JP2017087122A - Water treatment apparatus - Google Patents

Water treatment apparatus Download PDF

Info

Publication number
JP2017087122A
JP2017087122A JP2015219419A JP2015219419A JP2017087122A JP 2017087122 A JP2017087122 A JP 2017087122A JP 2015219419 A JP2015219419 A JP 2015219419A JP 2015219419 A JP2015219419 A JP 2015219419A JP 2017087122 A JP2017087122 A JP 2017087122A
Authority
JP
Japan
Prior art keywords
water
treated
reaction tank
recovery agent
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015219419A
Other languages
Japanese (ja)
Inventor
大介 堀川
Daisuke Horikawa
大介 堀川
徳介 早見
Tokusuke Hayami
徳介 早見
忍 茂庭
Shinobu Shigeniwa
忍 茂庭
英武 仕入
Hidetake Shiire
英武 仕入
智明 木内
Tomoaki Kiuchi
智明 木内
和高 小城
Kazutaka Koshiro
和高 小城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015219419A priority Critical patent/JP2017087122A/en
Publication of JP2017087122A publication Critical patent/JP2017087122A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment apparatus capable of efficiently discharging from a reaction vessel a recovery agent that adsorbs and fixes dissolved compounds.SOLUTION: A water treatment apparatus includes a reaction vessel, a water introducing port, a recovery agent loading device, a discharge port, an introduction port, and a recovery port. The reaction vessel has a cylindrical side wall and a bottom wall with a gentle slope. The water introducing port supplies the reaction vessel with water to be treated containing dissolved compounds. The recovery agent loading device supplies the reaction vessel with a granular recovery agent to adsorb the dissolved compounds. The discharge port discharges the water to be treated from a position higher than the level of the recovery agent precipitating on the bottom of the reaction vessel. The introduction port introduces part of the water to be treated discharged from the reaction vessel to the reaction vessel in the tangential direction of the side wall of the reaction vessel. The recovery port is disposed at the lowermost part of the bottom wall of the reaction vessel.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、粒状の回収剤を用いて水中の溶存化合物を回収する水処理装置に関する。   Embodiments of the present invention relate to a water treatment apparatus that recovers dissolved compounds in water using a granular recovery agent.

排水中に含まれる溶存化合物によっては富栄養化を伴うので、溶存化合物を除去するための除去装置がある。代表的な除去技術として、生物学的除去方法や、化学的に反応を起こして凝集沈殿させる除去方法が知られている。いずれの方法も除去した物を廃棄物としてさらに処理する必要があるため、除去した物を資源として再利用することが検討されている。   Depending on the dissolved compounds contained in the wastewater, eutrophication is involved, so there is a removal device for removing dissolved compounds. As a typical removal technique, a biological removal method or a removal method in which a chemical reaction is caused to aggregate and precipitate is known. In any method, it is necessary to further process the removed material as waste, and therefore, it is considered to reuse the removed material as a resource.

溶存化合物を回収する方法として、活性炭のように多孔質材料で溶存化合物を取り込む回収剤や、溶存化合物を再利用しやすいように特定の物質を選択的に吸着固定する回収剤が検討されている。特定の物質を吸着固定する回収剤は、化学反応によって排水中の溶存化合物を吸着する。このような方法で溶存化合物を回収する場合、溶存化合物は、回収剤の表面に結晶塩として生成されることとなる。   As methods for recovering dissolved compounds, recovery agents that take in dissolved compounds with porous materials such as activated carbon, and recovery agents that selectively adsorb and fix specific substances so that the dissolved compounds can be easily reused are being studied. . A recovery agent that adsorbs and fixes a specific substance adsorbs dissolved compounds in wastewater by a chemical reaction. When the dissolved compound is recovered by such a method, the dissolved compound is generated as a crystalline salt on the surface of the recovery agent.

排水を処理する水処理装置は、一度に大量の回収剤を取り扱うことになるが、煩雑に取り扱うと、表層に吸着された結晶塩が剥離することが有る。剥離した結晶塩を核として二次的に結晶塩が成長することも有る。このような結晶塩は、水処理装置の配管の流れを悪くするだけでなく故障の原因となる。   A water treatment apparatus that treats wastewater handles a large amount of the recovery agent at a time, but if handled in a complicated manner, the crystal salt adsorbed on the surface layer may be peeled off. The crystal salt may grow secondarily with the peeled crystal salt as a nucleus. Such a crystal salt not only deteriorates the flow of the piping of the water treatment apparatus, but also causes a failure.

反応槽で生成された微粒子を回収するために、固液分離機構を設けた水処理装置がある。また、反応槽から排出させた処理水中に混入している粒子を固液分離するためにサイクロンを設けている水処理装置もある。さらに、晶析によって対象物を取り出す資源回収装置がある。この資源回収装置は、反応層に攪拌装置を備え、底部から生成物を回収する。   There is a water treatment apparatus provided with a solid-liquid separation mechanism in order to collect fine particles generated in a reaction tank. There is also a water treatment apparatus provided with a cyclone for solid-liquid separation of particles mixed in the treated water discharged from the reaction tank. Furthermore, there is a resource recovery device that takes out an object by crystallization. This resource recovery apparatus includes a stirring device in a reaction layer, and recovers a product from the bottom.

