JP2017091995A - Method of manufacturing lithium ion battery - Google Patents

Method of manufacturing lithium ion battery Download PDF

Info

Publication number
JP2017091995A
JP2017091995A JP2015224860A JP2015224860A JP2017091995A JP 2017091995 A JP2017091995 A JP 2017091995A JP 2015224860 A JP2015224860 A JP 2015224860A JP 2015224860 A JP2015224860 A JP 2015224860A JP 2017091995 A JP2017091995 A JP 2017091995A
Authority
JP
Japan
Prior art keywords
material powder
lithium ion
ion battery
granulated body
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015224860A
Other languages
Japanese (ja)
Inventor
鈴木 繁
Shigeru Suzuki
繁 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015224860A priority Critical patent/JP2017091995A/en
Publication of JP2017091995A publication Critical patent/JP2017091995A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Glanulating (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a lithium ion battery, capable of improving film-forming properties by forming granulated bodies with micro diameters.SOLUTION: A method of manufacturing a lithium ion battery includes: a granulation step of stirring material powder 1 at a mixing section 13 of a stirrer 10 to form granulated bodies 2; a kneading step of kneading the granulated bodies 2 obtained in the granulation step with a solvent to form an electrode mixture paste; and a coating step of coating the electrode mixture paste formed in the kneading step. In the granulation step, the mixing section 13 is allowed to contain gas containing moisture, or the mixing section 13 is allowed to be cooled.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン電池の製造方法に関する。   The present invention relates to a method for manufacturing a lithium ion battery.

リチウムイオン電池は、通常、正負の電極板をセパレータと共に巻回したものをケースに収納して構成されるものである。その電極板は、集電箔に活物質層をコーティングしたものである。よって、電極板は、集電箔となる金属箔に、活物質成分を含むペーストをコーティングして乾燥させることにより製造される。そのペーストは、攪拌機の混合部に活物質や分散剤等の2種以上の材料粉体を投入して攪拌混合し、造粒体を形成する造粒工程と、その造粒体を溶媒と混練する混練工程とを得て、製造される。   A lithium ion battery is usually configured by storing a positive and negative electrode plate wound together with a separator in a case. The electrode plate is obtained by coating a current collector foil with an active material layer. Therefore, an electrode plate is manufactured by coating the metal foil used as current collection foil with the paste containing an active material component, and drying it. The paste is a granulation step in which two or more kinds of material powders such as an active material and a dispersing agent are put into a mixing part of a stirrer and mixed by stirring to form a granulated body, and the granulated body is kneaded with a solvent. And kneading process to be manufactured.

材料粉体を攪拌して造粒体を形成する方法は、例えば特許文献1〜特許文献3に記載されている。
特許文献1には、円筒形ケーシングに材料粉体を投入した後、ケーシングに内設された複数の回転翼で材料粉体を攪拌することにより、造粒体を形成することが記載されている。
特許文献2には、攪拌機の容器内に材料粉体と液状の溶媒とを投入して攪拌することにより、造粒体を形成することが記載されている。
特許文献3には、ミキサー容器内に材料粉体を投入し、液体を序々に添加しながら材料粉体と液体とを混合させ、造粒体を形成することが記載されている。
A method for forming a granulated body by stirring material powder is described in, for example, Patent Documents 1 to 3.
Patent Document 1 describes forming a granulated body by charging material powder into a cylindrical casing and then stirring the material powder with a plurality of rotor blades installed in the casing. .
Patent Document 2 describes that a granulated body is formed by putting a material powder and a liquid solvent into a container of a stirrer and stirring them.
Patent Document 3 describes that a material powder is put into a mixer container, and the material powder and the liquid are mixed while the liquid is gradually added to form a granulated body.

特開平11−169699号公報JP-A-11-169699 特開2015−032554号公報Japanese Patent Laying-Open No. 2015-032554 特開2007−222861号公報JP 2007-222861 A

