数Jに応じた車体流れ摩擦補正係数Kwrを設定している。
(目標電流決定部)
目標電流決定部29は、RAMなどの記憶領域に記憶された、基本目標電流算出部27が算出した基本目標電流Itfと、補正電流決定部28が算出した操舵角速度偏差電流Ivと、車体流れ補正電流Irとを加算した値を目標電流Itとして決定する(It=Itf+Iv+Ir)。
以上のように構成された本実施の形態に係る目標電流算出部20においては、目標電流Itを決定する際に、目標操舵角速度Vrtと実操舵角速度Vraとの偏差に応じた操舵角速度偏差電流Ivが加算される。この操舵角速度偏差電流Ivは、路面からの反力度合いを考慮した電流であり、路面からの反力が小さい場合には操舵角速度偏差電流Ivの絶対値は小さく、路面からの反力が大きい場合には操舵角速度偏差電流Ivの絶対値は大きくなるように設定される。
加えて、本実施の形態に係る目標電流算出部20においては、ラック軸105に生じる実ラック軸力Fraが規範ラック軸力Frmよりも大きくなるほど、ラック軸力補正係数Krが大きくなるので、操舵角速度偏差電流Ivが大きくなるように補正されて、目標電流Itが増大する。他方、ラック軸105に生じる実ラック軸力Fraが規範ラック軸力Frmよりも小さい場合は、実ラック軸力Fraが規範ラック軸力Frmよりも小さくなるほど、マイナス方向にラック軸力補正係数Krが大きくなるので、操舵角速度偏差電流Ivが小さくなるように補正されて、目標電流Itが減少する。
それゆえ、本実施の形態に係る目標電流算出部20によれば、路面からの反力度合いを考慮した操舵角速度偏差電流Ivを加える制御を行うにあたっても、外乱入力を考慮した値にすることができる。そして、かかる構成によれば、不規則で連続的な外乱入力時など、外乱入力推定が不安定となり、ラック軸力偏差ΔFrが不安定な出力となる場合においても、操舵角速度偏差電流Ivが増減するのみであり、目標操舵角速度Vrtと実操舵角速度Vraとの偏差に応じた補正電流を加味する効果が増減するのみである。そのため、例えば、実ラック軸力Fraと規範ラック軸力Frmとの偏差に応じて補正電流を算出し、算出した補正電流を目標電流Itに加算する構成である場合と比較すると、不規則で連続的な外乱が入力することに起因して操舵フィーリングが悪化することを抑制できる。
加えて、本実施の形態に係る目標電流算出部20においては、路面の摩擦係数が小さくなるほど、操舵角速度摩擦補正係数Kwvが1より大きくなるので、操舵角速度偏差電流Ivの絶対値が大きくなるように補正されて、目標電流Itの絶対値が増大する。
それゆえ、本実施の形態に係る目標電流算出部20によれば、路面からの反力度合いを考慮した操舵角速度偏差電流Ivを加える制御を行うにあたっても、路面の摩擦係数が低下することにより、例えば悪路走行等によるハンドルの取られやすさが増大するような状況においても操舵角速度偏差電流Ivを補正することができる。つまり、ステアリングホイール101への外乱がより大きくなる場合に制御出力である操舵角速度偏差電流Ivを増大させて、制御効果をより向上させることができる。また、路面の摩擦係数を考慮して目標電流Itを決定することを、自動車1に従来より備えられている既存の情報である雨量Qr検知機能(雨量検出部195が雨量Qrを検知する機能)や吸入空気温度Ti検知機能(吸入空気温度検出部196が吸入空気温度Tiを検知する機能)を単に利用することで実現することができる。
そして、本実施の形態に係る目標電流算出部20においては、路面摩擦補正係数設定部283が設定した操舵角速度摩擦補正係数Kwvを、基本操舵角速度偏差電流算出部281が算出した基本操舵角速度偏差電流Ivfに乗算する。かかる構成によれば、路面の摩擦係数が低下することによりステアリングホイール101への外乱が増大する場合においても、操舵角速度偏差電流Ivが増大するのみであり、目標操舵角速度Vrtと実操舵角速度Vraとの偏差に応じた補正電流を加味する効果が増大するのみである。そのため、例えば、路面の摩擦係数が低下することに応じて補正電流を算出し、算出した補正電流を基本目標電流Itfに加算する構成である場合と比較すると、路面の摩擦係数が低下することに起因して操舵フィーリングが悪化することを抑制できる。
