JP2017087440A - Temperature controls - Google Patents

Temperature controls Download PDF

Info

Publication number
JP2017087440A
JP2017087440A JP2015215881A JP2015215881A JP2017087440A JP 2017087440 A JP2017087440 A JP 2017087440A JP 2015215881 A JP2015215881 A JP 2015215881A JP 2015215881 A JP2015215881 A JP 2015215881A JP 2017087440 A JP2017087440 A JP 2017087440A
Authority
JP
Japan
Prior art keywords
temperature
medium
cooling
flow path
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015215881A
Other languages
Japanese (ja)
Other versions
JP6667261B2 (en
Inventor
潤 久田松
Jun Kudamatsu
潤 久田松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsui Mfg Co Ltd
Original Assignee
Matsui Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsui Mfg Co Ltd filed Critical Matsui Mfg Co Ltd
Priority to JP2015215881A priority Critical patent/JP6667261B2/en
Publication of JP2017087440A publication Critical patent/JP2017087440A/en
Application granted granted Critical
Publication of JP6667261B2 publication Critical patent/JP6667261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Control Of Temperature (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide temperature controls which can prevent generation of scale in a heat exchanger.SOLUTION: Temperature controls control temperature of an object by circulating medium between a pump and the object through a pipe line. The temperature controls comprise: a heat exchanger having a cooling pipe line supplying cooling water, a cooling channel interposed to the pipe line to flow the cooling water and a medium pass flowing a medium; a cooling valve interposed to the pipe line of the exit side of the heat exchanger; and a by-pass line bypassing between the pipe line of the entry side of the heat exchanger and the pipe line between the cooling valve and the pump.SELECTED DRAWING: Figure 1

Description

本発明は、管路を介してポンプと対象物との間で媒体を循環させて対象物の温度を制御する温度制御装置に関する。   The present invention relates to a temperature control device that controls the temperature of an object by circulating a medium between a pump and the object via a pipe line.

プラスチック等の合成樹脂を用いて成型品を射出成形する射出成形機には金型が使用されている。射出成形の金型は、溶融したプラスチックが充填される空間部分であるキャビティ、溶融したプラスチックを冷却固化するための媒体を流す流路を有する。金型の温度を正確に所要の温度に維持することは、成型品の精度を高めるために非常に重要なことである。   A mold is used in an injection molding machine for injection molding a molded product using a synthetic resin such as plastic. An injection mold has a cavity that is a space portion filled with molten plastic, and a flow path for flowing a medium for cooling and solidifying the molten plastic. Maintaining the mold temperature at the required temperature is very important for improving the accuracy of the molded product.

そこで、ケーシングの内部に、媒体が通る媒体配管、媒体タンク、媒体を加熱する加熱器、媒体を冷却するための熱交換器、ポンプなどを配設し、熱交換器を、媒体配管を外管としてその内側に冷却水が通る冷却配管を内管として挿通した二重管で構成し、この二重管をコイル形にして長く設けた金型温度調節装置が開示されている(特許文献1参照)。   Therefore, a medium pipe through which the medium passes, a medium tank, a heater for heating the medium, a heat exchanger for cooling the medium, a pump, and the like are arranged inside the casing, and the heat exchanger is connected to the medium pipe with the outer pipe. A mold temperature control device is disclosed in which a cooling pipe through which cooling water passes is formed as a double pipe inserted as an inner pipe, and this double pipe is formed in a coil shape (see Patent Document 1). ).

特開2007−7950号公報JP 2007-7950 A

しかし、特許文献1に記載の金型温度調節装置にあっては、熱交換器の媒体配管(二次側配管)に常時媒体を流し、所定の弁を開閉することにより冷却配管(一次側配管)に流れる冷却水を制御して媒体の温度を調節する。これにより、熱交換部分の温度は高温の媒体温度に近い温度となる。このため、熱交換器内では、冷却時冷却水と高温の熱交換部分との間で熱交換がされ冷却水が大気開放状態で排水される場合、飽和蒸気圧力以下となるため冷却水の一部が蒸発することにより、熱交換器内の冷却配管に冷却水中の不溶解成分が付着・堆積したスケールが発生する。冷却配管にスケールが付着・堆積すると熱交換率が低下し運転コストを増大させるという問題が生じる。また、熱交換器のメンテナンスを頻繁に行う必要がある。   However, in the mold temperature control apparatus described in Patent Document 1, a cooling pipe (primary side pipe) is formed by always flowing a medium through the medium pipe (secondary side pipe) of the heat exchanger and opening and closing a predetermined valve. ) To adjust the temperature of the medium by controlling the cooling water flowing to the medium. Thereby, the temperature of the heat exchange part becomes a temperature close to the high temperature of the medium. For this reason, in the heat exchanger, when heat is exchanged between the cooling water during cooling and the high-temperature heat exchanging part and the cooling water is drained in the open air state, the cooling water becomes below the saturated steam pressure, As the portion evaporates, a scale is generated in which insoluble components in the cooling water adhere to and accumulate on the cooling pipe in the heat exchanger. If scale adheres to and accumulates on the cooling pipe, there is a problem that the heat exchange rate decreases and the operating cost increases. Moreover, it is necessary to perform maintenance of a heat exchanger frequently.

本発明は斯かる事情に鑑みてなされたものであり、熱交換器内のスケールの発生を抑制することができる温度制御装置を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the temperature control apparatus which can suppress generation | occurrence | production of the scale in a heat exchanger.

本発明に係る温度制御装置は、管路を介してポンプと対象物との間で媒体を循環させて該対象物の温度を制御する温度制御装置において、冷却水を供給する冷却管路に連通する冷却流路及び前記管路に連通し前記媒体を流す媒体流路を有する熱交換器と、該熱交換器の出口側の前記管路に介装された冷却弁と、前記熱交換器の入口側の前記管路から前記冷却弁及びポンプの間の前記管路までの間をバイパスするバイパス管路とを備えることを特徴とする。   A temperature control device according to the present invention communicates with a cooling pipe that supplies cooling water in a temperature control device that controls the temperature of the target by circulating a medium between a pump and the target through a pipe. A heat exchanger having a cooling flow path and a medium flow path that communicates with the pipe and allows the medium to flow, a cooling valve interposed in the pipe on the outlet side of the heat exchanger, and the heat exchanger And a bypass pipe that bypasses between the pipe on the inlet side and the pipe between the cooling valve and the pump.

本発明にあっては、温度制御装置は、冷却水を供給する冷却管路に連通する冷却流路及び管路に連通し媒体を流す媒体流路を有する熱交換器、熱交換器の出口側の管路に介装された冷却弁、熱交換器の入口側の管路から冷却弁及びポンプの間の管路までの間をバイパスするバイパス管路を備える。   In the present invention, the temperature control device includes a cooling channel that communicates with a cooling channel that supplies cooling water and a medium channel that communicates with the channel and allows a medium to flow, and an outlet side of the heat exchanger. And a bypass pipe that bypasses between the cooling valve interposed in the pipe line and the pipe line between the inlet side of the heat exchanger and the pipe line between the cooling valve and the pump.

すなわち、冷却弁が閉じている場合には、ポンプの出口側から送出された媒体は、管路を通じて対象物(例えば、金型)に流れ、対象物から流出した媒体は、管路を通じてバイパス管路を流れポンプに戻る。対象物を流れる媒体の温度は、比較的高温であり、例えば、180℃であるが、これに限定されるものではない。熱交換器の媒体流路内の媒体は、冷却弁が閉じられているので循環することなく、冷却流路内の冷却水(例えば、20℃であるがこれに限定されるものではない)により熱交換されて、媒体の温度より低い比較的低温(例えば、80℃であるが、これに限定されない)に調節される。   That is, when the cooling valve is closed, the medium sent from the outlet side of the pump flows to the object (for example, a mold) through the pipe line, and the medium flowing out from the object passes through the pipe through the bypass pipe. Follow the path and return to the pump. The temperature of the medium flowing through the object is relatively high, for example, 180 ° C., but is not limited thereto. The medium in the medium flow path of the heat exchanger is not circulated because the cooling valve is closed, and the cooling water in the cooling flow path (for example, 20 ° C., but is not limited thereto). It is heat exchanged and adjusted to a relatively low temperature (eg, but not limited to 80 ° C.) below the temperature of the medium.