しかしながら、前記した従来技術には、以下の問題があった。
特許文献1記載の方法でリチウムイオン電池の製造に用いる造粒体を製造する場合、例えば、材料粉体としての活物質と分散剤に加え、溶媒をケーシングに投入した後、これらを回転翼で攪拌する。攪拌は、溶媒を活物質に均一に分散させ、活物質が均一に湿潤するまで行う(以下、攪拌を開始してから、活物質が均一に湿潤するまでの時間を、「造粒時間」という。)。なぜなら、湿潤が不十分な造粒体は、混練工程時に活物質に割れや欠けが生じ、活物質が割れや欠けを生じた部分を活性化させて電池特性を悪化させる恐れがあるからである。特許文献1記載の方法では、攪拌前に材料粉体の一部に溶媒をまとめて供給するため、材料粉体間の湿潤度に大きな差がある状態で攪拌を行う。そのため、溶媒を活物質に均一に分散させて活物質を均一に湿潤させるのに時間がかかっていた。すなわち、造粒時間が長かった。リチウムイオン電池の製造分野では、良好な成膜性を得るために、平均粒径15μm以下の微小径な造粒体を形成することが望まれている。造粒体は、造粒時間が長くなるほど大きく成長する。よって、特許文献1記載の方法では、上述したように造粒時間が長いため、例えば活物質の表面に分散剤がたくさん付着するなどして造粒体の粒成長が進み、成膜性を悪化させる恐れがあった。
However, the above-described prior art has the following problems.
In the case of producing a granulated material used for the production of a lithium ion battery by the method described in Patent Document 1, for example, in addition to an active material and a dispersant as material powders, a solvent is put into a casing, and then these are mixed with a rotor blade. Stir. Stirring is performed until the solvent is uniformly dispersed in the active material and the active material is uniformly wetted (hereinafter, the time from the start of stirring until the active material is uniformly wetted is referred to as “granulation time”. .) This is because a granulated body that is not sufficiently wet may cause cracking or chipping in the active material during the kneading process, and may activate the portion where the active material has cracked or chipping, thereby deteriorating battery characteristics. . In the method described in Patent Document 1, since the solvent is collectively supplied to a part of the material powder before stirring, the stirring is performed in a state where there is a large difference in wetness between the material powders. For this reason, it takes time to uniformly disperse the solvent in the active material and to wet the active material uniformly. That is, the granulation time was long. In the field of manufacturing lithium ion batteries, in order to obtain good film formability, it is desired to form a fine granule having an average particle size of 15 μm or less. The granulated body grows larger as the granulation time becomes longer. Therefore, in the method described in Patent Document 1, since the granulation time is long as described above, for example, a large amount of the dispersant adheres to the surface of the active material, so that the granule grows and the film formability deteriorates. There was a fear.

また、特許文献2記載の方法も、攪拌機の容器内に材料粉体(例えば活物質と分散剤等)と溶媒を投入して攪拌するため、特許文献1と同様の問題が生じていた。   Also, the method described in Patent Document 2 has the same problems as Patent Document 1 because the material powder (for example, active material and dispersant) and the solvent are put into the container of the stirrer and stirred.

また、特許文献3記載の方法によれば、例えば、材料粉体(例えば活物質と分散剤等)をミキサー容器に投入し、ミキサー容器内に溶媒を徐々に添加しながら造粒体を形成する。しかし、この方法も、溶媒が材料粉体の上面だけに投入され、各材料粉体に溶媒を均一に供給できない。そのため、材料粉体の上面の湿潤度とミキサー容器底面の湿潤度とに勾配ができ、添加した溶媒を材料粉体に均一に分散させるのに、時間がかかっていた。特許文献3記載の方法も、造粒時間が長くなるので、造粒体の粒成長が進行しやすく、平均粒径15μm以下の微小径な造粒体を形成するのが困難であった。   Further, according to the method described in Patent Document 3, for example, material powder (for example, an active material and a dispersant) is charged into a mixer container, and a granulated body is formed while gradually adding a solvent into the mixer container. . However, also in this method, the solvent is charged only on the upper surface of the material powder, and the solvent cannot be uniformly supplied to each material powder. Therefore, there is a gradient between the wetness of the upper surface of the material powder and the wetness of the bottom surface of the mixer container, and it takes time to uniformly disperse the added solvent in the material powder. Also in the method described in Patent Document 3, since the granulation time becomes long, the grain growth of the granulated body easily proceeds, and it is difficult to form a granulated body having an average particle diameter of 15 μm or less.

本発明は、上記問題点を解決するためになされたものであり、微小径の造粒体を形成し、成膜性を向上させることができるリチウムイオン電池の製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a method for manufacturing a lithium ion battery that can form a granulated body with a small diameter and improve the film formability. To do.

