JP2017088965A - Pc steel corrosion suppression structure of pre-stressed concrete structure - Google Patents
Pc steel corrosion suppression structure of pre-stressed concrete structure Download PDFInfo
- Publication number
- JP2017088965A JP2017088965A JP2015221454A JP2015221454A JP2017088965A JP 2017088965 A JP2017088965 A JP 2017088965A JP 2015221454 A JP2015221454 A JP 2015221454A JP 2015221454 A JP2015221454 A JP 2015221454A JP 2017088965 A JP2017088965 A JP 2017088965A
- Authority
- JP
- Japan
- Prior art keywords
- steel material
- concrete structure
- steel
- corrosion
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 116
- 239000010959 steel Substances 0.000 title claims abstract description 116
- 230000007797 corrosion Effects 0.000 title claims abstract description 45
- 238000005260 corrosion Methods 0.000 title claims abstract description 45
- 239000011513 prestressed concrete Substances 0.000 title claims abstract description 24
- 230000001629 suppression Effects 0.000 title claims abstract description 8
- 239000010405 anode material Substances 0.000 claims abstract description 36
- 239000000945 filler Substances 0.000 claims abstract description 35
- 239000004567 concrete Substances 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims description 96
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 14
- 230000002401 inhibitory effect Effects 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- 238000009413 insulation Methods 0.000 claims description 8
- 238000005536 corrosion prevention Methods 0.000 claims description 6
- 239000007769 metal material Substances 0.000 claims description 6
- 230000033116 oxidation-reduction process Effects 0.000 claims description 5
- 239000012212 insulator Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 description 16
- 230000006866 deterioration Effects 0.000 description 6
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 5
- 230000003014 reinforcing effect Effects 0.000 description 5
- 239000004568 cement Substances 0.000 description 4
- 239000011440 grout Substances 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000004210 cathodic protection Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007798 antifreeze agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Landscapes
- Prevention Of Electric Corrosion (AREA)
Abstract
Description
本発明は、主にポストテンション方式によってプレストレスが導入されてなるプレストレストコンクリート構造物のPC鋼材腐食抑制構造に関する。 The present invention relates to a PC steel material corrosion-inhibiting structure of a prestressed concrete structure in which prestress is mainly introduced by a post-tension method.
従来、ポストテンション方式のプレストレストコンクリート構造物(以下、PC構造物という)では、コンクリート構造体内に埋設されたシースにPC鋼材を挿通させるとともに、シースとPC鋼材との間にセメント系の充填材(グラウト)を充填し、PC鋼材とコンクリート構造体とを一体化させている。 Conventionally, in a post-tension type prestressed concrete structure (hereinafter referred to as a PC structure), a PC steel material is inserted through a sheath embedded in the concrete structure, and a cement-based filler (see FIG. Grout) and the PC steel material and the concrete structure are integrated.
その場合、PC鋼材は、セメント系の充填材に覆われ、高アルカリ性雰囲気中にあって、充填材による被覆と不導態皮膜によって腐食から保護された状態にある。 In this case, the PC steel material is covered with a cement-based filler, is in a highly alkaline atmosphere, and is protected from corrosion by the filler coating and the non-conductive film.
しかしながら、充填材の充填作業は、シース内に未充填部分が生じぬように行われるが、充填材の材料分離や粘性不足等の原因によってシース内の一部に充填材が充填されずに空隙が形成されてしまう場合がある。 However, the filling operation is performed so that an unfilled portion does not occur in the sheath. However, a part of the sheath is not filled with the filler due to material separation of the filler or insufficient viscosity. May be formed.
特に、このような未充填部分(空隙)は、高架道路のPC桁のように、PC鋼材の端部定着部が舗装の下にあってシースの端部が斜め上向きに配置されている場合や、何らかの原因でシースが潰れて充填材の流動が妨げられる場合、シースが波形状に配置される場合等に生じやすくなっている。 In particular, such an unfilled portion (gap) is formed when the end fixing portion of the PC steel material is under the pavement and the end portion of the sheath is disposed obliquely upward like the PC girder of the elevated road. It is likely to occur when the sheath is crushed for some reason and the flow of the filler is prevented, or when the sheath is arranged in a wave shape.
また、シース内にPC鋼材を挿通した後、且つ、充填材が充填される前の一定期間、PC鋼材は、充填材が未充填の状態でシース内に晒される。 In addition, after inserting the PC steel material into the sheath and for a certain period before the filler is filled, the PC steel material is exposed to the sheath in a state where the filler is not filled.
