JP2017087707A - Method for highly dispersing fiber of fiber-reinforced thermoplastic resin - Google Patents

Method for highly dispersing fiber of fiber-reinforced thermoplastic resin Download PDF

Info

Publication number
JP2017087707A
JP2017087707A JP2015236109A JP2015236109A JP2017087707A JP 2017087707 A JP2017087707 A JP 2017087707A JP 2015236109 A JP2015236109 A JP 2015236109A JP 2015236109 A JP2015236109 A JP 2015236109A JP 2017087707 A JP2017087707 A JP 2017087707A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
monofilament
fibers
pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015236109A
Other languages
Japanese (ja)
Inventor
博喜 今野
Hiroki Konno
博喜 今野
東久雄 今
Tokuo Kon
東久雄 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEEKON KK
Shuhoo Netrise Co Ltd
Original Assignee
SEEKON KK
Shuhoo Netrise Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEEKON KK, Shuhoo Netrise Co Ltd filed Critical SEEKON KK
Priority to JP2015236109A priority Critical patent/JP2017087707A/en
Publication of JP2017087707A publication Critical patent/JP2017087707A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a composite molding material retained in a monofilament and highly dispersed state, the fibers of 1 to 4 mm in length added in a thermoplastic resin and being mixed.SOLUTION: A composite material of a thermoplastic resin including highly dispersed fibers is produced by compressing the mixture of monofilament or the fiber prepared by preliminarily fibrillating a chopped strand into a monofilament state, and a prescribed amount of the thermoplastic resin when preparing the fiber-reinforced composite thermoplastic resin by adding the fiber of 1 to 4 mm in length to the thermoplastic resin, and by pelletizing the compressed massive material using a biaxial extruder.SELECTED DRAWING: None

Description

本発明は、ガラスや炭素繊維、セルロースナノファイバーなどの繊維で強化された熱可塑性樹脂ペレットの製造方法に関するものである。  The present invention relates to a method for producing a thermoplastic resin pellet reinforced with fibers such as glass, carbon fiber, and cellulose nanofiber.

熱可塑性樹脂にガラスや炭素繊維、セルロースナノファイバーなどの繊維を混練し、繊維強化熱可塑性樹脂ペレットを製造する方法としては、押出機に熱可塑性樹脂を供給し、溶融させた後に、繊維を供給し、押出機内で熱可塑性樹脂と繊維とを混合混練し、吐出口から押し出し、冷却、造粒する方法が一般的である。押出機は、単軸押出機と二軸押出機が使用されるが、単軸押出機と比較して、二軸押出機は生産性と運転の自由度がより高いので、二軸押出機がより好ましく用いられる。  As a method of kneading fibers such as glass, carbon fiber, and cellulose nanofiber into a thermoplastic resin to produce fiber-reinforced thermoplastic resin pellets, the thermoplastic resin is supplied to an extruder and melted, and then the fiber is supplied. In general, a thermoplastic resin and fibers are mixed and kneaded in an extruder, extruded from a discharge port, cooled, and granulated. As the extruder, a single screw extruder and a twin screw extruder are used. However, compared with a single screw extruder, a twin screw extruder has higher productivity and freedom of operation. More preferably used.

上記ガラス繊維強化熱可塑性樹脂ペレットの製造において、繊維は、直径が6μm〜20μmのモノフィラメントを300本〜3000本くらいをまとめてひとつの束にして1〜4mmにカットしたもの(以下、チョップドストランドという)を使用する。取り扱いは、チョップドストランド繊維の方が便利であるため、工業的に繊維強化熱可塑性樹脂ペレットを製造する場合においては、二軸押出機に熱可塑性樹脂を供給し、熱可塑性樹脂の溶融後、二軸押出機の途中からチョップドストランド繊維を供給し、溶融状態の熱可塑性樹脂と繊維とを混合混練し、混合物を押し出して、冷却固化する方法が最も多く行われている。  In the production of the above glass fiber reinforced thermoplastic resin pellets, the fibers are obtained by collecting about 300 to 3000 monofilaments having a diameter of 6 μm to 20 μm into one bundle and cutting them into 1 to 4 mm (hereinafter referred to as chopped strands). ). Since chopped strand fibers are more convenient for handling, when manufacturing fiber-reinforced thermoplastic resin pellets industrially, the thermoplastic resin is supplied to a twin screw extruder, and after the thermoplastic resin is melted, The most common method is to supply chopped strand fibers from the middle of a shaft extruder, mix and knead a molten thermoplastic resin and fibers, extrude the mixture, and cool and solidify.