また、本実施の形態に係る目標電流算出部20においては、目標電流Itを決定する際に、検出操舵角θaと推定操舵角θcとの操舵角偏差Δθに応じた車体流れ補正電流Irを加算する。これにより、例えば傾斜した路面を直進走行する場合など車体流れに伴う負荷が運転者に必要な状況においても、車体流れに伴う負荷を電動モータ110がアシストするので、運転者の負担を軽減することができる。つまり、例えば傾斜した路面を直進走行する場合、車体流れ補正電流決定部286を備えていない構成ならば運転者がステアリングホイール101に力を加えて保舵を継続しなければならない場面においても、車体流れ補正電流Irが目標電流Itに加味されるのでその保舵に必要な力が電動モータ110からアシストされる。また、旋回(左折や右折)に要する力であれば、図5に示すようにベース電流Ibの絶対値が零より大きくなる操舵トルクTとなるので基本目標電流Itfにより電動モータ110にアシスト力が生じる。そして、本実施の形態に係る目標電流算出部20においては、ベース電流Ibが零となる操舵トルクTの領域のように、旋回に要する力よりは小さな力を加えて保舵しなければならない場面であっても車体流れ補正電流Irが目標電流Itに加味されるので運転者の負担を軽減することができる。
そして、本実施の形態に係る車体流れ補正電流決定部286においては、従来ABSなどに用いられるために自動車1に備え付けられている車輪速度センサ190が検出した車輪の回転速度の左右差に基づいて車体流れを検出して基本車体流れ補正電流Irfを決定する。それゆえ、車体流れを検出するために別途ヨーレートセンサを備える必要がない。したがって、本実施の形態に係るステアリング装置100によれば、低廉に車体流れ時の運転者の負担を軽減できる。
加えて、本実施の形態に係る目標電流算出部20においては、路面の摩擦係数が小さくなるほど、車体流れ摩擦補正係数Kwrが1より小さくなるので、車体流れ補正電流Irの絶対値が小さくなるように補正されて、目標電流Itの絶対値が増大する。
それゆえ、本実施の形態に係る目標電流算出部20によれば、例えば傾斜した路面を直進走行する運転者の操作を考慮した車体流れ補正電流Irを加える制御を行うにあたっても、路面の摩擦係数が低下することにより、例えばステアリングホイール101の操作負荷が低下するような状況において、車体流れ補正電流Irを小さく補正することができる。つまり、ステアリングホイール101への操作負荷がより小さくなる場合に制御出力である車体流れ補正電流Irを低下するので、制御効果をより向上させることができる。また、路面の摩擦係数を考慮して目標電流Itを決定することを、自動車1に従来より備えられている既存の情報である雨量Qr検知機能(雨量検出部195が雨量Qrを検知する機能)や吸入空気温度Ti検知機能(吸入空気温度検出部196が吸入空気温度Tiを検知する機能)を単に利用することで実現することができる。
そして、本実施の形態に係る目標電流算出部20においては、路面摩擦補正係数設定部283が設定した車体流れ摩擦補正係数Kwrを、基本車体流れ補正電流算出部285が算出した基本車体流れ補正電流Irfに乗算する。かかる構成によれば、路面の摩擦係数が低下することによりステアリングホイール101の操作負荷が低下する場合においても、車体流れ補正電流Irが低下するのみであり、検出操舵角θaと推定操舵角θcとの操舵角偏差Δθに応じた補正電流を加味する効果が低下するのみである。そのため、例えば、路面の摩擦係数が低下することに応じて補正電流を算出し、算出した補正電流を基本目標電流Itfに加算する構成である場合と比較すると、路面の摩擦係数の変化を考慮して車体流れ補正電流Irを調整することに起因して操舵フィーリングが悪化することを抑制できる。
以上説明したように、本実施の形態に係るステアリング装置100によれば、操舵フィーリングの低下を抑制しつつ、車両の走行路面状況を考慮したアシスト力を付与することができる。
なお、上述した実施の形態においては、基本車体流れ補正電流算出部285の操舵角偏差算出部285bは、操舵角センサ180にて検出された検出操舵角θaから操舵角推定部285aにて推定された推定操舵角θcを減算することにより操舵角偏差Δθを算出しているが、特にかかる態様に限定されない。操舵角偏差算出部285bは、操舵角算出部73が算出した算出操舵角Raから操舵角推定部285aにて推定された推定操舵角θcを減算することにより操舵角偏差Δθを算出してもよい(Δθ=Ra−θc)。
10…制御装置、20…目標電流算出部、21…ベース電流算出部、27…基本目標電流算出部、28…補正電流決定部、29…目標電流決定部、30…制御部、100…電動パワーステアリング装置、110…電動モータ、281…基本操舵角速度偏差電流算出部、282…ラック軸力補正係数設定部、283…路面摩擦補正係数設定部、284…操舵角速度偏差電流決定部、285…基本車体流れ補正電流算出部、286…車体流れ補正電流決定部