シース内に充填材の未充填部分が存在すると、当該未充填部分に飛来塩分や凍結防止剤等が浸入した場合、その塩化物イオンによってPC鋼材が腐食し、PC鋼材の劣化による強度低下、PC鋼材の腐食による膨張によってコンクリート構造体のひび割れ等を招くおそれがあった。 If there is an unfilled portion of the filler in the sheath, and the incoming salt or antifreeze agent enters the unfilled portion, the PC steel will be corroded by the chloride ions, and the strength will decrease due to the deterioration of the PC steel. There was a risk of causing cracks in the concrete structure due to the expansion of the steel material due to corrosion.
そこで、従来では、当該未充填部分に充填材を再充填して修復することによって、PC鋼材を被覆することで保護する方法が知られている(例えば、特許文献1を参照)。 Therefore, conventionally, a method is known in which the unfilled portion is refilled with a filler to be repaired by covering the PC steel material (see, for example, Patent Document 1).
一方、コンクリート構造体内に埋設された鉄筋等の鋼材の腐食を防止又は抑制する方法には、コンクリート構造体内の表面部に陽極を埋設し、この陽極と鉄筋との電位差を利用して鉄筋に防食電流を供給することで鉄筋の腐食を抑制する電気防食工法も知られている(例えば、特許文献2を参照)。 On the other hand, in order to prevent or suppress corrosion of steel materials such as reinforcing bars embedded in the concrete structure, an anode is embedded in the surface portion of the concrete structure, and the potential difference between the anode and the reinforcing bar is used to prevent corrosion of the reinforcing bars. An anticorrosion method that suppresses corrosion of reinforcing bars by supplying current is also known (see, for example, Patent Document 2).
しかしながら、上述の如き充填材の再充填による方法では、充填材によって未充填部分を埋めて修復しても、既に腐食した部分の劣化の進行を阻止することは容易でなかった。 However, in the method using refilling of the filler as described above, even if the unfilled portion is filled and repaired with the filler, it is not easy to prevent the progress of deterioration of the already corroded portion.
また、このような未充填部分は、その部分を完全に充填材で再充填することは困難であり、特に、PC鋼材がより線の場合、PC鋼材を構成する単線間の隙間にまで充填材を充填させることは容易ではなかった。 Moreover, it is difficult to completely refill the unfilled portion with the filler, particularly when the PC steel is a stranded wire, the filler is filled up to the gap between the single wires constituting the PC steel. It was not easy to fill.
また、この方法では、充填材の再充填によりPC鋼材が保護され、塩化物イオンによる劣化が回避できた場合であっても、シース内には既存の充填材と新たに充填された充填材とが混在することとなり、両新旧充填材の塩化物濃度が異なると、当該塩化物濃度差によってシース内にマクロセル(巨視的電池)が形成されることによって新たな腐食が引き起こされる懸念があった。 Further, in this method, even when the PC steel material is protected by refilling of the filler and deterioration due to chloride ions can be avoided, the existing filler and the newly filled filler in the sheath When the chloride concentrations of the old and new fillers are different, there is a concern that new corrosion may be caused by the formation of macrocells (macroscopic cells) in the sheath due to the chloride concentration difference.
一方、上述の電気防食工法は、コンクリート構造体の比較的表面に近い位置に埋設された鉄筋等の鋼材の腐食を抑制又は防止するものであり、比較的コンクリート構造体の表面から離れた位置に配置されるPC鋼材の腐食に対しては効果が及ばないおそれがあった。 On the other hand, the above-described cathodic protection method suppresses or prevents the corrosion of steel materials such as reinforcing bars embedded in a position relatively close to the surface of the concrete structure, and is positioned relatively away from the surface of the concrete structure. There is a possibility that the effect is not exerted on the corrosion of the PC steel material to be arranged.
また、この種の電気防食工法では、コンクリート構造体に埋設されたシースが導電性の金属材によって構成されている場合、陽極から流れる防食電流がシースによって遮蔽されてPC鋼材に流れず、電気防食構造として機能しないという問題もあった。 Also, in this type of cathodic protection method, when the sheath embedded in the concrete structure is made of a conductive metal material, the anticorrosion current flowing from the anode is shielded by the sheath and does not flow to the PC steel material. There was also a problem of not functioning as a structure.