こうした複合材料は、機械機構部品、電気部品、航空機部品、船舶部品、自動車部品、事務用部品、建築資材、繊維製品、雑貨等の幅広い分野に利用されているが、樹脂中の補強材である繊維の分散が不均一であると、製品の強度や収縮率異方性、反りなど不都合が生じることから、樹脂中に補強材を均一に分散させることが重要である。  These composite materials are used in a wide range of fields such as mechanical mechanism parts, electrical parts, aircraft parts, ship parts, automobile parts, office parts, building materials, textile products, sundries, etc., but are reinforcing materials in resins. If the dispersion of the fibers is not uniform, problems such as product strength, shrinkage anisotropy, warping, and the like occur. Therefore, it is important to uniformly disperse the reinforcing material in the resin.

二軸押出機内での混合混練が不十分であると、チョップドストランドがモノフィラメントに解繊しないで、モノフィラメントの集合体の状態である、チョップドストランドの一部、もしくは全部が樹脂組成物ペレット中に残存する。ガラス繊維強化熱可塑性樹脂組成物ペレットに、チョップドストランドの一部、もしくは全部が残存した場合、射出成形において、ゲートに上記チョップドストランドの一部又は全部が詰まり、射出成形ができなくなるか、射出成形ができたとしても、成形品に上記チョップドストランドの一部又は全部が存在し、外観不良又は機能低下の原因となる。  If mixing and kneading in the twin-screw extruder is insufficient, the chopped strands will not be disassembled into monofilaments, and some or all of the chopped strands, which are in the state of monofilament aggregates, will remain in the resin composition pellets To do. If some or all of the chopped strands remain in the glass fiber reinforced thermoplastic resin composition pellets, in injection molding, some or all of the chopped strands are clogged in the gate, making injection molding impossible or injection molding. Even if it is possible, some or all of the chopped strands are present in the molded product, resulting in poor appearance or reduced function.

ガラス繊維をモノフィラメントの状態で二軸押出機に供給する方法では、モノフィラメントが綿状になり、流動性がなくなり、樹脂の送り出しができなくなったり、ノズル口が詰まるなどの不具合を生じる。  In the method of supplying the glass fiber to the twin screw extruder in the monofilament state, the monofilament becomes cotton-like, the fluidity is lost, the resin cannot be fed out, and the nozzle opening is clogged.

本発明は以上の課題を解決するためになされたものであり、まず、事前にチョップドストランドをモノフィラメントの集合体に解繊しておく。そのまま二軸押出機に投入するとモノフィラメントが綿状になり著しく流動性をなくすため、事前に熱可塑性樹脂と混練した後、モノフィラメントの所定量と熱可塑性樹脂の所定量をプレス機などにより圧縮した塊を二軸押出機に投入する。  The present invention has been made to solve the above-described problems. First, chopped strands are defibrated into monofilament aggregates in advance. The monofilament becomes cotton-like when it is put into the twin screw extruder as it is, and the fluidity is remarkably lost. Therefore, after kneading with a thermoplastic resin in advance, a predetermined amount of the monofilament and a predetermined amount of the thermoplastic resin are compressed by a press or the like. Into a twin screw extruder.

通常の方法であるモノフィラメント繊維と樹脂を別にして二軸押出機に供給するとモノフィラメント繊維自体が綿状の塊となり、滑ってスクリューに食い込まなくなり樹脂と混練できないが、本法では、樹脂と混合したモノフィラメント繊維が適量ずつ送られることで、溶融、混練がスムーズに行われ、モノフィラメントが高分散した熱可塑性樹脂複合材料が提供できる。  When the monofilament fiber and resin, which are normal methods, are supplied separately to the twin-screw extruder, the monofilament fiber itself becomes a cotton-like lump that does not slip into the screw and cannot be kneaded with the resin. By sending an appropriate amount of monofilament fiber, melting and kneading can be performed smoothly, and a thermoplastic resin composite material in which monofilaments are highly dispersed can be provided.

本発明の熱可塑性樹脂複合材料は、チョップドストランド状の繊維を事前に解繊して、それを熱可塑性樹脂と混合、圧縮して塊状にして2軸押出機で溶融、混練することによりモノフィラメントが高分散したペレットを作製することができる。このペレットを用いて成形した熱可塑性樹脂複合成形品は、補強効果及び寸法安定性、流動性に優れ、機械機構部品、電気部品、航空機部品、船舶部品、自動車部品、事務用部品、建築資材等の幅広い分野に利用される。  In the thermoplastic resin composite material of the present invention, chopped strand fibers are defibrated in advance, mixed with a thermoplastic resin, compressed into a lump, melted and kneaded in a twin-screw extruder, and the monofilament is formed. Highly dispersed pellets can be produced. The thermoplastic resin composite molded product molded using this pellet is excellent in reinforcement effect, dimensional stability and fluidity, and is a mechanical mechanism part, electrical part, aircraft part, ship part, automobile part, office part, building material, etc. Used in a wide range of fields.