対象物の温度が上昇(例えば、溶融したプラスチックが金型に充填されると、金型の温度が上昇)して媒体の温度が上昇した場合(例えば、180℃を超えた場合)、冷却弁を開くことにより、熱交換器の媒体流路内の媒体が管路内を循環し、媒体の温度を下げる。熱交換器の媒体は常に循環しているわけではないので、熱交換器の温度は媒体温度までは上昇していない。このため、熱交換器の冷却水と媒体流路内の媒体との温度差は、例えば、60℃(=80℃−20℃)であるので、熱交換器の冷却水と管路内の媒体との温度差である160℃(=180℃−20℃)と比較すると温度差は著しく小さい。このため、熱交換器の冷却流路内の冷却水の一部が蒸発することを抑制することができるので、冷却水に含まれる不溶解成分が冷却流路に付着・堆積することを抑制し、スケールの発生を抑制することができる。また、熱交換器内のスケールの発生を抑制することができるので、熱交換器を頻繁にメンテナンスする必要がない。   When the temperature of the object rises (for example, when the molten plastic is filled in the mold, the temperature of the mold rises) and the temperature of the medium rises (for example, exceeds 180 ° C.), the cooling valve Is opened, the medium in the medium flow path of the heat exchanger circulates in the pipe line, and the temperature of the medium is lowered. Since the heat exchanger medium is not always circulating, the temperature of the heat exchanger does not rise to the medium temperature. For this reason, since the temperature difference between the cooling water of the heat exchanger and the medium in the medium flow path is, for example, 60 ° C. (= 80 ° C.−20 ° C.), the cooling water of the heat exchanger and the medium in the pipe line The temperature difference is remarkably small compared to 160 ° C. (= 180 ° C.−20 ° C.), which is the temperature difference between For this reason, since it is possible to suppress the evaporation of a part of the cooling water in the cooling flow path of the heat exchanger, it is possible to suppress the insoluble components contained in the cooling water from adhering to and accumulating in the cooling flow path. , Generation of scale can be suppressed. Moreover, since generation | occurrence | production of the scale in a heat exchanger can be suppressed, it is not necessary to maintain a heat exchanger frequently.

本発明に係る温度制御装置は、前記媒体の温度を検出する媒体温度検出部と、該媒体温度検出部で検出した温度に基づいて前記冷却弁の開閉を制御する冷却弁制御部とを備えることを特徴とする。   The temperature control device according to the present invention includes a medium temperature detection unit that detects the temperature of the medium, and a cooling valve control unit that controls opening and closing of the cooling valve based on the temperature detected by the medium temperature detection unit. It is characterized by.

本発明にあっては、媒体温度検出部は、媒体の温度を検出する。冷却弁制御部は、媒体温度検出部で検出した温度に基づいて冷却弁の開閉を制御する。   In the present invention, the medium temperature detection unit detects the temperature of the medium. The cooling valve control unit controls opening and closing of the cooling valve based on the temperature detected by the medium temperature detection unit.

すなわち、媒体温度検出部で検出した温度が所要の温度(例えば、180℃)を超えた場合、冷却弁制御部は、冷却弁を開くことにより、熱交換器で冷却された媒体流路内の媒体が管路内を循環し、媒体の温度を下げることができる。   In other words, when the temperature detected by the medium temperature detection unit exceeds a required temperature (for example, 180 ° C.), the cooling valve control unit opens the cooling valve, so that the inside of the medium flow path cooled by the heat exchanger The medium circulates in the pipeline and the temperature of the medium can be lowered.

本発明に係る温度制御装置は、前記冷却弁制御部は、所定の制御周期の都度、前記媒体温度検出部で検出した温度に基づいて前記冷却弁を開閉することを特徴とする。   The temperature control device according to the present invention is characterized in that the cooling valve control unit opens and closes the cooling valve based on the temperature detected by the medium temperature detection unit every predetermined control cycle.

本発明にあっては、冷却弁制御部は、所定の制御周期の都度、媒体温度検出部で検出した温度に基づいて冷却弁を開閉する。例えば、媒体温度検出部で検出した温度が高いほど冷却弁を閉じるまでの時間を長くする(すなわち、冷却弁が開いている時間を長くする)。これにより、媒体の温度を所要の温度に制御することができる。   In the present invention, the cooling valve control unit opens and closes the cooling valve based on the temperature detected by the medium temperature detection unit every predetermined control cycle. For example, the higher the temperature detected by the medium temperature detection unit, the longer the time until the cooling valve is closed (that is, the longer the time during which the cooling valve is open). Thereby, the temperature of the medium can be controlled to a required temperature.

本発明に係る温度制御装置は、前記媒体流路の温度が所定範囲内になるように調節する温度調節部を備えることを特徴とする。   The temperature control apparatus according to the present invention includes a temperature adjusting unit that adjusts the temperature of the medium flow path to be within a predetermined range.

本発明にあっては、温度調節部は、熱交換器内の媒体流路の温度が所定範囲内になるように調節する。例えば、温度調節部は、冷却弁の開閉を行わない場合に熱交換器内の媒体流路の温度が所定範囲内になるように調節する。冷却弁の開閉を行わない場合とは、媒体を冷却するために冷却弁を1又は複数回繰り返し開閉する必要がなく冷却弁が閉じている状態をいう。なお、冷却弁の開閉を行っている状態でも、温度調節部が、熱交換器内の媒体流路の温度が所定範囲内になるように調節すべく動作を行ってもよい。所定範囲は、例えば、媒体の温度より低い比較的低温であって、冷却水の温度よりも高い温度範囲であり、例えば、80℃±5℃程度とすることができるが、これに限定されるものではなく、60℃±5℃程度であってもよい。これにより、媒体の温度が所要の温度(例えば、180℃)であって、例えば、冷却弁の開閉を行わない場合には、バイパス管路を通じて媒体を循環しつつ、熱交換器の媒体流路内の媒体を循環させずに比較的低温に維持することができる。   In the present invention, the temperature adjustment unit adjusts the temperature of the medium flow path in the heat exchanger so as to be within a predetermined range. For example, the temperature adjustment unit adjusts the temperature of the medium flow path in the heat exchanger so as to be within a predetermined range when the cooling valve is not opened and closed. The case where the cooling valve is not opened or closed refers to a state where the cooling valve is closed without having to repeatedly open and close the cooling valve one or more times in order to cool the medium. Even in a state where the cooling valve is opened and closed, the temperature adjustment unit may perform an operation to adjust the temperature of the medium flow path in the heat exchanger to be within a predetermined range. The predetermined range is, for example, a relatively low temperature lower than the temperature of the medium and higher than the temperature of the cooling water, and can be, for example, about 80 ° C. ± 5 ° C., but is not limited thereto. It may be about 60 ° C. ± 5 ° C. instead. Accordingly, when the temperature of the medium is a required temperature (for example, 180 ° C.) and the cooling valve is not opened and closed, for example, the medium flow path of the heat exchanger is circulated while circulating the medium through the bypass line. The inside medium can be maintained at a relatively low temperature without being circulated.

本発明に係る温度制御装置は、前記冷却管路に介装された冷却水弁を備え、前記温度調節部は、前記冷却水弁を所定のタイミングで開閉して前記媒体流路の温度が所定範囲内になるように調節することを特徴とする。   The temperature control device according to the present invention includes a cooling water valve interposed in the cooling pipe line, and the temperature adjusting unit opens and closes the cooling water valve at a predetermined timing so that the temperature of the medium flow path is predetermined. It is characterized by adjusting to be within the range.

本発明にあっては、冷却管路に介装された冷却水弁を備え、温度調節部は、冷却水弁を所定のタイミングで開閉して媒体流路の温度が所定範囲内になるように調節する。所定のタイミングは、例えば、熱交換器の媒体流路の容積、媒体流路の温度の所定範囲などに基づいて予め設定しておくことができる。   In the present invention, the cooling water valve provided in the cooling pipe is provided, and the temperature adjusting unit opens and closes the cooling water valve at a predetermined timing so that the temperature of the medium flow path is within a predetermined range. Adjust. The predetermined timing can be set in advance based on, for example, the volume of the medium flow path of the heat exchanger, the predetermined range of the temperature of the medium flow path, and the like.

すなわち、冷却水弁を所定のタイミングで開閉することにより、熱交換器の冷却流路に冷却水を断続的に流すことができ、媒体流路の媒体と熱交換して、媒体流路の温度が所定範囲内になるように調節することができる。これにより、熱交換器を流れる冷却水の温度が上昇せず、比較的低温の80℃程度にすることができ、冷却水の温度が飽和温度以下になるため、蒸気とならずスケールの発生を防止することができる。   That is, by opening and closing the cooling water valve at a predetermined timing, the cooling water can flow intermittently through the cooling flow path of the heat exchanger, exchanging heat with the medium in the medium flow path, and the temperature of the medium flow path Can be adjusted to be within a predetermined range. As a result, the temperature of the cooling water flowing through the heat exchanger does not increase and can be kept at a relatively low temperature of about 80 ° C., and the temperature of the cooling water becomes equal to or lower than the saturation temperature. Can be prevented.

本発明に係る温度制御装置は、前記冷却管路に介装された冷却水弁と、前記媒体流路の温度を検出する流路温度検出部とを備え、前記温度調節部は、前記流路温度検出部で検出した温度に基づいて前記冷却水弁を開閉して前記媒体流路の温度が所定範囲内になるように調節することを特徴とする。   The temperature control device according to the present invention includes a cooling water valve interposed in the cooling pipe, and a flow path temperature detection unit that detects a temperature of the medium flow path, and the temperature adjustment unit includes the flow path Based on the temperature detected by the temperature detector, the cooling water valve is opened and closed to adjust the temperature of the medium flow path to be within a predetermined range.