尚、従来、コンクリート構造物の塩害による劣化は、塩化物イオン等の劣化因子がコンクリート構造体の表面から内部に拡散することによって生じることについて広く知られているが、コンクリート構造体の内部から塩化物イオン等の劣化因子が周囲に拡散していく事象については余り知られておらず、このような事象に対する有効な解決策が見出されていない現状にあった。 Conventionally, it is widely known that deterioration of concrete structures due to salt damage is caused by diffusion of deterioration factors such as chloride ions from the surface of the concrete structure to the inside. There is little known about the phenomenon in which deterioration factors such as matter ions diffuse to the surroundings, and no effective solution has been found for such an event.
そこで、本発明は、このような従来の問題に鑑み、好適にPC鋼材の腐食を抑制できるプレストレストコンクリート構造物のPC鋼材腐食抑制構造及びPC鋼材腐食抑制方法の提供を目的としてなされたものである。 Then, in view of such a conventional problem, the present invention was made for the purpose of providing a PC steel material corrosion inhibiting structure and a PC steel material corrosion inhibiting method for a prestressed concrete structure that can suitably inhibit the corrosion of PC steel material. .
上述の如き従来の問題を解決し、所期の目的を達成するための請求項1に記載の発明の特徴は、コンクリート構造体内に埋設されたシースに挿通させたPC鋼材と、前記シースとPC鋼材との間に充填材が充填されてなるPC側充填部とを備え、緊張した前記PC鋼材によって前記コンクリート構造体にプレストレスが導入されてなるプレストレストコンクリート構造物にあって、前記PC鋼材の腐食を抑制するためのプレストレストコンクリート構造物のPC鋼材腐食抑制構造において、前記コンクリート構造体の表面より前記シースを貫通して前記PC鋼材の近傍まで至る貫通孔と、該貫通孔内に挿入された陽極材と、前記貫通孔と前記陽極材との間に充填材が充填されてなる陽極側充填部とを備え、前記PC鋼材と前記陽極材とが接続され、前記PC鋼材と前記陽極材との電位差を利用して前記PC鋼材に電流を供給するようにしたプレストレストコンクリート構造物のPC鋼材腐食抑制構造にある。
The feature of the invention according to
請求項2に記載の発明の特徴は、請求項1の構成に加え、前記PC側充填部には、互いに塩化物濃度の異なる既存充填部分と再充填部分とを有し、前記貫通孔は、前記既存充填部分と前記再充填部分との境界の近傍に配置されていることにある。 According to a second aspect of the present invention, in addition to the configuration of the first aspect, the PC-side filling portion has an existing filling portion and a refilling portion having different chloride concentrations, and the through-hole has It exists in the vicinity of the boundary of the said existing filling part and the said refilling part.
請求項3に記載の発明の特徴は、請求項1又は2の構成に加え、前記陽極材は、前記PC鋼材に対して酸化還元電位が低い金属材により形成された流電陽極であることにある。 According to a third aspect of the present invention, in addition to the configuration of the first or second aspect, the anode material is a galvanic anode formed of a metal material having a low oxidation-reduction potential with respect to the PC steel material. is there.
請求項4に記載の発明の特徴は、請求項1〜3の何れか1の構成に加え、前記貫通孔内、且つ、前記陽極材の外側に絶縁体からなる絶縁被覆体を備え、該絶縁被覆体が前記シースの内外に跨って配置されていることにある。 According to a fourth aspect of the present invention, in addition to the structure according to any one of the first to third aspects, an insulating covering made of an insulator is provided in the through hole and outside the anode material, and the insulation is provided. The covering body is disposed across the inside and outside of the sheath.