写真代用図面で、実施例で作製した成形品を焼成した残渣の拡大写真Enlarged photo of the residue obtained by firing the molded product produced in the example in the photo substitute drawing 実施例で作製した成形品と通常のペレットで作製した成形品の寸法比較Dimensional comparison of molded product made in the example and molded product made with normal pellets

熱可塑性樹脂としてポリフェニレンサルファイド(東ソー(株)製、サスティール#160、以下PPSとする)を使用した。繊維は日東紡績(株)製のガラス繊維チョップドストランドCS(F)3を用いた。  As a thermoplastic resin, polyphenylene sulfide (manufactured by Tosoh Corporation, Sustile # 160, hereinafter referred to as PPS) was used. The fiber used was a glass fiber chopped strand CS (F) 3 manufactured by Nitto Boseki Co., Ltd.

チョップドストランド20gをミキサーに入れ、750ccの水を注ぎ5分間解繊する。解繊したガラス繊維モノフィラメントを100℃〜120℃で1時間程度乾燥させた後、これを所定割合となるようにPPSと混練したものを直径が10mm、内容積が30cc程度の金属製容器に入れ、上から10MPa程度で圧縮して直径が10mm程度の塊状にする。  20 g of chopped strands are put in a mixer, 750 cc of water is poured and defibrated for 5 minutes. The defibrated glass fiber monofilament is dried at 100 ° C. to 120 ° C. for about 1 hour, and then kneaded with PPS so as to have a predetermined ratio is put in a metal container having a diameter of 10 mm and an internal volume of about 30 cc. Compress from about 10 MPa to form a lump with a diameter of about 10 mm.

この塊状にしたものを、二軸押出機((株)テクノベル製、KZW25TW−45MG−NH)のホッパーに順次投入し、溶融、混練しペレット化した。  The agglomerated material was sequentially charged into a hopper of a twin screw extruder (manufactured by Technobell, KZW25TW-45MG-NH), melted, kneaded and pelletized.

図1は、実施例で作製したペレットを用いて50mm角、厚さ4mmの成形品を射出成形したものをるつぼに入れバーナーで700〜800°Cに加熱してPPSを燃焼、消失させた後にHIROX社製CCDカメラで撮影した画像である。比較として上記PPSガラス繊維40%のペレットを用いて射出成形した成形品を同様に処理したものを掲載した。  FIG. 1 shows a case in which a 50 mm square and 4 mm thick molded product is injection-molded using the pellets produced in the example and put in a crucible and heated to 700 to 800 ° C. with a burner to burn and eliminate PPS. It is the image image | photographed with the CCD camera made from HIROX. For comparison, a product obtained by similarly processing a molded product injection-molded using 40% PPS glass fiber pellets is shown.

図1に示されるように実施例ではガラス繊維がモノフィラメントに解繊され、しかも均一に分散していることがわかる。これに対して通常のガラス繊維強化樹脂ペレットを用いたものは、完全にモノフィラメントに解繊されていないガラス繊維が存在し、不均一な分布になっている。  As shown in FIG. 1, it can be seen that in the example, the glass fiber is broken into monofilaments and is uniformly dispersed. On the other hand, in the case of using ordinary glass fiber reinforced resin pellets, there are glass fibers that are not completely defibrated into monofilaments, and the distribution is uneven.

図2に、実施例で作製したペレットを用いて50mm角、厚さ4mmの成形品を射出成形したものの図に示す位置における寸法を測定した結果を示す。比較として市販のPPSガラス繊維40%(東ソー(株)製、GS40−11A3)のペレットを用いて射出成形した成形品について同様に測定した結果を示す。  FIG. 2 shows the results of measuring the dimensions at the positions shown in the drawing of a 50 mm square molded article having a thickness of 4 mm injection molded using the pellets produced in the example. As a comparison, the results of measurement in the same manner for a molded product injection-molded using a commercially available PPS glass fiber 40% (manufactured by Tosoh Corporation, GS40-11A3) are shown.

図2からわかるように、実施例では流れ方向と流れに直角方向の寸法差が通常のペレットを用いて成形したものの1/5以下で、モノフィラメント繊維が均一に、しかもランダムに分布していることがわかる。  As can be seen from FIG. 2, in the example, the dimensional difference between the flow direction and the direction perpendicular to the flow is 1/5 or less of that formed using ordinary pellets, and the monofilament fibers are distributed uniformly and randomly. I understand.

