JP2005007386A - Sludge washing method and its apparatus - Google Patents

Sludge washing method and its apparatus Download PDF

Info

Publication number
JP2005007386A
JP2005007386A JP2004140522A JP2004140522A JP2005007386A JP 2005007386 A JP2005007386 A JP 2005007386A JP 2004140522 A JP2004140522 A JP 2004140522A JP 2004140522 A JP2004140522 A JP 2004140522A JP 2005007386 A JP2005007386 A JP 2005007386A
Authority
JP
Japan
Prior art keywords
tower
sludge
cleaning
washing
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004140522A
Other languages
Japanese (ja)
Other versions
JP4563073B2 (en
Inventor
Masaaki Okajima
正明 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004140522A priority Critical patent/JP4563073B2/en
Publication of JP2005007386A publication Critical patent/JP2005007386A/en
Application granted granted Critical
Publication of JP4563073B2 publication Critical patent/JP4563073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a sludge washing method capable of effectively and continuously treating sludge containing toxic or unwanted components such as heavy metals, and its apparatus. <P>SOLUTION: While the sludge together with a flocculant is charged into the top of a washing column 1, fresh water and a washing agent are supplied thereto from the lower part of the washing column 1. The inside is stirred by a stirrer 6 to flocculate and settle the sludge, at the same time, the toxic or unwanted components inside the sludge are moved in the fresh water. While overflow water is discharged, the settled sludge while washing is extracted from a discharge port 4 at the bottom for recycling. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、重金属等の有害、ないしは不要成分を含有する汚染土壌や水処理における汚泥、ごみ焼却灰等(以下これらを単に「汚泥」という)の有害ないし不要成分を除去する汚泥の洗浄方法ならびにその装置に関する。   The present invention relates to a method for cleaning sludge that removes harmful or unnecessary components such as heavy metals and other contaminated soils containing undesired or unnecessary components, sludge in water treatment, waste incineration ash, etc. (hereinafter simply referred to as “sludge”), and It relates to the device.

重金属等の有害、ないしは不要成分を含有する汚染土壌や、水処理における汚泥、ごみ焼却灰等はそのままでは埋め立て処理等を行うことができないので、こうした有害ないし不要成分を除去する何らかの洗浄処理が必要であり、さまざまの提案がなされている。たとえば特許文献1には、循環法による汚染土壌の浄化装置及び方法が記載されている。図4によりこれを簡単に説明する。   Since contaminated soil containing harmful or unnecessary components such as heavy metals, sludge in water treatment, waste incineration ash, etc. can not be landfilled as it is, some kind of cleaning treatment to remove these harmful or unnecessary components is necessary Various proposals have been made. For example, Patent Document 1 discloses a device and a method for purifying contaminated soil by a circulation method. This will be briefly described with reference to FIG.

図4は特許文献1に記載された従来の技術における一実施例を示す洗浄槽の概略図で、91は蓋付きの洗浄槽、92、93は溶剤または洗浄剤の供給口、94は排出口、95は洗浄剤の供給ポンプ、96は循環ポンプ、97は排出ポンプ、98a 〜98d は操作弁、Fは濾過フィルタ、99はその支持部である。   FIG. 4 is a schematic view of a cleaning tank showing an embodiment of the prior art described in Patent Document 1. 91 is a cleaning tank with a lid, 92 and 93 are supply ports for a solvent or cleaning agent, and 94 is a discharge port. , 95 is a cleaning agent supply pump, 96 is a circulation pump, 97 is a discharge pump, 98a to 98d are operation valves, F is a filtration filter, and 99 is a supporting portion thereof.

洗浄槽91の蓋を開いて内部に洗浄しようとする汚泥を投入する。洗浄槽91の内部には格子状の支持部99の上に濾過フィルタFが敷設されているので、投入された汚泥はその上に堆積される。   The lid of the cleaning tank 91 is opened, and sludge to be cleaned is put inside. Since the filtration filter F is laid on the lattice-like support part 99 inside the cleaning tank 91, the introduced sludge is deposited thereon.

操作弁98c 、98d を閉じ、98a 、98b を開放して供給ポンプ95により上段の供給口92から洗浄槽91内に溶剤または洗浄剤を供給し、循環ポンプ96により洗浄槽91内で溶剤または洗浄剤を所定時間循環させることにより汚泥内の油、PCB、ダイオキシン等の有害ないし不要成分を溶剤または洗浄剤内に抽出して汚泥を浄化した後、洗浄槽91内に残った浄化された泥を取り出して再利用し、操作弁98d を開いて排出ポンプ97により洗浄槽91内の溶剤または洗浄剤を排出する。   The operation valves 98c and 98d are closed, 98a and 98b are opened, the solvent or cleaning agent is supplied into the cleaning tank 91 from the upper supply port 92 by the supply pump 95, and the solvent or cleaning agent is cleaned in the cleaning tank 91 by the circulation pump 96. After the agent is circulated for a predetermined period of time, harmful or unnecessary components such as oil, PCB, dioxin, etc. in the sludge are extracted into the solvent or cleaning agent to purify the sludge, and then the purified mud remaining in the cleaning tank 91 is removed. The operation valve 98d is opened, and the solvent or cleaning agent in the cleaning tank 91 is discharged by the discharge pump 97.

操作弁98b を閉じ、操作弁98c を開いて下段の供給口93から洗浄槽91内に溶剤または洗浄剤を供給するようにすれば、フィルタFの目詰まりを解消することができる。
特開2003−88847号公報
If the operation valve 98b is closed and the operation valve 98c is opened to supply the solvent or the cleaning agent into the cleaning tank 91 from the lower supply port 93, the clogging of the filter F can be eliminated.
JP 2003-88847 A

ところで、特許文献1に記載された従来の技術においては、洗浄槽91内に汚泥を所定量ずつ投入して行うバッチ処理であるため能率が低く、かつ1回の循環における抽出量が少ないため有害ないし不要成分を所定濃度以下まで低下させるには多くの回数の循環を必要とし、長時間と多量の新水を要するなどの問題点がある。   By the way, in the conventional technique described in Patent Document 1, since it is a batch process in which sludge is put into the washing tank 91 by a predetermined amount, the efficiency is low, and it is harmful because the amount of extraction in one circulation is small. In addition, in order to reduce unnecessary components to a predetermined concentration or less, there is a problem that a large number of circulations are required and a long time and a large amount of fresh water are required.