本発明の一態様は、攪拌機の混合部で材料粉体を攪拌し、造粒体を形成する造粒工程と、前記造粒工程で得られた造粒体を溶媒と混練して電極合材ペーストを形成する混練工程と、前記混練工程で形成された前記電極合材ペーストを塗工する塗工工程とを有するリチウムイオン電池の製造方法において、前記造粒工程が、水分を含んだ気体を前記混合部に含有させる、または、前記混合部を冷却させることを特徴とするリチウムイオン電池の製造方法である。   One aspect of the present invention includes a granulating step of stirring a material powder in a mixing portion of a stirrer to form a granulated body, and a granulated body obtained in the granulating step kneaded with a solvent to form an electrode mixture In the manufacturing method of a lithium ion battery having a kneading step for forming a paste, and a coating step for applying the electrode mixture paste formed in the kneading step, the granulation step is performed by using a gas containing moisture. It is a manufacturing method of the lithium ion battery characterized by making it contain in the said mixing part, or cooling the said mixing part.

上記構成では、造粒工程は、水分を含んだ気体を混合部に含有させる、または、混合部を冷却させることで、混合部の空気中に細かい水分を分散させている。材料粉体は、液体が混合部に添加されないので、水分を含まない状態で攪拌され、配置転換される。このとき、配置転換される材料粉体の隙間に、混合部の空気が細かい水分と共に入り込む。材料粉体は、隙間に入り込んできた空気に含まれる水分が表面に吸着し、その水分を吸収することで、湿潤する。混合部には細かい水分が分散しているので、材料粉体は、攪拌されることにより、絶えず水分をたくさん含んだ空気と接触し、水分を次々に吸着・吸収して、湿潤度を上昇させていく。各材料粉体は、それぞれ、水分を含まない状態(湿潤勾配がない状態)から攪拌され始め、攪拌中に混合部の空気に満遍なく接触して水分を吸着・吸収するので、湿潤度が均一に上昇する。そのため、混合部に供給された材料粉体は、短時間で十分な湿潤度に均一に湿潤して造粒体となる。このように、上記構成では、水分を含んだ気体を混合部に含有させる、又は、混合部を冷却させることで、攪拌時に水分を含む空気を各材料粉体に満遍なく供給して水分を各材料粉体に吸着・吸収させるので、各材料粉体が短時間で十分に湿潤し、均一に湿潤した造粒体を形成できる。よって、上記構成によれば、材料粉体の攪拌時に湿潤勾配が生じにくく、溶媒を添加する場合より造粒時間を短くできる。造粒時間が短くなるので、造粒体は粒成長を抑制され、微小径の造粒体が形成される。微小径の造粒体は、電極合材ペーストに均一に分散するので、電極合材ペーストを塗工する際の成膜性を向上させることができる。   In the above configuration, in the granulation step, fine moisture is dispersed in the air of the mixing unit by allowing the mixing unit to contain a gas containing moisture or by cooling the mixing unit. Since the liquid is not added to the mixing part, the material powder is stirred and relocated without containing moisture. At this time, the air in the mixing section enters the gap between the material powders to be rearranged together with fine moisture. The material powder is moistened by adsorbing moisture contained in the air that has entered the gap to the surface and absorbing the moisture. Since fine moisture is dispersed in the mixing section, when the material powder is agitated, it constantly comes into contact with air containing a lot of moisture, and adsorbs and absorbs moisture one after another, increasing the wetness. To go. Each material powder begins to stir from a state that does not contain moisture (no wet gradient), and evenly contacts the air in the mixing part during the stirring to absorb and absorb moisture, so that the wetness is uniform. To rise. Therefore, the material powder supplied to the mixing section is uniformly wetted to a sufficient wetness in a short time to become a granulated body. As described above, in the above configuration, the moisture containing gas is contained in the mixing unit, or the mixing unit is cooled, so that air containing moisture is uniformly supplied to each material powder during stirring to supply moisture to each material. Since the powder is adsorbed and absorbed, each material powder is sufficiently wetted in a short time, and a uniformly wet granulated body can be formed. Therefore, according to the said structure, a wet gradient is hard to produce at the time of stirring of material powder, and granulation time can be shortened compared with the case where a solvent is added. Since the granulation time is shortened, the granule is suppressed from growing and a granule having a small diameter is formed. Since the granule having a small diameter is uniformly dispersed in the electrode mixture paste, the film formability when the electrode mixture paste is applied can be improved.