請求項5に記載の発明の特徴は、請求項1〜4の何れか1の構成に加え、前記PC鋼材の長手方向に間隔を置いて前記貫通孔が形成されていることにある。
The feature of the invention described in
本発明に係るプレストレストコンクリート構造物のPC鋼材腐食抑制構造は、上述したように、コンクリート構造体内に埋設されたシースに挿通させたPC鋼材と、前記シースとPC鋼材との間に充填材が充填されてなるPC側充填部とを備え、緊張した前記PC鋼材によって前記コンクリート構造体にプレストレスが導入されてなるプレストレストコンクリート構造物にあって、前記PC鋼材の腐食を抑制するためのプレストレストコンクリート構造物のPC鋼材腐食抑制構造において、前記コンクリート構造体の表面より前記シースを貫通して前記PC鋼材の近傍まで至る貫通孔と、該貫通孔内に挿入された陽極材と、前記貫通孔と前記陽極材との間に充填材が充填されてなる陽極側充填部とを備え、前記PC鋼材と前記陽極材とが接続され、前記PC鋼材と前記陽極材との電位差を利用して前記PC鋼材に電流を供給するようにしたことにより、当該電流を防食電流としてPC鋼材の腐食を抑制することができる。 As described above, the PC steel material corrosion inhibiting structure of the prestressed concrete structure according to the present invention is filled with a filler between the PC steel material inserted through the sheath embedded in the concrete structure and the sheath and the PC steel material. A prestressed concrete structure for suppressing corrosion of the PC steel material, wherein the prestressed concrete structure is provided with prestressed into the concrete structure by the strained PC steel material In the PC steel material corrosion-inhibiting structure, the through hole extending from the surface of the concrete structure through the sheath to the vicinity of the PC steel material, the anode material inserted into the through hole, the through hole, and the An anode-side filling portion filled with a filler between the anode material and the PC steel material and the anode material connected to each other Is, by that so as to supply current to the PC steel member by using a potential difference between the anode material and the PC steel, it is possible to suppress corrosion of PC steel the current as a protective current.
また、本発明において、前記PC側充填部には、互いに塩化物濃度の異なる既存充填部分と再充填部分とを有し、前記貫通孔は、前記既存充填部分と前記再充填部分との境界の近傍に配置されていることにより、既存充填部分と再充填部分との間に塩化物濃度に差が生じ、その差によって生じるマクロセル腐食を抑制し、充填材の再充填による保護効果を補完することができる。 In the present invention, the PC-side filling portion has an existing filling portion and a refilling portion having different chloride concentrations, and the through hole is a boundary between the existing filling portion and the refilling portion. By being arranged in the vicinity, there is a difference in chloride concentration between the existing filling part and the refilling part, and the macrocell corrosion caused by the difference is suppressed, and the protective effect by refilling the filler is complemented Can do.
更に、本発明において、前記陽極材は、前記PC鋼材に対して酸化還元電位が低い金属材により形成された流電陽極であることにより、発生する電流量は小さいが、十分な腐食抑制効果が期待でき、且つ、外部電源等が不要で導入費用や維持管理費用の低減を図ることができる。 Furthermore, in the present invention, the anode material is a galvanic anode formed of a metal material having a low oxidation-reduction potential with respect to the PC steel material. It can be expected and an external power supply or the like is unnecessary, and the introduction cost and the maintenance cost can be reduced.
更にまた、本発明において、前記貫通孔内、且つ、前記陽極材の外側に絶縁体からなる絶縁被覆体を備え、該絶縁被覆体が前記シースの内外に跨って配置されていることにより、シースに電流が流れるのを防止し、確実にPC鋼材に電流を供給することができる。 Furthermore, in the present invention, an insulating covering made of an insulating material is provided in the through hole and outside of the anode material, and the insulating covering is disposed across the inside and outside of the sheath. Current can be prevented, and current can be supplied to PC steel reliably.
更にまた、本発明において、前記PC鋼材の長手方向に間隔を置いて前記貫通孔が形成されていることにより、充填材の未充填部分(腐食が懸念される部分)の有無又はその位置が不明であっても好適にPC鋼材の腐食を抑制することができる。 Furthermore, in the present invention, since the through holes are formed at intervals in the longitudinal direction of the PC steel material, whether or not there is an unfilled portion of the filler (a portion where corrosion is a concern) or its position is unknown. Even so, corrosion of the PC steel material can be preferably suppressed.