本発明にあっては、冷却管路に介装された冷却水弁と、媒体流路の温度を検出する流路温度検出部を備え、温度調節部は、流路温度検出部で検出した温度に基づいて冷却水弁を開閉して媒体流路の温度が所定範囲内になるように調節する。流路温度検出部で熱交換器の媒体流路の温度を検出するとは、熱交換器の媒体流路と連通する熱交換器の下流側(媒体の出口側)の管路の温度を検出することも含む。   In the present invention, a cooling water valve interposed in the cooling pipe and a flow path temperature detecting unit for detecting the temperature of the medium flow path are provided, and the temperature adjusting unit is a temperature detected by the flow path temperature detecting unit. Based on the above, the cooling water valve is opened and closed to adjust the temperature of the medium flow path to be within a predetermined range. Detecting the temperature of the medium flow path of the heat exchanger with the flow path temperature detecting unit means detecting the temperature of the pipe line on the downstream side (outlet side of the medium) of the heat exchanger communicating with the medium flow path of the heat exchanger. Including.

すなわち、流路温度検出部で検出した温度が所定範囲内になるように冷却水弁を開閉する。これにより、熱交換器の冷却流路に冷却水を断続的に流すことができ、媒体流路の媒体と熱交換して、媒体流路の温度が所定範囲内になるように調節することができる。これにより、熱交換器を流れる冷却水の温度が上昇せず、比較的低温の80℃程度にすることができ、冷却水の温度が飽和温度以下になるため、蒸気とならずスケールの発生を防止することができる。   That is, the cooling water valve is opened and closed so that the temperature detected by the flow path temperature detection unit is within a predetermined range. Thereby, the cooling water can flow intermittently through the cooling flow path of the heat exchanger, and heat exchange with the medium in the medium flow path can be performed so that the temperature of the medium flow path falls within a predetermined range. it can. As a result, the temperature of the cooling water flowing through the heat exchanger does not increase and can be kept at a relatively low temperature of about 80 ° C., and the temperature of the cooling water becomes equal to or lower than the saturation temperature. Can be prevented.

本発明によれば、熱交換器内のスケールの発生を抑制することができる。   According to this invention, generation | occurrence | production of the scale in a heat exchanger can be suppressed.

本実施の形態の温度制御装置としての金型温度調節機の構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure of the metal mold | die temperature controller as a temperature control apparatus of this Embodiment. 本実施の形態の金型温度調節機の動作の一例を示すタイムチャートである。It is a time chart which shows an example of operation | movement of the metal mold | die temperature controller of this Embodiment. 本実施の形態の金型温度調節機の加熱制御時の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence at the time of the heating control of the metal mold | die temperature controller of this Embodiment. 本実施の形態の金型温度調節機の冷却制御時の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence at the time of cooling control of the metal mold | die temperature controller of this Embodiment.

以下、本発明をその実施の形態を示す図面に基づいて説明する。図1は本実施の形態の温度制御装置としての金型温度調節機100の構成の一例を示す説明図である。本実施の形態では、温度制御装置として金型温度調節機100を例に挙げて説明するが、温度制御装置は金型温度調節機に限定されるものではない。金型温度調節機100は、対象物としての金型200の温度、より具体的には、金型200へ供給する冷却用の媒体の温度を調節(制御)する。   Hereinafter, the present invention will be described with reference to the drawings illustrating embodiments thereof. FIG. 1 is an explanatory diagram showing an example of the configuration of a mold temperature controller 100 as a temperature control device of the present embodiment. In the present embodiment, the mold temperature controller 100 will be described as an example of the temperature controller, but the temperature controller is not limited to the mold temperature controller. The mold temperature controller 100 adjusts (controls) the temperature of the mold 200 as an object, more specifically, the temperature of the cooling medium supplied to the mold 200.

図1に示すように、金型温度調節機100は、ポンプ31の出口側(OUT)と金型200の入口側との間に管路11(送媒管路)を接続し、金型200の出口側とポンプ31の入口側(IN)との間に管路12(返媒管路)を接続し、ポンプ31により媒体(例えば、水)が管路11、12、バイパス管路16内を循環するようになっている。すなわち、ポンプ31は、例えば、ケーシング内でモータの回転により羽根車を高速回転し、媒体に作用する遠心力を利用するので、媒体は管路11、12、バイパス管路16を循環する。   As shown in FIG. 1, the mold temperature controller 100 connects the pipe line 11 (medium feed pipe line) between the outlet side (OUT) of the pump 31 and the inlet side of the mold 200. Is connected between the outlet side of the pump 31 and the inlet side (IN) of the pump 31, and the medium (for example, water) is supplied to the pipes 11 and 12 and the bypass pipe 16 by the pump 31. It has come to circulate. That is, for example, the pump 31 rotates the impeller at high speed in the casing by the rotation of the motor and uses the centrifugal force acting on the medium, so that the medium circulates through the pipelines 11 and 12 and the bypass pipeline 16.

管路11のポンプ31の出口側付近には圧力センサ62を設けてあり、ポンプ31の出口側付近の媒体の圧力を計測することができる。管路11の中途にはヒータユニット80を介装してあり、媒体を加熱して媒体の温度を上げることができる。サーモスタット81は、ヒータユニット80が所定の温度を超えた場合にヒータユニット80による加熱を停止する。また、管路11には媒体温度検出部としての温度センサ71を設けてあり、管路11の媒体の温度を検出することができる。   A pressure sensor 62 is provided in the vicinity of the outlet side of the pump 31 in the pipe line 11 so that the pressure of the medium near the outlet side of the pump 31 can be measured. A heater unit 80 is interposed in the middle of the pipe line 11, and the temperature of the medium can be raised by heating the medium. The thermostat 81 stops heating by the heater unit 80 when the heater unit 80 exceeds a predetermined temperature. Further, the pipe 11 is provided with a temperature sensor 71 as a medium temperature detector, and the temperature of the medium in the pipe 11 can be detected.

管路11は、途中で2系統に分岐してあり、分岐した管路11それぞれが金型200の入口側に接続されている。分岐した管路11それぞれには、送媒バルブ21を介装してあり、分岐した管路11毎の媒体の流量を調整することができる。同様に、管路12も、金型200の出口側で2系統に分岐してあり、途中で分岐した管路12が1つの管路12に統合してある。分岐した管路12それぞれには、返媒バルブ22を介装してあり、分岐した管路12毎の媒体の流量を調整することができる。   The pipeline 11 is branched into two systems in the middle, and each branched pipeline 11 is connected to the inlet side of the mold 200. Each of the branched pipelines 11 is provided with a medium delivery valve 21 so that the flow rate of the medium for each branched pipeline 11 can be adjusted. Similarly, the pipeline 12 is also branched into two systems on the outlet side of the mold 200, and the pipeline 12 branched in the middle is integrated into one pipeline 12. Each branched pipe 12 is provided with a return valve 22, and the flow rate of the medium for each branched pipe 12 can be adjusted.

管路12の中途には熱交換器40を介装してあり、熱交換器40の出口側の管路12には冷却弁としての冷却電磁弁23を介装してある。また、熱交換器40の入口側の管路12の所要箇所(図1の符号Aで示す箇所、分岐点Aともいう)と、冷却電磁弁23の出口側の管路12の所要箇所(図1の符号Bで示す箇所、分岐点Bともいう)との間には、バイパス管路16を設けている。なお、便宜上、管路12のうち、分岐点Aと熱交換器40との間を管路12aとし、熱交換器40と冷却電磁弁23との間を管路12bとし、冷却電磁弁23と分岐点Bとの間を管路12cと称する。   A heat exchanger 40 is provided in the middle of the pipe 12, and a cooling electromagnetic valve 23 as a cooling valve is provided in the pipe 12 on the outlet side of the heat exchanger 40. Further, a required portion of the conduit 12 on the inlet side of the heat exchanger 40 (a portion indicated by a symbol A in FIG. 1, also referred to as a branch point A) and a required portion of the conduit 12 on the outlet side of the cooling electromagnetic valve 23 (see FIG. A bypass pipe line 16 is provided between the point B and the branch point B). For convenience, the pipe 12 has a pipe 12a between the branch point A and the heat exchanger 40, a pipe 12b between the heat exchanger 40 and the cooling electromagnetic valve 23, and the cooling electromagnetic valve 23. A space between the branch point B is referred to as a pipe line 12c.

熱交換器40は、一次側には、冷却水を流す冷却流路13a、二次側には媒体を流す媒体流路12dを有する。媒体流路12の一端は管路12aと連通し、媒体流路12の他端は管路12bと連通してある。熱交換器40は、冷却流路13aを流れる冷却水と、媒体流路12dを流れる媒体との間で熱交換を行い、媒体流路12dを流れる媒体を冷却して温度を調節する。   The heat exchanger 40 has a cooling flow path 13a for flowing cooling water on the primary side and a medium flow path 12d for flowing medium on the secondary side. One end of the medium flow path 12 communicates with the pipe line 12a, and the other end of the medium flow path 12 communicates with the pipe line 12b. The heat exchanger 40 performs heat exchange between the cooling water flowing through the cooling flow path 13a and the medium flowing through the medium flow path 12d, and cools the medium flowing through the medium flow path 12d to adjust the temperature.