Claims (8)

  1. 車両のステアリングホイールに加わる操舵力をアシストする電動モータと、
    前記ステアリングホイールの操舵トルクを検出するトルク検出手段と、
    前記ステアリングホイールの回転角度である操舵角を検出する操舵角検出手段と、
    前記トルク検出手段が検出した操舵トルクに基づいて前記電動モータに供給する目標電流の基本となる基本目標電流を算出する基本目標電流算出手段と、
    前記操舵角検出手段が検出した操舵角に基づいて算出した目標操舵角速度と実際の操舵角速度との操舵角速度偏差に応じた基本操舵角速度偏差電流を算出する基本操舵角速度偏差電流算出手段を有し、前記車両の走行路面の摩擦係数変化に基づいて、前記基本操舵角速度偏差電流を補正した補正電流を算出する補正電流算出手段と、
    前記基本目標電流算出手段が算出した前記基本目標電流と前記補正電流算出手段が算出した前記補正電流とに基づいて前記目標電流を決定する目標電流決定手段と、
    を備える電動パワーステアリング装置。
  2. 前記補正電流算出手段は、気温が低いほど前記補正電流の絶対値が大きくなるように補正する
    請求項1に記載の電動パワーステアリング装置。
  3. 前記補正電流算出手段は、雨量が多いほど前記補正電流の絶対値が大きくなるように補正する
    請求項1又は2に記載の電動パワーステアリング装置。
  4. 前記補正電流算出手段は、
    前記操舵角検出手段が検出した操舵角と車速とに基づく、転動輪を転動させるラック軸に生じる軸力の規範となる規範ラック軸力と、前記ラック軸に生じる実際の軸力との偏差に基づいて前記補正電流を変更する
    請求項1から3のいずれか1項に記載の電動パワーステアリング装置。
  5. 車両のステアリングホイールに加わる操舵力をアシストする電動モータと、
    前記ステアリングホイールの操舵トルクを検出するトルク検出手段と、
    前記ステアリングホイールの回転角度である操舵角を検出する操舵角検出手段と、
    前記トルク検出手段が検出した操舵トルクに基づいて前記電動モータに供給する目標電流の基本となる基本目標電流を算出する基本目標電流算出手段と、
    前記車両の左側に配置された左側車輪の回転速度と右側に配置された右側車輪の回転速度との差に基づいて推定した推定操舵角と前記操舵角検出手段が検出した検出操舵角との操舵角偏差に応じた操舵角偏差電流を算出する操舵角偏差電流算出手段を有し、前記車両の走行路面の摩擦係数変化に基づいて、前記操舵角偏差電流を補正した補正電流を算出する補正電流算出手段と、
    前記基本目標電流算出手段が算出した前記基本目標電流と前記補正電流算出手段が算出した前記補正電流とに基づいて前記目標電流を決定する目標電流決定手段と、
    を備える電動パワーステアリング装置。
  6. 前記補正電流算出手段は、気温が低いほど前記補正電流の絶対値が小さくなるように補正する
    請求項5に記載の電動パワーステアリング装置。
  7. 前記補正電流算出手段は、雨量が多いほど前記補正電流の絶対値が小さくなるように補正する
    請求項5又は6に記載の電動パワーステアリング装置。
  8. 車両のステアリングホイールに加わる操舵力をアシストする電動モータと、
    前記ステアリングホイールの操舵トルクを検出するトルク検出手段と、
    前記ステアリングホイールの回転角度である操舵角を検出する操舵角検出手段と、
    前記トルク検出手段が検出した操舵トルクに基づいて前記電動モータに供給する目標電流の基本となる基本目標電流を算出する基本目標電流算出手段と、
    前記操舵角検出手段が検出した操舵角に基づいて算出した目標操舵角速度と実際の操舵角速度との偏差に応じた基本操舵角速度偏差電流を算出する基本操舵角速度偏差電流算出手段を有し、前記車両の走行路面の摩擦係数変化に基づいて、前記基本操舵角速度偏差電流を補正した第1補正電流を算出するとともに、前記車両の左側に配置された左側車輪の回転速度と右側に配置された右側車輪の回転速度との差に基づいて推定した推定操舵角と前記操舵角検出手段が検出した検出操舵角との操舵角偏差に応じた操舵角偏差電流を算出する操舵角偏差電流算出手段を有し、前記車両の走行路面の摩擦係数変化に基づいて、前記操舵角偏差電流を補正した第2補正電流を算出する補正電流算出手段と、
    前記基本目標電流算出手段が算出した前記基本目標電流と前記補正電流算出手段が算出した前記第1補正電流及び前記第2補正電流とに基づいて前記目標電流を決定する目標電流決定手段と、
    を備える電動パワーステアリング装置。
JP2015225312A 2015-11-18 2015-11-18 電動パワーステアリング装置 Pending JP2017094754A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015225312A JP2017094754A (ja) 2015-11-18 2015-11-18 電動パワーステアリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015225312A JP2017094754A (ja) 2015-11-18 2015-11-18 電動パワーステアリング装置