表1に、実施例で作製したペレットを用いてJISK7162対応の1Aダンベル試験片を射出成形したものの引張試験結果(それぞれ5本の平均値)を示す。比較として上記PPSガラス繊維40%のペレットを用いて射出成形した成形品について同様に測定した結果を示す。  Table 1 shows the tensile test results (average value of 5 pieces each) of 1A dumbbell test pieces corresponding to JISK7162 using the pellets produced in the examples. As a comparison, the results of measurement in the same manner for a molded product injection-molded using the PPS glass fiber 40% pellets are shown.

表1からわかるように、実施例は既存のガラス繊維強化樹脂と同程度の強度特性を有していることがわかる。  As can be seen from Table 1, it can be seen that the Examples have the same strength characteristics as the existing glass fiber reinforced resin.

Claims (1)

長さが1mm〜4mmのモノフィラメント繊維又は、チョップドストランド状繊維をモノフィラメントに解繊した繊維を熱可塑性樹脂と適量混合し、その混合物を適量プレス機で圧縮し塊とした後、二軸押出機に供給して加熱、混練したことを特徴とする熱可塑性樹脂ペレットの製造方法。    A monofilament fiber having a length of 1 mm to 4 mm or a fiber obtained by chopping chopped strand fibers into a monofilament is mixed with an appropriate amount of thermoplastic resin, and the mixture is compressed by an appropriate amount with a press machine to form a lump, and then into a twin screw extruder. A method for producing thermoplastic resin pellets, characterized by being supplied, heated and kneaded.
JP2015236109A 2015-11-13 2015-11-13 Method for highly dispersing fiber of fiber-reinforced thermoplastic resin Pending JP2017087707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015236109A JP2017087707A (en) 2015-11-13 2015-11-13 Method for highly dispersing fiber of fiber-reinforced thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015236109A JP2017087707A (en) 2015-11-13 2015-11-13 Method for highly dispersing fiber of fiber-reinforced thermoplastic resin

Publications (1)

Publication Number Publication Date
JP2017087707A true JP2017087707A (en) 2017-05-25

Family

ID=58767126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015236109A Pending JP2017087707A (en) 2015-11-13 2015-11-13 Method for highly dispersing fiber of fiber-reinforced thermoplastic resin

Country Status (1)

Country Link
JP (1) JP2017087707A (en)

Similar Documents

Publication Publication Date Title
CN105623097A (en) Nanometer-material-compounded long-glass-fiber-reinforced polypropylene material and preparing method thereof
CN103991222B (en) The LFT-D moulding process of composite material building mould board
KR20010075598A (en) Composites containing cellulosic pulp fibers and methods of making and using the same
CN103013075A (en) PET (polyethylene terephthalate) composite material as well as preparation method and application thereof
CN112759250B (en) Glass fiber group and manufacturing method thereof, and glass fiber reinforced resin matrix composite material and manufacturing method thereof
CN102311611B (en) Calcium sulfate whisker modified polyformaldehyde composite material and preparation process thereof
US5939001A (en) Process for manufacturing objects from fiber-reinforced thermoplasts
JP2017087707A (en) Method for highly dispersing fiber of fiber-reinforced thermoplastic resin
JP2017105184A (en) Injection molding machine for injecting molten resin mixedly melted with thermoplastic resin and reinforcing fiber, and screw for injection molding machine
CN101693391B (en) Natural fiber granulating process for preparing composite materials
JPH0365311A (en) Carbon fiber chop
CN104559121A (en) Modification production method of polycarbonate engineering plastic
TWI496675B (en) Glass fiber reinforced thermoplastic synthetic resin composites for the production of compressed products
CN107641303A (en) A kind of low temperature FDM type 3D printings material, preparation and application
CN100532451C (en) High impact-resistant reinforced PET composition and method of making the same
JP2003103517A (en) Method for manufacturing thermoplastic resin composition
EP0011240B1 (en) Process for manufacturing polyolefin granulates containing fibrous additives and the use thereof for manufacturing moulded products
CN105061990A (en) Sulfonated hyperbranched polyaryletherketone-modified calcium carbonate whisker/polyetheretherketone composite material and preparation method thereof
CN112759794B (en) Glass fiber group and glass fiber reinforced resin matrix composite material
WO2017094740A1 (en) Injection molding machine and injection molding machine screw for injecting molten resin in which thermoplastic resin and reinforcing fibers have been mixed and melted
CN112111136A (en) Preparation method of reinforced and toughened calcium sulfate whisker composite material
JP2015074674A (en) Glass fiber-reinforced member and thermoplastic resin molded article
JP2783427B2 (en) Carbon fiber / thermoplastic compound
JP2019059081A (en) Extruder for fiber reinforced thermoplastic resin
CN101921431A (en) High impact resistant mineral filled polypropylene and preparation method thereof