また、管路12bの所定箇所には流路温度検出部としての温度センサ72を設けてある。温度センサ72は、熱交換器40の媒体流路12dの媒体の温度を検出する。なお、温度センサ72で熱交換器40の媒体流路12dの温度を検出するとは、熱交換器40の媒体流路12と連通する熱交換器40の下流側(媒体の出口側)の管路12bの温度を検出することも含む。図1では、温度センサ72が管路12bの中途に設けられているように図示されているが、実際には、温度センサ72は、熱交換器40の媒体流路12dと管路12bとの接続箇所付近に設けられてあり、温度センサ72で熱交換器40の媒体流路12dの媒体の温度を検出することができるようにしてある。なお、温度センサ72で媒体流路12dの媒体の温度を検出するとは、管路12bの媒体の温度を検出することも含む。特に冷却電磁弁23が閉じている状態では、媒体流路12d及び管路12bの媒体は循環しないので、温度センサ72を管路12bに設けても媒体流路12dの媒体の温度を検出することができる。また、冷却流路13aの両端は、冷却水を供給する冷却管路13と連通してある。   In addition, a temperature sensor 72 as a flow path temperature detecting unit is provided at a predetermined location of the pipe line 12b. The temperature sensor 72 detects the temperature of the medium in the medium flow path 12d of the heat exchanger 40. Note that the temperature sensor 72 detects the temperature of the medium flow path 12d of the heat exchanger 40 is a pipe line on the downstream side (media outlet side) of the heat exchanger 40 communicating with the medium flow path 12 of the heat exchanger 40. It also includes detecting the temperature of 12b. In FIG. 1, the temperature sensor 72 is illustrated as being provided in the middle of the pipe line 12 b, but actually, the temperature sensor 72 is provided between the medium flow path 12 d and the pipe line 12 b of the heat exchanger 40. The temperature sensor 72 is provided in the vicinity of the connection location so that the temperature of the medium in the medium flow path 12d of the heat exchanger 40 can be detected. Note that detecting the temperature of the medium in the medium flow path 12d by the temperature sensor 72 includes detecting the temperature of the medium in the pipe line 12b. In particular, when the cooling electromagnetic valve 23 is closed, the medium in the medium flow path 12d and the pipe 12b does not circulate. Therefore, even if the temperature sensor 72 is provided in the pipe 12b, the temperature of the medium in the medium flow path 12d can be detected. Can do. Moreover, both ends of the cooling flow path 13a are connected with the cooling pipe line 13 which supplies cooling water.

管路12のポンプ31の入口側付近には圧力センサ63、開放リリーフ弁を設けてある。圧力センサ63は、ポンプ31の入口側付近の媒体の圧力を計測する。また、熱交換器40の入口側の管路12(分岐点Aより上流側)には、ストレーナを設けている。ストレーナは、媒体に含まれる固形成分を取り除くものである。   A pressure sensor 63 and an open relief valve are provided in the vicinity of the inlet side of the pump 31 in the pipe line 12. The pressure sensor 63 measures the pressure of the medium near the inlet side of the pump 31. In addition, a strainer is provided on the pipe 12 on the inlet side of the heat exchanger 40 (upstream from the branch point A). The strainer removes solid components contained in the medium.

給水口と管路12の分岐点Bとの間には管路14を設けてある。管路14の給水口側にはストレーナ、圧力センサ61を設けてある。圧力センサ61は、給水圧を計測する。管路14の途中には逆止弁26を介装してあり、逆止弁26の両側には、加圧ポンプ32を介装した分岐管14aを接続してある。   A pipe 14 is provided between the water supply port and the branch point B of the pipe 12. A strainer and a pressure sensor 61 are provided on the water supply port side of the pipeline 14. The pressure sensor 61 measures the feed water pressure. A check valve 26 is interposed in the middle of the pipe line 14, and a branch pipe 14 a having a pressurizing pump 32 is connected to both sides of the check valve 26.

加圧ポンプ32は、管路11、12、バイパス管路16内の媒体(例えば、水)の圧力が飽和蒸気圧より高くなるように加圧する。   The pressurizing pump 32 pressurizes so that the pressure of the medium (for example, water) in the pipe lines 11 and 12 and the bypass pipe line 16 becomes higher than the saturated vapor pressure.

また、管路14の分岐管14aが接続された箇所の上流側には、冷却水を分岐して熱交換器40に流すための冷却管路13を接続してある。冷却管路13は、熱交換器40の入口側で冷却流路13aの一端に接続してある。熱交換器40の出口側で冷却流路13aの他端に接続された冷却管路13は排水口に接続してある。排水口に接続される冷却管路13の中途には冷却水弁としての冷却水電磁弁25を介装してある。   A cooling pipe 13 for branching the cooling water and flowing it to the heat exchanger 40 is connected to the upstream side of the pipe 14 where the branch pipe 14 a is connected. The cooling conduit 13 is connected to one end of the cooling passage 13 a on the inlet side of the heat exchanger 40. The cooling pipe line 13 connected to the other end of the cooling flow path 13a on the outlet side of the heat exchanger 40 is connected to the drain outlet. A cooling water electromagnetic valve 25 as a cooling water valve is interposed in the middle of the cooling pipe line 13 connected to the drain outlet.

また、温度センサ72と冷却電磁弁23との間の管路12bには、排水口に接続された排水管路15を接続してある。排水管路15の中途には排水電磁弁24を介装してある。   Further, a drain line 15 connected to a drain port is connected to the pipe line 12b between the temperature sensor 72 and the cooling electromagnetic valve 23. A drain electromagnetic valve 24 is interposed in the middle of the drain pipe 15.

また、金型温度調節機100は、温度制御部50を備え、温度制御部50は、弁開閉制御部51、熱交換器温度調節部52などを備える。温度制御部50は、温度センサ71、72で検出した温度を取得することができる。   The mold temperature controller 100 includes a temperature controller 50, and the temperature controller 50 includes a valve opening / closing controller 51, a heat exchanger temperature controller 52, and the like. The temperature control unit 50 can acquire the temperatures detected by the temperature sensors 71 and 72.

弁開閉制御部51は、冷却電磁弁23、排水電磁弁24、冷却水電磁弁25の開閉を制御する。また、熱交換器温度調節部52は、熱交換器40の冷却流路12dの媒体の温度を調節する。   The valve opening / closing control unit 51 controls the opening / closing of the cooling electromagnetic valve 23, the drain electromagnetic valve 24, and the cooling water electromagnetic valve 25. The heat exchanger temperature adjusting unit 52 adjusts the temperature of the medium in the cooling flow path 12d of the heat exchanger 40.

金型温度調節機100の動作の概要は以下のとおりである。排水電磁弁24、冷却電磁弁23、送媒バルブ21、返媒バルブ22を開にして給水口から媒体としての水を供給すると、管路11、12、バイパス管路16などの循環路内の空気が完全に排出され、その後、排水電磁弁24を閉じることにより、管路11、12、バイパス管路16などの循環路には媒体が充填される。また、管路11、12、バイパス管路16などの循環路内の媒体の圧力は、加圧ポンプ32により媒体の温度に対応する飽和蒸気圧以上に維持される。管路11、12、バイパス管路16などの循環路内の媒体の温度は、ヒータユニット80により加熱され所要の温度になるように昇温される。また、バイパス管路16などの循環路内の媒体の温度は、熱交換器40により所要の温度になるように冷却される。ヒータユニット80による加熱動作及び熱交換器40による冷却動作により、管路11、12、バイパス管路16などの循環路内の媒体の温度、すなわち金型200内の媒体の温度は所要の温度に調節(制御)される。   The outline of the operation of the mold temperature controller 100 is as follows. When the drainage electromagnetic valve 24, the cooling electromagnetic valve 23, the medium sending valve 21, and the medium return valve 22 are opened and water as a medium is supplied from the water supply port, the water in the circulation path such as the pipes 11 and 12 and the bypass pipe 16 is provided. The air is completely exhausted, and then the drainage electromagnetic valve 24 is closed to fill the circulation paths such as the pipelines 11 and 12 and the bypass pipeline 16 with the medium. Further, the pressure of the medium in the circulation path such as the pipes 11 and 12 and the bypass pipe 16 is maintained by the pressurizing pump 32 to be equal to or higher than the saturated vapor pressure corresponding to the medium temperature. The temperature of the medium in the circulation paths such as the pipelines 11 and 12 and the bypass pipeline 16 is increased by the heater unit 80 so as to reach a required temperature. Further, the temperature of the medium in the circulation path such as the bypass pipe line 16 is cooled by the heat exchanger 40 so as to become a required temperature. By the heating operation by the heater unit 80 and the cooling operation by the heat exchanger 40, the temperature of the medium in the circulation paths such as the pipelines 11 and 12 and the bypass pipeline 16, that is, the temperature of the medium in the mold 200 becomes a required temperature. Regulated (controlled).

以下、金型温度調節機100について詳細に説明する。   Hereinafter, the mold temperature controller 100 will be described in detail.

前述のとおり、本実施の形態の金型温度調節機100は、冷却水を供給する冷却管路13及び管路12に介装され、冷却管路13に連通する冷却流路13a、及び管路12に連通し、媒体を流す媒体流路12dを有する熱交換器40、熱交換器40の出口側の管路12(図1では、管理12bと12cとの間)に介装された冷却電磁弁23(冷却弁)、熱交換器40の入口側の管路12(分岐点A)から冷却電磁弁23及びポンプ31の間の管路12(分岐点B)までの間をバイパスするバイパス管路16を備える。   As described above, the mold temperature controller 100 according to the present embodiment includes the cooling channel 13a and the channel that are interposed in the cooling channel 13 and the channel 12 for supplying cooling water and communicate with the cooling channel 13. 12, a heat exchanger 40 having a medium flow path 12d through which the medium flows, and a cooling electromagnetic wave interposed in the pipe 12 on the outlet side of the heat exchanger 40 (between management 12b and 12c in FIG. 1) Valve 23 (cooling valve), bypass pipe that bypasses between the pipe line 12 (branch point A) on the inlet side of the heat exchanger 40 and the pipe line 12 (branch point B) between the cooling electromagnetic valve 23 and the pump 31 A path 16 is provided.