本発明は、従来の技術におけるこのような問題点を解消し、汚泥内の有害ないし不要成分を少量の新水で効率よく連続的に除去することのできる汚泥の洗浄方法ならびにそのための装置を実現することを目的とする。   The present invention eliminates such problems in the prior art and realizes a method and apparatus for cleaning sludge that can efficiently and continuously remove harmful or unnecessary components in sludge with a small amount of fresh water. The purpose is to do.

本発明の汚泥の洗浄方法は、汚泥を凝集剤とともに縦長円筒状の洗浄塔の頂部に投入する一方、この洗浄塔の下部から新水を塔内に供給し、塔内を攪拌して前記汚泥を凝集、沈降させると同時に汚泥内の有害ないし不要成分を新水内に移行させ、オーバーフロー水を排出するとともに洗浄されながら沈降した汚泥を前記洗浄塔底部から引き抜くことを特徴とするものであるか、予め洗浄剤を添加した汚泥を凝集剤とともに縦長円筒状の洗浄塔の頂部に投入する一方、この洗浄塔の下部から新水を塔内に供給し、塔内を攪拌して前記汚泥を凝集、沈降させると同時に汚泥内の有害ないし不要成分を新水内に移行させ、オーバーフロー水を排出するとともに洗浄されながら沈降した汚泥を前記洗浄塔底部から引き抜くことを特徴とするものであるか、また汚泥を凝集剤とともに縦長円筒状の洗浄塔の頂部に投入する一方、この洗浄塔の下部から新水ならびに洗浄剤を塔内に供給し、塔内を攪拌して前記汚泥を凝集、沈降させると同時に汚泥内の有害ないし不要成分を新水内に移行させ、オーバーフロー水を排出するとともに洗浄されながら沈降した汚泥を前記洗浄塔底部から引き抜くことを特徴とするものであるか、あるいは、洗浄塔底部から引き抜いた汚泥を凝集剤とともに次段の洗浄塔の頂部に投入し、前記の洗浄処理を行って洗浄されながら沈降した汚泥を次段の洗浄塔の底部から引き抜き、必要に応じてこの洗浄処理を繰り返し行うことを特徴とするものである。   In the sludge cleaning method of the present invention, the sludge is added to the top of a vertically long cylindrical cleaning tower together with a flocculant, while fresh water is supplied into the tower from the lower portion of the cleaning tower, and the inside of the tower is stirred to obtain the sludge. Is characterized in that harmful or unnecessary components in the sludge are transferred into the new water at the same time as the coagulated and settled, the overflow water is discharged, and the sludge that has settled while being washed is drawn out from the bottom of the washing tower. In addition, the sludge to which the cleaning agent has been added in advance is added to the top of the vertical cylindrical cleaning tower together with the flocculant, while fresh water is supplied into the tower from the bottom of the cleaning tower, and the inside of the tower is stirred to aggregate the sludge. At the same time as sedimentation, harmful or unnecessary components in the sludge are transferred into the new water, the overflow water is discharged, and the sludge that has settled while being washed is extracted from the bottom of the washing tower. In addition, sludge is added together with a flocculant to the top of a vertically long cylindrical cleaning tower, while fresh water and a cleaning agent are supplied into the tower from the bottom of the cleaning tower, and the inside of the tower is stirred to agglomerate and settle the sludge. At the same time, the harmful or unnecessary components in the sludge are transferred into the new water, and the overflow water is discharged and the sludge that has been washed and washed out is extracted from the bottom of the washing tower, or is washed. The sludge extracted from the bottom of the tower is put together with the flocculant into the top of the next-stage washing tower, and the sludge that settled while being washed by the above-described washing treatment is withdrawn from the bottom of the next-stage washing tower. The cleaning process is repeatedly performed.

また、本発明の汚泥の洗浄装置は、縦長円筒状の洗浄塔と、その頂部に取り付けられ、汚泥の投入口と凝集剤注入ノズルとを備えた内筒と、前記洗浄塔底部から沈降した汚泥を引き抜く排出口と、これに接続される移送ポンプと、前記洗浄塔の下部から塔内に新水ならびに洗浄剤を供給する新水ノズルと、塔内を攪拌する攪拌機と、洗浄塔頂部からオーバーフローするオーバーフロー水を受けるオーバーフロータンクとからなることを特徴とするものであるか、前記新水ノズルに加えて洗浄塔の中部から塔内に洗浄剤を供給する洗浄剤ノズルを備えたものであるか、あるいは、前記の洗浄塔を複数基設置し、前段の底部の排出口を移送ポンプを介して次段の頂部の投入口に接続したことを特徴とするものである。   Further, the sludge cleaning apparatus of the present invention is a vertical cylindrical cleaning tower, an inner cylinder attached to the top of the cleaning tower and provided with a sludge inlet and a flocculant injection nozzle, and sludge settled from the bottom of the cleaning tower. A discharge pump for extracting water, a transfer pump connected thereto, a new water nozzle for supplying fresh water and cleaning agent into the tower from the lower part of the washing tower, a stirrer for stirring the inside of the tower, and an overflow from the top of the washing tower Or an overflow tank for receiving overflow water, or a cleaning nozzle for supplying a cleaning agent into the tower from the center of the cleaning tower in addition to the new water nozzle. Alternatively, a plurality of the above-described washing towers are installed, and the discharge port at the bottom of the previous stage is connected to the input port at the top of the next stage through a transfer pump.