従って、本発明によれば、微小径の造粒体を形成し、成膜性を向上させることができるリチウムイオン電池の製造方法を提供することができる。   Therefore, according to this invention, the manufacturing method of the lithium ion battery which can form a granule of a micro diameter and can improve film forming property can be provided.

本発明の実施形態に係るリチウムイオン電池の製造方法に用いられる攪拌機の概略構成図である。It is a schematic block diagram of the stirrer used for the manufacturing method of the lithium ion battery which concerns on embodiment of this invention. 図1の攪拌翼の配置を説明する図である。It is a figure explaining arrangement | positioning of the stirring blade of FIG. 実施例と比較例の造粒体平均粒径を測定した結果を示すグラフである。It is a graph which shows the result of having measured the granule average particle diameter of an Example and a comparative example. 実施例と比較例の固形分率を調べた結果を示すグラフである。It is a graph which shows the result of having investigated the solid content rate of the Example and the comparative example.

以下に、本発明に係るリチウムイオン電池の製造方法の実施形態について図面に基づいて説明する。   Embodiments of a method for producing a lithium ion battery according to the present invention will be described below with reference to the drawings.

本実施形態のリチウムイオン電池の製造方法は、「造粒工程」、「混練工程」、「塗工工程」を経て、リチウムイオン電池を製造する。このうち、「混練工程」と「塗工工程」は、従来と特段に変わるところはない。本実施形態の特徴は、「造粒工程」にある。そこで、以下の説明では「造粒工程」を中心に説明する。   The manufacturing method of the lithium ion battery of this embodiment manufactures a lithium ion battery through the "granulation process", the "kneading process", and the "coating process". Among these, the “kneading process” and the “coating process” are not particularly different from the conventional ones. The feature of this embodiment is the “granulation step”. Therefore, the following description will focus on the “granulation step”.

<攪拌機の概略構成>
まず、造粒工程に使用する攪拌機10の概略構成を説明する。図1に、攪拌機10の概略構成図を示す。図2に、図1の攪拌翼16a,16bの配置を説明する図を示す。
図1に示すように、攪拌機10は、混合容器11の開口部を蓋部材12で気密に塞ぐことにより、混合部13が形成されている。蓋部材12には、モータ14が取り付けられ、モータ軸15が混合部13内に突き出している。混合容器11の底面には、モータ軸15の先端部を支持する軸受11aが設けられている。図1及び図2に示すように、モータ軸15には、攪拌翼16a,16bが一体的に回転するように固定されている。蓋部材12には、材料粉体1を供給する材料粉体供給部17と、水分を含んだ気体(以下「加湿気体」という。)を供給する加湿気体供給部18とが設けられている。また、冷却部19が混合部13に設けられ、混合部13を冷却するようになっている。
<Schematic configuration of agitator>
First, the schematic structure of the stirrer 10 used for the granulation process will be described. In FIG. 1, the schematic block diagram of the stirrer 10 is shown. FIG. 2 is a diagram illustrating the arrangement of the stirring blades 16a and 16b in FIG.
As shown in FIG. 1, in the stirrer 10, the mixing unit 13 is formed by airtightly closing the opening of the mixing container 11 with the lid member 12. A motor 14 is attached to the lid member 12, and a motor shaft 15 protrudes into the mixing unit 13. A bearing 11 a that supports the tip of the motor shaft 15 is provided on the bottom surface of the mixing container 11. As shown in FIGS. 1 and 2, agitation blades 16a and 16b are fixed to the motor shaft 15 so as to rotate integrally. The lid member 12 is provided with a material powder supply unit 17 that supplies the material powder 1 and a humidified gas supply unit 18 that supplies a gas containing moisture (hereinafter referred to as “humidified gas”). A cooling unit 19 is provided in the mixing unit 13 to cool the mixing unit 13.

<造粒工程>
次に、攪拌機10を用いて造粒体2を形成する手順を説明する。攪拌機10は、材料粉体1と加湿気体を材料粉体供給部17と加湿気体供給部18から混合部13に供給しながら、モータ14を駆動させる。
<Granulation process>
Next, the procedure for forming the granulated body 2 using the stirrer 10 will be described. The stirrer 10 drives the motor 14 while supplying the material powder 1 and the humidified gas from the material powder supply unit 17 and the humidified gas supply unit 18 to the mixing unit 13.