Publications (1)

Publication Number Publication Date
JP2017094754A true JP2017094754A (ja) 2017-06-01

Family

ID=58816435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015225312A Pending JP2017094754A (ja) 2015-11-18 2015-11-18 電動パワーステアリング装置

Country Status (1)

Country Link
JP (1) JP2017094754A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044074A1 (ja) * 2020-08-24 2022-03-03 日立Astemo株式会社 電動パワーステアリング装置、電動パワーステアリング装置用の制御装置及びプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044074A1 (ja) * 2020-08-24 2022-03-03 日立Astemo株式会社 電動パワーステアリング装置、電動パワーステアリング装置用の制御装置及びプログラム

Similar Documents

Publication Publication Date Title
JP7194326B2 (ja) モータ制御装置
CN109572807B (zh) 电动助力转向装置
JP6036538B2 (ja) 電動パワーステアリング装置
JP6314552B2 (ja) 電動パワーステアリング装置
JP5417300B2 (ja) 電動パワーステアリング装置
JP6609465B2 (ja) 電動パワーステアリング装置
JP6291314B2 (ja) 電動パワーステアリング装置、プログラム
JP2017094754A (ja) 電動パワーステアリング装置
JP2015186955A (ja) 電動パワーステアリング装置、プログラム
JP6391516B2 (ja) 電動パワーステアリング装置
JP6291310B2 (ja) 電動パワーステアリング装置、プログラム
JP6643934B2 (ja) 電動パワーステアリング装置、プログラム
JP6643935B2 (ja) 電動パワーステアリング装置、プログラム
JP6453089B2 (ja) 電動パワーステアリング装置
JP2017043114A (ja) 電動パワーステアリング装置
JP2017088141A (ja) 電動パワーステアリング装置
JP2016159702A (ja) 電動パワーステアリング装置
JP6401637B2 (ja) 電動パワーステアリング装置
JP5875931B2 (ja) 電動パワーステアリング装置
JP6059063B2 (ja) 電動パワーステアリング装置
JP2014166804A (ja) 電動パワーステアリング装置
JP2016159701A (ja) 電動パワーステアリング装置
JP2016165953A (ja) 電動パワーステアリング装置
JP2017154632A (ja) 電動パワーステアリング装置、プログラム
JP2015189416A (ja) 電動パワーステアリング装置、プログラム