特開2004−321992号公報JP 2004-321992 A

ところで、晶析によって対象となるものを取り出す場合、反応槽中のイオンコントロールが重要である。反応槽内の過飽和度が高くなると、種剤の無い状態でも結晶核(微粒子)が生成されてしまう。この微粒子は、反応槽の下流へ流出することによって回収率を低下させるだけでなく、配管や後段のプロセスで結晶を成長させ、閉塞を引き起こすことが懸念される。したがって、微細な生成物が発生するようなリスクを軽減し、安定して運用できる回収装置を備える水処理装置が求められている。   By the way, when taking out the object by crystallization, ion control in the reaction vessel is important. When the degree of supersaturation in the reaction vessel increases, crystal nuclei (fine particles) are generated even without a seed. This fine particle not only lowers the recovery rate by flowing out downstream of the reaction vessel, but also raises a concern that it may cause clogging by growing crystals in the piping and subsequent processes. Accordingly, there is a need for a water treatment apparatus including a recovery apparatus that can reduce the risk of generating fine products and can be stably operated.

結晶核などの微粒子も残さず回収するためには、対象となる粒子の安息角よりも大きい角度の傾斜を反応槽の底部に設けなければならない。安息角を大きくするということは、底部が漏斗状になるため、その分だけ反応槽が高くなり、重心の位置も上がる。その結果、反応槽を安全に設置するために広い設置面積が必要になり、水処理設備としての設置コストがかかってしまう。   In order to collect all the fine particles such as crystal nuclei, it is necessary to provide an inclination at an angle larger than the angle of repose of the target particles at the bottom of the reaction vessel. Increasing the angle of repose means that the bottom becomes a funnel shape, so that the reaction tank becomes higher and the position of the center of gravity increases. As a result, a large installation area is required to install the reaction tank safely, and the installation cost as a water treatment facility is increased.

そこで、本発明は、溶存化合物を吸着固定した回収剤を反応槽から効率よく排出する水処理装置を提供する。   Then, this invention provides the water treatment apparatus which discharges | emits efficiently the collection | recovery agent which adsorb | sucked the dissolved compound from the reaction tank.

一実施形態に係る水処理装置は、反応槽と注水口と回収剤投入装置と排出口と導入口と回収口とを備える。反応槽は、円筒状の側壁及び緩やかな角度のついた底壁をする。注水口は、反応槽の中に溶存化合物を含む被処理水を供給する回収剤投入装置は、溶存化合物を吸着する粒状の回収剤を反応槽へ供給する。排出口は、反応槽の底部に沈降した回収剤よりも高い位置から被処理水を取り出す。導入口は、反応槽から取り出された被処理水の一部を反応槽の側壁の接線方向に流入させる。回収口は、反応槽の底壁の最下部に開口される。   A water treatment apparatus according to an embodiment includes a reaction tank, a water injection port, a recovery agent input device, a discharge port, an introduction port, and a recovery port. The reaction vessel has a cylindrical side wall and a gently angled bottom wall. The water injection port supplies the treated agent containing the dissolved compound into the reaction tank, and the recovery agent charging device supplies the granular recovery agent that adsorbs the dissolved compound to the reaction tank. A discharge port takes out to-be-processed water from a position higher than the collection | recovery agent settled to the bottom part of the reaction tank. The introduction port allows a part of the water to be treated taken out from the reaction tank to flow in the tangential direction of the side wall of the reaction tank. The recovery port is opened at the bottom of the bottom wall of the reaction tank.

第1の実施形態の水処理装置の概略図。Schematic of the water treatment apparatus of a 1st embodiment. 図1に示した反応槽の吸水口を通る水平断面図。The horizontal sectional view which passes along the water inlet of the reaction tank shown in FIG. 図1に示した反応槽の回収口に設置された弁機構の概略図。Schematic of the valve mechanism installed in the collection | recovery port of the reaction tank shown in FIG. 図1に示した攪拌機の運転時間と攪拌強度との関係を示す図。The figure which shows the relationship between the operation time of the stirrer shown in FIG. 1, and stirring intensity.