加湿気体は、混合部13に供給されると、体積が増加し、水分を発生させる。またこのとき、冷却部19が混合部13を冷却する。これにより、混合部13の空気が冷やされ、細かい水分を発生しやすくなる。よって、混合部13は、細かい水分が空気中にたくさん分散した状態になる。   When the humidified gas is supplied to the mixing unit 13, the volume increases and water is generated. At this time, the cooling unit 19 cools the mixing unit 13. Thereby, the air of the mixing part 13 is cooled and it becomes easy to generate | occur | produce fine moisture. Therefore, the mixing unit 13 is in a state where a lot of fine moisture is dispersed in the air.

材料粉体1は、混合部13に供給されると、攪拌翼16a,16bにより攪拌される。材料粉体1は、液状の溶媒が混合部13に添加されないので、水分を含まない状態で攪拌され、配置転換される。このとき、配置転換される材料粉体1の隙間に、混合部13の空気が細かい水分と共に入り込む。水分を含まない材料粉体1は、隙間に入り込んできた空気に含まれる水分が表面に付着し、その水分を吸収することで、湿潤する。混合部13には、細かい水分が空気中にたくさん分散しているので、材料粉体は、攪拌されることにより、絶えず水分をたくさん含んだ空気と接触し、水分を次々に吸着・吸収して、湿潤度を上昇させていく。各材料粉体1は、それぞれ、水分を含まない状態(湿潤勾配がない状態)から攪拌され始め、攪拌中に混合部13の空気に満遍なく接触して水分を吸着・吸収するので、湿潤度が均一に上昇する。そのため、混合部13二供給された材料粉体1は、短時間で十分な湿潤度に均一に湿潤して造粒体2となる。   When the material powder 1 is supplied to the mixing unit 13, the material powder 1 is stirred by the stirring blades 16a and 16b. Since the liquid powder is not added to the mixing unit 13, the material powder 1 is agitated and rearranged without containing moisture. At this time, the air of the mixing unit 13 enters the gap between the material powders 1 to be rearranged together with fine moisture. The material powder 1 that does not contain moisture wets when moisture contained in the air that has entered the gap adheres to the surface and absorbs the moisture. Since a lot of fine moisture is dispersed in the air in the mixing section 13, the material powder is constantly agitated to come into contact with air containing a lot of moisture, and adsorbs and absorbs moisture one after another. , Increase the wetness. Each material powder 1 starts to be stirred from a state that does not contain moisture (a state in which there is no wetting gradient), and evenly contacts the air of the mixing unit 13 during the stirring to absorb and absorb moisture, so that the wetness is high. It rises uniformly. Therefore, the material powder 1 supplied to the mixing unit 13 is uniformly wetted to a sufficient wetness in a short time to become a granulated body 2.

このように、本造粒工程では、水分を含んだ気体(加湿気体)を混合部13に含有させる、又は、混合部13を冷却させることで、攪拌時に水分を含む空気を各材料粉体1に満遍なく供給して水分を各材料粉体1に吸着・吸収させるので、各材料粉体1が短時間で十分に湿潤し、均一に湿潤した造粒体2を形成できる。よって、上記構成によれば、材料粉体1の攪拌時に湿潤勾配が生じ難く、溶媒を添加する場合より造粒時間を短縮できる。造粒時間が短くなるので、造粒体2は粒成長を抑制され、微小径の造粒体2が形成される。   Thus, in this granulation process, the gas containing moisture (humidified gas) is contained in the mixing unit 13 or the mixing unit 13 is cooled, so that the air containing moisture is mixed with each material powder 1 during stirring. Since the moisture is absorbed and absorbed by each material powder 1 evenly, each material powder 1 is sufficiently wetted in a short time, and the uniformly wet granulated body 2 can be formed. Therefore, according to the said structure, a wet gradient is hard to produce at the time of stirring of the material powder 1, and granulation time can be shortened rather than the case where a solvent is added. Since the granulation time is shortened, the granulated body 2 is suppressed from growing, and the granulated body 2 having a small diameter is formed.