次に、本発明に係るプレストレストコンクリート構造物のPC鋼材腐食抑制構造の実施態様を図1〜図5に示した実施例に基づいて説明する。尚、図中符号1はPC桁等のプレストレストコンクリート構造物である。
Next, an embodiment of the PC steel material corrosion inhibiting structure of the prestressed concrete structure according to the present invention will be described based on the examples shown in FIGS. In the figure,
このプレストレストコンクリート構造物(以下、PC構造物という)1は、図1に示すように、コンクリート構造体2内に埋設されたシース3に挿通させたPC鋼材4と、PC鋼材4とシース3との間に充填材5が充填されてなるPC側充填部6とを備え、PC鋼材4とコンクリート構造体2とが一体化され、緊張したPC鋼材4によってプレストレスが導入されている。
As shown in FIG. 1, this prestressed concrete structure (hereinafter referred to as a PC structure) 1 includes a PC steel material 4 inserted through a
また、このPC構造物1は、PC鋼材4の端部定着部7がコンクリート構造体2の上面側に位置し、シース3の端部が斜め上向きに配置され、端部定着部7下には、当初のグラウト作業においてシース端部に未充填部分8が生じ、この未充填部分8にセメント系グラウト等の充填材5が再充填されている。
Further, in this
端部定着部7は、コンクリート構造体2の表面に形成した凹部9内に備えられ、PC鋼材4を緊張定着した後に、グラウト作業と後処理を行い、定着部保護コンクリート10を打設して凹部9を埋めることにより端部定着部7を保護している。
The end fixing unit 7 is provided in a concave portion 9 formed on the surface of the
シース3は、帯状の鋼板を隙間なく螺旋状に巻いた螺旋筒状或いは管状に形成され、コンクリート構造体2の全長方向に亘って埋設されている。
The
PC鋼材4は、鋼製の複数の単線4a,4a...を単に束ねたPC鋼線、単線4a,4aを撚り合わせたPC鋼撚り線又はPC鋼棒によって構成され、シース3内に挿通させた状態でポストテンション方式によりコンクリート構造体2にプレストレスを導入するようになっている。
The PC steel material 4 is composed of a PC steel wire obtained by simply bundling a plurality of
PC側充填部6は、先に充填材5が充填された既存充填部分6aと、シース端部に生じた未充填部分8に充填材5を再充填してなる再充填部分6bとを有し、既存充填部分6aと再充填部分6bとが互いに隣接している。
The PC-
尚、既存充填部6aと再充填部6bとでは、互いに塩化物濃度が異なり、既存充填部分6a側の塩化物濃度が高く、新たに充填された再充填部分6b側の塩化物濃度が低いもとのし、この塩化物濃度差に起因してマクロセルが形成され、このマクロセルにおいて既存充填部分6a側が陰極(カソード)、再充填部6b側が陽極(アノード)を成しているものとする。
The existing
このPC構造物1のPC鋼材腐食抑制構造は、コンクリート構造体2に形成された貫通孔11,11...と、各貫通孔11内に挿入された陽極材12と、貫通孔11と陽極材12との間に充填材5を充填してなる陽極側充填部13とを備え、PC鋼材4と陽極材12とが接続され、PC鋼材4と陽極材12との電位差を利用してPC鋼材4に電流を供給することでPC鋼材4の腐食を抑制するようになっている。
The PC steel material corrosion-inhibiting structure of the
貫通孔11,11...は、コンクリート構造体2の表面よりシース3を貫通してPC鋼材4の近傍にまで至る形状に形成され、且つ、シース3の長手方向と交差する方向に向けられ、互いにPC鋼材4の長手方向に適宜間隔を置いて配置されている。
The through holes 11, 11... Are formed in a shape extending from the surface of the
ここでPC鋼材4の近傍とは、充填材5を媒介としてPC鋼材4と陽極材12との間に電流を流すことが可能な距離を隔てた位置を言うものとする。
Here, the vicinity of the PC steel material 4 refers to a position separated by a distance capable of passing a current between the PC steel material 4 and the
この貫通孔11,11...は、互いに一定間隔を置いて配置してもよく、予めPC鋼材4の腐食が確認されている場合、その箇所に合わせて設けてもよい。
These through
また、マクロセル腐食が懸念される部分においては、貫通孔11が既存充填部分6aと再充填部分6bとの境界6cの近傍に配置されることが好ましい。
In a portion where macro cell corrosion is a concern, it is preferable that the through
ここで、境界6cの近傍とは、既存充填部分6aと再充填部分6bとの塩化物濃度差によって、境界6cを挟んで既存充填部分6aと再充填部分6bとに跨って形成されたマクロセルの腐食影響範囲内をいう。尚、本実施例のマクロセル部分における貫通孔11の配置は、境界6c近傍の既存充填部分6a側に配置されているが、境界6cを挟んだ既存充填部分6a側、再充填部分6b側の何れ側であってもよい。
Here, the vicinity of the
この貫通孔11,11...内には、図2、図3に示すように、その内側、且つ、陽極材12の外側に絶縁体からなる筒状の絶縁被覆体14を備え、絶縁被覆体14がシース3の内外に跨って配置されている。
As shown in FIGS. 2 and 3, the through
絶縁被覆体14の態様は、特に限定されないが、塩化ビニル管等の絶縁体からなる管体をもって構成し、それを貫通孔11内に挿入してもよく、貫通孔11の内周面にエポキシ樹脂塗料を塗布してなる絶縁性塗装膜としてもよく、貫通孔11の内周面にゴムシート等を貼り付けて形成してもよい。