第1の実施形態の水処理装置100について、図1から図4を参照して説明する。図1に示す第1の実施形態の水処理装置100は、下水や食品加工工場の産業排水など、有機性の水質汚濁物質を含む排水の処理に適用され、排水中の有用資源となる溶存化合物を回収するために、回収装置10と前処理装置101とを備える。図1に示す水処理装置100は、処理工程において図示された範囲よりも上流に、活性汚泥法をはじめとする生物学的な排水処理装置を備えており、有機性廃液や汚泥を発生させる。水処理装置100は、この有機性廃液や汚泥を後工程で処理することで、さらに発生する排水中の有用資源の溶存化合物を、図1に示した回収装置10によって選択的に回収する。前処理装置101は、回収装置10の上流に設置され、上流で処理された排水が流れ込む。この前処理装置101は、排水中の浮遊物質(SS)を沈降分離させるために設置されている。浮遊物質が沈降分離された排水である上澄み液は、被処理水Wsとして回収装置10へ供給される。   The water treatment apparatus 100 of 1st Embodiment is demonstrated with reference to FIGS. 1-4. A water treatment apparatus 100 according to the first embodiment shown in FIG. 1 is applied to the treatment of wastewater containing organic water pollutants such as sewage and industrial wastewater from food processing plants, and is a dissolved compound that becomes a useful resource in wastewater. In order to collect the above, a collection device 10 and a pretreatment device 101 are provided. A water treatment apparatus 100 shown in FIG. 1 includes a biological wastewater treatment apparatus such as an activated sludge method upstream of the range illustrated in the treatment process, and generates organic waste liquid and sludge. The water treatment apparatus 100 treats this organic waste liquid and sludge in a post-process, and selectively collects the dissolved compounds of useful resources in the wastewater generated by the collection apparatus 10 shown in FIG. The pretreatment device 101 is installed upstream of the recovery device 10, and wastewater that has been treated upstream flows into the pretreatment device 101. The pretreatment apparatus 101 is installed to settle and separate suspended substances (SS) in waste water. The supernatant liquid, which is the waste water from which the suspended matter is settled and separated, is supplied to the recovery device 10 as the treated water Ws.

回収装置10は、図1に示すように、反応槽11と注水口12と回収剤投入装置13と排出口151と導入口161と回収口113とを備える。本実施形態では、さらに攪拌機14と排水流路15と循環流路16と弁機構17とを備える。反応槽11は、円筒状の側壁111、および、下方に向かって凸状になる緩やかな角度の付いた底壁112を有している。本実施形態では、底壁112は、図1に示すような、側壁111の下端につながる半球形状もしくは半楕円形状に形成されている。底壁112は、下方に向かって凸形の円錐面、いわゆるすり鉢状であってもよい。   As shown in FIG. 1, the recovery device 10 includes a reaction tank 11, a water injection port 12, a recovery agent input device 13, a discharge port 151, an introduction port 161, and a recovery port 113. In this embodiment, a stirrer 14, a drainage channel 15, a circulation channel 16, and a valve mechanism 17 are further provided. The reaction tank 11 has a cylindrical side wall 111 and a bottom wall 112 with a gentle angle that protrudes downward. In the present embodiment, the bottom wall 112 is formed in a hemispherical shape or a semi-elliptical shape connected to the lower end of the side wall 111 as shown in FIG. The bottom wall 112 may have a conical surface convex downward, a so-called mortar shape.

注水口12は、側壁111の上部に設けられており、前処理装置101で処理された被処理水Wsを反応槽11に供給する。供給される被処理水Wsは、注水口12よりも低い液面レベルWHまで反応槽11に満たされる。被処理水Wsの供給または停止は、前処理装置101から注水口12までの間に設置される注水弁121で制御される。   The water injection port 12 is provided in the upper part of the side wall 111 and supplies the water to be treated Ws treated by the pretreatment device 101 to the reaction tank 11. The treated water Ws to be supplied is filled in the reaction tank 11 up to the liquid level WH lower than the water inlet 12. Supply or stop of the water to be treated Ws is controlled by a water injection valve 121 installed between the pretreatment device 101 and the water injection port 12.

回収剤投入装置13は、反応槽11の上方に設置されており、注水弁121の制御と連動して回収剤Sを反応槽11に供給する。回収剤Sは、溶存化合物を晶析、化学反応、イオン交換等によりその表面に吸着固定する粒状に成形された材料である。回収剤Sは、その粒径に応じて被処理水Ws中における沈降速度が決定される。ここで、沈降速度とは、被処理水Ws中に浮遊した回収剤Sが反応槽11の底部に沈むまでの時間を意味する。したがって、沈降速度が速いということは、回収剤Sが被処理水Ws中に保持される時間が短く、沈降速度が遅いということは、回収剤Sが被処理水Ws中に保持される時間長いことを意味する。   The recovery agent charging device 13 is installed above the reaction tank 11 and supplies the recovery agent S to the reaction tank 11 in conjunction with the control of the water injection valve 121. The recovery agent S is a material formed into a granular shape that adsorbs and fixes a dissolved compound on its surface by crystallization, chemical reaction, ion exchange, or the like. The settling rate of the recovery agent S in the water to be treated Ws is determined according to the particle size. Here, the sedimentation speed means the time until the recovery agent S suspended in the water to be treated Ws sinks to the bottom of the reaction tank 11. Therefore, the fast sedimentation speed means that the time for collecting the recovery agent S in the water to be treated Ws is short, and the slow sedimentation speed means that the time for collecting the recovery agent S in the water to be treated Ws is long. Means that.

被処理水Wsとの接触時間すなわち被処理水Ws中の溶存化合物を吸着するのに寄与する時間を適切に制御するために、回収剤Sは、粒径が一定のサイズに分級調整されたものを採用する。回収剤Sの物理量として一例をあげると、粒径は、0.5〜2.0mm、平均値は1.0〜1.5mmであり、比重は1.5〜3.0mm程度である。また回収剤Sの主成分は、回収した溶存化合物を再生利用する際に処理しやすいもの、例えば分離が必要であれば分離しやすいもの、利用する上で害が無ければそのまま利用できるもの等が選択される。   In order to properly control the contact time with the water to be treated Ws, that is, the time that contributes to adsorbing the dissolved compounds in the water to be treated Ws, the recovery agent S is classified and adjusted to have a uniform particle size. Is adopted. As an example of the physical quantity of the recovery agent S, the particle size is 0.5 to 2.0 mm, the average value is 1.0 to 1.5 mm, and the specific gravity is about 1.5 to 3.0 mm. The main component of the recovery agent S is one that can be easily treated when the recovered dissolved compound is recycled, such as one that can be easily separated if separation is necessary, or one that can be used as is if there is no harm in use. Selected.

攪拌機14は、回転翼141と駆動装置142と駆動軸143を備える。回転翼141は、反応槽11に貯留されている被処理水Wsの液面レベルWHよりも低い位置、本実施形態では、反応槽11に供給された回収剤Sが底部に沈降した場合の上限レベルSHから液面レベルWHの間に配置される。駆動装置142は、反応槽11の上方に配置され、駆動軸143によって回転翼141に連結されており、この回転翼141を回転させる。回転翼141は、回転されることによって、被処理水Wsを下方へ流動させる。   The stirrer 14 includes a rotary blade 141, a drive device 142, and a drive shaft 143. The rotary blade 141 is located at a position lower than the liquid level WH of the water to be treated Ws stored in the reaction tank 11, in this embodiment, the upper limit when the recovered agent S supplied to the reaction tank 11 settles to the bottom. It is arranged between the level SH and the liquid level WH. The drive device 142 is disposed above the reaction tank 11 and is connected to the rotary blade 141 by a drive shaft 143 to rotate the rotary blade 141. The rotating blade 141 causes the water to be treated Ws to flow downward by being rotated.

回転翼141の回転速度が一定の速度よりも速い場合、すなわち下方に向かう流れが強い場合、下方へ向かった被処理水Wsは、底壁112で回収剤Tを回転翼141よりも外周側へ巻き上げながら、駆動軸143を中心とするトーラス面に沿うような環状の循環流Vsとなる。また、回転翼141の回転速度が一定の速度よりも遅い場合、すなわち回収剤Sを巻き上げない程度に被処理水Wsを下方へ向かわせる流れが弱い場合、被処理水Ws中を浮遊する回収剤Sは、その比重によってしだいに反応槽11の底部に沈降する。   When the rotational speed of the rotary blade 141 is higher than a certain speed, that is, when the downward flow is strong, the treated water Ws that has gone downward has the recovered wall T on the bottom wall 112 to the outer peripheral side than the rotary blade 141. While winding up, an annular circulation flow Vs is formed along the torus surface with the drive shaft 143 as the center. In addition, when the rotational speed of the rotary blade 141 is slower than a certain speed, that is, when the flow for directing the treated water Ws downward to the extent that the collected agent S is not wound up is weak, the collected agent floating in the treated water Ws. S gradually settles to the bottom of the reaction tank 11 due to its specific gravity.

排水流路15は、反応槽11で溶存化合物の回収処理が行われた後の被処理水Wsを汲み出す。この排水流路15は、反応槽11に連通する排出口151を有している。排出口151は、反応槽11の底部に沈降した回収剤の上限レベルSHよりも高い位置WLに設けられている。図1において排水流路15は、反応槽11の上部を回って、反応槽よりも低い位置に設置された排水タンク152に接続されている。被処理水Wsが排出されると、反応槽11の底部には、溶存化合物を吸着した回収剤S及び排出口151の位置WLよりも低い範囲に被処理水Wsが残る。   The drainage flow path 15 pumps out the to-be-processed water Ws after the recovery process of the dissolved compound is performed in the reaction tank 11. The drainage channel 15 has a discharge port 151 that communicates with the reaction tank 11. The discharge port 151 is provided at a position WL higher than the upper limit level SH of the recovery agent that has settled at the bottom of the reaction tank 11. In FIG. 1, the drainage flow path 15 is connected to a drainage tank 152 installed around the upper part of the reaction tank 11 and lower than the reaction tank. When the water to be treated Ws is discharged, the water to be treated Ws remains at the bottom of the reaction tank 11 in a range lower than the position of the recovery agent S that has adsorbed the dissolved compound and the position WL of the discharge port 151.

循環流路16は、排水タンク152と反応槽11とを連通し、排水タンク152に溜められた被処理水Wsの一部を反応槽11へ戻す流路である。循環流路16は、反応槽11の側壁111に接続された導入口161と、被処理水Wsを排水タンク152から汲み出すポンプ162を有している。導入口161は、図2に示すように、沈降した回収剤Sの上限レベルSHに設置され、反応槽11の側壁の内周面に沿って接線方向へ被処理水Wsを流入させる。本実施形態では、導入口161は、側壁111と底壁112との境界部近傍に設けられている。   The circulation channel 16 is a channel that connects the drain tank 152 and the reaction tank 11 and returns a part of the water to be treated Ws stored in the drain tank 152 to the reaction tank 11. The circulation channel 16 has an inlet 161 connected to the side wall 111 of the reaction tank 11 and a pump 162 that pumps the water to be treated Ws from the drain tank 152. As shown in FIG. 2, the inlet 161 is installed at the upper limit level SH of the recovered recovery agent S, and allows the water to be treated Ws to flow in the tangential direction along the inner peripheral surface of the side wall of the reaction tank 11. In the present embodiment, the inlet 161 is provided in the vicinity of the boundary between the side wall 111 and the bottom wall 112.

回収口113は、図1及び図3に示すように、反応槽11の底壁112の最下部となる位置に開口されている。この回収口113は、図3に示すように、反応槽11に被処理水Wsが貯留されている状態で開弁されると、浮力によって開弁された状態を維持し、被処理水Wsの水位が一定の水位以下になると閉弁される弁機構17を有している。   As shown in FIGS. 1 and 3, the recovery port 113 is opened at a position that is the lowest part of the bottom wall 112 of the reaction tank 11. As shown in FIG. 3, when the recovery port 113 is opened while the water to be treated Ws is stored in the reaction tank 11, the recovery port 113 maintains the state opened by buoyancy, and the water to be treated Ws. It has a valve mechanism 17 that is closed when the water level falls below a certain level.

弁機構17が開弁されると、回収口113から回収剤Sが被処理水Wsとともに排出される。このとき、回収剤Sの流動性を維持するために、導入口161から反応槽11の側壁の内面に沿う接線方向へ排水タンク152の被処理水Wsが導入される。導入された被処理水Wsは、図2に示すように、反応槽11の側壁111の内面に沿って旋回しながら回収剤Sを押し流し、反応槽11の底部に残った回収剤Sを残さず洗い流す。   When the valve mechanism 17 is opened, the recovery agent S is discharged from the recovery port 113 together with the water to be treated Ws. At this time, in order to maintain the fluidity of the recovery agent S, the water to be treated Ws of the drainage tank 152 is introduced from the introduction port 161 in a tangential direction along the inner surface of the side wall of the reaction tank 11. As shown in FIG. 2, the treated water Ws introduced introduces the recovery agent S while swirling along the inner surface of the side wall 111 of the reaction tank 11, and does not leave the recovery agent S remaining at the bottom of the reaction tank 11. Wash away.

したがって、反応槽11の底壁112は、回収剤Sに対する安息角よりも小さい角度の傾斜でもであってもよい。図1に示す反応槽11の底壁112は、半球形状であり、したがって、回収口113の周辺は、安息角よりも小さい角度、実質的にほぼ水平である。このような場合でも、導入口161が被処理水Wsを接線方向に導入するので、安息角よりも小さい角度に形成された範囲の底壁に回収剤Sが取り残されていても、導入した被処理水Wsによって回収口113から排出させることができる。   Therefore, the bottom wall 112 of the reaction tank 11 may be inclined at an angle smaller than the angle of repose with respect to the recovery agent S. The bottom wall 112 of the reaction tank 11 shown in FIG. 1 has a hemispherical shape, and therefore the periphery of the recovery port 113 is substantially substantially horizontal at an angle smaller than the repose angle. Even in such a case, since the inlet 161 introduces the water to be treated Ws in the tangential direction, even if the recovery agent S is left on the bottom wall in the range formed at an angle smaller than the angle of repose, It can be discharged from the recovery port 113 by the treated water Ws.

回収剤Sを洗い流すために導入口161から反応槽11に供給される被処理水Wsは、排水タンク152に貯留されていた被処理水Wsであり、反応槽11において溶存化合物を回収する処理後の水すなわち浄化された水であり、かつ、回収剤Sに溶存化合物が吸着固定された後の水質すなわち溶存化合物が溶解及び溶出することの無い安定した状態を保つのに適したイオンバランスの水質である。したがって、排水タンク152の被処理水Wsを利用することで、回収剤Sに吸着させた溶存化合物を効率よく回収できる。   The treated water Ws supplied to the reaction tank 11 from the inlet 161 in order to wash away the recovery agent S is the treated water Ws stored in the drain tank 152, and after the treatment for recovering the dissolved compound in the reaction tank 11. The water quality after the dissolved compound is adsorbed and fixed to the recovery agent S, that is, the water quality of the ion balance suitable for maintaining a stable state in which the dissolved compound is not dissolved and eluted. It is. Therefore, the dissolved compound adsorbed on the recovery agent S can be efficiently recovered by using the water to be treated Ws in the drainage tank 152.

底壁112が半球形状または半楕円形状に形成されていることによって、側壁111から底壁112への接続が滑らかになる。導入口161から反応槽11へ流入した被処理水Wsは、側壁111に沿う旋回流から底壁112に沿う旋回流へとなだらかに移行するため、その水流による勢いが維持される。したがって少ない水量でも効果的に回収剤Sを回収口113から排出させることができる。また、底壁112が回収剤Sに対する安息角よりも小さい角度に設定することができるため、反応槽11を低くすることができる。反応槽11の重心の位置が下がるため、安定性もよく設置場所となる専有面積も小さくすることができる。   Since the bottom wall 112 is formed in a hemispherical shape or a semi-elliptical shape, the connection from the side wall 111 to the bottom wall 112 becomes smooth. Since the to-be-processed water Ws which flowed into the reaction tank 11 from the introduction port 161 smoothly moves from the swirling flow along the side wall 111 to the swirling flow along the bottom wall 112, the momentum due to the water flow is maintained. Therefore, the recovery agent S can be effectively discharged from the recovery port 113 even with a small amount of water. Moreover, since the bottom wall 112 can be set to an angle smaller than the angle of repose with respect to the recovery agent S, the reaction vessel 11 can be lowered. Since the position of the center of gravity of the reaction vessel 11 is lowered, the stability is good and the area occupied by the installation can be reduced.

本実施形態の水処理装置100の回収装置10において、攪拌機14は、少なくとも2段階の攪拌強度で、反応槽11内の被処理水Ws及び回収剤Sをかき混ぜることができる。本実施形態では、粒径が一定の範囲になるように調整された回収剤Sを採用しているので、被処理水Wsの流れによって巻き上げられるときの攪拌強度、および、回収剤Sが被処理水Ws中を沈降するときの沈降速度は、安定する。つまり、被処理水Ws中の回収剤Sの拡散と沈降を制御しやすく、被処理水Wsに対して回収剤Sを均質に接触させることができるので、被処理水Wsを処理する時間を設定しやすい。   In the recovery apparatus 10 of the water treatment apparatus 100 of this embodiment, the stirrer 14 can stir the treated water Ws and the recovery agent S in the reaction tank 11 with at least two stages of stirring intensity. In the present embodiment, since the recovery agent S adjusted so that the particle size is in a certain range is adopted, the stirring strength when being wound up by the flow of the water to be treated Ws, and the recovery agent S are treated. The sedimentation speed when sedimenting in the water Ws is stable. That is, since it is easy to control the diffusion and settling of the recovery agent S in the water to be treated Ws and the recovery agent S can be brought into homogeneous contact with the water to be treated Ws, the time for treating the water to be treated Ws is set. It's easy to do.

晶析やイオン交換等の化学反応に基づいて溶存化合物が回収剤Sの表面に吸着固定される場合、反応速度に律速される。また、過度の攪拌は、回収剤Sの表面における化学反応を妨げたり急激に促進させたりするだけでなく、溶存化合物が過飽和状態になることで、溶存化合物の結晶塩を析出させこれを核として成長した微細粒子を発生させるかもしれない。そこで、本実施形態では、図4に示すように攪拌強度の大きい急速攪拌A1と攪拌強度の小さい緩速攪拌A2とを交互に繰り返すように回転翼141を回転させる。   When the dissolved compound is adsorbed and fixed on the surface of the recovery agent S based on a chemical reaction such as crystallization or ion exchange, the reaction rate is limited. Excessive stirring not only hinders or accelerates the chemical reaction on the surface of the recovery agent S, but also causes the dissolved compound to become supersaturated, thereby precipitating a crystalline salt of the dissolved compound and using this as a nucleus. May generate grown fine particles. Therefore, in the present embodiment, as shown in FIG. 4, the rotating blade 141 is rotated so as to alternately repeat rapid stirring A1 having a high stirring strength and slow stirring A2 having a low stirring strength.

急速攪拌A1において、反応槽11中の回収剤Sは、回転翼141が作り出す流れによってほとんどが巻き上げられて、被処理水Ws中に浮遊した状態となる。つまり、急速攪拌A1の攪拌強度は、図4に示すように回収剤Sが被処理水Ws中にまんべんなく拡散された全攪拌状態Maを超える。また、緩速攪拌A2において、反応槽11中の回収剤Sは、底部から巻き上げられることなく沈降する。つまり、緩速攪拌A2の攪拌強度は、図4に示すように回収剤Sを反応槽11の底部から巻き上げ浮遊した状態に維持できなくなる浮遊限界Mbよりも弱い。攪拌強度が強すぎると、回収剤Sどうしが衝突するなどによって、その表面に形成された溶存化合物の層を破壊するかもしれない。そこで、急速攪拌A1の攪拌強度は、回収剤Sから溶存化合物を剥離させる攪拌強度となる攪拌限界Mcを越えない攪拌強度に設定される。   In the rapid stirring A1, most of the recovery agent S in the reaction tank 11 is wound up by the flow created by the rotary blade 141 and floats in the water to be treated Ws. That is, the stirring intensity of the rapid stirring A1 exceeds the total stirring state Ma in which the recovery agent S is evenly diffused in the water to be treated Ws as shown in FIG. Further, in the slow stirring A2, the recovery agent S in the reaction tank 11 settles without being rolled up from the bottom. That is, the stirring intensity of the slow stirring A2 is weaker than the floating limit Mb that makes it impossible to keep the recovered agent S wound up and suspended from the bottom of the reaction tank 11 as shown in FIG. If the stirring strength is too strong, the layer of the dissolved compound formed on the surface may be destroyed due to collision of the recovery agents S. Therefore, the stirring strength of the rapid stirring A1 is set to a stirring strength that does not exceed the stirring limit Mc, which is the stirring strength for peeling the dissolved compound from the recovery agent S.

急速攪拌A1と緩速攪拌A2とを繰り返す時間間隔は、急速攪拌A1において巻き上げられた回収剤Sが緩速攪拌A2で沈降するまでの時間によって変わる。急速攪拌A1と緩速攪拌A2とを繰り返す図4に示す運転パターンは、あくまでも一例に過ぎないが、急速攪拌A1の運転時間に対する緩速攪拌A2の運転時間の比率は、約1対3程度にするとよい。攪拌強度を段階的に変化させて回収剤Sの拡販及び沈降を繰り返し行うことを一定時間以上継続することで、被処理水Ws中の溶存化合物の回収率が向上する。回収剤Sの組成や物理量、回収対象となる溶存化合物、被処理水Wsの温度、溶存化合物の含有濃度など被処理水Wsの物理量などによっても運転時間の比率は変動し得る。   The time interval at which the rapid stirring A1 and the slow stirring A2 are repeated varies depending on the time until the recovery agent S wound up in the rapid stirring A1 settles in the slow stirring A2. The operation pattern shown in FIG. 4 that repeats the rapid stirring A1 and the slow stirring A2 is merely an example, but the ratio of the operating time of the slow stirring A2 to the operating time of the rapid stirring A1 is about 1 to 3. Good. The recovery rate of the dissolved compound in the water to be treated Ws is improved by continuously increasing the stirring strength stepwise and repeating the sales and settling of the recovery agent S for a certain period of time. The ratio of operation time can also vary depending on the composition and physical quantity of the recovery agent S, the dissolved compound to be collected, the temperature of the water to be treated Ws, the physical quantity of the water to be treated Ws such as the concentration of dissolved compound, and the like.

本実施形態の水処理装置100は、回収装置10の反応槽11に攪拌機14を備えているので、穏やかにかつ均質に回収剤Sと被処理水Wsとを混合させることができる。したがって、溶存化合物が表面に晶析されるタイプの回収剤Sを使用する場合であっても、晶析された生成塩の結晶が剥離することを抑制することができる。つまり、剥離した結晶を核として生成塩の結晶がさらに成長することを防止する。   Since the water treatment apparatus 100 of this embodiment is equipped with the stirrer 14 in the reaction tank 11 of the collection apparatus 10, the collection agent S and the water to be treated Ws can be mixed gently and uniformly. Therefore, even when the recovery agent S of the type in which the dissolved compound is crystallized on the surface is used, it is possible to suppress the crystallization of the crystallized product salt. That is, the crystal of the generated salt is prevented from further growing using the peeled crystal as a nucleus.

本発明のいくつかの実施形態を説明した。これらの実施形態は、例として提示したものであり、発明の範囲を限定することを意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   A number of embodiments of the invention have been described. These embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

100…水処理装置、101…前処理装置、10…回収装置、11…反応槽、111…側壁、112…底壁、113…回収口、12…注水口、13…回収剤投入装置、14…攪拌機、141…回転翼、151…排出口、161…導入口、17…弁機構、Ws…被処理水、S…回収剤、A1…急速攪拌、A2…緩速攪拌。   DESCRIPTION OF SYMBOLS 100 ... Water treatment apparatus, 101 ... Pretreatment apparatus, 10 ... Collection | recovery apparatus, 11 ... Reaction tank, 111 ... Side wall, 112 ... Bottom wall, 113 ... Collection port, 12 ... Water injection port, 13 ... Collection | recovery agent input apparatus, 14 ... Stirrer 141 ... Rotating blade 151 ... Discharge port 161 ... Inlet port 17 ... Valve mechanism Ws ... Water to be treated, S ... Recovery agent, A1 ... Quick stirring, A2 ... Slow stirring.

Claims (7)

円筒状の側壁及び緩やかな角度のついた底壁を有した反応槽と、
前記反応槽の中に溶存化合物を含む被処理水を供給する注水口と、
前記溶存化合物を吸着する粒状の回収剤を前記反応槽へ供給する回収剤投入装置と、
前記反応槽の底部に沈降した前記回収剤よりも高い位置から前記被処理水を取り出す排出口と、
前記反応槽から取り出された前記被処理水の一部を前記反応槽の前記側壁の接線方向に流入させる導入口と、
前記反応槽の前記底壁の最下部に開口された回収口と、
を備えることを特徴とする水処理装置。
A reaction vessel having a cylindrical side wall and a gently angled bottom wall;
A water inlet for supplying water to be treated containing dissolved compounds in the reaction tank;
A recovery agent charging device for supplying a granular recovery agent that adsorbs the dissolved compound to the reaction tank;
A discharge port for taking out the water to be treated from a position higher than the recovery agent settled at the bottom of the reaction tank;
An inlet through which a part of the water to be treated taken out from the reaction tank flows in a tangential direction of the side wall of the reaction tank;
A recovery port opened at the bottom of the bottom wall of the reaction vessel;
A water treatment apparatus comprising:
前記底壁は、前記回収剤に対する安息角よりも小さい角度に傾斜している
ことを特徴とする請求項1に記載された水処理装置。
The water treatment apparatus according to claim 1, wherein the bottom wall is inclined at an angle smaller than an angle of repose with respect to the recovery agent.
前記回収口は、前記反応槽に前記被処理水が貯留されている状態で開弁されると浮力によって開弁された状態を維持し、前記被処理水が一定の水位以下になると閉弁される弁機構を有する
ことを特徴とする請求項1または請求項2に記載された水処理装置。
The recovery port maintains a state opened by buoyancy when the water to be treated is stored in the reaction tank, and is closed when the water to be treated is below a certain water level. The water treatment apparatus according to claim 1, further comprising a valve mechanism.
前記反応槽に貯留された前記被処理水及び前記回収剤を少なくとも2段階の攪拌強度でかき混ぜる攪拌機をさらに備える
ことを特徴とする請求項1から請求項3のいずれか1項に記載された水処理装置。
The water according to any one of claims 1 to 3, further comprising a stirrer that stirs the water to be treated and the recovery agent stored in the reaction tank with at least two stages of stirring intensity. Processing equipment.
前記攪拌機は、攪拌強度の大きい急速攪拌と攪拌強度の小さい緩速攪拌とを交互に繰り返す回転翼を備える
ことを特徴とする請求項4に記載された水処理装置。
5. The water treatment apparatus according to claim 4, wherein the stirrer includes a rotary blade that alternately repeats rapid stirring with high stirring strength and slow stirring with low stirring strength.
前記急速攪拌では、前記回転翼によって前記回収剤を前記被処理水中に拡散させ、
前記緩速攪拌では、前記回転翼が回っていても前記回収剤が前記反応槽の底へ沈降する
ことを特徴とする請求項4または請求項5に記載された水処理装置。
In the rapid stirring, the recovery agent is diffused into the treated water by the rotor blades,
6. The water treatment apparatus according to claim 4, wherein, in the slow stirring, the recovery agent settles to the bottom of the reaction tank even if the rotor blades rotate.
前記注水口の上流に設置されて被処理水中の浮遊物質を沈降分離する前処理装置をさらに備える
ことを特徴とする請求項1から請求項6のいずれか1項に記載された水処理装置。
The water treatment device according to any one of claims 1 to 6, further comprising a pretreatment device that is installed upstream of the water injection port and settles and separates suspended substances in the water to be treated.
JP2015219419A 2015-11-09 2015-11-09 Water treatment apparatus Pending JP2017087122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015219419A JP2017087122A (en) 2015-11-09 2015-11-09 Water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015219419A JP2017087122A (en) 2015-11-09 2015-11-09 Water treatment apparatus

Publications (1)

Publication Number Publication Date
JP2017087122A true JP2017087122A (en) 2017-05-25

Family

ID=58767433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015219419A Pending JP2017087122A (en) 2015-11-09 2015-11-09 Water treatment apparatus

Country Status (1)

Country Link
JP (1) JP2017087122A (en)

Similar Documents

Publication Publication Date Title
RU2529018C2 (en) Method of deactivating liquid effluent, containing one or more radioactive chemical elements, by processing in fluidised bed
US2876863A (en) Treatment of aqueous wastes containing hydrocarbons
JP2016504185A5 (en)
KR101635527B1 (en) Carrier Recovery Type Automation Water Treatment Device
JP6630054B2 (en) Wastewater treatment method and wastewater treatment device
JP6067268B2 (en) Water treatment system
KR101964830B1 (en) Water treatment apparatus
MXPA06012086A (en) Process for separating one or more solids from water miscible fluids and an apparatus therefor.
JP6626888B2 (en) Wastewater clarification method
KR20120125323A (en) Ballast flocculation and sedimentation water treatment system with simplified sludge recirculation, and process therefor
JP2011072936A (en) Fluidized bed type biological treatment apparatus
JP2017087122A (en) Water treatment apparatus
KR101603406B1 (en) Clarifier Using Ultrasonic Generator and Method for Operating thereof
TWI640477B (en) Method of synthesizing homogeneous granular basic cupric carbonate and copper oxide by using fluidized-bed crystallization technology
US2377545A (en) Liquid treatment
JP2005262046A (en) Magnetic separation device and water-cleaning device using it
US2336659A (en) Water softening apparatus
KR101991867B1 (en) Sewage treatment device and treatment method using microorganism and magnetic material
JP2005007386A (en) Sludge washing method and its apparatus
JP2017094234A (en) Polluted soil purification method and purification system
KR20150081920A (en) advanced treatment device of wastewater and advanced treatment method of wastewater
KR102278779B1 (en) Half-pipe skimmer and water treatment device having the same
KR101994785B1 (en) Wastewater treatment device and treatment method using magnetic flocculant
JP5917363B2 (en) Water treatment equipment
JPH09234458A (en) Floating separator and method therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170911

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170911