すなわち、弁開閉制御部51の制御の下、冷却電磁弁23が閉じている場合には、ポンプ31の出口側から送出された媒体は、管路11を通じて金型200に流れ、金型200から流出した媒体は、管路12を通じてバイパス管路16を流れポンプ31に戻る。金型200を流れる媒体の温度は、比較的高温であり、例えば、180℃であるが、これに限定されるものではない。   That is, when the cooling electromagnetic valve 23 is closed under the control of the valve opening / closing control unit 51, the medium sent from the outlet side of the pump 31 flows to the mold 200 through the pipe line 11, and from the mold 200. The discharged medium flows through the bypass line 16 through the pipe line 12 and returns to the pump 31. The temperature of the medium flowing through the mold 200 is relatively high, for example, 180 ° C., but is not limited to this.

熱交換器40の媒体流路12内の媒体は、冷却電磁弁23が閉じられているので循環することなく、冷却流路13a内の冷却水(例えば、20℃であるがこれに限定されるものではない)により熱交換されて、媒体の温度より低い比較的低温(例えば、80℃であるが、これに限定されるものではなく、例えば、60℃程度でもよい)に調節される。   The medium in the medium flow path 12 of the heat exchanger 40 is not circulated because the cooling electromagnetic valve 23 is closed, and the cooling water in the cooling flow path 13a (for example, 20 ° C., but is not limited thereto). The temperature of the medium is adjusted to a relatively low temperature lower than the temperature of the medium (for example, 80 ° C., but is not limited thereto, and may be, for example, about 60 ° C.).

射出成型のサイクルにおいて、溶融したプラスチックが金型200に充填されると、金型200の温度が上昇し、媒体の温度が上昇する。例えば、媒体の温度が所要の温度である180℃を超えた場合、冷却電磁弁23を開くことにより、熱交換器40の媒体流路12d内の媒体が管路12、11内を循環し、媒体の温度を下げることができる。   When the molten plastic is filled in the mold 200 in the injection molding cycle, the temperature of the mold 200 rises and the temperature of the medium rises. For example, when the temperature of the medium exceeds a required temperature of 180 ° C., the medium in the medium flow path 12d of the heat exchanger 40 circulates in the pipe lines 12 and 11 by opening the cooling electromagnetic valve 23. The temperature of the medium can be lowered.

熱交換器40の冷却水と媒体流路12d内の媒体との温度差は、例えば、60℃(=80℃−20℃)である。一方、従来の金型温度調節機の場合では、循環路内の媒体のすべてが熱交換器の二次側の流路を流れるので、熱交換器の冷却水の温度(例えば、20℃)と流路内の媒体の温度(例えば、180℃)との温度差は160℃程度となる。   The temperature difference between the cooling water of the heat exchanger 40 and the medium in the medium flow path 12d is, for example, 60 ° C. (= 80 ° C.−20 ° C.). On the other hand, in the case of a conventional mold temperature controller, since all of the medium in the circulation path flows through the secondary side flow path of the heat exchanger, the temperature of the cooling water of the heat exchanger (for example, 20 ° C.) The temperature difference from the temperature of the medium in the flow path (for example, 180 ° C.) is about 160 ° C.

すなわち、本実施の形態の金型温度調節機100の場合の熱交換器40内の一次側の冷却流路13aと二次側の媒体流路12dの温度差(例えば、60℃)は、従来の場合と比較すると著しく小さい。このため、熱交換器の一次側の冷却流路13a内の冷却水の一部が蒸発することを抑制することができるので、冷却水に含まれる不溶解成分が冷却流路13aに付着・堆積することを抑制し、スケールの発生を抑制することができる。そして、熱交換率が低下し運転コストを増大させるという問題を解消することができる。また、熱交換器40内のスケールの発生を抑制することができるので、熱交換器40を頻繁にメンテナンスする必要がない。   That is, the temperature difference (for example, 60 ° C.) between the primary side cooling flow path 13a and the secondary side medium flow path 12d in the heat exchanger 40 in the mold temperature controller 100 of the present embodiment has been conventionally This is significantly smaller than the case of. For this reason, since it can suppress that a part of cooling water in the cooling flow path 13a of the primary side of a heat exchanger evaporates, the insoluble component contained in cooling water adheres and accumulates on the cooling flow path 13a. It is possible to suppress the generation of scale. And the problem that a heat exchange rate falls and an operating cost increases can be eliminated. Moreover, since generation | occurrence | production of the scale in the heat exchanger 40 can be suppressed, it is not necessary to maintain the heat exchanger 40 frequently.

また、温度センサ71は、管路11の媒体の温度を検出する。弁開閉制御部11は、冷却弁制御部としての機能を有し、温度センサ71で検出した温度に基づいて冷却電磁弁23の開閉を制御する。   The temperature sensor 71 detects the temperature of the medium in the pipe line 11. The valve opening / closing control unit 11 has a function as a cooling valve control unit, and controls the opening / closing of the cooling electromagnetic valve 23 based on the temperature detected by the temperature sensor 71.

すなわち、温度センサ71で検出した媒体の温度が所要の温度(例えば、180℃)を超えた場合、弁開閉制御部51は、冷却電磁弁23を開くことにより、熱交換器40で冷却された媒体流路12d内の媒体が管路12、11内を循環し、媒体の温度を下げることができる。熱交換器40の媒体流路12dの容積は、管路11、12、バイパス管路16などの循環路の全容積の略10〜20%程度とすることができ、媒体流路12d内で循環せずに冷却された媒体が管路12、11内を循環することにより、媒体の温度を下げることができる。なお、媒体流路12dの容積は、上述の10〜20%程度に限定されない。   That is, when the temperature of the medium detected by the temperature sensor 71 exceeds a required temperature (for example, 180 ° C.), the valve opening / closing control unit 51 is cooled by the heat exchanger 40 by opening the cooling electromagnetic valve 23. The medium in the medium flow path 12d circulates in the pipe lines 12 and 11, and the temperature of the medium can be lowered. The volume of the medium flow path 12d of the heat exchanger 40 can be approximately 10 to 20% of the total volume of the circulation paths such as the pipe lines 11 and 12 and the bypass pipe line 16, and circulates in the medium flow path 12d. The medium cooled without circulating through the pipes 12 and 11 can reduce the temperature of the medium. Note that the volume of the medium flow path 12d is not limited to the above-described 10 to 20%.

また、弁開閉制御部51は、所定の制御周期の都度、温度センサ71で検出した温度に基づいて冷却電磁弁23を開閉する。例えば、温度センサ71で検出した温度が高いほど冷却電磁弁23を閉じるまでの時間を長くする(すなわち、冷却電磁弁23が開いている時間を長くする)。これにより、媒体の温度を所要の温度に制御することができる。   Further, the valve opening / closing control unit 51 opens and closes the cooling electromagnetic valve 23 based on the temperature detected by the temperature sensor 71 at every predetermined control cycle. For example, the time until the cooling electromagnetic valve 23 is closed is increased as the temperature detected by the temperature sensor 71 is higher (that is, the time during which the cooling electromagnetic valve 23 is opened is increased). Thereby, the temperature of the medium can be controlled to a required temperature.

また、熱交換器温度調節部52は、温度調節部としての機能を有し、熱交換器40内の媒体流路12dの温度が所定範囲内になるように調節する。例えば、熱交換器温度調節部52は、冷却電磁弁23の開閉を行わない場合に熱交換器40内の媒体流路12dの温度が所定範囲内になるように調節する。冷却電磁弁23の開閉を行わない場合とは、媒体を冷却するために冷却電磁弁23を1又は複数回繰り返し開閉する必要がなく冷却電磁弁23が閉じている状態をいう。なお、冷却電磁弁23の開閉を行っている状態でも、熱交換器温度調節部52が、熱交換器40内の媒体流路12dの温度が所定範囲内になるように調節すべく動作を行ってもよい。所定範囲は、例えば、媒体の温度より低い比較的低温であって、冷却水の温度よりも高い温度範囲であり、例えば、80℃±5℃程度とすることができるが、これに限定されるものではなく、60℃±5℃程度であってもよい。   The heat exchanger temperature adjusting unit 52 has a function as a temperature adjusting unit, and adjusts the temperature of the medium flow path 12d in the heat exchanger 40 to be within a predetermined range. For example, the heat exchanger temperature adjustment unit 52 adjusts the temperature of the medium flow path 12d in the heat exchanger 40 to be within a predetermined range when the cooling electromagnetic valve 23 is not opened and closed. The case where the cooling electromagnetic valve 23 is not opened or closed refers to a state where the cooling electromagnetic valve 23 is closed without having to repeatedly open and close the cooling electromagnetic valve 23 one or more times in order to cool the medium. Even when the cooling electromagnetic valve 23 is opened and closed, the heat exchanger temperature adjusting unit 52 operates to adjust the temperature of the medium flow path 12d in the heat exchanger 40 to be within a predetermined range. May be. The predetermined range is, for example, a relatively low temperature lower than the temperature of the medium and higher than the temperature of the cooling water, and can be, for example, about 80 ° C. ± 5 ° C., but is not limited thereto. It may be about 60 ° C. ± 5 ° C. instead.