ここで、攪拌翼16a,16bは、混合部13の底面と平行に配置され、混合部13の底面より上方に配置されている。水分を含まない材料粉体1(例えば平均粒径15μm未満の活物質)は、攪拌翼16a,16bにあおられて混合部13に舞い散るようにして混合される。材料粉体1は、水分を吸収するにつれて動きが鈍くなる。そして、十分に湿潤した造粒体2は、攪拌翼16a,16bより下側に落ち、混合部13の底面付近に集められ、攪拌されなくなる。よって、造粒体2は、均一に湿潤し、ほぼ均一な大きさに形成される。   Here, the stirring blades 16 a and 16 b are disposed in parallel with the bottom surface of the mixing unit 13 and are disposed above the bottom surface of the mixing unit 13. The material powder 1 that does not contain moisture (for example, an active material having an average particle diameter of less than 15 μm) is mixed so as to be scattered in the mixing unit 13 by being stirred by the stirring blades 16a and 16b. The material powder 1 becomes dull as it absorbs moisture. The sufficiently wet granulated body 2 falls below the stirring blades 16a and 16b, is collected near the bottom surface of the mixing unit 13, and is not stirred. Therefore, the granulated body 2 is uniformly wetted and formed in a substantially uniform size.

<混練工程>
次に、造粒工程で得られた造粒体2を用いて電極合材ペーストを製造する手順を説明する。まず、造粒体2と溶媒を混練した後、添加剤と溶媒を加えて混練する。造粒体2が十分に湿潤しているので、混練初期に材料粉体に割れや欠けが生じにくい。造粒体2が微小径なので、たくさんの造粒体2を溶媒に均一に分散させた電極合材ペーストを形成できる。
<Kneading process>
Next, a procedure for producing an electrode mixture paste using the granulated body 2 obtained in the granulation step will be described. First, after kneading the granulated body 2 and the solvent, the additive and the solvent are added and kneaded. Since the granulated body 2 is sufficiently moistened, it is difficult for the material powder to be cracked or chipped at the initial stage of kneading. Since the granulated body 2 has a small diameter, an electrode mixture paste in which a large number of granulated bodies 2 are uniformly dispersed in a solvent can be formed.

<塗工工程>
次に、混練工程で形成された電極合材ペーストを塗工する手順を説明する。まず、電極合材ペーストを集電箔の表面に塗布して乾燥させることにより、電極合材層を形成する。電極合材ペーストは、微小径の造粒体を均一に分散させ、粘度が低いので、集電箔に塗布しやすい。また、電極合材ペーストは、たくさんの造粒体2を含有し、溶媒の量が少ない。そのため、塗工する際の乾燥時間を短くできる。よって、電極合材ペーストは、成膜性が良い。また、乾燥時間が短くなるので、エネルギーコスト等の乾燥プロセスの負荷を低減できる。
<Coating process>
Next, a procedure for applying the electrode mixture paste formed in the kneading step will be described. First, an electrode mixture layer is formed by applying and drying an electrode mixture paste on the surface of the current collector foil. The electrode mixture paste is easy to apply to the current collector foil because the granule having a small diameter is uniformly dispersed and the viscosity is low. In addition, the electrode mixture paste contains a large number of granules 2 and the amount of the solvent is small. Therefore, the drying time at the time of coating can be shortened. Therefore, the electrode mixture paste has good film formability. Moreover, since drying time becomes short, the load of drying processes, such as energy cost, can be reduced.

尚、このように設けられた電極板は、セパレータと共に巻回や平積みなどにより積層されて電極体とされ、その電極体をケースに収容することでリチウムイオン電池が製造される。   The electrode plate thus provided is laminated with the separator by winding or flattening to form an electrode body, and the lithium ion battery is manufactured by housing the electrode body in a case.

次に、本発明の実施例を比較例と共に説明する。実施例は、加湿気体(例えば水蒸気)が含む水分を材料粉体1(例えば天然黒鉛)に吸着させながら、材料粉体を均一に湿潤するまで攪拌することにより造粒体2を形成する。一方、比較例は、材料粉体1(例えば天然黒鉛)に溶媒(例えば水)を添加し、材料粉体1が均一に湿潤するまで攪拌することにより造粒体(ここでは、実施例で形成される造粒体2と区別するために「造粒体2x」という。)を形成する。実施例と比較例は、材料粉体1を湿潤させる水分の状態(気体、液体)を除き、同じ条件[攪拌機の機種、材料粉体1の種類(例えば活物質の一例である天然黒鉛と分散剤の一例であるカルボキシメチルセルロースナトリウム)、混合比率、試料重量、測定温度、攪拌速度、湿潤度など]で造粒体2,2xを形成している。発明者らは、実施例と比較例で形成された造粒体2,2xの平均粒径を測定した。その結果を図3に示す。   Next, examples of the present invention will be described together with comparative examples. In the embodiment, the granulated body 2 is formed by stirring the material powder until the material powder is uniformly moistened while adsorbing moisture contained in the humidified gas (for example, water vapor) to the material powder 1 (for example, natural graphite). On the other hand, in the comparative example, a granulated body (here, formed in the example) is obtained by adding a solvent (for example, water) to the material powder 1 (for example, natural graphite) and stirring until the material powder 1 is uniformly wetted. In order to distinguish from the granulated body 2 to be formed, it is referred to as “granulated body 2x”). In Examples and Comparative Examples, the same conditions [type of stirrer, type of material powder 1 (for example, natural graphite, which is an example of an active material, and dispersion) except for the moisture state (gas, liquid) that wets the material powder 1 Granules 2 and 2x are formed by sodium carboxymethylcellulose, which is an example of the agent), mixing ratio, sample weight, measurement temperature, stirring speed, wetness, and the like. Inventors measured the average particle diameter of the granulated material 2 and 2x formed by the Example and the comparative example. The result is shown in FIG.

図3に示すように、比較例で形成された造粒体2xの平均粒径を100とした場合、実施例で形成された造粒体2の平均粒径は75.6であった。よって、実施例は、比較例より、造粒体2を約25%微粒子化できた。これは、実施例は、比較例より早く均一に湿潤した造粒体2を形成でき、造粒時間を短縮できたためと考えられる。   As shown in FIG. 3, when the average particle diameter of the granulated body 2x formed in the comparative example is 100, the average particle diameter of the granulated body 2 formed in the example was 75.6. Therefore, the Example was able to make the granulated body 2 into about 25% fine particles from the comparative example. This is considered because the granule 2 that was uniformly wetted earlier than the comparative example could be formed in the example, and the granulation time could be shortened.

また、実施例と比較例で形成された造粒体2,2xを用いて電極合材ペーストを形成した。各電極合材ペーストは、造粒体2,2xを除き、同じ条件[混練機の機種、溶媒の種類(例えば水)、添加剤の種類(例えばスチレンブタジエンゴムなど)、混合比率、試料重量、測定温度、混練速度、混練時間等)で形成されている。発明者らは、各電極合材ペーストについてペースト中に占める造粒体2,2xの重量割合である固形分率を測定した。その結果を図4に示す。   Moreover, the electrode mixture paste was formed using the granulation bodies 2 and 2x formed by the Example and the comparative example. Each electrode mixture paste has the same conditions except for the granulated bodies 2 and 2x [model of kneader, type of solvent (for example, water), type of additive (for example, styrene butadiene rubber, etc.), mixing ratio, sample weight, Measurement temperature, kneading speed, kneading time, etc.). Inventors measured the solid content rate which is the weight ratio of the granulated bodies 2 and 2x which occupy in a paste about each electrode compound material paste. The result is shown in FIG.

図4に示すように、比較例の固形分率を100とした場合、実施例の固形分率は比較例の114.3%であった。よって、実施例は、比較例より約15%固形分率を向上させることができた。これは、実施例は、比較例より、造粒体2が微小であり、たくさんの造粒体2が電極合材ペーストに均一に分散したためと考えられる。固形分率が向上すると、電極合材ペースト中の溶媒が低減するので、乾燥プロセスの負荷(乾燥時間、エネルギーコスト等)を低減できる。   As shown in FIG. 4, when the solid content rate of the comparative example was 100, the solid content rate of the example was 114.3% of the comparative example. Therefore, the Example was able to improve the solid content rate by about 15% compared with the Comparative Example. This is considered to be because the granulated body 2 was finer than the comparative example, and many granulated bodies 2 were uniformly dispersed in the electrode mixture paste. When the solid content ratio is improved, the solvent in the electrode mixture paste is reduced, so that the load of the drying process (drying time, energy cost, etc.) can be reduced.

尚、本発明は、上記実施形態に限定されることなく、色々な応用が可能である。
例えば、上記実施形態では、加湿気体を混合部13に供給すると共に冷却部19で冷却したが、加湿気体の供給のみ、又は、混合部13の冷却のみ行っても良い。
また例えば、混合部13は、別形態のものであっても良い。
また例えば、材料粉体1と加湿気体の供給は、例えば、材料粉体1の供給後に加湿気体を供給したり、加湿気体の供給後に材料粉体1を供給したりするようにしても良い。
In addition, this invention is not limited to the said embodiment, Various application is possible.
For example, in the above embodiment, the humidified gas is supplied to the mixing unit 13 and cooled by the cooling unit 19, but only the supply of the humidified gas or only the cooling of the mixing unit 13 may be performed.
For example, the mixing unit 13 may have another form.
In addition, for example, the material powder 1 and the humidified gas may be supplied by supplying the humidified gas after the material powder 1 is supplied or supplying the material powder 1 after the humidified gas is supplied.