Although the aspect of the insulating
陽極材12は、亜鉛やアルミニウム等のPC鋼材4に対して酸化還元電位が低い金属により形成された流電陽極を成し、リード線15及び接続ボックス16を介してPC鋼材4に対し電気的に接続されている。
The
陽極側充填部13は、PC側充填部6と同様のセメント系の充填材5を充填することにより形成され、シース3を貫通してPC側充填部6、即ち、既存充填部分6a又は再充填部分6bと一体化するようになっている。
The anode-
次に、PC鋼材腐食抑制構造を既存のPC構造物1に適用する場合ついて説明する。尚、上述の実施例と同様の構成には同一符号を付して説明し、図中符号1は既存のPC構造物である。
Next, the case where the PC steel material corrosion suppression structure is applied to the existing
このPC構造物1においてPC鋼材4の腐食を抑制するには、先ず、図4(a)〜図4(b)に示すように、コンクリート構造体2の表面2aよりシース3及びPC鋼材4の軸方向と交差する方向に向けてドリル等を用いて穿孔し、コンクリート構造体2の表面からシース3を貫通してPC側充填部6内のPC鋼材4近傍に至る複数の貫通孔11,11...をPC鋼材4の長手方向に適宜間隔を置いて形成する。
In order to suppress the corrosion of the PC steel material 4 in the
その際、PC側充填部6を構成する既存充填部分6aと再充填部分6bとの境界部分において、貫通孔11は、その境界6cの近傍に配置されるように形成する。
At that time, in the boundary portion between the existing filling
次に、貫通孔11,11...が形成されたら、各貫通孔11,11...の内側に絶縁被覆体14を設ける。その場合、絶縁被覆体14は、図3に示すように、少なくとも先端部分がシース3の内外に跨るように配置する。
Next, when the through-
そして、図4(c)に示すように、この貫通孔11,11...の絶縁被覆体14の内側にリード線15に接続した状態で陽極材12を貫通孔11の奥側位置、即ち、PC鋼材4の近傍まで挿入し、リード線15の他端側を貫通孔11の開口部より導出させておく。
Then, as shown in FIG. 4C, the
また、陽極材12の挿入とともに、貫通孔11内にセメント系の充填材5を注入し、貫通孔11,11...と陽極材12との間の隙間を充填材5で充填し、充填材5を養生・固化させて各陽極側充填部13と、既存充填部分6a又は再充填部分6bとをそれぞれ一体化させる。
Further, as the
しかる後、リード線15を接続ボックス16に接続し、接続ボックス16にリード線15を介して接続されたPC鋼材4と電気的に接続する。
After that, the
以上の工程を貫通孔11,11...毎に繰り返すことによりPC鋼材腐食抑制構造が構築される。
By repeating the above steps for each of the through
このように構成されたPC構造物1のPC鋼材腐食抑制構造は、陽極材12よりPC鋼材4に電流を供給することによって、この電流を防食電流としてPC鋼材4の腐食を抑制することができる。
The PC steel material corrosion suppression structure of the
さらに、このPC鋼材腐食抑制構造では、陽極材12がPC鋼材4に対して酸化還元電位が低い金属材により形成された流電陽極であるので、発生する電流量は小さいが、十分な腐食抑制効果が期待でき、且つ、外部電源等が不要で導入費用や維持管理費用を安価に抑えることができる。
Furthermore, in this PC steel corrosion prevention structure, since the
更にまた、貫通孔11,11...内、且つ、陽極材12の外側に絶縁被覆体14を設け、且つ、絶縁被覆体14をシース3の内外に配置したことによって、シース3が導電性の金属の場合であっても、図5(a)に示すように、PC鋼材4に好適に電流eを供給することができる。
Furthermore, the
一方、絶縁被覆体14を用いない場合には、図5(b)に示すように、導電性金属材からなるシース3に向かって電流eが流れ、PC鋼材4への電流供給が困難となる場合がある。
On the other hand, when the insulating
また、このPC鋼材防食抑制構造では、貫通孔11がPC側充填部6を構成する既存充填部分6aと再充填部分6bとの境界6cの近傍に配置されることで、境界6cを挟んで既存充填部6aと再充填部分6bとに跨って形成されたマクロセルの影響範囲内においてPC鋼材4に好適に電流を供給することができ、既存充填部分6aと再充填部分6bとの塩化物濃度差によるマクロセル腐食を抑制できる。
Moreover, in this PC steel material anti-corrosion prevention structure, the through-
尚、上述の実施例では、流電陽極方式を採用した例について説明したが、陽極材12をチタン等の不溶性金属によって構成し、この不溶性陽極と陰極を成すPC鋼材4との間に直流電源装置を接続し、鉄筋に不溶性陽極から電流を供給するようにしてもよい。
In the above-described embodiment, an example in which the galvanic anode method is adopted has been described. However, the
この外部電源方式の場合には、安定した電位差を確保できることから、腐食抑制法ではなく電気防食法に分類されるが、ここでは、この種の電気防食法も腐食抑制法に含まれる概念として説明している。 In the case of this external power supply method, since a stable potential difference can be secured, it is classified as an anticorrosion method rather than a corrosion inhibition method, but here, this type of anticorrosion method is also explained as a concept included in the corrosion inhibition method. doing.