これにより、管路11、12、バイパス管路16を循環する媒体の温度が所要の温度(例えば、180℃)であって、例えば、冷却電磁弁23の開閉を行わない場合には、バイパス管路16を通じて媒体を循環しつつ、熱交換器40の媒体流路12d内の媒体を循環させずに比較的低温に維持することができる。   Thereby, when the temperature of the medium circulating through the pipelines 11 and 12 and the bypass pipeline 16 is a required temperature (for example, 180 ° C.) and the cooling electromagnetic valve 23 is not opened and closed, for example, While the medium is circulated through the path 16, the medium in the medium flow path 12 d of the heat exchanger 40 can be maintained at a relatively low temperature without being circulated.

熱交換器温度調節部52による温度調節には、例えば、2通りの方法がある。第1の方法は、熱交換器温度調節部52は、弁開閉制御部51を動作させて、冷却水電磁弁25を所定のタイミングで開閉して、熱交換器40の冷却流路13aに断続的に冷却水を流し、媒体流路12dの温度が所定範囲内になるように調節する。所定のタイミングは、例えば、熱交換器40の媒体流路12dの容積、媒体流路12dの温度の所定範囲などに基づいて予め設定しておくことができる。   For example, there are two methods for adjusting the temperature by the heat exchanger temperature adjusting unit 52. In the first method, the heat exchanger temperature adjusting unit 52 operates the valve opening / closing control unit 51 to open and close the cooling water electromagnetic valve 25 at a predetermined timing, and intermittently connects to the cooling flow path 13a of the heat exchanger 40. Then, cooling water is flowed to adjust the temperature of the medium flow path 12d to be within a predetermined range. The predetermined timing can be set in advance based on, for example, the volume of the medium flow path 12d of the heat exchanger 40, the predetermined range of the temperature of the medium flow path 12d, and the like.

すなわち、冷却水電磁弁25を所定のタイミングで開閉することにより、熱交換器40の冷却流路13aに冷却水を断続的に流すことができ、媒体流路12dの媒体と熱交換して、媒体流路12dの温度が所定範囲内になるように調節することができる。これにより、熱交換器40を流れる冷却水の温度が上昇せず、比較的低温の80℃程度にすることができ、冷却水の温度が飽和温度以下になるため、蒸気とならずスケールの発生を防止することができる。   That is, by opening and closing the cooling water electromagnetic valve 25 at a predetermined timing, the cooling water can be intermittently flowed into the cooling flow path 13a of the heat exchanger 40, and heat exchange with the medium in the medium flow path 12d is performed. The temperature of the medium flow path 12d can be adjusted to be within a predetermined range. As a result, the temperature of the cooling water flowing through the heat exchanger 40 does not increase and can be kept at a relatively low temperature of about 80 ° C., and the temperature of the cooling water becomes equal to or lower than the saturation temperature. Can be prevented.

第2の方法は、熱交換器温度調節部52は、弁開閉制御部51を動作させて、温度センサ72で検出した温度に基づいて冷却水電磁弁25を開閉して媒体流路12dの温度が所定範囲内になるように調節する。   In the second method, the heat exchanger temperature adjusting unit 52 operates the valve opening / closing control unit 51 to open and close the cooling water electromagnetic valve 25 based on the temperature detected by the temperature sensor 72, thereby causing the temperature of the medium flow path 12d. Is adjusted to be within a predetermined range.

すなわち、温度センサ72で検出した温度が所定範囲内になるように冷却水電磁弁25を開閉する。これにより、熱交換器40の冷却流路13aに冷却水を断続的に流すことができ、媒体流路12dの媒体と熱交換して、媒体流路12dの温度が所定範囲内になるように調節することができる。これにより、熱交換器40を流れる冷却水の温度が上昇せず、比較的低温の80℃程度にすることができ、冷却水の温度が飽和温度以下になるため、蒸気とならずスケールの発生を防止することができる。なお、上述の第1の方法を用いる場合、温度センサ72は設けなくてもよい。   That is, the cooling water solenoid valve 25 is opened and closed so that the temperature detected by the temperature sensor 72 is within a predetermined range. As a result, the cooling water can be intermittently passed through the cooling flow path 13a of the heat exchanger 40, and heat exchange with the medium of the medium flow path 12d is performed so that the temperature of the medium flow path 12d is within a predetermined range. Can be adjusted. As a result, the temperature of the cooling water flowing through the heat exchanger 40 does not increase and can be kept at a relatively low temperature of about 80 ° C., and the temperature of the cooling water becomes equal to or lower than the saturation temperature. Can be prevented. When using the first method described above, the temperature sensor 72 may not be provided.

図2は本実施の形態の金型温度調節機100の動作の一例を示すタイムチャートである。図2は、上段のチャートから下段のチャートに向かって、順番に媒体及び熱交換器内媒体の温度(媒体流路12dの温度)、ポンプ31の動作状態、ヒータユニット80の動作状態、排水電磁弁24の動作状態、冷却電磁弁23の動作状態、冷却水電磁弁25の動作状態を示す。図2において、横軸は時間を示し、左から右に向かって順番に、加熱制御時、冷却制御時、安定時のチャートを示す。   FIG. 2 is a time chart showing an example of the operation of the mold temperature controller 100 of the present embodiment. FIG. 2 shows the temperature of the medium and the medium in the heat exchanger (the temperature of the medium flow path 12d), the operating state of the pump 31, the operating state of the heater unit 80, the drainage electromagnetic wave in order from the upper chart to the lower chart. The operation state of the valve 24, the operation state of the cooling electromagnetic valve 23, and the operation state of the cooling water electromagnetic valve 25 are shown. In FIG. 2, the horizontal axis indicates time, and in the order from left to right, a chart at the time of heating control, cooling control, and stability is shown.

まず、加熱制御時では、ポンプ31が動作状態であり、排水電磁弁24、冷却電磁弁23、及び冷却水電磁弁25は停止状態である。ヒータユニット80は、所定周期で動作している。すなわち、ヒータユニット80による加熱動作が断続的に行われ、媒体温度が所要の温度(例えば、180℃)になるように昇温される。   First, at the time of heating control, the pump 31 is in an operating state, and the drain electromagnetic valve 24, the cooling electromagnetic valve 23, and the cooling water electromagnetic valve 25 are in a stopped state. The heater unit 80 operates at a predetermined cycle. That is, the heating operation by the heater unit 80 is intermittently performed, and the temperature of the medium is increased so as to reach a required temperature (for example, 180 ° C.).

冷却水電磁弁25を開くタイミングになると(図2の時刻t1)、冷却水電磁弁25を所定時間だけ開く。冷却水電磁弁25を所定時間だけ開くことにより、熱交換器40の冷却流路13aに冷却水が流れ、熱交換器40の媒体流路12dの温度を所要の温度(例えば、80℃)に維持することができる。仮に、冷却水電磁弁25を所定時間だけ開かず閉じたままの状態にすると、図2の破線で示すように、熱交換器40内の媒体温度は所要の温度を超えて上昇してしまう。   When it is time to open the cooling water solenoid valve 25 (time t1 in FIG. 2), the cooling water solenoid valve 25 is opened for a predetermined time. By opening the cooling water electromagnetic valve 25 for a predetermined time, the cooling water flows into the cooling flow path 13a of the heat exchanger 40, and the temperature of the medium flow path 12d of the heat exchanger 40 is set to a required temperature (for example, 80 ° C.). Can be maintained. If the cooling water electromagnetic valve 25 is kept closed without being opened for a predetermined time, the medium temperature in the heat exchanger 40 rises beyond a required temperature as shown by the broken line in FIG.

次に、冷却制御時では、ポンプ31が動作状態であり、排水電磁弁24、冷却電磁弁23、及び冷却水電磁弁25は停止状態である。冷却水電磁弁25を開くタイミングになると(図2の時刻t2)、冷却水電磁弁25を所定時間だけ開く。これにより、熱交換器40の媒体流路12dの温度を所要の温度(例えば、80℃)に維持する。   Next, at the time of cooling control, the pump 31 is in an operating state, and the drain electromagnetic valve 24, the cooling electromagnetic valve 23, and the cooling water electromagnetic valve 25 are in a stopped state. When it is time to open the cooling water solenoid valve 25 (time t2 in FIG. 2), the cooling water solenoid valve 25 is opened for a predetermined time. Thereby, the temperature of the medium flow path 12d of the heat exchanger 40 is maintained at a required temperature (for example, 80 ° C.).

そして、金型200に溶融したプラスチックが充填され、金型温度が上昇し、媒体の温度が上昇する。媒体の温度が上限値(例えば、181℃とすることができるが、これに限定されない)を超えると、冷却電磁弁23の開閉動作が開始され(図2の時刻t3)、冷却電磁弁23が所要時間だけ開くことにより、熱交換器40の媒体流路12d内で比較的低温の所要の温度に維持された媒体が、管路12、11、バイパス管路16を流れることにより、媒体の温度を下げる。   Then, the mold 200 is filled with molten plastic, the mold temperature rises, and the medium temperature rises. When the temperature of the medium exceeds an upper limit value (for example, but not limited to 181 ° C.), the opening / closing operation of the cooling electromagnetic valve 23 is started (time t3 in FIG. 2). The medium maintained at a relatively low required temperature in the medium flow path 12d of the heat exchanger 40 by opening only for the required time flows through the pipes 12 and 11 and the bypass pipe 16, so that the temperature of the medium is increased. Lower.

また、冷却電磁弁23が開くことにより、熱交換器40の媒体流路12dに高温媒体が流入するため、熱交換器40内の媒体温度を下げるべく、冷却水電磁弁25を所要時間だけ開くことにより、冷却流路13aに冷却水を流す。冷却電磁弁23及び冷却水電磁弁25の開閉動作は、媒体温度が上限値より下がるまで繰り返される(図2の時刻t4)。   Further, since the high temperature medium flows into the medium flow path 12d of the heat exchanger 40 by opening the cooling electromagnetic valve 23, the cooling water electromagnetic valve 25 is opened for a required time in order to lower the medium temperature in the heat exchanger 40. As a result, the cooling water is caused to flow through the cooling flow path 13a. The opening / closing operations of the cooling electromagnetic valve 23 and the cooling water electromagnetic valve 25 are repeated until the medium temperature falls below the upper limit value (time t4 in FIG. 2).

また、加熱制御及び冷却制御を行う必要がない安定時では、ポンプ31が動作状態であり、ヒータユニット80、排水電磁弁24、冷却電磁弁23、及び冷却水電磁弁25は停止状態である。冷却水電磁弁25を開くタイミングになると(図2の時刻t5、t6)、冷却水電磁弁25を所定時間だけ開く。冷却水電磁弁25を所定時間だけ開くことにより、熱交換器40の冷却流路13aに冷却水が流れ、熱交換器40の媒体流路12dの温度を所要の温度(例えば、80℃)に維持することができる。   Further, at the stable time when it is not necessary to perform heating control and cooling control, the pump 31 is in an operating state, and the heater unit 80, the drain electromagnetic valve 24, the cooling electromagnetic valve 23, and the cooling water electromagnetic valve 25 are in a stopped state. When it is time to open the cooling water solenoid valve 25 (time t5, t6 in FIG. 2), the cooling water solenoid valve 25 is opened for a predetermined time. By opening the cooling water electromagnetic valve 25 for a predetermined time, the cooling water flows into the cooling flow path 13a of the heat exchanger 40, and the temperature of the medium flow path 12d of the heat exchanger 40 is set to a required temperature (for example, 80 ° C.). Can be maintained.

図3は本実施の形態の金型温度調節機100の加熱制御時の処理手順の一例を示すフローチャートである。以下では便宜上、処理の主体を温度制御部50として説明する。温度制御部50は、排水電磁弁24を閉じ(S11)、冷却電磁弁23を閉じ(S12)、冷却水電磁弁25を閉じる(S13)。温度制御部50は、所定周期でヒータユニット80を動作させる(S14)。   FIG. 3 is a flowchart showing an example of a processing procedure at the time of heating control of the mold temperature controller 100 of the present embodiment. Hereinafter, for the sake of convenience, the subject of processing will be described as the temperature controller 50. The temperature control unit 50 closes the drain electromagnetic valve 24 (S11), closes the cooling electromagnetic valve 23 (S12), and closes the cooling water electromagnetic valve 25 (S13). The temperature controller 50 operates the heater unit 80 at a predetermined cycle (S14).

温度制御部50は、冷却水電磁弁25を開くタイミングであるか否かを判定し(S15)、冷却水電磁弁25を開くタイミングである場合(S15でYES)、冷却水電磁弁25を所定時間だけ開く(S16)。冷却水電磁弁25を開くタイミングでない場合(S15でNO)、温度制御部50は、ステップS16の処理を行うことなく後述のステップS17の処理を行う。   The temperature controller 50 determines whether or not it is time to open the cooling water solenoid valve 25 (S15). If it is time to open the cooling water solenoid valve 25 (YES in S15), the temperature control unit 50 sets the cooling water solenoid valve 25 to a predetermined value. Open only for a time (S16). When it is not time to open the cooling water solenoid valve 25 (NO in S15), the temperature control unit 50 performs the process of step S17 described later without performing the process of step S16.

温度制御部50は、処理を終了するか否かを判定し(S17)、処理を終了しない場合(S17でNO)、ステップS15以降の処理を続け、処理を終了する場合(S17でYES)、処理を終了する。   The temperature control unit 50 determines whether or not to end the process (S17). If the process is not ended (NO in S17), the process after step S15 is continued and the process is ended (YES in S17). The process ends.

図4は本実施の形態の金型温度調節機100の冷却制御時の処理手順の一例を示すフローチャートである。温度制御部50は、排水電磁弁24を閉じ(S31)、冷却電磁弁23を閉じ(S32)、冷却水電磁弁25を閉じる(S33)。温度制御部50は、冷却水電磁弁25を開くタイミングであるか否かを判定する(S34)。   FIG. 4 is a flowchart showing an example of a processing procedure during cooling control of the mold temperature controller 100 of the present embodiment. The temperature control unit 50 closes the drain electromagnetic valve 24 (S31), closes the cooling electromagnetic valve 23 (S32), and closes the cooling water electromagnetic valve 25 (S33). The temperature control unit 50 determines whether it is time to open the coolant electromagnetic valve 25 (S34).

冷却水電磁弁25を開くタイミングである場合(S34でYES)、温度制御部50は、冷却水電磁弁25を所定時間だけ開く(S35)。冷却水電磁弁25を開くタイミングでない場合(S34でNO)、温度制御部50は、ステップS35の処理を行うことなく後述のステップS36の処理を行う。   When it is time to open the cooling water solenoid valve 25 (YES in S34), the temperature control unit 50 opens the cooling water solenoid valve 25 for a predetermined time (S35). If it is not time to open the cooling water solenoid valve 25 (NO in S34), the temperature control unit 50 performs the process of step S36 described later without performing the process of step S35.

温度制御部50は、温度センサ71により媒体の温度を検出し(S36)、検出した媒体の温度が上限値を超えたか否かを判定する(S37)。検出した媒体の温度が上限値を超えた場合(S37でYES)、温度制御部50は、冷却電磁弁23を所定時間だけ開き(S38)、冷却水電磁弁25を所定時間だけ開く(S39)。検出した媒体の温度が上限値を超えていない場合(S37でNO)、温度制御部50は、ステップS38、S39の処理を行うことなく後述のステップS40の処理を行う。   The temperature controller 50 detects the temperature of the medium by the temperature sensor 71 (S36), and determines whether or not the detected temperature of the medium exceeds the upper limit value (S37). When the detected temperature of the medium exceeds the upper limit value (YES in S37), the temperature control unit 50 opens the cooling electromagnetic valve 23 for a predetermined time (S38) and opens the cooling water electromagnetic valve 25 for a predetermined time (S39). . When the detected temperature of the medium does not exceed the upper limit value (NO in S37), the temperature control unit 50 performs the process of step S40 described later without performing the processes of steps S38 and S39.

温度制御部50は、処理を終了するか否かを判定し(S40)、処理を終了しない場合(S40でNO)、ステップS34以降の処理を続け、処理を終了する場合(S40でYES)、処理を終了する。   The temperature control unit 50 determines whether or not to end the process (S40). If the process is not ended (NO in S40), the process after step S34 is continued and the process is ended (YES in S40). The process ends.

上述の実施の形態において、媒体としては水を用いることができるが、水に代えて油を使用することもできる。   In the above-described embodiment, water can be used as the medium, but oil can also be used instead of water.

上述の実施の形態では、温度制御装置の一例として金型温度調節機について説明したが、温度制御装置は金型温度調節機に限定されるものでなく、媒体を熱交換するもの(例えば、熱交換器など)を具備する装置であれば、本実施の形態を適用することができる。   In the above-described embodiment, the mold temperature controller has been described as an example of the temperature control device. However, the temperature control device is not limited to the mold temperature controller, and heat exchange of the medium (for example, heat The present embodiment can be applied to any device provided with an exchanger or the like.

なお、前述の実施の形態の少なくとも一部を任意に組み合わせることができる。   Note that at least a part of the above-described embodiments can be arbitrarily combined.

11、12、12a、12b、12c、14 管路
12d 媒体流路
13 冷却管路
13a 冷却流路
14a 分岐管
15 排水管路
16 バイパス管路
21 送媒バルブ
22 返媒バルブ
23 冷却電磁弁(冷却弁)
24 排水電磁弁
25 冷却水電磁弁(冷却水弁)
26 逆止弁
31 ポンプ
32 加圧ポンプ
40 熱交換器
50 温度制御部
51 弁開閉制御部(冷却弁制御部)
52 熱交換器温度調節部(温度調節部)
61、62、63 圧力センサ
71 温度センサ(媒体温度検出部)
72 温度センサ(流路温度検出部)
80 ヒータユニット
81 サーモスタット
100 金型温度調節機(温度制御装置)
200 金型(対象物)
11, 12, 12a, 12b, 12c, 14 Pipe line 12d Medium flow path 13 Cooling pipe line 13a Cooling flow path 14a Branch pipe 15 Drain pipe line 16 Bypass pipe line 21 Transmission valve 22 Return valve 23 Cooling electromagnetic valve (cooling) valve)
24 Drainage solenoid valve 25 Cooling water solenoid valve (cooling water valve)
26 Check Valve 31 Pump 32 Pressure Pump 40 Heat Exchanger 50 Temperature Control Unit 51 Valve Open / Close Control Unit (Cooling Valve Control Unit)
52 Heat exchanger temperature controller (temperature controller)
61, 62, 63 Pressure sensor 71 Temperature sensor (medium temperature detector)
72 Temperature sensor (channel temperature detector)
80 Heater unit 81 Thermostat 100 Mold temperature controller (temperature control device)
200 Mold (object)

Claims (6)

管路を介してポンプと対象物との間で媒体を循環させて該対象物の温度を制御する温度制御装置において、
冷却水を供給する冷却管路に連通する冷却流路及び前記管路に連通し前記媒体を流す媒体流路を有する熱交換器と、
該熱交換器の出口側の前記管路に介装された冷却弁と、
前記熱交換器の入口側の前記管路から前記冷却弁及びポンプの間の前記管路までの間をバイパスするバイパス管路と
を備えることを特徴とする温度制御装置。
In a temperature control device for controlling the temperature of an object by circulating a medium between a pump and the object via a pipeline,
A heat exchanger having a cooling flow path communicating with a cooling pipe supplying cooling water and a medium flow path communicating with the pipe and flowing the medium;
A cooling valve interposed in the conduit on the outlet side of the heat exchanger;
A temperature control device comprising: a bypass pipe that bypasses between the pipe on the inlet side of the heat exchanger and the pipe between the cooling valve and the pump.
前記媒体の温度を検出する媒体温度検出部と、
該媒体温度検出部で検出した温度に基づいて前記冷却弁の開閉を制御する冷却弁制御部と
を備えることを特徴とする請求項1に記載の温度制御装置。
A medium temperature detector for detecting the temperature of the medium;
The temperature control device according to claim 1, further comprising: a cooling valve control unit that controls opening and closing of the cooling valve based on the temperature detected by the medium temperature detection unit.
前記冷却弁制御部は、
所定の制御周期の都度、前記媒体温度検出部で検出した温度に基づいて前記冷却弁を開閉することを特徴とする請求項2に記載の温度制御装置。
The cooling valve controller is
3. The temperature control device according to claim 2, wherein the cooling valve is opened and closed based on the temperature detected by the medium temperature detection unit every predetermined control cycle.
前記媒体流路の温度が所定範囲内になるように調節する温度調節部を備えることを特徴とする請求項1から請求項3までのいずれか1項に記載の温度制御装置。   The temperature control device according to any one of claims 1 to 3, further comprising a temperature adjusting unit that adjusts the temperature of the medium flow path to be within a predetermined range. 前記冷却管路に介装された冷却水弁を備え、
前記温度調節部は、
前記冷却水弁を所定のタイミングで開閉して前記媒体流路の温度が所定範囲内になるように調節することを特徴とする請求項4に記載の温度制御装置。
A cooling water valve interposed in the cooling pipe,
The temperature control unit is
The temperature control device according to claim 4, wherein the temperature of the medium flow path is adjusted to be within a predetermined range by opening and closing the cooling water valve at a predetermined timing.
前記冷却管路に介装された冷却水弁と、
前記媒体流路の温度を検出する流路温度検出部と
を備え、
前記温度調節部は、
前記流路温度検出部で検出した温度に基づいて前記冷却水弁を開閉して前記媒体流路の温度が所定範囲内になるように調節することを特徴とする請求項4に記載の温度制御装置。
A cooling water valve interposed in the cooling pipe;
A flow path temperature detection unit for detecting the temperature of the medium flow path,
The temperature control unit is
The temperature control according to claim 4, wherein the temperature of the medium flow path is adjusted to be within a predetermined range by opening and closing the cooling water valve based on the temperature detected by the flow path temperature detection unit. apparatus.
JP2015215881A 2015-11-02 2015-11-02 Temperature control device Active JP6667261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015215881A JP6667261B2 (en) 2015-11-02 2015-11-02 Temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015215881A JP6667261B2 (en) 2015-11-02 2015-11-02 Temperature control device

Publications (2)

Publication Number Publication Date
JP2017087440A true JP2017087440A (en) 2017-05-25
JP6667261B2 JP6667261B2 (en) 2020-03-18

Family

ID=58766992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015215881A Active JP6667261B2 (en) 2015-11-02 2015-11-02 Temperature control device

Country Status (1)

Country Link
JP (1) JP6667261B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017087441A (en) * 2015-11-02 2017-05-25 株式会社松井製作所 Pressure control apparatus
JP2019206106A (en) * 2018-05-28 2019-12-05 株式会社松井製作所 Temperature control device and temperature control method
US11440228B2 (en) * 2018-09-19 2022-09-13 Matsui Mfg. Co., Ltd. Temperature control device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157212A (en) * 1986-12-20 1988-06-30 C K D Seiki Kk Control device for temperature of cold water
JPH01119312U (en) * 1988-02-08 1989-08-11
JP2003211456A (en) * 2002-01-21 2003-07-29 Matsui Mfg Co Temperature regulation system of resin molding machine
JP2005221180A (en) * 2004-02-06 2005-08-18 Chugoku Electric Power Co Inc:The Operating method of cooling device
JP2007007950A (en) * 2005-06-29 2007-01-18 Star Seiki Co Ltd Mold temperature adjusting device
JP2008282413A (en) * 2008-06-16 2008-11-20 Komatsu Ltd Fluid temperature controller and control method
JP2009126089A (en) * 2007-11-26 2009-06-11 Kannetsu:Kk Temperature conditioning system for plastic molding machine
JP2013105359A (en) * 2011-11-15 2013-05-30 Tokyo Electron Ltd Temperature control system, semiconductor manufacturing apparatus and temperature control method
JP2015074111A (en) * 2013-10-07 2015-04-20 株式会社松井製作所 Mold cooling system and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157212A (en) * 1986-12-20 1988-06-30 C K D Seiki Kk Control device for temperature of cold water
JPH01119312U (en) * 1988-02-08 1989-08-11
JP2003211456A (en) * 2002-01-21 2003-07-29 Matsui Mfg Co Temperature regulation system of resin molding machine
JP2005221180A (en) * 2004-02-06 2005-08-18 Chugoku Electric Power Co Inc:The Operating method of cooling device
JP2007007950A (en) * 2005-06-29 2007-01-18 Star Seiki Co Ltd Mold temperature adjusting device
JP2009126089A (en) * 2007-11-26 2009-06-11 Kannetsu:Kk Temperature conditioning system for plastic molding machine
JP2008282413A (en) * 2008-06-16 2008-11-20 Komatsu Ltd Fluid temperature controller and control method
JP2013105359A (en) * 2011-11-15 2013-05-30 Tokyo Electron Ltd Temperature control system, semiconductor manufacturing apparatus and temperature control method
JP2015074111A (en) * 2013-10-07 2015-04-20 株式会社松井製作所 Mold cooling system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017087441A (en) * 2015-11-02 2017-05-25 株式会社松井製作所 Pressure control apparatus
JP2019206106A (en) * 2018-05-28 2019-12-05 株式会社松井製作所 Temperature control device and temperature control method
JP7079480B2 (en) 2018-05-28 2022-06-02 株式会社松井製作所 Mold temperature control device and mold temperature control method
US11440228B2 (en) * 2018-09-19 2022-09-13 Matsui Mfg. Co., Ltd. Temperature control device

Also Published As

Publication number Publication date
JP6667261B2 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
JP5991678B2 (en) Mold cooling system and mold cooling method
JP6667261B2 (en) Temperature control device
JP6198673B2 (en) Thermal energy recovery device and control method
US9011750B2 (en) Injection molding device and method for discharging heat medium for injection molding device
JP6740049B2 (en) Mold cooling device
US11565453B2 (en) Temperature control unit, system, and method for molding equipment
CN110920013B (en) Temperature control device
JP6257467B2 (en) Mold temperature control device and mold temperature control method
JP2017094489A (en) Die cooling system and die cooling method
JP6619990B2 (en) Pressure control device
CN107443628B (en) Mold temperature adjusting device and mold temperature adjusting method
CN104129015B (en) A kind of cold die heater of self-circulating wind
KR101578450B1 (en) Temperature control system for molds
EP3154759B1 (en) Thermoregulation device or circuit high-temperature moulds or systems general
JP2019016233A (en) Temperature control device and heating control method
JP5848895B2 (en) Control method and control device for cooling water flowing through fuel cell
CN110920012B (en) Temperature control device, recording medium, and temperature control method
CN204172299U (en) A kind of cold, hot two-purpose oil circulation die heater
KR100741568B1 (en) Apparatus for controlling temperature of mold
JP2018169108A5 (en)
JP5826617B2 (en) Heat sterilizer
CN103991192A (en) Rapid temperature adjusting method of flow-adjustable injection mold
JP6749796B2 (en) Temperature control device
JP2019206106A (en) Temperature control device and temperature control method
JP2010253541A (en) Die-casting die cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200225

R150 Certificate of patent or registration of utility model

Ref document number: 6667261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250