1 材料粉体
2 造粒体
10 攪拌機
13 混合部
DESCRIPTION OF SYMBOLS 1 Material powder 2 Granule 10 Stirrer 13 Mixing part

Claims (1)

攪拌機の混合部で材料粉体を攪拌し、造粒体を形成する造粒工程と、
前記造粒工程で得られた造粒体を溶媒と混練して電極合材ペーストを形成する混練工程と、
前記混練工程で形成された前記電極合材ペーストを塗工する塗工工程とを有するリチウムイオン電池の製造方法において、
前記造粒工程が、水分を含んだ気体を前記混合部に含有させる、または、前記混合部を冷却させること
を特徴とするリチウムイオン電池の製造方法。
A granulating step of stirring the material powder in the mixing part of the stirrer to form a granulated body;
A kneading step of kneading the granulated body obtained in the granulation step with a solvent to form an electrode mixture paste;
In a manufacturing method of a lithium ion battery having a coating step of coating the electrode mixture paste formed in the kneading step,
The method for producing a lithium ion battery, characterized in that the granulating step contains a gas containing moisture in the mixing unit or cools the mixing unit.
JP2015224860A 2015-11-17 2015-11-17 Method of manufacturing lithium ion battery Pending JP2017091995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015224860A JP2017091995A (en) 2015-11-17 2015-11-17 Method of manufacturing lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015224860A JP2017091995A (en) 2015-11-17 2015-11-17 Method of manufacturing lithium ion battery

Publications (1)

Publication Number Publication Date
JP2017091995A true JP2017091995A (en) 2017-05-25

Family

ID=58768981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015224860A Pending JP2017091995A (en) 2015-11-17 2015-11-17 Method of manufacturing lithium ion battery

Country Status (1)

Country Link
JP (1) JP2017091995A (en)

Similar Documents

Publication Publication Date Title
Liu et al. An effective mixing for lithium ion battery slurries
AU2017352947B2 (en) Method of preparing battery anode slurries
CN100546074C (en) A kind of preparation method of electrode slurry
CN104795541B (en) Lithium-ion battery negative electrode slurry preparation method
CN1913200A (en) Silicon carbone compound negative polar material of lithium ion battery and its preparation method
JP2007080652A (en) Slurry for forming lithium ion battery electrode and lithium ion battery
CN108923025B (en) Efficient preparation process of lithium ion battery slurry
CN102683649A (en) Method for preparing lithium ion battery carbon silicon anode material
JP2015032554A (en) Method of manufacturing negative electrode of lithium ion secondary battery
JP4297533B2 (en) Method for producing lithium ion battery material
KR20150078068A (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
JP2018041619A (en) Method for manufacturing electrode
JP6146323B2 (en) Method for producing positive electrode for secondary battery
JP6413907B2 (en) Method for producing sulfide solid electrolyte material
CN105789555A (en) Silicon composite material and preparation method thereof as well as battery cathode and lithium ion battery
JP2017091995A (en) Method of manufacturing lithium ion battery
CN112952029B (en) Silicon-oxygen-carbon lithium ion battery composite negative electrode slurry, preparation method thereof and lithium ion battery negative electrode prepared from silicon-oxygen-carbon lithium ion battery composite negative electrode slurry
JP2015176704A (en) halogen secondary battery
JP5809200B2 (en) Silicon-based negative electrode active material
JP6258134B2 (en) Method for producing composite lithium titanate powder
JP2016126900A (en) Manufacturing method for secondary battery
CN111081984A (en) Preparation method of battery slurry and battery slurry
KR101680459B1 (en) Method of manufacturing silicon oxifluoride as an anode material for lithium secondary batteries using solid state reaction and an anode and a lithium secondary battery comprising the anode
JP6704284B2 (en) Method for producing positive electrode slurry for non-aqueous electrolyte secondary battery
JP2024065945A (en) Positive electrode material for lithium sulfur secondary battery, positive electrode for lithium sulfur secondary batteries, and lithium sulfur secondary battery