更に、上述の実施例では、傾斜したシース端部の未充填部分に再充填部分6bが形成された場合について説明したが、再充填部6bの態様は、上述の実施例に限定されず、例えば、シース3が上下に波打つ形状に配置されている場合におけるグラウトの先流れによって生じる傾斜部の未充填部分に充填材を再充填した再充填部6bであってもよい。
Furthermore, in the above-described embodiment, the case where the refilling
尚、上述の実施例では、PC構造物1としてPC桁を例に挙げて説明したが、PC構造物1はこれに限定されない。
In the above-described embodiment, the PC girder is described as an example of the
1 プレストレストコンクリート構造物(PC構造物)
2 コンクリート構造体
3 シース
4 PC鋼材
5 充填材
6 PC側充填部
6a 既存充填部分
6b 再充填部分
7 端部定着部
8 未充填部分
9 凹部
10 定着部保護コンクリート
11 貫通孔
12 陽極材
13 陽極側充填部
14 絶縁被覆体
15 リード線
16 接続ボックス
1 Prestressed concrete structure (PC structure)
2
Claims (5)
前記コンクリート構造体の表面より前記シースを貫通して前記PC鋼材の近傍にまで至る貫通孔と、該貫通孔内に挿入された陽極材と、前記貫通孔と前記陽極材との間に充填材が充填されてなる陽極側充填部とを備え、
前記PC鋼材と前記陽極材とが接続され、前記PC鋼材と前記陽極材との電位差を利用して前記PC鋼材に電流を供給するようにしたことを特徴とするプレストレストコンクリート構造物のPC鋼材腐食抑制構造。 A PC steel material inserted in a sheath embedded in a concrete structure, and a PC-side filling portion in which a filler is filled between the sheath and the PC steel material; In the prestressed concrete structure in which prestress is introduced into the PC steel material corrosion inhibiting structure of the prestressed concrete structure for inhibiting the corrosion of the PC steel material,
A through hole extending from the surface of the concrete structure to the vicinity of the PC steel material through the sheath, an anode material inserted into the through hole, and a filler between the through hole and the anode material An anode-side filling part filled with
PC steel material corrosion of a prestressed concrete structure, wherein the PC steel material and the anode material are connected, and a current is supplied to the PC steel material using a potential difference between the PC steel material and the anode material. Suppression structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015221454A JP6575908B2 (en) | 2015-11-11 | 2015-11-11 | PC steel corrosion inhibition structure of prestressed concrete structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015221454A JP6575908B2 (en) | 2015-11-11 | 2015-11-11 | PC steel corrosion inhibition structure of prestressed concrete structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017088965A true JP2017088965A (en) | 2017-05-25 |
JP6575908B2 JP6575908B2 (en) | 2019-09-18 |
Family
ID=58767386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015221454A Active JP6575908B2 (en) | 2015-11-11 | 2015-11-11 | PC steel corrosion inhibition structure of prestressed concrete structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6575908B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004076292A (en) * | 2002-08-12 | 2004-03-11 | Sumitomo Mitsui Construction Co Ltd | Grouting confirming method, and sheath with observation hole |
JP2005023567A (en) * | 2003-06-30 | 2005-01-27 | Japan Highway Public Corp | Prestressed concrete grout reinjection method |
JP2009179876A (en) * | 2008-02-01 | 2009-08-13 | Ps Mitsubishi Construction Co Ltd | Method for cathodically protecting end of existing pc girder |
JP2012144771A (en) * | 2011-01-12 | 2012-08-02 | Sho-Bond Corp | Electric anticorrosion method for reinforced concrete structure |
JP2013002055A (en) * | 2011-06-13 | 2013-01-07 | Ps Mitsubishi Construction Co Ltd | Corrosion suppressing method for pc tendon |
US20150060298A1 (en) * | 2012-04-17 | 2015-03-05 | Soletanche Freyssinet | Method for the galvanic protection of a reinforced concrete structure |
-
2015
- 2015-11-11 JP JP2015221454A patent/JP6575908B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004076292A (en) * | 2002-08-12 | 2004-03-11 | Sumitomo Mitsui Construction Co Ltd | Grouting confirming method, and sheath with observation hole |
JP2005023567A (en) * | 2003-06-30 | 2005-01-27 | Japan Highway Public Corp | Prestressed concrete grout reinjection method |
JP2009179876A (en) * | 2008-02-01 | 2009-08-13 | Ps Mitsubishi Construction Co Ltd | Method for cathodically protecting end of existing pc girder |
JP2012144771A (en) * | 2011-01-12 | 2012-08-02 | Sho-Bond Corp | Electric anticorrosion method for reinforced concrete structure |
JP2013002055A (en) * | 2011-06-13 | 2013-01-07 | Ps Mitsubishi Construction Co Ltd | Corrosion suppressing method for pc tendon |
US20150060298A1 (en) * | 2012-04-17 | 2015-03-05 | Soletanche Freyssinet | Method for the galvanic protection of a reinforced concrete structure |
JP2015514872A (en) * | 2012-04-17 | 2015-05-21 | ソレタンシュ フレシネSoletanche Freyssinet | Galvanic anticorrosion method for reinforced concrete structures |
Also Published As
Publication number | Publication date |
---|---|
JP6575908B2 (en) | 2019-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190017179A1 (en) | Galvanic anode and method of corrosion protection | |
CA2880235C (en) | Galvanic anode and method of corrosion protection | |
US20140251793A1 (en) | Cathodic protection current distribution method and apparatus for corrosion control of reinforcing steel in concrete structures | |
JP5894365B2 (en) | Cathodic protection method for reinforced concrete structures | |
JP2017179526A (en) | Corrosion suppression structure of concrete structure | |
JP6575908B2 (en) | PC steel corrosion inhibition structure of prestressed concrete structure | |
EP3347507B1 (en) | Method for laying an anode system for cathodic corrosion protection | |
JP5424127B2 (en) | Method of attaching an anticorrosion electrode to a concrete structure, and concrete structure | |
JP2017179527A (en) | Galvanic anode unit | |
JP4978861B2 (en) | Electrocorrosion protection method for existing PC girder ends | |
JP6640573B2 (en) | Galvanic anode unit and anticorrosion structure of concrete structure using it | |
KR200474376Y1 (en) | Mmo tubular anode for using electric corrosion protection | |
JP2006206953A (en) | Method for installing anode for electric corrosion protection | |
EP2431496A1 (en) | Composite anode for a cathodic protection system | |
JP2020125529A (en) | Coating film material for anode material, concrete structure and electrolytic corrosion protection method | |
JP6875468B2 (en) | How to install galvanic anode material | |
WO1996000805A1 (en) | Corrosion protection of steel reinforcement in concrete | |
JP6875467B2 (en) | How to install galvanic anode material | |
JP4168891B2 (en) | Reinforced concrete anticorrosion system | |
JP4842345B2 (en) | Cross-section repair structure of reinforced concrete structure | |
JP2018123355A (en) | Electric anticorrosion method, concrete structure and production method of concrete structure | |
JP2002020886A (en) | Electric corrosion prevention device for concrete structure and electric corrosion prevention method | |
JP2005146351A (en) | External power system electric corrosion protection method and anode electrode device | |
JP2002105677A (en) | Electrolytic corrosion protection device of concrete structure, and the concrete structure | |
JP2011196138A (en) | Reinforcing and corrosion-preventing method and structure for concrete structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181026 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190705 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190717 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190809 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6575908 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |