JP2017090251A - Spalling resistant properties test device and spalling resistant properties evaluation method - Google Patents

Spalling resistant properties test device and spalling resistant properties evaluation method Download PDF

Info

Publication number
JP2017090251A
JP2017090251A JP2015220579A JP2015220579A JP2017090251A JP 2017090251 A JP2017090251 A JP 2017090251A JP 2015220579 A JP2015220579 A JP 2015220579A JP 2015220579 A JP2015220579 A JP 2015220579A JP 2017090251 A JP2017090251 A JP 2017090251A
Authority
JP
Japan
Prior art keywords
heating
photographing
refractory
load
restraining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015220579A
Other languages
Japanese (ja)
Other versions
JP6788338B2 (en
Inventor
英俊 神尾
Hidetoshi Kamio
英俊 神尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2015220579A priority Critical patent/JP6788338B2/en
Publication of JP2017090251A publication Critical patent/JP2017090251A/en
Application granted granted Critical
Publication of JP6788338B2 publication Critical patent/JP6788338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spalling resistant properties test device capable of chronologically, precisely, and simply grasping spalling resistant properties of a refractory test piece for use in a real furnace, and evaluation of spalling resistant properties.SOLUTION: A refractory test piece S is restrained in a uniaxial direction by restriction means 10. A heating surface of the refractory test piece S restrained by the restriction means 10 is heated by heating means 30. An imaging surface of the heated refractory test piece S is photographed by imaging means 40. Spalling resistant properties are evaluated from the photographed images.SELECTED DRAWING: Figure 1

Description

本発明は、耐火物試験片の耐スポーリング性試験装置及び耐スポーリング性評価方法に関する。   The present invention relates to a spalling resistance test apparatus and a spalling resistance evaluation method for a refractory specimen.

例えば溶鉄用容器に内張される耐火物やSNプレートれんが等の一部の耐火物は、外周鉄皮(鉄皮)からの機械的拘束を受けた状態で使用される。このため、これらの材料の耐スポーリング性評価は実際の使用に近づけるため機械的拘束下で行うことが好ましい。   For example, some refractories such as refractories lined in molten iron containers and SN plate bricks are used in a state where they are mechanically restrained from the outer peripheral iron skin (iron skin). For this reason, it is preferable to perform spalling resistance evaluation of these materials under mechanical restraint in order to approximate actual use.

しかし、従来の耐スポーリング性試験は非拘束下で実施されるのが一般的である(例えば、溶銑浸漬、電気炉加熱・冷却試験等)。拘束下と非拘束下では優劣が一致するとは限らず、非拘束試験では適切な評価ができていない可能性がある。例えば、剥離は加熱面に平行に入る亀裂により生じやすい。しかし、非拘束下での試験では、亀裂が加熱面に平行にならないことが多く、剥離を再現できない。このため、機械的拘束下での耐スポーリング性を評価する手法が検討されてきた。   However, the conventional spalling resistance test is generally performed without restraint (for example, hot metal immersion, electric furnace heating / cooling test, etc.). There is a possibility that superiority and inferiority do not coincide with each other under restraint and unconstraint, and there is a possibility that appropriate evaluation cannot be performed in the unconstraint test. For example, peeling is likely to occur due to cracks that enter parallel to the heating surface. However, in unconstrained tests, cracks often do not become parallel to the heated surface, and peeling cannot be reproduced. For this reason, methods for evaluating the spalling resistance under mechanical constraints have been studied.

従来、機械的拘束下での耐スポーリング性や亀裂発生を評価する方法としては、角型の金属製フレームに耐火物を配置して加熱するパネルスポーリング試験(例えば、非特許文献1参照)や、部分円周状の金属製フレームに耐火物を配置して機械的拘束力を付与した上で実施される実炉使用の模擬的試験の例(例えば、非特許文献2参照)がある。   Conventionally, as a method for evaluating spalling resistance and crack generation under mechanical restraint, a panel spalling test in which a refractory material is placed on a square metal frame and heated (for example, see Non-Patent Document 1). In addition, there is an example of a simulation test using an actual furnace performed after placing a refractory on a partial circumferential metal frame and applying a mechanical restraint force (for example, see Non-Patent Document 2).

これらの試験では、耐火物を何層にも積層するのが一般的であるが、耐火物と耐火物との接触状態を一定にするのが難しく、評価の安定性に課題がある。また、亀裂の状態が確認できるのは試験終了後に積層した耐火物を取り外した後になるため、その亀裂が発生した時期や亀裂の長さを詳細に知ることができない。   In these tests, refractories are generally stacked in layers, but it is difficult to make the contact state between the refractories and the refractories constant, and there is a problem in the stability of evaluation. Moreover, since the state of a crack can be confirmed after removing the laminated refractory after completion of the test, it is impossible to know in detail the time when the crack occurred and the length of the crack.

一方、亀裂の発生時期を調査するため、アコースティックエミッションを計測する方法もある(例えば、非特許文献3、特許文献1参照)。しかし、この方法では亀裂位置や長さとの対応を正確に知ることは困難である。さらには、試験が大掛かりなため、評価に時間やコストがかかる問題がある。   On the other hand, there is also a method of measuring acoustic emission in order to investigate the generation time of cracks (see, for example, Non-Patent Document 3 and Patent Document 1). However, with this method, it is difficult to accurately know the correspondence with the crack position and length. Furthermore, since the test is large, there is a problem that the evaluation takes time and cost.

また、耐火物の熱膨張量や発生応力を評価する装置もある(例えば、特許文献2参照)。しかし、この装置は耐スポーリング性を評価するものではない。   There is also an apparatus for evaluating the thermal expansion amount and generated stress of a refractory (for example, see Patent Document 2). However, this apparatus does not evaluate the spalling resistance.

特開平8−114389号公報JP-A-8-114389 特開2014−35251号公報JP 2014-35251 A

耐火物手帳 1981年版,pp.564−568 耐火物技術協会Refractory Notebook 1981, pp. 564-568 Refractory Technology Association 耐火物22[12]550−556(1970)Refractory 22 [12] 550-556 (1970) 耐火物31[6]285−295(1979)Refractory 31 [6] 285-295 (1979)

本発明が解決しようとする課題は、実炉使用に沿った耐火物試験片の耐スポーリング性を時系列で正確かつ簡単に把握することができる耐スポーリング性試験装置及び耐スポーリング性評価を提供することにある。   The problem to be solved by the present invention is to provide a spalling resistance test apparatus and a spalling resistance evaluation capable of accurately and easily grasping the spalling resistance of a refractory test piece along the use of an actual furnace in time series. Is to provide.

本発明の一観点によれば、耐火物試験片を一軸方向に拘束する拘束手段と、前記拘束手段による拘束荷重を測定する荷重測定手段と、前記拘束手段により拘束された耐火物試験片を加熱する加熱手段と、前記加熱手段により加熱された耐火物試験片の加熱面以外の側面である撮影面を加熱中又は冷却中に撮影可能な撮影手段と、を備えた耐スポーリング性試験装置が提供される。   According to one aspect of the present invention, a restraining means for restraining a refractory specimen in a uniaxial direction, a load measuring means for measuring a restraining load by the restraining means, and heating the refractory specimen restrained by the restraining means. A spalling resistance test apparatus comprising: a heating unit that captures a photographing surface that is a side other than a heating surface of the refractory test piece heated by the heating unit, and a photographing unit that is capable of photographing while heating or cooling. Provided.

本発明の他の観点によれば、耐火物試験片を一軸方向に拘束する拘束工程と、拘束された耐火物試験片の加熱面を加熱又は冷却する加熱冷却工程と、を含み、前記加熱冷却工程中に、前記耐火物試験片の拘束荷重を測定する荷重測定工程と、耐火物試験片の加熱面以外の側面である撮影面を撮影する撮影工程と、を含み、さらに、あらかじめ撮影された前記撮影面の初期画像及び前記撮影工程で撮影された前記撮影面の画像並びに前記拘束荷重から耐スポーリング性を評価する評価工程と、を含む耐スポーリング性評価方法が提供される。   According to another aspect of the present invention, the method includes a restraining step of restraining the refractory specimen in a uniaxial direction, and a heating / cooling step of heating or cooling the heating surface of the restrained refractory specimen, The process includes a load measuring step for measuring the restraining load of the refractory test piece, and a photographing step for photographing a photographing surface that is a side other than the heating surface of the refractory test piece. There is provided a spalling resistance evaluation method including an initial image of the photographing surface, an image of the photographing surface photographed in the photographing step, and an evaluation step of evaluating the spalling resistance from the restraint load.

本発明の耐スポーリング性試験装置及び耐スポーリング性評価方法によれば、一軸方向に拘束された耐火物試験片の拘束荷重を測定するとともに、その拘束下で加熱された耐火物試験片の加熱面以外の側面である撮影面を撮影することで、その撮影した画像及び拘束荷重から耐火物試験片の耐スポーリング性を時系列で正確かつ簡単に把握することができる。また、耐火物試験片は、一軸方向に拘束されており、しかもその一面を加熱することが可能であるから、実炉使用に沿った耐火物試験片の耐スポーリング性を把握することができる。   According to the spalling resistance test apparatus and the spalling resistance evaluation method of the present invention, the restraint load of the refractory test piece constrained in the uniaxial direction is measured, and the refractory test piece heated under the restraint is measured. By photographing a photographing surface that is a side other than the heating surface, the spalling resistance of the refractory specimen can be accurately and easily grasped in time series from the photographed image and the restraint load. In addition, since the refractory specimen is constrained in a uniaxial direction and can be heated on one side, it is possible to grasp the spalling resistance of the refractory specimen along the actual furnace use. .

本発明の一実施形態に係る耐スポーリング性試験装置の構成図である。It is a block diagram of the spalling resistance test apparatus which concerns on one Embodiment of this invention. 図1の耐スポーリング性試験装置において遮熱手段(遮熱れんが)の設置状態を示す斜視図である。It is a perspective view which shows the installation state of the heat insulation means (heat insulation brick) in the spalling resistance test apparatus of FIG. 遮熱れんがの他の設置例を示す斜視図である。It is a perspective view which shows the other example of installation of a heat insulation brick. 遮熱れんがのさらに他の設置例を示す斜視図である。It is a perspective view which shows the further another example of installation of a heat insulation brick. 実施例1において、耐火物試験片の加熱面側と背面側の温度、及び耐火物試験片の上下方向にかかる力から計算した応力を示すグラフである。In Example 1, it is a graph which shows the stress calculated from the force applied to the heating surface side and back side temperature of a refractory test piece, and the up-down direction of a refractory test piece. 実施例1において、耐火物試験片の撮影面の画像をプログラムで処理することによって得られたひずみ分布を示す図である。In Example 1, it is a figure which shows the distortion distribution obtained by processing the image of the imaging surface of a refractory test piece with a program. 比較例1において、画像処理によって得られた耐火物試験片の撮影面のひずみ分布を示す図である。In the comparative example 1, it is a figure which shows the distortion distribution of the imaging surface of the refractory test piece obtained by image processing. 実施例2における耐火物試験片の撮影面の各位置を示す図である。It is a figure which shows each position of the imaging surface of the refractory test piece in Example 2. FIG. 実施例2において、耐火物試験片の温度と応力の推移を示すグラフである。In Example 2, it is a graph which shows transition of the temperature and stress of a refractory test piece. 実施例2において、耐火物試験片加熱面側の端部付近(図8中のa−f間)のy方向ひずみの推移を示すグラフである。In Example 2, it is a graph which shows transition of the y direction distortion | strain of the edge part vicinity (between af in FIG. 8) by the side of the refractory test piece heating surface side. 実施例2において、耐火物試験片の加熱面から背面までの各2点間のx方向ひずみを6箇所について求めて、それらの平均値をプロットしたものの推移を示すグラフである。In Example 2, it is a graph which shows transition of what calculated | required the x direction distortion | strain between each 2 points | pieces from the heating surface of a refractory test piece to a back surface about six places, and plotted those average values. 実施例2において、1〜6回の加熱時の画像を用いてデジタル画像相関法によって求めたひずみ分布を示す図である。In Example 2, it is a figure which shows the distortion distribution calculated | required by the digital image correlation method using the image at the time of 1-6 times of heating. 実施例3において、耐火物試験片の温度と応力の推移を示すグラフである。In Example 3, it is a graph which shows transition of the temperature and stress of a refractory test piece. 実施例3において、耐火物試験片の加熱面側のy方向ひずみ量の推移を示すグラフである。In Example 3, it is a graph which shows transition of the y direction distortion amount by the side of the heating surface of a refractory test piece. 実施例3において、実炉鉄皮拘束を想定した熱ひずみ量を下回った後の最初の冷却後のひずみ分布を示す図である。In Example 3, it is a figure which shows the strain distribution after the 1st cooling after falling below the amount of thermal strains which assumed the actual furnace core restraint.

図1は、本発明の一実施形態に係る耐スポーリング性試験装置の構成図である。   FIG. 1 is a configuration diagram of a spalling resistance test apparatus according to an embodiment of the present invention.

本発明の耐スポーリング性試験装置は、耐火物試験片Sを一軸方向(上下方向)に拘束する拘束手段10と、拘束手段10による拘束荷重を測定する荷重測定手段20と、拘束手段10により拘束された耐火物試験片Sを加熱する加熱手段30と、加熱手段30により加熱された耐火物試験片Sの加熱面以外の側面である撮影面を加熱中又は冷却中に撮影可能な撮影手段40とを備える。   The spalling resistance test apparatus of the present invention includes a restraining means 10 for restraining the refractory test piece S in a uniaxial direction (vertical direction), a load measuring means 20 for measuring the restraining load by the restraining means 10, and the restraining means 10. Heating means 30 for heating the restrained refractory specimen S, and imaging means capable of photographing the imaging surface that is a side other than the heating surface of the refractory specimen S heated by the heating means 30 during heating or cooling. 40.

拘束手段10は、耐火物試験片Sの一端(上端)を拘束する第1拘束手段11と、耐火物試験片の他端(下端)を拘束する第2拘束手段12とからなる。第1拘束手段11の一端(上端)は支持フレーム50に固定され、第1拘束手段11の他端(下端)が耐火物試験片Sの一端(上端)を拘束する。一方、第2拘束手段12の一端は荷重制御手段60に連結され、第2拘束手段12の他端(上端)が耐火物試験片Sの他端(下端)を拘束する。具体的には、第1拘束手段11の他端(下端)及び第2拘束手段12の他端(上端)にはそれぞれ加圧板11a及び12aが形成されており、耐火板11b及び12bを介して、耐火物試験片Sの一端(上端)及び他端(下端)が拘束される。   The restraining means 10 includes a first restraining means 11 that restrains one end (upper end) of the refractory test piece S and a second restraining means 12 that restrains the other end (lower end) of the refractory test piece. One end (upper end) of the first restraining means 11 is fixed to the support frame 50, and the other end (lower end) of the first restraining means 11 restrains one end (upper end) of the refractory test piece S. On the other hand, one end of the second restraining means 12 is connected to the load control means 60, and the other end (upper end) of the second restraining means 12 restrains the other end (lower end) of the refractory test piece S. Specifically, pressure plates 11a and 12a are formed on the other end (lower end) of the first restraining means 11 and the other end (upper end) of the second restraining means 12, respectively, via fireproof plates 11b and 12b. The one end (upper end) and the other end (lower end) of the refractory test piece S are restrained.

荷重制御手段60は、第2拘束手段12の一端(下端)が連結された載荷板61と、この載荷板61を一軸方向(上下方向)に移動させるモータやシリンダからなる移動手段62とを備え、載荷板61によって第2拘束手段12を一軸方向(上下方向)に移動させることで、拘束手段10による拘束荷重を変更制御可能である。この拘束荷重は、第1拘束手段11に設置した荷重測定手段20によって測定される。荷重測定手段20は、例えばロードセルによって構成できる。   The load control unit 60 includes a loading plate 61 to which one end (lower end) of the second restraining unit 12 is connected, and a moving unit 62 including a motor or a cylinder that moves the loading plate 61 in one axial direction (vertical direction). The restraint load by the restraining means 10 can be changed and controlled by moving the second restraining means 12 in the uniaxial direction (vertical direction) by the loading plate 61. This restraining load is measured by the load measuring means 20 installed on the first restraining means 11. The load measuring means 20 can be constituted by a load cell, for example.

ここで、上述のとおり、溶鉄用容器に内張される耐火物やSNプレートれんが等の一部の耐火物は鉄皮からの機械的拘束を受けた状態で使用されるから、その耐スポーリング性試験は、実炉使用時の鉄皮の熱ひずみ量に相当する熱ひずみ量となる拘束条件下で実施することが好ましい。ただし、図1に示す支持フレーム50等の金属製フレームで拘束荷重を与える方法では、金属製フレームの弾性変形の影響もあり、耐火物試験片の熱ひずみ量は実炉使用時の鉄皮の熱ひずみ量を上回ることが多い。これに対して、レーザ変位計等で耐火物試験片の変位量を測定し、その信号を用いて耐火物試験片の熱ひずみ量を制御する方法も考えられるが、変位測定には熱変形や空気のゆらぎによるノイズが生じやすいため、この制御方法は適していない。一方で、荷重値はノイズが少なく制御上の不具合を生じにくいので、安定性の面ではレーザ変位等を用いるよりも優れている。このため、本発明では、レーザ変位計等は使用せず、荷重制御手段60により拘束荷重を徐々に増加させる手法を採用している。拘束荷重を徐々に増加させた場合、耐火物試験片の加熱面側は圧縮応力の増加に伴って徐々に収縮してゆく。収縮の過程では、使用時の鉄皮の熱ひずみ量と概ね同一になる点が生じるので(詳細は後述の実施例2参照)、その近傍の加熱・冷却時の状態が実炉における鉄皮の熱ひずみ量と概ね同一のひずみ量で拘束された状態の再現となる。すなわち、荷重制御手段60により荷重を変更(増加)させることで、金属製フレームの弾性変形の影響があった場合であっても、実炉における鉄皮の熱ひずみ量と概ね同一のひずみ量で拘束された条件を再現することができる。   Here, as described above, some refractories such as refractories and SN plate bricks lined in the molten iron container are used in a state where they are mechanically restrained from the iron shell, so that their spalling resistance It is preferable to carry out the property test under constraining conditions that result in a thermal strain amount corresponding to the thermal strain amount of the iron shell when the actual furnace is used. However, in the method of applying a restraining load with a metal frame such as the support frame 50 shown in FIG. 1, there is also an influence of elastic deformation of the metal frame, and the amount of thermal strain of the refractory test piece is the same as that of the iron skin when using an actual furnace. Often exceeds the amount of thermal strain. On the other hand, a method of measuring the amount of displacement of the refractory specimen with a laser displacement meter and controlling the amount of thermal strain of the refractory specimen using the signal is also conceivable. This control method is not suitable because noise due to air fluctuations is likely to occur. On the other hand, the load value has less noise and is less likely to cause control problems. Therefore, in terms of stability, the load value is superior to using laser displacement or the like. For this reason, in the present invention, a laser displacement meter or the like is not used, and a method of gradually increasing the restraint load by the load control means 60 is adopted. When the restraint load is gradually increased, the heated surface side of the refractory test piece gradually contracts as the compressive stress increases. In the process of shrinkage, there is a point that is almost the same as the amount of thermal strain of the iron shell at the time of use (for details, see Example 2 below). This is a reproduction of a state constrained by the amount of strain almost the same as the amount of thermal strain. That is, by changing (increasing) the load by the load control means 60, even if there is an influence of elastic deformation of the metal frame, the amount of strain is almost the same as the amount of thermal strain of the iron shell in the actual furnace. The restrained conditions can be reproduced.

加熱手段30は例えばガスバーナからなり、実炉使用の耐火物の稼働面を想定した耐火物試験片Sの一面である加熱面を加熱する。   The heating means 30 consists of a gas burner, for example, and heats the heating surface which is one surface of the refractory test piece S assuming the working surface of the refractory used in an actual furnace.

撮影手段40は例えばデジタルカメラからなり、本実施形態では耐火物試験片Sの加熱面と直交する側面である撮影面を撮影する。   The photographing means 40 is composed of, for example, a digital camera, and photographs a photographing surface that is a side surface orthogonal to the heating surface of the refractory test piece S in this embodiment.

また、本実施形態では、撮影対象の撮影面が加熱手段30によって直接加熱されないように遮熱手段(遮熱れんが)70を設置している。図2は、遮熱れんが70の設置状態を示す斜視図である。このように加熱手段30であるガスバーナの火炎が、耐火物試験片Sの側面である撮影面に直接当たらないように遮熱れんが70を設置することで、より実炉使用に近い条件下での試験が可能となる。すなわち、一般的に実炉使用では稼働面のみが加熱され、側面は加熱されない。なお、図2では、加熱手段30及び遮熱れんが70を設置するための遮熱れんが台71(図1参照)は省略している。   Further, in the present embodiment, the heat shield means (heat shield brick) 70 is installed so that the imaging surface to be imaged is not directly heated by the heating means 30. FIG. 2 is a perspective view showing an installed state of the heat-insulating brick 70. Thus, by installing the heat shield brick 70 so that the flame of the gas burner which is the heating means 30 does not directly hit the photographing surface which is the side surface of the refractory test piece S, the condition is more similar to the actual furnace use. The test becomes possible. That is, in general, when using an actual furnace, only the operating surface is heated and the side surfaces are not heated. In FIG. 2, the heat shielding brick stand 71 (see FIG. 1) for installing the heating means 30 and the heat shielding brick 70 is omitted.

また、図3に示すように遮熱れんが60に加えて上側遮熱れんが72を設置すれば、上側への抜熱が抑制され、加熱手段30による加熱効率を向上させることができる。さらに図4に示すように前側遮熱れんが73を設置すれば、輻射による抜熱も抑制され、加熱手段30による加熱効率をさらに向上させることができる。   Moreover, if the upper heat insulation brick 72 is installed in addition to the heat insulation brick 60 as shown in FIG. 3, the heat removal to the upper side is suppressed and the heating efficiency by the heating means 30 can be improved. Furthermore, if the front side heat insulation brick 73 is installed as shown in FIG. 4, the heat removal by radiation is also suppressed, and the heating efficiency by the heating means 30 can be further improved.

図1に戻って、本実施形態の耐スポーリング性試験装置では、耐火物試験片Sの撮影面を覆うように断熱材80を配置し、撮影手段40で撮影面を撮影するときは、移動手段によって撮影手段40による撮影面の撮影が可能な位置に断熱材80を一時的に移動させるようにしている。このように、撮影手段40による撮影時を除いて耐火物試験片Sの撮影面を断熱材80で覆うことができるようにすることで、当該撮影面の温度低下を抑制することができ、より実炉使用に近い条件下での試験が可能となる。なお、断熱材80を移動させる移動手段は図1では省略しているが、シリンダやモータなどの周知の駆動手段によって構成できる。   Returning to FIG. 1, in the spalling resistance test apparatus of the present embodiment, the heat insulating material 80 is arranged so as to cover the imaging surface of the refractory test piece S, and the imaging means 40 moves when imaging the imaging surface. The heat insulating material 80 is temporarily moved to a position where the photographing means 40 can photograph the photographing surface. In this way, by allowing the imaging surface of the refractory test piece S to be covered with the heat insulating material 80 except during imaging by the imaging means 40, it is possible to suppress a decrease in temperature of the imaging surface. Tests under conditions close to actual furnace use are possible. In addition, although the moving means for moving the heat insulating material 80 is omitted in FIG. 1, it can be constituted by a known driving means such as a cylinder or a motor.

また、図1に示す本実施形態の耐スポーリング性試験装置は、耐火物試験片Sの加熱面及びその背面の温度をそれぞれ測定する温度測定手段90a及び90bを備える。温度測定手段90a及び90bは、例えば放射温度計によって構成できる。これら温度測定手段90a及び90bによって測定された温度のデータ、上述の荷重測定手段20によって測定された拘束荷重のデータ、及び撮影手段40によって撮影された画像のデータは、コンピュータからなる評価手段100に入力され、評価手段100は、これらのデータから耐火物試験片Sの耐スポーリング性を評価する。   Further, the spalling resistance test apparatus of the present embodiment shown in FIG. 1 includes temperature measuring means 90a and 90b for measuring the temperature of the heating surface and the back surface of the refractory test piece S, respectively. The temperature measuring means 90a and 90b can be constituted by, for example, a radiation thermometer. The temperature data measured by the temperature measuring means 90a and 90b, the constraint load data measured by the load measuring means 20, and the image data photographed by the photographing means 40 are sent to the evaluation means 100 comprising a computer. The inputted evaluation means 100 evaluates the spalling resistance of the refractory specimen S from these data.

次に、図1の耐スポーリング性試験装置による本発明の耐スポーリング性評価方法を説明する。   Next, the spalling resistance evaluation method of the present invention using the spalling resistance test apparatus of FIG. 1 will be described.

まず、耐火物試験片Sを拘束手段10により一軸方向(上下方向)に拘束する(拘束工程)。次いで、拘束手段10により拘束された耐火物試験片Sの加熱面を加熱手段30によって加熱又は冷却する(加熱冷却工程)。なお、この場合の冷却とは、加熱手段30による加熱を止めることにより自然冷却されることをいう。   First, the refractory specimen S is restrained in the uniaxial direction (vertical direction) by the restraining means 10 (restraining step). Next, the heating surface of the refractory specimen S restrained by the restraining means 10 is heated or cooled by the heating means 30 (heating and cooling step). In addition, the cooling in this case means natural cooling by stopping the heating by the heating means 30.

この加熱冷却工程中に、耐火物試験片Sの拘束荷重が荷重測定手段20によって連続的に測定され(荷重測定工程)、その拘束荷重のデータは評価手段100に入力される。また、この加熱冷却工程中に、耐火物試験片Sの撮影面が撮影手段40によって撮影され(撮影工程)、この画像のデータも評価手段100に入力される。なお、撮影工程では上述のとおり、耐火物試験片Sの撮影面に配置された断熱材80を移動させて撮影する。   During this heating and cooling step, the restraint load of the refractory test piece S is continuously measured by the load measuring means 20 (load measurement step), and the restraint load data is input to the evaluation means 100. Further, during this heating and cooling process, the imaging surface of the refractory test piece S is imaged by the imaging means 40 (imaging process), and the data of this image is also input to the evaluation means 100. In the photographing process, as described above, the heat insulating material 80 arranged on the photographing surface of the refractory test piece S is moved and photographed.

また、評価手段100には、あらかじめ撮影手段40等によって撮影された耐火物試験片Sの撮影面の初期画像のデータも入力される。この初期画像は、拘束工程前又は拘束工程後加熱冷却工程前の適当なタイミングで撮影しておく。   The evaluation unit 100 also receives data of an initial image of the imaging surface of the refractory test piece S previously captured by the imaging unit 40 or the like. This initial image is taken at an appropriate timing before the restraint process or after the restraint process and before the heating and cooling process.

最後に、耐火物試験片Sの撮影面の初期画像及び撮影工程で撮影された撮影面の画像並びに荷重測定工程で測定された拘束荷重から耐火物試験片Sの耐スポーリング性を評価する(評価工程)。例えば評価工程(評価手段100)では、デジタル画像相関法のプログラムを用いて初期画像及び撮影工程で得られた画像のデータを解析し、ひずみ分布や亀裂の状態などの耐スポーリング性を評価する。   Finally, the spalling resistance of the refractory test piece S is evaluated from the initial image of the photographic surface of the refractory specimen S, the image of the photographic surface taken in the photographing process, and the restraint load measured in the load measurement process ( Evaluation process). For example, in the evaluation step (evaluation means 100), the digital image correlation method program is used to analyze the initial image and the image data obtained in the photographing step, and to evaluate the spalling resistance such as strain distribution and crack state. .

<実施例1>
耐火物試験片Sとして65×112×35mmのアルミナ−マグネシア質流し込み材の試料を作製し、事前に1000℃×3Hの熱処理を実施した。112×35mmの面を加熱面側、65×35mmの面の一方を下側になるように配置し、拘束手段10で一軸方向(上下方向)に0.5MPaの圧力(拘束荷重)を負荷した状態で固定した。この状態で耐火物試験片Sの撮影面を撮影手段40(デジタルカメラ)で撮影し初期画像を得た。
<Example 1>
A 65 × 112 × 35 mm alumina-magnesia cast material sample was prepared as the refractory test piece S, and a heat treatment at 1000 ° C. × 3H was performed in advance. The 112 × 35 mm surface was placed on the heating surface side, and one of the 65 × 35 mm surfaces was placed on the lower side, and 0.5 MPa pressure (restraint load) was applied to the uniaxial direction (vertical direction) by the restraining means 10. Fixed in state. In this state, the photographing surface of the refractory specimen S was photographed by the photographing means 40 (digital camera) to obtain an initial image.

次いで、昇温速度を50℃/minに設定し、加熱手段30(プロパン−酸素ガスバーナ)で室温から1600℃まで昇温した後、温度を10分間保持し、バーナの火力を弱めて10分間保持して耐火物試験片Sの温度を下げた後、昇温速度を200℃/minで再び1600℃まで加熱した。   Next, the rate of temperature rise is set to 50 ° C./min, the temperature is raised from room temperature to 1600 ° C. with heating means 30 (propane-oxygen gas burner), the temperature is held for 10 minutes, and the burner's heating power is weakened and held for 10 minutes. Then, after the temperature of the refractory specimen S was lowered, it was heated again to 1600 ° C. at a temperature rising rate of 200 ° C./min.

試験中は、耐火物試験片Sの加熱面と背面の温度(温度測定手段90a及び90bで測定された温度)、及び耐火物試験片Sの上下方向にかかる力(荷重測定手段20で測定された拘束荷重)を記録するとともに、耐火物試験片Sの撮影面を10秒毎に撮影手段40(デジタルカメラ)で撮影した。得られた画像は、前記初期画像とともにデジタル画像相関法のプログラムを用いて解析し、ひずみ分布を求めた。   During the test, the temperatures of the heated and back surfaces of the refractory specimen S (temperatures measured by the temperature measuring means 90a and 90b) and the force applied in the vertical direction of the refractory specimen S (measured by the load measuring means 20) are measured. And the photographing surface of the refractory test piece S was photographed by the photographing means 40 (digital camera) every 10 seconds. The obtained image was analyzed together with the initial image using a digital image correlation method program to obtain a strain distribution.

図5は、耐火物試験片Sの加熱面側と背面側の温度、及び耐火物試験片Sの上下方向にかかる力から計算した応力を示している。図6は耐火物試験片Sの撮影面の画像をプログラムで処理することによって得られたひずみ分布を示している。図6より、加熱面に垂直な方向と平行な方向の両方に発生した亀裂が確認できる。実炉で起こる剥離現象は、加熱面(稼働面)に平行な方向に亀裂が発生し、その後の使用で加熱面側が剥がれ落ちる現象であるが、本実施例による試験では、それと類似の亀裂発生が確認できる。このため、本試験によって剥離しにくい条件を探索することで、剥離を起こしにくい材料の開発につなげることができる。また、図5に示したように、片面加熱条件における発生応力も同時に求めることができる。   FIG. 5 shows the stress calculated from the temperature on the heating surface side and the back surface side of the refractory test piece S and the force applied to the refractory test piece S in the vertical direction. FIG. 6 shows a strain distribution obtained by processing an image of the imaging surface of the refractory specimen S with a program. From FIG. 6, it is possible to confirm cracks generated in both the direction perpendicular to the heating surface and the direction parallel to the heating surface. The peeling phenomenon that occurs in an actual furnace is a phenomenon in which a crack occurs in a direction parallel to the heating surface (working surface), and the heating surface side peels off in subsequent use. Can be confirmed. For this reason, it can be connected with development of the material which does not raise | generate peeling easily by searching the conditions which are hard to peel by this test. Further, as shown in FIG. 5, the generated stress under the single-sided heating condition can be obtained at the same time.

<比較例1>
耐火物試験片Sの一軸方向(上下方向)の拘束をなくした以外は実施例1と同様の条件で試験を実施した。図7に、画像処理によって得られた耐火物試験片Sの撮影面のひずみ分布を示すが、亀裂は加熱面に垂直な方向のものだけで、加熱面に平行な亀裂は確認できない。実炉で起こる剥離現象は上述のとおり加熱面に平行な亀裂によって起こるが、それと類似の亀裂は起こっておらず、この試験方法を用いて剥離しにくい材質を設計するのは困難である。
<Comparative Example 1>
The test was performed under the same conditions as in Example 1 except that the uniaxial direction (vertical direction) of the refractory test piece S was removed. FIG. 7 shows the strain distribution on the imaging surface of the refractory specimen S obtained by image processing. The cracks are only in the direction perpendicular to the heating surface, and no cracks parallel to the heating surface can be confirmed. Although the peeling phenomenon that occurs in an actual furnace is caused by a crack parallel to the heating surface as described above, a similar crack does not occur, and it is difficult to design a material that is difficult to peel using this test method.

<実施例2>
耐火物試験片Sとして114×230×65mmのアルミナ−マグネシア質流し込み材の試料を作製し、事前に1000℃×3Hの熱処理を実施した。230×65mmの面を加熱面側、114×65mmの面の一方を下側になるように配置し、拘束手段10で一軸方向(上下方向)に0.5MPaの圧力を負荷した状態で固定した。この状態で耐火物試験片Sの撮影面を撮影手段40(デジタルカメラ)で撮影し初期画像を得た。
<Example 2>
A 114 × 230 × 65 mm alumina-magnesia cast material sample was prepared as the refractory test piece S, and a heat treatment at 1000 ° C. × 3H was performed in advance. The surface of 230 × 65 mm is disposed on the heating surface side, and one of the surfaces of 114 × 65 mm is disposed on the lower side, and is fixed by the restraining means 10 with a pressure of 0.5 MPa applied in a uniaxial direction (vertical direction). . In this state, the photographing surface of the refractory specimen S was photographed by the photographing means 40 (digital camera) to obtain an initial image.

昇温速度を200℃/minに設定し、加熱手段30(プロパン−酸素ガスバーナ)で室温から1600℃まで昇温した後、温度を10分間保持し、バーナの火力を弱めて10分間保持して耐火物試験片Sの温度を下げた後、昇温速度を200℃/minで再び1600℃まで加熱した。   Set the rate of temperature increase to 200 ° C / min, raise the temperature from room temperature to 1600 ° C with heating means 30 (propane-oxygen gas burner), hold the temperature for 10 minutes, weaken the burner's heating power and hold for 10 minutes After the temperature of the refractory test piece S was lowered, the temperature was increased to 1600 ° C. again at a heating rate of 200 ° C./min.

その後、荷重制御手段60によって圧力を5MPaに変更し、同様に2回の加熱・冷却を行い、さらに圧力を10MPaに変更した後、3回の加熱・冷却を実施した。本実施例の荷重可変試験では、実炉における鉄皮の熱ひずみ量に合わせた拘束状態をある程度再現できる特徴がある。例えば、室温25℃、鉄皮温度300℃、鉄皮の熱膨張係数1.2×10−5(1/℃)を前提条件とすると、鉄皮の熱ひずみ量は0.0033となり、この値が目標ひずみ量となるので、耐火物試験片Sの撮影面における加熱面側の熱ひずみ量がこの値を跨ぐ(含む)ように試験を実施する。具体的に、本実施例では、実施例1と同様に温度と荷重の計測、及び耐火物試験片Sの撮影面の外観撮影を実施した。また、図8に示す各位置について、デジタル画像相関法によって変位を求め、その結果を用いて、各2点間における図8中に示すx方向とy方向のひずみを算出した(後述する図10、図11参照)。 Thereafter, the pressure was changed to 5 MPa by the load control means 60, heating / cooling was performed twice in the same manner, and after further changing the pressure to 10 MPa, heating / cooling was performed three times. The variable load test of the present embodiment has a feature that it can reproduce to some extent the restraint state matched to the amount of thermal strain of the iron shell in the actual furnace. For example, assuming that the room temperature is 25 ° C., the iron skin temperature is 300 ° C., and the thermal expansion coefficient of the iron skin is 1.2 × 10 −5 (1 / ° C.), the thermal strain amount of the iron skin is 0.0033. Therefore, the test is performed so that the thermal strain amount on the heating surface side of the imaging surface of the refractory test piece S straddles (includes) this value. Specifically, in this example, as in Example 1, the temperature and load were measured, and the appearance of the imaging surface of the refractory test piece S was photographed. Further, a displacement is obtained for each position shown in FIG. 8 by the digital image correlation method, and the distortion in the x direction and the y direction shown in FIG. 8 between each two points is calculated (see FIG. 10 described later). FIG. 11).

まず、温度と応力の推移を図9に示す。図9の応力は、荷重値と試料の断面積から計算した値である。図9に示すように、応力は10MPa負荷後に徐々に低下している。応力の低下は試料(耐火物試験片S)の収縮に伴って生じると考えられ、収縮傾向がある程度継続したのを確認した後(本実施例では7回目の加熱・冷却を繰り返した後)、試験を終了させた。なお、評価する試料の熱膨張係数や圧縮強さによっては、目標ひずみ量に達するまでの収縮させるべきひずみ量が異なるので、収縮傾向が見られてからの加熱冷却の繰り返し回数は試料に応じて調整される。また、試験中の試料の熱ひずみ量をオンラインで測定可能とすれば、その熱ひずみ量が目標ひずみ量に達したことを確認した後に、試験を終了させるようにすることもできる。   First, the transition of temperature and stress is shown in FIG. The stress in FIG. 9 is a value calculated from the load value and the cross-sectional area of the sample. As shown in FIG. 9, the stress gradually decreases after 10 MPa load. The decrease in stress is considered to occur with the contraction of the sample (refractory test piece S), and after confirming that the contraction tendency continued to some extent (after repeating the seventh heating / cooling in this example), The test was terminated. Depending on the thermal expansion coefficient and compressive strength of the sample to be evaluated, the amount of strain to be shrunk until the target strain amount is reached differs, so the number of heating and cooling cycles after the shrinkage tendency is observed depends on the sample. Adjusted. If the thermal strain amount of the sample under test can be measured online, the test can be terminated after confirming that the thermal strain amount has reached the target strain amount.

耐火物試験片Sの撮影面の加熱面側(加熱面側端部付近(図8中のa−f間))のy方向ひずみの推移を図10に示す。図10の破線は、5MPa及び10MPaにおける各加熱・冷却サイクルにおける加熱面側のひずみの最大値を通るように引いた直線である。5MPaでは破線の勾配が概ね水平に近いが、10MPaでは破線の勾配が右下がりとなっており、10MPaを負荷した後の加熱・冷却によって、加熱面側におけるy方向ひずみが収縮側に変化していくことが分かる。上述のとおり、荷重可変試験では実炉鉄皮拘束(実炉における鉄皮による拘束)に近いひずみ量の時点で評価することが好ましいところ、実炉鉄皮拘束を想定したひずみ量0.0033に対して、6回目加熱時の加熱面側のひずみ量の最大値が0.0034であるので、6回目加熱時が実炉に近い拘束条件となっているといえる。   FIG. 10 shows the transition of the y-direction strain on the heating surface side (near the heating surface side end (between a and f in FIG. 8)) of the imaging surface of the refractory test piece S. The broken lines in FIG. 10 are straight lines drawn so as to pass through the maximum strain value on the heating surface side in each heating / cooling cycle at 5 MPa and 10 MPa. The gradient of the broken line is almost horizontal at 5 MPa, but the gradient of the broken line is lowered to the right at 10 MPa. Heating and cooling after loading 10 MPa changes the y-direction strain on the heated surface side to the contraction side. I can see it going. As described above, in the load variable test, it is preferable to evaluate at the time of the strain amount close to the actual furnace core restraint (constraint by the iron core in the actual furnace). On the other hand, since the maximum value of the strain amount on the heating surface side during the sixth heating is 0.0034, it can be said that the sixth heating is a constraint condition close to that of the actual furnace.

加熱面から背面までの各2点間(図8中のa−g間、b−h間、c−i間、d−j間、e−k間、f−l間)のx方向ひずみを6箇所について求めて、それらの平均値をプロットしたものの推移を図11に示す。図11に示すように、初回から6回までの加熱・冷却サイクルにおいて、x方向ひずみは徐々に増加している。   The strain in the x direction between two points from the heating surface to the back surface (between a-g, b-h, c-i, d-j, ek, f-l in FIG. 8). FIG. 11 shows the transition of the six values obtained by plotting the average values. As shown in FIG. 11, in the heating and cooling cycle from the first time to six times, the strain in the x direction gradually increases.

図12は、1〜6回の加熱時の画像を用いてデジタル画像相関法によって求めたひずみ分布を示している。剥離を引き起こす加熱面に平行な亀裂は1回目の加熱中に発生しているが、その後の加熱・冷却の繰り返しと荷重の増加により、徐々に損傷が進んでいることが確認できる。なお、実験で得られた亀裂の形態は加熱面に平行な亀裂が目立つものであったが、これは実炉で使用された耐火物の切断面で見られる亀裂の形態と類似している。また、図10で示したように、6回目の加熱・冷却後の状態が実炉鉄皮拘束に近い状態と考えられる。複数の材質を比較評価する場合は、各材質について実炉鉄皮拘束に近いひずみ分布図(本実施例では図12における6回目の状態のひずみ分布図)を決定し、各材質で決定した実炉鉄皮拘束に近いひずみ分布図を比較評価するのが好ましい。   FIG. 12 shows a strain distribution obtained by a digital image correlation method using images at the time of heating 1 to 6 times. Cracks parallel to the heating surface that cause peeling occurred during the first heating, but it can be confirmed that damage has gradually progressed due to repeated heating and cooling and an increase in load. In addition, although the form of the crack obtained by experiment was a conspicuous crack parallel to a heating surface, this is similar to the form of the crack seen in the cut surface of the refractory used in the actual furnace. Further, as shown in FIG. 10, the state after the sixth heating / cooling is considered to be a state close to actual furnace core restraint. When comparatively evaluating a plurality of materials, a strain distribution diagram (strain distribution diagram in the sixth state in FIG. 12 in this embodiment) is determined for each material, which is close to the actual core restraint. It is preferable to comparatively evaluate the strain distribution map close to the furnace core restraint.

<実施例3>
実施例3では、複数材質を比較する上で実炉鉄皮拘束に近いひずみ量に拘束した試験結果を得られるように検討した。具体的には、保持応力0.5MPaで加熱・冷却試験を実施し、その後保持応力5MPaで加熱・冷却試験を実施し、それ以降は2.5MPaずつ保持応力を高めて加熱・冷却試験を繰り返した。
<Example 3>
In Example 3, when comparing a plurality of materials, examination was performed so as to obtain a test result constrained to a strain amount close to the actual furnace core restraint. Specifically, a heating / cooling test is performed at a holding stress of 0.5 MPa, and then a heating / cooling test is performed at a holding stress of 5 MPa. Thereafter, the holding stress is increased by 2.5 MPa, and the heating / cooling test is repeated. It was.

得られた温度及び応力データの一例を図13に示す。評価には同一の製鉄所で使用された実績のある、材質A〜Dの4種類のアルミナ−マグネシア質流し込み材を選定し、事前の熱処理は110℃×24hとした。実炉における耐用性は、材質Aが最も良好であり、続いて材質B,C,Dの順であった。加熱面側のy方向ひずみ量の推移を図14に示す。いずれの材質も5MPa以上の保持応力では、加熱・冷却を繰り返す度にひずみが減少、つまり収縮している。耐用性の比較的良好な材質Aのひずみ量の変化は比較的小さく、耐用性に劣る材質Dはひずみ量の減少速度が大きい結果であった。実施例2で算出した、実炉鉄皮拘束を想定した熱ひずみ量0.0033と比較すると、材質Aは5回目の加熱、その他の材質は3回目の加熱において、加熱中の熱ひずみ量が0.0033を下回った。実炉鉄皮拘束を想定した熱ひずみ量を下回った後の最初の冷却後のひずみ分布図を図15に示す。材質Cの背面側には比較的大きい垂直亀裂が見られるが、それ以外は、平行亀裂が主体となっている。材質A及びBは大きい亀裂が少なく比較的良好であった。材質C及びDは加熱面付近に比較的大きい平行亀裂が発生していた。材質Dはさらに内部の損傷も他の材質よりも目立つ結果であった。このように、材質間の差異は顕著なものではなかったが、今回評価した4材質について、実炉での耐用性が悪くなるに従い損傷が多くなる傾向を再現できた。   An example of the obtained temperature and stress data is shown in FIG. For the evaluation, four types of alumina-magnesia casting materials of materials A to D, which have been used in the same steelworks, were selected, and the preliminary heat treatment was performed at 110 ° C. × 24 h. In terms of durability in the actual furnace, the material A was the best, followed by the materials B, C, and D. FIG. 14 shows the transition of the y-direction strain amount on the heating surface side. In any material, when the holding stress is 5 MPa or more, the strain decreases, that is, contracts each time heating and cooling are repeated. The change in the strain amount of the material A having a relatively good durability was relatively small, and the material D having a poor durability was a result of a large decrease rate of the strain amount. Compared to the amount of thermal strain of 0.0033, which is calculated in Example 2 and assumes actual furnace core restraint, the amount of thermal strain during heating is higher for material A in the fifth heating and for the other materials in the third heating. Below 0.0033. FIG. 15 shows a strain distribution diagram after the first cooling after the thermal strain amount assumed to be the actual furnace core restraint. Although a relatively large vertical crack is seen on the back side of the material C, parallel cracks are mainly used in other cases. Materials A and B were relatively good with few large cracks. Materials C and D had relatively large parallel cracks in the vicinity of the heating surface. The material D was also more conspicuous in the internal damage than other materials. Thus, although the difference between materials was not remarkable, about the 4 materials evaluated this time, the tendency which damage was increased as the durability in an actual furnace worsened was able to be reproduced.

10 拘束手段
11 第1拘束手段
11a 加圧板
11b 耐火板
12 第2拘束手段
12a 加圧板
12b 耐火板
20 荷重測定手段
30 加熱手段
40 撮影手段
50 支持フレーム
60 荷重制御手段
70 遮熱れんが(遮熱手段)
71 遮熱れんが台
72 上側遮熱れんが
73 前側遮熱れんが
80 断熱材
90a,90b 温度測定手段
100 評価手段
DESCRIPTION OF SYMBOLS 10 Restraint means 11 1st restraint means 11a Pressure plate 11b Fireproof plate 12 Second restraint means 12a Pressure plate 12b Fireproof plate 20 Load measuring means 30 Heating means 40 Imaging means 50 Support frame 60 Load control means 70 Heat shield brick (heat shield means )
71 Heat-insulating brick table 72 Upper-side heat-insulating brick 73 Front-side heat-insulating brick 80 Heat insulating material 90a, 90b Temperature measuring means 100 Evaluation means

Claims (7)

耐火物試験片を一軸方向に拘束する拘束手段と、
前記拘束手段による拘束荷重を測定する荷重測定手段と、
前記拘束手段により拘束された耐火物試験片を加熱する加熱手段と、
前記加熱手段により加熱された耐火物試験片の加熱面以外の側面である撮影面を加熱中又は冷却中に撮影可能な撮影手段と、
を備えた耐スポーリング性試験装置。
Restraining means for restraining the refractory specimen in a uniaxial direction;
Load measuring means for measuring a restraining load by the restraining means;
Heating means for heating the refractory specimen restrained by the restraining means;
Imaging means capable of imaging the imaging surface, which is a side other than the heating surface of the refractory test piece heated by the heating means, during heating or cooling,
Equipped with a spalling resistance test device.
前記拘束手段による拘束荷重を変更制御する荷重制御手段をさらに備えた請求項1に記載の耐スポーリング性試験装置。   The spalling resistance test apparatus according to claim 1, further comprising load control means for changing and controlling a restrained load by the restraining means. 前記耐火物試験片の撮影面に配置された断熱材と、
前記撮影手段による撮影時、前記撮影手段による撮影が可能な位置に前記断熱材を移動させる移動手段と、
をさらに備えた請求項1又は2に記載の耐スポーリング性試験装置。
A heat insulating material disposed on the imaging surface of the refractory specimen,
Moving means for moving the heat insulating material to a position where photographing by the photographing means is possible at the time of photographing by the photographing means;
The spalling resistance test apparatus according to claim 1 or 2, further comprising:
耐火物試験片を一軸方向に拘束する拘束工程と、
拘束された耐火物試験片の加熱面を加熱又は冷却する加熱冷却工程と、を含み、
前記加熱冷却工程中に、前記耐火物試験片の拘束荷重を測定する荷重測定工程と、耐火物試験片の加熱面以外の側面である撮影面を撮影する撮影工程と、を含み
さらに、あらかじめ撮影された前記撮影面の初期画像及び前記撮影工程で撮影された前記撮影面の画像並びに前記拘束荷重から耐スポーリング性を評価する評価工程と、を含む耐スポーリング性評価方法。
A restraining process for restraining the refractory specimen in a uniaxial direction;
A heating / cooling step of heating or cooling the heating surface of the restrained refractory specimen,
The heating and cooling step includes a load measuring step for measuring a restraining load of the refractory specimen and a photographing step for photographing a photographing surface other than the heating surface of the refractory specimen. A spalling resistance evaluation method including: an evaluation step of evaluating spalling resistance based on the initial image of the photographing surface that has been performed, the image of the photographing surface that has been photographed in the photographing step, and the constraint load.
前記撮影工程中に、前記耐火物試験片への拘束荷重を変更制御する、請求項4に記載の耐スポーリング性評価方法。   The spalling resistance evaluation method according to claim 4, wherein the restraining load on the refractory specimen is changed and controlled during the photographing step. 前記撮影工程中に、前記加熱面側の前記撮影面の熱ひずみ量が、実炉における鉄皮の熱ひずみ量を跨ぐように、前記耐火物試験片への拘束荷重を変更制御する請求項5に記載の耐スポーリング性評価方法。   6. The restraint load on the refractory specimen is changed and controlled so that the thermal strain amount of the imaging surface on the heating surface side straddles the thermal strain amount of the iron shell in the actual furnace during the imaging process. The spalling resistance evaluation method described in 1. 前記撮影工程では、前記撮影面に配置された断熱材を移動させて撮影する、請求項4から6のいずれか一項に記載の耐スポーリング性評価方法。   The spalling resistance evaluation method according to any one of claims 4 to 6, wherein in the photographing step, the heat insulating material arranged on the photographing surface is moved and photographed.
JP2015220579A 2015-11-10 2015-11-10 Spolling resistance test equipment and spalling resistance evaluation method Active JP6788338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015220579A JP6788338B2 (en) 2015-11-10 2015-11-10 Spolling resistance test equipment and spalling resistance evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015220579A JP6788338B2 (en) 2015-11-10 2015-11-10 Spolling resistance test equipment and spalling resistance evaluation method

Publications (2)

Publication Number Publication Date
JP2017090251A true JP2017090251A (en) 2017-05-25
JP6788338B2 JP6788338B2 (en) 2020-11-25

Family

ID=58770350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015220579A Active JP6788338B2 (en) 2015-11-10 2015-11-10 Spolling resistance test equipment and spalling resistance evaluation method

Country Status (1)

Country Link
JP (1) JP6788338B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190005715A (en) * 2017-07-06 2019-01-16 에스펙 가부시키가이샤 Environmental test apparatus
JP2021006831A (en) * 2017-07-06 2021-01-21 エスペック株式会社 Environment testing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208840A (en) * 1990-08-07 1992-07-30 Nippon Steel Corp Method and device for evaluating serviceability of lined structure body
JPH0720031A (en) * 1993-06-30 1995-01-24 Toyota Central Res & Dev Lab Inc Method and device for thermal fatigue test
US5601364A (en) * 1994-06-14 1997-02-11 Georgia Tech Research Corporation Method and apparatus for measuring thermal warpage
JP2002107317A (en) * 2000-10-02 2002-04-10 Sanyo Seiko Kk Device for observing high-temperature
JP2013083605A (en) * 2011-10-12 2013-05-09 Kurosaki Harima Corp Displacement measuring apparatus, displacement measuring method, and program
JP2014035251A (en) * 2012-08-08 2014-02-24 Kobe Steel Ltd Thermal expansion amount measuring device of refractory body and refractory body test device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208840A (en) * 1990-08-07 1992-07-30 Nippon Steel Corp Method and device for evaluating serviceability of lined structure body
JPH0720031A (en) * 1993-06-30 1995-01-24 Toyota Central Res & Dev Lab Inc Method and device for thermal fatigue test
US5601364A (en) * 1994-06-14 1997-02-11 Georgia Tech Research Corporation Method and apparatus for measuring thermal warpage
JP2002107317A (en) * 2000-10-02 2002-04-10 Sanyo Seiko Kk Device for observing high-temperature
JP2013083605A (en) * 2011-10-12 2013-05-09 Kurosaki Harima Corp Displacement measuring apparatus, displacement measuring method, and program
JP2014035251A (en) * 2012-08-08 2014-02-24 Kobe Steel Ltd Thermal expansion amount measuring device of refractory body and refractory body test device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190005715A (en) * 2017-07-06 2019-01-16 에스펙 가부시키가이샤 Environmental test apparatus
JP2019015585A (en) * 2017-07-06 2019-01-31 エスペック株式会社 Environment testing device
US10620113B2 (en) 2017-07-06 2020-04-14 Espec Corp. Environmental test apparatus
JP2021006831A (en) * 2017-07-06 2021-01-21 エスペック株式会社 Environment testing device
KR102213990B1 (en) 2017-07-06 2021-02-09 에스펙 가부시키가이샤 Environmental test apparatus

Also Published As

Publication number Publication date
JP6788338B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
Wang et al. Impact of cooling on fracturing process of granite after high-speed heating
JP2017530027A (en) Prediction and minimization of distortion in additive manufacturing
Zhao et al. Effects of interpass idle time on thermal stresses in multipass multilayer weld-based rapid prototyping
TWI543858B (en) Annealing method, annealing jig, and annealing device
JP2017090251A (en) Spalling resistant properties test device and spalling resistant properties evaluation method
JP6044595B2 (en) Tensile processing transformation heat generation measuring apparatus and tensile test method of metal material
JP4946516B2 (en) Hot rolling equipment and hot rolling method using the same
CN114720258A (en) Component material thermal fatigue performance testing method based on reduced-scale test sample
JP5659462B2 (en) Refractory lining structure for steelmaking containers
JP6230786B2 (en) Reinforcing bar image generation method and apparatus, reinforcing bar corrosion property diagnostic method and apparatus, rebar image generation program, and recording medium for recording the program
Damhof et al. Experimental analysis of the evolution of thermal shock damage using transit time measurement of ultrasonic waves
JP5782411B2 (en) Refractory testing equipment
JP5678682B2 (en) Secondary cooling strength evaluation and control method in continuous casting
Richou et al. Performance assessment of high heat flux W monoblock type target using thin graded and copper interlayers for application to DEMO divertor
JP2009002765A (en) Profile measuring method of refractory, and thickness measuring method of refractory
CN210923335U (en) Synchronous testing system for transient high-temperature deformation and damage of concrete
Dai et al. Numerical and experimental study on the thermal shock strength of Tungsten by laser irradiation
Zhao et al. Numerical simulation of temperature field and stress distributions in multi-pass single-layer weld-based rapid prototyping
JP2019152522A (en) Thermal fatigue test device and thermal fatigue test method
CN114720257A (en) Component material thermal fatigue test method based on reduced-scale sample
JP2007101326A (en) Method and instrument for measuring ductility value of metal material
JP6579570B2 (en) Nondestructive inspection method and nondestructive inspection device for delamination in coating layer
Smith et al. Enhanced experimental measurements of a gas turbine compressor rotor analogue undergoing thermal bow
JP2024049757A (en) Wire bending evaluation method
Lehmann et al. DIC deformation analyses of Mg specimens at elevated temperatures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200518

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200518

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200605

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200609

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200626

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200630

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200707

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20200929

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20201027

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201030

R150 Certificate of patent or registration of utility model

Ref document number: 6788338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250