本発明によれば、重金属等のイオン化される有害ないし不要成分を効率よく連続的に除去することができ、汚泥を埋め立て用その他に安全に有効利用できるという、すぐれた効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, the harmful | toxic or unnecessary component ionized, such as a heavy metal, can be removed efficiently and continuously, and there exists an outstanding effect that sludge can be safely used effectively for a landfill and others.

まず図1により本発明の洗浄装置の基本単位である洗浄塔を説明する。この図は単一の洗浄塔の構成を示す概念図で、1 は縦長円筒状の洗浄塔(本体)、2は処理しようとするスラリー状の汚泥を投入する投入口、3は洗浄塔1上部に同心円状に挿入された内筒、4は洗浄塔1底部に設けられ、沈降した内容物を排出する排出口、5は排出口から内容物を引き抜いて移送する移送ポンプ、6は洗浄塔1内に縦方向に設けられた回転軸および複数のプロペラよりなる攪拌機、7は洗浄塔1下部に挿入され、新水(上水、浄水ともいう)を洗浄塔1内に供給する新水ノズル、8は洗浄塔1の中段付近に挿入され、洗浄剤を洗浄塔1内に供給する洗浄剤ノズル、9は投入される汚泥に凝集剤を混入する凝集剤注入ノズル、10は洗浄塔1頂部からあふれた液が流入するオーバーフロータンク、11はオーバーフロータンクからのオーバーフロー水を流しだすオーバーフロー管である。   First, a cleaning tower as a basic unit of the cleaning apparatus of the present invention will be described with reference to FIG. This figure is a conceptual diagram showing the structure of a single washing tower. 1 is a vertically cylindrical washing tower (main body), 2 is an inlet for introducing slurry sludge to be treated, and 3 is an upper part of the washing tower 1 4 is provided at the bottom of the washing tower 1 to discharge the settled contents, 5 is a transfer pump for extracting the contents from the outlet and transferring them, 6 is the washing tower 1 A stirrer composed of a rotating shaft and a plurality of propellers provided in the vertical direction inside, 7 is inserted into the lower part of the washing tower 1, and a fresh water nozzle for supplying fresh water (also referred to as clean water or purified water) into the washing tower 1, Reference numeral 8 denotes a cleaning agent nozzle that is inserted near the middle stage of the cleaning tower 1 and supplies the cleaning agent into the cleaning tower 1. Reference numeral 9 denotes a flocculant injection nozzle that mixes the flocculant with the sludge to be charged. An overflow tank into which overflowing liquid flows, 11 is an overflow tank A overflow pipe pouring off the overflowing water from.

本発明の洗浄塔1は基本構造としてはレーキ付きの沈降管であって、頂部の内筒3内に処理しようとする汚泥を凝集剤とともに投入し、新水を満たした塔内に落下させ、フロックを生成して沈降させて下方から上昇してくる新水と洗浄剤に向流で接触させ、洗浄されながら沈降したフロック、すなわち汚泥を底部から引き抜くと同時に、有害ないし不要成分を抽出したオーバーフロー水を頂部から流し出す機能を有している。   The washing tower 1 of the present invention is a settling pipe with a rake as a basic structure, and the sludge to be treated is put together with the flocculant into the inner cylinder 3 at the top, and dropped into a tower filled with fresh water, The flocs are generated and settled, and the fresh water rising from below is brought into contact with the cleaning agent in countercurrent, and the flocs that have settled while being washed, that is, the sludge is pulled out from the bottom, and at the same time, harmful and unnecessary components are extracted. It has the function of draining water from the top.

本発明が対象とする汚泥中の有害ないし不要成分とは本発明における洗浄剤によってイオン化されるものであって、これらの化学変化によって有害ないし不要成分をイオン化して新水内に移行させ、汚泥を洗浄するのである。   The harmful or unnecessary components in the sludge targeted by the present invention are ionized by the cleaning agent in the present invention, and these chemical changes cause the harmful or unnecessary components to be ionized and transferred into fresh water, Is washed.

洗浄剤は塩酸、硫酸、硝酸等の酸、苛性ソーダ、苛性カリ等のアルカリが基本であるが、酸化剤、還元剤、酵素等も使用できる。また、例えば海砂の浄化のような元々水溶性の汚泥を洗浄する場合や、あるいはイオン化されている汚泥を洗浄する場合などには洗浄剤を必要としない。   The cleaning agent is basically an acid such as hydrochloric acid, sulfuric acid or nitric acid, or an alkali such as caustic soda or caustic potash, but an oxidizing agent, reducing agent, enzyme or the like can also be used. Further, for example, when cleaning originally water-soluble sludge such as sea sand purification or when cleaning ionized sludge, no cleaning agent is required.

洗浄剤は新水に添加してもよい。また、洗浄塔内で洗浄剤と接触させる代わりに、洗浄しようとする汚泥に予め汚泥に洗浄剤を添加しておいてから凝集剤とともに洗浄塔内に投入してもよい。特に有害物質が重金属の場合など、短時間の接触ではなかなかイオン化しないので、事前の添加が好ましい。これらの場合、図1における洗浄剤ノズル8は新水ノズル7で兼用するか、あるいは全く省略できる。一方洗浄剤を多量に使用する場合には、図1に示すとおり洗浄塔の中部、すなわち下降流と上昇流との中間である平衡層の位置で洗浄剤ノズル8を使用して供給するのが濃度が保持され最も効果的である。   The cleaning agent may be added to fresh water. Further, instead of contacting the cleaning agent in the cleaning tower, the cleaning agent may be added to the sludge to be cleaned in advance and then introduced into the cleaning tower together with the flocculant. In particular, when the harmful substance is a heavy metal, it is not easy to ionize in a short time contact, so prior addition is preferable. In these cases, the cleaning agent nozzle 8 in FIG. 1 can be shared by the fresh water nozzle 7 or can be omitted at all. On the other hand, when a large amount of cleaning agent is used, it is supplied using the cleaning agent nozzle 8 in the middle of the cleaning tower, that is, at the position of the equilibrium layer that is intermediate between the downward flow and the upward flow as shown in FIG. Concentration is retained and is most effective.

凝集剤としてはノニオン性、アニオン性、カチオン性等の有機高分子系、たとえば、ポリアクリルアミド系、ポリアクリル酸系、ポリメタクリル酸エステル系、ポリアクリル酸エステル系、ポリアミジン系の高分子凝集剤が好ましい。凝集させることによって見掛け比重を増加させて沈降を促進するとともに、攪拌ならびに移送ポンプによるフロック破壊によって有害ないし不要成分の溶解効果を高めることができる。添加量は、汚泥の固形物量に対して0.01〜1.0 %程度である。   Examples of the flocculant include nonionic, anionic, cationic, and other organic polymer systems such as polyacrylamide, polyacrylic acid, polymethacrylic acid ester, polyacrylic acid ester, and polyamidine polymer flocculants. preferable. By aggregating, the apparent specific gravity is increased to promote sedimentation, and the effect of dissolving harmful or unnecessary components can be enhanced by stirring and floc breakage by a transfer pump. The amount added is about 0.01 to 1.0% with respect to the solid content of the sludge.

系内に送り込まれるのは汚泥、凝集剤、新水、洗浄剤であり、系から取り出されるのは底部に沈降したフロックと頂部からのオーバーフロー水である。追って説明するように、この洗浄塔1を多段に設置し、同じ処理を繰り返すことにより最終段の洗浄塔1から取り出されるフロックは有害ないし不要成分をほとんど含まない浄化泥となり、埋め立て用土その他として安全に再利用できる。一方、有害ないし不要成分は各段からのオーバーフロー水内に抽出されるので、これを集めて従来公知の水処理施設により処理を行えばよい。   Sludge, flocculant, fresh water and cleaning agent are fed into the system, and floc settled at the bottom and overflow water from the top are removed from the system. As will be described later, by installing this washing tower 1 in multiple stages and repeating the same process, the floc taken out from the last washing tower 1 becomes purified mud containing almost no harmful or unnecessary components, and is safe as landfill soil and others. Can be reused. On the other hand, harmful or unnecessary components are extracted into the overflow water from each stage, and these may be collected and treated in a conventionally known water treatment facility.

汚泥と凝集剤とは図1のように別個に投入、注入してもよいし、事前に混合、又はフロック化したものを投入してもよい。凝集反応を早期に効率よく行わせるために、これらは塔内に直接投入するのではなく、水の混入していない内筒内に投入し、すその部分から塔内に落下させるのがよい。   The sludge and the flocculant may be separately charged and injected as shown in FIG. 1, or those previously mixed or flocked may be charged. In order to carry out the agglomeration reaction early and efficiently, it is preferable that they are not charged directly into the tower, but are poured into an inner cylinder not mixed with water and dropped into the tower from the soot portion.

移送ポンプは、フロックの粉砕能力の高い渦巻きポンプ、ギヤポンプなどが好ましい。攪拌機は多段パドル式で、回転は10〜200 rpm程度の低速ないし中速である。   The transfer pump is preferably a centrifugal pump, a gear pump or the like having a high floc crushing capacity. The stirrer is a multi-stage paddle type, and the rotation is low to medium speed of about 10 to 200 rpm.

図2は、図1に示した洗浄塔1を4段に組み合わせた汚泥洗浄施設の例を示すブロック図である。同一構造の洗浄塔1a、1b、1c、1dが4基並んで設置されており、凝集剤、洗浄剤、新水はそれぞれの洗浄塔1a、1b、1c、1dに投入あるいは注入され、またそれぞれの洗浄塔1a、1b、1c、1dからのオーバーフロー水は最終的に水処理施設に集められる。図2では、第2段以降のオーバーフロー水の有害成分含有率がきわめて低いことから後段のオーバーフロー水を前段の新水として利用して新水使用量の削減と水処理施設における負荷の軽減を図る場合の例を示しているが、各段のオーバーフロー水を並行して1カ所の水処理施設に集め、各段の新水ノズルにそれぞれ新水をつなぎ込んでもよいことは、いうまでもない。さらに、水処理施設において処理した後の水を「新水」として再利用することも可能である。   FIG. 2 is a block diagram showing an example of a sludge cleaning facility in which the cleaning tower 1 shown in FIG. 1 is combined in four stages. Four washing towers 1a, 1b, 1c, 1d of the same structure are installed side by side, and flocculant, washing agent, and fresh water are charged or injected into each washing tower 1a, 1b, 1c, 1d, The overflow water from the washing towers 1a, 1b, 1c, 1d is finally collected in a water treatment facility. In FIG. 2, since the harmful component content of the overflow water in the second and subsequent stages is extremely low, the overflow water in the subsequent stage is used as new water in the previous stage to reduce the amount of new water used and the load on the water treatment facility. Although an example of the case is shown, it is needless to say that the overflow water of each stage may be collected in one water treatment facility in parallel and the new water may be connected to the new water nozzles of each stage. Furthermore, it is possible to reuse the water after being treated in the water treatment facility as “new water”.

処理対象である汚泥は第1段の洗浄塔1aの投入口2aに投入され、その排出口4aから移送ポンプ5aを介して第2段の投入口2bを通って洗浄塔1b内に投入され、同様にして最終的に浄化泥として第4段の排出口4dから移送ポンプ5dにより系外に取り出される。   The sludge to be treated is introduced into the inlet 2a of the first stage cleaning tower 1a, and from the outlet 4a through the transfer pump 5a, through the second stage inlet 2b into the cleaning tower 1b. Similarly, it is finally taken out from the system by the transfer pump 5d from the fourth stage outlet 4d as purified mud.

図2の例では汚泥は同じ洗浄処理を繰り返し4回受けるわけであるが、本発明者らの実験によると、第1段の洗浄塔1a内のフロックの挙動と、第2段以降のそれとには若干の相違が認められる。図3によりこれを簡単に説明する。   In the example of FIG. 2, the sludge is repeatedly subjected to the same washing process four times. According to the experiments by the present inventors, the floc behavior in the first-stage washing tower 1a and the second and subsequent stages There are some differences. This will be briefly described with reference to FIG.

図3(a)は第1段の洗浄塔1a内を示す模式図である。内筒3の内部にスラリー状の汚泥と凝集剤が投入され、すその部分から塔内に落下して行く過程で凝集剤の作用によりフロックが生成され、徐々に径が大きくなって下方に沈降する。一方、(b)は第2段以降の洗浄塔1b(1c、1d)内を示す模式図である。第1段の洗浄塔1aから引き抜かれた内容物は、移送ポンプ5aを通過する際に大径のフロックが一旦押しつぶされるため、再び凝集剤を混入して大きな径に成長させるが、内部水の少ない締まりのあるフロックとして塔内を沈降する。第1段に比較して沈降速度が速く、洗浄効率、回収率、濃縮率が高い。そして底部から高さhの範囲内に沈降、堆積してスラッジゾーンを形成する。スラッジゾーンの高さhは追って説明するように新水の注入量と移送ポンプによる引き抜き量によって決まり、上方からのフロックの沈下が続いても密度が上昇するのみでスラッジゾーンの高さhはほとんど変化しない。   FIG. 3A is a schematic diagram showing the inside of the first-stage washing tower 1a. Slurry sludge and flocculant are put into the inner cylinder 3, and flocs are generated by the action of the flocculant in the process of dropping into the tower from the soot part, and the diameter gradually increases and settles downward. To do. On the other hand, (b) is a schematic diagram showing the inside of the second and subsequent cleaning towers 1b (1c, 1d). The contents extracted from the first-stage washing tower 1a are once crushed when passing through the transfer pump 5a, so that the flocs are once crushed. Settling in the tower as a floc with little tightness. Compared to the first stage, the sedimentation rate is fast, and the washing efficiency, recovery rate, and concentration rate are high. And it settles and deposits in the range of height h from a bottom part, and forms a sludge zone. As will be described later, the sludge zone height h is determined by the amount of fresh water injected and the amount drawn by the transfer pump. It does not change.

攪拌は凝集反応を促進するとともに塔内の流れを均一化し、フロックを引き締める効果がある。洗浄塔の底部では堆積したフロックの圧密効果によってスラリーの濃度が上昇し、引き抜き量の削減による効率化が図られる。   Stirring has the effect of accelerating the agglomeration reaction and making the flow in the tower uniform and tightening the flocs. At the bottom of the washing tower, the concentration of the slurry rises due to the consolidation effect of the accumulated flocs, and the efficiency is improved by reducing the amount of drawing.

本発明の実施例におけるこの間の成分の変化を実験データにより説明する。   The change of the component in the Example of this invention between this is demonstrated by experimental data.

Figure 2005007386
Figure 2005007386

表1は実験に使用した汚泥ならびに洗浄用新水の性状および分析結果である。除去する重金属を想定して汚泥に鉄イオンを添加し、洗浄剤には酸を使用し、事前に添加してpH値をおよそ4とした。また洗浄効果の指標としてイオン化状態を把握するため、塩化ナトリウムを添加して電気伝導度を測定することとした。粗浮遊物量は下水道試験法に基づく200メッシュ金網濾過による残量である。なお表2以下の各数値は単位の表示を省略しているが、いずれも表1と同一である。実験装置は図1に示す形状であり、洗浄塔の内径85mm、有効高さ500 mm、容積3リットルである。   Table 1 shows the properties and analysis results of sludge used in the experiment and fresh water for cleaning. Assuming the heavy metal to be removed, iron ions were added to the sludge, acid was used as the cleaning agent, and the pH value was adjusted to about 4 by adding in advance. In order to grasp the ionization state as an index of the cleaning effect, sodium chloride was added to measure the electrical conductivity. The amount of coarse suspended solids is the remaining amount by 200 mesh wire net filtration based on the sewer test method. In addition, although each numerical value below Table 2 has abbreviate | omitted the unit display, all are the same as Table 1. The experimental apparatus has the shape shown in FIG. 1, and has an inner diameter of the washing tower of 85 mm, an effective height of 500 mm, and a volume of 3 liters.

Figure 2005007386
Figure 2005007386

表2は、比較のため凝集剤を混入せず、かつ塔内の攪拌も行わない操業例である。運転条件は、投入口からの汚泥の投入量毎時30リットル、洗浄用新水注入量毎時30リットル、底部排出口からの内容物排出量毎時30リットル、オーバーフロータンクからのオーバーフロー水量毎時30リットルで、オーバーフロー水と排出内容物の性状および分析結果は表2に示すとおりであった。   Table 2 shows an operation example in which a flocculant is not mixed for comparison and no stirring is performed in the tower. The operating conditions are 30 liters per hour of sludge input from the inlet, 30 liters of fresh water injection for cleaning, 30 liters of content discharged from the bottom outlet, 30 liters of overflow water from the overflow tank, Table 2 shows the properties and analysis results of the overflow water and the discharged contents.

いま、
洗浄効率=投入物の電気伝導度÷(排出物の電気伝導度−新水の電気伝導度)
と定義すると、表1の元の汚泥と比較して排出物における電気伝導度で見た洗浄効率は2.2 、同じく鉄イオン濃度で見た洗浄効率は2.5 である。また固形物回収率、すなわちオーバーフロー水と排出内容物の固形物の合計に対する排出内容物の固形物の割合は48.9%である。
Now
Washing efficiency = Electric conductivity of the input ÷ (Electric conductivity of the effluent-Electric conductivity of fresh water)
When compared with the original sludge in Table 1, the cleaning efficiency in terms of electrical conductivity in the discharge is 2.2, and the cleaning efficiency in terms of iron ion concentration is 2.5. The solids recovery rate, that is, the ratio of the solids of the discharged contents to the sum of the solids of the overflow water and the discharged contents is 48.9%.

Figure 2005007386
Figure 2005007386

表3は他の条件は全く同じで、塔内の攪拌を行った場合のデータである。攪拌機はパドル形2枚羽根を3段に設け、100 rpmで攪拌を行った。洗浄効率は表2とあまり相違は見られず、固形物回収率はむしろ低下している。   Table 3 shows data when the other conditions are exactly the same and stirring in the column is performed. The stirrer was provided with three paddle-shaped blades in three stages and stirred at 100 rpm. The cleaning efficiency is not so different from Table 2, and the solid recovery rate is rather lowered.

Figure 2005007386
Figure 2005007386

つぎからは汚泥に凝集剤を混入したデータである。表4は汚泥中の固形物量に対して同じく固形物量で0.1 %の有機高分子系凝集剤を混入した他、運転条件は表3と同じである。新水注入量はこれまでと同じ毎時30リットルであるが、この量は塔内の沈降速度を上回らないことが必要である。表3と比較すると洗浄効率はほとんど変わらないが、固形物回収率は大幅に向上している。   The following data shows the coagulant mixed in the sludge. Table 4 shows the same operating conditions as in Table 3, except that 0.1% of the organic polymer flocculant was mixed in the amount of solids in the sludge. The amount of fresh water injected is 30 liters per hour as before, but this amount should not exceed the settling rate in the column. Compared with Table 3, the cleaning efficiency is almost the same, but the solids recovery rate is greatly improved.

Figure 2005007386
Figure 2005007386

表5は表4の運転条件の内排出口からの引き抜き量を半減して毎時15リットルとし、その結果オーバーフロー水量を毎時45リットルとした場合のデータで、その他の条件は表4と同じである。引き抜き量を減らした結果、浮遊固形物の回収率が若干低下しているが、洗浄効率は表4とほぼ同等である。   Table 5 shows data when the amount of water drawn from the discharge port in Table 4 is halved to 15 liters per hour, and as a result, the amount of overflow water is 45 liters per hour. Other conditions are the same as in Table 4. . As a result of reducing the drawing amount, the recovery rate of suspended solids is slightly reduced, but the cleaning efficiency is almost the same as in Table 4.

表2、3と表4、5を比較すると、pH値においても、オーバーフローした水と排出内容物とにおいて、高分子凝集剤添加による置換効果が表れているのが認められる。   When Tables 2 and 3 are compared with Tables 4 and 5, it can be seen that, even at the pH value, the replacement effect due to the addition of the polymer flocculant appears in the overflowed water and the discharged contents.

Figure 2005007386
Figure 2005007386

つぎに表6に示すのは、図2で説明したように洗浄塔を4基、4段直列に組み合わせた場合のデータである。各段における運転条件は、投入口からの汚泥の投入量毎時30リットル、洗浄用新水注入量毎時30リットル、底部排出口からの内容物排出量毎時30リットル、オーバーフロータンクからのオーバーフロー水量毎時30リットルで、第1段における凝集剤の混入量は対固形物量で0.1 %、第2段以降は0.02%である。1 段ごとの「洗浄効率」と、その段までの合計である「全洗浄効率」とを示してあるが、電気伝導度、鉄イオン濃度のいずれを見ても1段ごとの洗浄効率がほぼ2倍と一定水準であり、段数を増すほどに全洗浄効率が向上しており、最終段では電気伝導度で24.6倍、鉄イオン濃度55.2倍というきわめて高い数値を示し、固形物回収率は実に99.9%となっている。   Next, Table 6 shows data when four washing towers are combined in series in four stages as described in FIG. The operating conditions in each stage are: 30 liters of sludge input from the inlet, 30 liters of fresh water injection for washing, 30 liters of content discharged from the bottom outlet, and 30 minutes of overflow water from the overflow tank. In liters, the amount of flocculant mixed in the first stage is 0.1% with respect to the amount of solids, and 0.02% after the second stage. The “cleaning efficiency” for each stage and the “total cleaning efficiency”, which is the total up to that stage, are shown. However, the cleaning efficiency for each stage is almost the same regardless of the electrical conductivity and iron ion concentration. The washing efficiency is improved as the number of stages increases. The final stage shows extremely high values of 24.6 times the electrical conductivity and 55.2 times the iron ion concentration. 99.9%.

Figure 2005007386
Figure 2005007386

つづいて第2段における引き抜き量を変化させてオーバーフロー水量を変えた場合の第2段における洗浄効果の変化を表7に示す。引き抜き量を低減することによってスラッジゾーン高さhは増大するがスラッジゾーン上面の界面は安定しており、回収率は低下せず洗浄効率は大幅に上昇することがわかる。   Next, Table 7 shows changes in the cleaning effect in the second stage when the amount of overflow water is changed by changing the drawing amount in the second stage. It can be seen that by reducing the drawing amount, the sludge zone height h increases, but the interface on the upper surface of the sludge zone is stable, the recovery rate does not decrease, and the cleaning efficiency increases significantly.

本発明の洗浄装置における洗浄塔を示す概念図である。It is a conceptual diagram which shows the washing | cleaning tower in the washing | cleaning apparatus of this invention. 図1に示す洗浄塔を4段に組み合わせた実施例の汚泥洗浄施設を示すブロック図である。It is a block diagram which shows the sludge washing | cleaning facility of the Example which combined the washing tower shown in FIG. 1 into 4 steps | paragraphs. (a)は第1段、(b)は第2段以降の洗浄塔内を示す模式図である。(A) is a 1st stage, (b) is a schematic diagram which shows the inside of the washing tower after the 2nd stage. 従来の技術における洗浄槽の概略図である。It is the schematic of the washing tank in a prior art.

符号の説明Explanation of symbols

1、1a〜1d 洗浄塔
2、2a、2b 投入口
3 内筒
4、4a〜4d 排出口
5、5a〜5d 移送ポンプ
6 攪拌機
7 新水ノズル
8 洗浄剤ノズル
9 凝集剤注入ノズル
10 オーバーフロータンク
11 オーバーフロー管
91 洗浄槽
92、93 供給口
94 排出口
95 供給ポンプ
96 循環ポンプ
97 排出ポンプ
98a〜98d 操作弁
99 支持部
F 濾過フィルタ
DESCRIPTION OF SYMBOLS 1, 1a-1d Washing tower 2, 2a, 2b Input port 3 Inner cylinder 4, 4a-4d Discharge port 5, 5a-5d Transfer pump 6 Stirrer 7 Fresh water nozzle 8 Cleaning agent nozzle 9 Coagulant injection nozzle 10 Overflow tank 11 Overflow pipe 91 Cleaning tank 92, 93 Supply port 94 Discharge port 95 Supply pump 96 Circulation pump 97 Discharge pumps 98a to 98d Operation valve 99 Support part F Filtration filter

Claims (7)

汚泥を凝集剤とともに縦長円筒状の洗浄塔の頂部に投入する一方、この洗浄塔の下部から新水を塔内に供給し、塔内を攪拌して前記汚泥を凝集、沈降させると同時に汚泥内の有害ないし不要成分を新水内に移行させ、オーバーフロー水を排出するとともに洗浄されながら沈降した汚泥を前記洗浄塔底部から引き抜くことを特徴とする汚泥の洗浄方法。   Sludge is added to the top of a vertically long cylindrical cleaning tower together with a flocculant, while fresh water is supplied into the tower from the bottom of the cleaning tower, and the inside of the tower is agglomerated and settled at the same time. A method for cleaning sludge, which comprises transferring harmful or unnecessary components into fresh water, discharging overflow water and drawing out sludge that has settled while being washed from the bottom of the washing tower. 予め洗浄剤を添加した汚泥を凝集剤とともに縦長円筒状の洗浄塔の頂部に投入する一方、この洗浄塔の下部から新水を塔内に供給し、塔内を攪拌して前記汚泥を凝集、沈降させると同時に汚泥内の有害ないし不要成分を新水内に移行させ、オーバーフロー水を排出するとともに洗浄されながら沈降した汚泥を前記洗浄塔底部から引き抜くことを特徴とする汚泥の洗浄方法。   While adding sludge to which the cleaning agent has been added in advance to the top of the vertical cylindrical cleaning tower together with the flocculant, fresh water is supplied into the tower from the bottom of the cleaning tower, and the inside of the tower is stirred to coagulate the sludge. At the same time as sedimentation, harmful or unnecessary components in the sludge are transferred into the new water, the overflow water is discharged, and the sludge that has settled while being washed is drawn out from the bottom of the washing tower. 汚泥を凝集剤とともに縦長円筒状の洗浄塔の頂部に投入する一方、この洗浄塔の下部から新水ならびに洗浄剤を塔内に供給し、塔内を攪拌して前記汚泥を凝集、沈降させると同時に汚泥内の有害ないし不要成分を新水内に移行させ、オーバーフロー水を排出するとともに洗浄されながら沈降した汚泥を前記洗浄塔底部から引き抜くことを特徴とする汚泥の洗浄方法。   While sludge is added to the top of a vertically long cylindrical cleaning tower together with a flocculant, fresh water and cleaning agent are supplied into the tower from the bottom of the cleaning tower, and the sludge is aggregated and settled by stirring the tower. At the same time, a harmful or unnecessary component in the sludge is transferred into the fresh water, the overflow water is discharged, and the sludge that has settled while being washed is drawn out from the bottom of the washing tower. 洗浄塔底部から引き抜いた汚泥を凝集剤とともに次段の洗浄塔の頂部に投入し、請求項1ないし3のいずれかに記載の洗浄処理を行って洗浄されながら沈降した汚泥を次段の洗浄塔の底部から引き抜き、必要に応じてこの洗浄処理を繰り返し行うことを特徴とする汚泥の洗浄方法。   The sludge withdrawn from the bottom of the washing tower is put together with the flocculant into the top of the washing tower in the next stage, and the sludge settled while being washed by performing the washing treatment according to any one of claims 1 to 3 A method for cleaning sludge, characterized in that it is extracted from the bottom of the slag and this cleaning process is repeated as necessary. 縦長円筒状の洗浄塔(1)と、その頂部に取り付けられ、汚泥の投入口(2)と凝集剤注入ノズル(9)とを備えた内筒(3)と、前記洗浄塔(1)底部から沈降した汚泥を引き抜く排出口(4)と、これに接続される移送ポンプ(5)と、前記洗浄塔(1)の下部から塔内に新水ならびに洗浄剤を供給する新水ノズル(7)と、塔内を攪拌する攪拌機(6)と、洗浄塔(1)頂部からオーバーフローするオーバーフロー水を受けるオーバーフロータンク(10)とからなることを特徴とする汚泥の洗浄装置。   A vertically long washing tower (1), an inner cylinder (3) attached to the top of the washing tower (2) and a flocculant injection nozzle (9), and the bottom of the washing tower (1) A discharge port (4) for extracting sludge settled from the water, a transfer pump (5) connected thereto, and a new water nozzle (7) for supplying fresh water and cleaning agent into the tower from the lower part of the washing tower (1) ), A stirrer (6) for stirring the inside of the tower, and an overflow tank (10) for receiving overflow water overflowing from the top of the washing tower (1). 前記新水ノズル(7)に加えて洗浄塔(1)の中部から塔内に洗浄剤を供給する洗浄剤ノズル(8)を備えた請求項5に記載の汚泥の洗浄装置。   The sludge cleaning apparatus according to claim 5, further comprising a cleaning agent nozzle (8) for supplying a cleaning agent from a central portion of the cleaning tower (1) into the tower in addition to the new water nozzle (7). 請求項5または6に記載の洗浄塔(1)を複数基設置し、前段の底部の排出口(4)を移送ポンプ(5)を介して次段の頂部の投入口(2)に接続したことを特徴とする汚泥の洗浄装置。   A plurality of washing towers (1) according to claim 5 or 6 are installed, and the outlet (4) at the bottom of the previous stage is connected to the inlet (2) at the top of the next stage via a transfer pump (5). A sludge cleaning device characterized by that.
JP2004140522A 2003-05-29 2004-05-11 Method and apparatus for cleaning sludge Expired - Fee Related JP4563073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004140522A JP4563073B2 (en) 2003-05-29 2004-05-11 Method and apparatus for cleaning sludge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003151916 2003-05-29
JP2004140522A JP4563073B2 (en) 2003-05-29 2004-05-11 Method and apparatus for cleaning sludge

Publications (2)

Publication Number Publication Date
JP2005007386A true JP2005007386A (en) 2005-01-13
JP4563073B2 JP4563073B2 (en) 2010-10-13

Family

ID=34106757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004140522A Expired - Fee Related JP4563073B2 (en) 2003-05-29 2004-05-11 Method and apparatus for cleaning sludge

Country Status (1)

Country Link
JP (1) JP4563073B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049275A (en) * 2006-08-25 2008-03-06 Kurita Water Ind Ltd Sludge thickener
JP2013068001A (en) * 2011-09-22 2013-04-18 Yokoyama Kiso Koji:Kk Recovery device and treatment method of excavation muck and muddy water
JP2014190716A (en) * 2013-03-26 2014-10-06 Toshiba Corp Continuous elution apparatus and continuous elution method
CN104773931A (en) * 2015-03-17 2015-07-15 浙江海洋学院 Method utilizing city sewage to process greasy filth
CN105417904A (en) * 2012-03-02 2016-03-23 上海市政工程设计研究总院(集团)有限公司 Dredging sludge elutriation and separation and sewage treatment and reuse method
KR20210153573A (en) * 2019-08-21 2021-12-17 지에스건설 주식회사 Soil remediation equipment
CN114570753A (en) * 2022-02-15 2022-06-03 张文寿 Oil sludge sand waste disposal and recovery device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919651A (en) * 1972-03-27 1974-02-21
JPS5060051A (en) * 1973-09-27 1975-05-23
JPH07171600A (en) * 1993-12-21 1995-07-11 Kurita Water Ind Ltd Washing concentration of digested sludge and washing concentration agent
JPH08512246A (en) * 1994-05-04 1996-12-24 ハンス・フーバー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・マシイネン‐ウント・アンラーゲンバウ Device for separating inorganic substances contaminated with organic substances from liquids
JP2000317495A (en) * 1999-03-10 2000-11-21 Mitsubishi Heavy Ind Ltd Method and device for treating slurry

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919651A (en) * 1972-03-27 1974-02-21
JPS5060051A (en) * 1973-09-27 1975-05-23
JPH07171600A (en) * 1993-12-21 1995-07-11 Kurita Water Ind Ltd Washing concentration of digested sludge and washing concentration agent
JPH08512246A (en) * 1994-05-04 1996-12-24 ハンス・フーバー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・マシイネン‐ウント・アンラーゲンバウ Device for separating inorganic substances contaminated with organic substances from liquids
JP2000317495A (en) * 1999-03-10 2000-11-21 Mitsubishi Heavy Ind Ltd Method and device for treating slurry

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049275A (en) * 2006-08-25 2008-03-06 Kurita Water Ind Ltd Sludge thickener
JP2013068001A (en) * 2011-09-22 2013-04-18 Yokoyama Kiso Koji:Kk Recovery device and treatment method of excavation muck and muddy water
CN105417904A (en) * 2012-03-02 2016-03-23 上海市政工程设计研究总院(集团)有限公司 Dredging sludge elutriation and separation and sewage treatment and reuse method
JP2014190716A (en) * 2013-03-26 2014-10-06 Toshiba Corp Continuous elution apparatus and continuous elution method
CN104773931A (en) * 2015-03-17 2015-07-15 浙江海洋学院 Method utilizing city sewage to process greasy filth
KR20210153573A (en) * 2019-08-21 2021-12-17 지에스건설 주식회사 Soil remediation equipment
KR102375205B1 (en) * 2019-08-21 2022-03-16 지에스건설 주식회사 Soil remediation equipment
CN114570753A (en) * 2022-02-15 2022-06-03 张文寿 Oil sludge sand waste disposal and recovery device

Also Published As

Publication number Publication date
JP4563073B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
EP1330414B9 (en) Method for treatment of water and wastewater
KR100526993B1 (en) Washing method for oils and heavy metals contaminated soils
CN109574458B (en) Treatment method and device for oily sludge
AU2002220093A1 (en) Method and apparatus for treatment of water and wastewater
KR101206925B1 (en) SBR Washing System for contaminated soils, SBR Washing Apparatus for contaminated soils and SBR Washing Method for contaminated soils
CN106458669B (en) Method for clarifying waste water
JP4563073B2 (en) Method and apparatus for cleaning sludge
JP2016087578A (en) Contaminant separation volume reduction system and method
WO2005028379A1 (en) Method and apparatus for treating drain water from step of washing fly ash with water
JP2002239306A (en) Floc forming device, solid-liquid separation apparatus and wastewater treatment method
CN216737901U (en) Integrated small-sized industrial wastewater treatment device
CN202881027U (en) Device for removing organophosphorus from wastewater produced in rare earth extraction process
JP2003080267A (en) Treatment equipment for muddy water outflowed during tunnel construction
CN212476431U (en) Oil field hypersalinity sewage treatment plant
JP2014094322A (en) Multistage organic waste water treatment system
CN110937770A (en) Reduction treatment process for oily sludge
JP2001269675A (en) Method and device for process of sewage water
KR101141928B1 (en) A sewage or wastewater treatment apparatus and method using phosphorus collection and recycling coagulant
CN210915619U (en) A separator for sewage treatment
CN214861447U (en) Sewage up-flow type multi-filter-layer filtering device and sewage treatment system
CN217854703U (en) High-density precipitation device for heavy medium precipitation
CN215480203U (en) Coal mine sewage treatment device for coal mine production
JP5268698B2 (en) Bioreactor fluidized bed biological treatment equipment
JP3794589B1 (en) Sewage treatment equipment
CN113354155B (en) Horizontal centrifuge-based sewage treatment system and method for mine construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees