JP2017085680A - Electric power conversion device - Google Patents

Electric power conversion device Download PDF

Info

Publication number
JP2017085680A
JP2017085680A JP2015208400A JP2015208400A JP2017085680A JP 2017085680 A JP2017085680 A JP 2017085680A JP 2015208400 A JP2015208400 A JP 2015208400A JP 2015208400 A JP2015208400 A JP 2015208400A JP 2017085680 A JP2017085680 A JP 2017085680A
Authority
JP
Japan
Prior art keywords
support body
semiconductor
supported
stable
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015208400A
Other languages
Japanese (ja)
Other versions
JP6504018B2 (en
Inventor
加藤 敏一
Toshiichi Kato
敏一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015208400A priority Critical patent/JP6504018B2/en
Publication of JP2017085680A publication Critical patent/JP2017085680A/en
Application granted granted Critical
Publication of JP6504018B2 publication Critical patent/JP6504018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Inverter Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric power conversion device capable of easily adjusting applied pressure acting on a semiconductor laminate unit while reducing production costs.SOLUTION: An electric power conversion device has a semiconductor lamination unit, a case, a spring member 4, and a bearing body 5. The spring member 4 has a pair of born parts 41 which are in a long-sized shape in a lateral direction Y and each have both ends in the lateral direction Y borne by a pair of bearing bodies 5 respectively, and a press part which presses the semiconductor lamination unit between the pair of born parts 41. The bearing bodies 5 are in a columnar shape standing in a height direction Z. The bearing bodies 5 are so shaped as to have three or more stable attitudes of being stably held between the born parts 41 and a rear wall part 32. The bearing bodies 5 can change their attitudes among the three or more stable attitudes by being made to rotate on axes of rotation parallel with the height direction Z. The three or more stable attitudes are such attitudes that the bearing bodies 5 differ in size in a lamination direction X.SELECTED DRAWING: Figure 8

Description

本発明は、電力変換装置に関する。   The present invention relates to a power conversion device.

電気自動車やハイブリッド自動車等には、モータを駆動させるため、バッテリからの直流電力を交流電力に変換する電力変換装置が搭載されている。電力変換装置は、半導体素子を内蔵した半導体モジュールを複数個有している。半導体モジュールは、半導体素子に流れる被制御電流によって発熱する。   In order to drive a motor, an electric vehicle, a hybrid vehicle, and the like are equipped with a power conversion device that converts DC power from a battery into AC power. The power conversion apparatus has a plurality of semiconductor modules incorporating semiconductor elements. The semiconductor module generates heat by a controlled current flowing through the semiconductor element.

そこで、特許文献1には、半導体モジュールと、半導体モジュールを冷却する冷却管とを、交互に積層して半導体積層ユニットを構成した電力変換装置が開示されている。これにより、半導体モジュールを、積層方向の両側から冷却することができ、半導体モジュールの冷却効率を向上させることができる。   Therefore, Patent Document 1 discloses a power conversion device in which a semiconductor stacked unit is configured by alternately stacking semiconductor modules and cooling pipes for cooling the semiconductor modules. Thereby, the semiconductor module can be cooled from both sides in the stacking direction, and the cooling efficiency of the semiconductor module can be improved.

また、上記電力変換装置は、積層方向における半導体積層ユニットの端部に、半導体積層ユニットを積層方向に加圧するばね部材が配置されている。半導体積層ユニット及びばね部材は、ケース内に収容されている。ばね部材は、円柱形状の支承体を介してケースの内壁に支承されている。そして、上記電力変換装置は、ばね部材の付勢力によって半導体モジュールと冷却管とを密着させ、半導体モジュールの冷却効率の向上を図ろうとしている。   In the power conversion device, a spring member that pressurizes the semiconductor stacked unit in the stacking direction is disposed at an end of the semiconductor stacked unit in the stacking direction. The semiconductor laminated unit and the spring member are accommodated in the case. The spring member is supported on the inner wall of the case via a cylindrical support body. The power conversion device attempts to improve the cooling efficiency of the semiconductor module by bringing the semiconductor module and the cooling pipe into close contact with each other by the biasing force of the spring member.

特開2009−27805号公報JP 2009-27805 A

しかしながら、特許文献1に記載の電力変換装置には、以下のような課題がある。
半導体積層ユニットに対するばね部材の付勢力は、半導体モジュールの冷却性の観点、半導体積層ユニットの剛性の観点から、一定の範囲内にあることが求められる。
ところが、ばね部材の付勢力は、ばね部材のバネ特性、ばね部材の弾性変形量等に依存する。そして、ばね部材の弾性変形量は、ケースの積層方向の寸法、半導体積層ユニットの積層方向の寸法等に依存する。そのため、ケースの積層方向の寸法、半導体積層ユニットの積層方向の寸法等に設計誤差が生じると、ばね部材の付勢力にも誤差が生じてしまう。特に、半導体積層ユニットの積層方向の寸法は、複数の半導体モジュールの寸法誤差と複数の冷却管の寸法誤差とが累積するため、誤差が生じやすく、これに伴ってばね部材の付勢力にも誤差が生じやすくなってしまう。
However, the power conversion device described in Patent Document 1 has the following problems.
The biasing force of the spring member against the semiconductor multilayer unit is required to be within a certain range from the viewpoint of the cooling performance of the semiconductor module and the rigidity of the semiconductor multilayer unit.
However, the biasing force of the spring member depends on the spring characteristics of the spring member, the amount of elastic deformation of the spring member, and the like. The elastic deformation amount of the spring member depends on the dimension of the case in the stacking direction, the dimension of the semiconductor stacking unit in the stacking direction, and the like. Therefore, if a design error occurs in the dimension of the case in the stacking direction, the dimension of the semiconductor stacking unit in the stacking direction, etc., an error also occurs in the biasing force of the spring member. In particular, the dimension in the stacking direction of the semiconductor stacking unit is likely to cause an error because a dimensional error of a plurality of semiconductor modules and a dimensional error of a plurality of cooling pipes are accumulated, and accordingly, the biasing force of the spring member also includes an error. Is likely to occur.

そのため、上記電力変換装置においては、異なる直径を有する複数種類の支承体を用意しなければならない。すなわち、上記電力変換装置においては、半導体積層ユニットの積層方向の寸法等に応じて、適切な直径を有する支承体を選択することにより、半導体積層ユニットの積層方向の寸法誤差等を吸収し、ばね部材の付勢力を調整することが行われる。しかしながら、互いに異なる直径を有する複数種類の支承体を準備しなければならない。そのため、電力変換装置の生産コストを低減し難いという問題がある。   Therefore, in the said power converter device, you have to prepare the multiple types of support body which has a different diameter. That is, in the above power conversion device, by selecting a support body having an appropriate diameter according to the dimension or the like of the semiconductor lamination unit in the lamination direction, the dimension error or the like in the lamination direction of the semiconductor lamination unit is absorbed, and the spring The biasing force of the member is adjusted. However, a plurality of types of bearing bodies having different diameters must be prepared. Therefore, there is a problem that it is difficult to reduce the production cost of the power conversion device.

本発明は、かかる課題に鑑みてなされたものであり、生産コストの低減を図りつつ、半導体積層ユニットに作用する加圧力を容易に調整することができる電力変換装置を提供しようとするものである。   This invention is made | formed in view of this subject, and aims at providing the power converter device which can adjust the pressurization force which acts on a semiconductor lamination unit easily, aiming at reduction of production cost. .

本発明の一態様は、半導体素子を内蔵してなる複数の半導体モジュール(11)と、
該複数の半導体モジュールと共に積層配置されて半導体積層ユニット(10)を構成する複数の冷却管(2)と、
上記半導体積層ユニットに対して積層方向(X)の両側から対向する前方壁部(31)及び後方壁部(32)を有するケース(3)と、
上記積層方向における上記半導体積層ユニットと上記後方壁部との間に配され、上記半導体積層ユニットを上記積層方向に加圧するばね部材(4)と、
上記積層方向における上記ばね部材と上記後方壁部との間に配された一対の支承体(5)と、を有し、
上記ばね部材は、上記積層方向に直交する横方向(Y)に長尺な形状を有すると共に、上記横方向の両端において上記一対の支承体によって、それぞれ支承される一対の被支承部(41)と、該一対の被支承部の間において上記半導体積層ユニットを押圧する押圧部(42)とを有し、
上記支承体は、上記積層方向と上記横方向との双方に直交する高さ方向(Z)に立設する柱形状を有しており、かつ、上記被支承部と上記後方壁部との間に安定して挟持される安定姿勢(A1、A2、A3、A4、A5、A6)を3つ以上得ることができるような形状であり、
上記支承体は、上記高さ方向に平行な回転軸の回りに自転させることにより、上記3つ以上の安定姿勢の間で姿勢を変化させることができ、
上記3つ以上の安定姿勢は、上記積層方向における上記支承体の寸法が互いに異なるような姿勢である、電力変換装置(1)にある。
One aspect of the present invention includes a plurality of semiconductor modules (11) each including a semiconductor element;
A plurality of cooling pipes (2) arranged together with the plurality of semiconductor modules to constitute a semiconductor lamination unit (10);
A case (3) having a front wall portion (31) and a rear wall portion (32) facing the semiconductor lamination unit from both sides in the lamination direction (X);
A spring member (4) disposed between the semiconductor lamination unit and the rear wall in the lamination direction and pressurizing the semiconductor lamination unit in the lamination direction;
A pair of supports (5) disposed between the spring member and the rear wall in the stacking direction;
The spring member has a long shape in a lateral direction (Y) orthogonal to the stacking direction, and a pair of supported portions (41) supported by the pair of support bodies at both ends in the lateral direction. And a pressing portion (42) for pressing the semiconductor laminated unit between the pair of supported portions,
The support body has a column shape standing in a height direction (Z) perpendicular to both the stacking direction and the lateral direction, and between the supported part and the rear wall part. It is a shape that can obtain three or more stable postures (A1, A2, A3, A4, A5, A6) that are stably held by
The bearing can change its posture between the three or more stable postures by rotating around a rotation axis parallel to the height direction,
The three or more stable postures are in the power conversion device (1) in such a posture that the dimensions of the support bodies in the stacking direction are different from each other.

上記電力変換装置において、支承体は、上記安定姿勢を3つ以上得ることができるような形状である。そして、支承体は、高さ方向に平行な回転軸の回りに自転させることにより、3つ以上の安定姿勢の間で姿勢を変化させることができる。さらに、3つ以上の安定姿勢は、積層方向における支承体の寸法が互いに異なるような姿勢である。それゆえ、支承体を自転させて、配置姿勢を変えることにより、半導体積層ユニットに作用する加圧力を容易に調整することができる。そのため、互いに直径の異なる複数の支承体を用意する必要がない。それゆえ、電力変換装置の生産コストの低減を図ることができる。   In the power converter, the support body has a shape that can obtain three or more of the stable postures. And a support body can change an attitude | position between three or more stable attitudes by rotating around the rotating shaft parallel to a height direction. Further, the three or more stable postures are postures in which the dimensions of the support bodies in the stacking direction are different from each other. Therefore, the applied pressure acting on the semiconductor laminated unit can be easily adjusted by rotating the support body and changing the arrangement posture. Therefore, it is not necessary to prepare a plurality of support bodies having different diameters. Therefore, the production cost of the power conversion device can be reduced.

以上のごとく、上記態様においては、生産コストの低減を図りつつ、半導体積層ユニットに作用する加圧力を容易に調整することができる電力変換装置を提供することができる。
なお、特許請求の範囲及び課題を解決する手段に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本発明の技術的範囲を限定するものではない。
As mentioned above, in the said aspect, the power converter device which can adjust the pressurization force which acts on a semiconductor lamination | stacking unit easily can be provided, aiming at reduction of production cost.
In addition, the code | symbol in the parenthesis described in the means to solve a claim and a subject shows the correspondence with the specific means as described in embodiment mentioned later, and limits the technical scope of this invention. It is not a thing.

実施形態1における、電力変換装置の上面図。The top view of the power converter device in Embodiment 1. FIG. 図1の、II−II線矢視断面図。The II-II sectional view taken on the line of FIG. 実施形態1における、支承体の斜視図。The perspective view of the support body in Embodiment 1. FIG. 実施形態1における、支承体の上面図。The top view of the support body in Embodiment 1. FIG. 実施形態1における、支承体を第一安定姿勢にしたときの、電力変換装置の一対の支承体周辺の拡大上面図。FIG. 3 is an enlarged top view around a pair of support bodies of the power conversion device when the support bodies are in a first stable posture in the first embodiment. 実施形態1における、支承体を第二安定姿勢にしたときの、電力変換装置の一対の支承体周辺の拡大上面図。The enlarged upper side figure of a pair of support body periphery of a power converter device when the support body in Embodiment 1 is made into the 2nd stable attitude | position. 実施形態1における、支承体を第三安定姿勢にしたときの、電力変換装置の一対の支承体周辺の拡大上面図。The enlarged upper surface figure of a pair of support body periphery of a power converter device when the support body in Embodiment 1 is made into the 3rd stable attitude | position. 実施形態1における、(A)第一安定姿勢(B)第二安定姿勢(C)第三安定姿勢、の支承体の積層方向の長さを比較するための説明図。Explanatory drawing for comparing the length of the stacking direction of the support body of (A) 1st stable posture (B) 2nd stable posture (C) 3rd stable posture in Embodiment 1. FIG. 実施形態2における、電力変換装置の上面図。The top view of the power converter device in Embodiment 2. FIG. 実施形態2における、支承体の斜視図。The perspective view of the support body in Embodiment 2. FIG. 実施形態2における、支承体の上面図。The top view of the support body in Embodiment 2. FIG. 実施形態2における、支承体を第一安定姿勢にしたときの、電力変換装置の一対の支承体周辺の拡大上面図。The expanded top view of a pair of support bodies periphery of a power converter device when a support body is set to the 1st stable posture in Embodiment 2. FIG. 実施形態2における、支承体を第二安定姿勢にしたときの、電力変換装置の一対の支承体周辺の拡大上面図。The enlarged top view around a pair of support bodies of a power converter when a support body is made into the 2nd stable posture in Embodiment 2. 実施形態2における、支承体を第三安定姿勢にしたときの、電力変換装置の一対の支承体周辺の拡大上面図。The expanded upper side figure of a pair of support body periphery of a power converter device when the support body in Embodiment 2 was made into the 3rd stable attitude | position. 実施形態2における、(A)第一安定姿勢、(B)第二安定姿勢、(C)第三安定姿勢、の支承体の積層方向の長さを比較するための説明図。Explanatory drawing for comparing the length of the lamination direction of the support body of Embodiment 2 in (A) 1st stable attitude | position, (B) 2nd stable attitude | position, and (C) 3rd stable attitude | position.

(実施形態1)
電力変換装置に係る実施形態について、図1〜図8を参照して説明する。
本実施形態の電力変換装置1は、図1、図2に示すごとく、複数の半導体モジュール11と複数の冷却管2とケース3とばね部材4と支承体5とを有する。半導体モジュール11は、半導体素子を内蔵してなる。複数の冷却管2は、複数の半導体モジュール11と共に積層配置されて半導体積層ユニット10を構成する。ケース3は、半導体積層ユニット10に対して積層方向Xの両側から対向する前方壁部31及び後方壁部32を有する。ばね部材4は、積層方向Xにおける半導体積層ユニット10と後方壁部32との間に配されている。そして、ばね部材4は、半導体積層ユニット10を積層方向Xに加圧する。支承体5は、積層方向Xにおけるばね部材4と後方壁部32との間に配されている。
(Embodiment 1)
An embodiment according to a power conversion device will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the power conversion device 1 of the present embodiment includes a plurality of semiconductor modules 11, a plurality of cooling pipes 2, a case 3, a spring member 4, and a support body 5. The semiconductor module 11 includes a semiconductor element. The plurality of cooling pipes 2 are stacked together with the plurality of semiconductor modules 11 to constitute the semiconductor stacked unit 10. The case 3 includes a front wall portion 31 and a rear wall portion 32 that face the semiconductor stacked unit 10 from both sides in the stacking direction X. The spring member 4 is disposed between the semiconductor stacked unit 10 and the rear wall portion 32 in the stacking direction X. The spring member 4 pressurizes the semiconductor lamination unit 10 in the lamination direction X. The support body 5 is disposed between the spring member 4 and the rear wall portion 32 in the stacking direction X.

図1、図5〜図7に示すごとく、ばね部材4は、積層方向Xに直交する横方向Yに長尺な形状を有する。そして、ばね部材4は、一対の被支承部41と押圧部42とを有する。一対の被支承部41は、横方向Yの両端において一対の支承体5によって、それぞれ支承される。押圧部42は、一対の被支承部41の間において半導体積層ユニット10を押圧する。図3に示すごとく、支承体5は、積層方向Xと横方向Yとの双方に直交する高さ方向Zに立設する柱形状を有している。また、図5〜図7に示すごとく、支承体5は、被支承部41と後方壁部32との間に安定して挟持される安定姿勢を3つ以上得ることができるような形状である。支承体5は、高さ方向Zに平行な回転軸の回りに自転させることにより、3つ以上の安定姿勢の間で姿勢を変化させることができる。図8に示すごとく、3つ以上の安定姿勢は、積層方向Xにおける支承体5の寸法が互いに異なるような姿勢である。   As shown in FIGS. 1 and 5 to 7, the spring member 4 has an elongated shape in the lateral direction Y orthogonal to the stacking direction X. The spring member 4 has a pair of supported portions 41 and a pressing portion 42. The pair of supported portions 41 are supported by the pair of support bodies 5 at both ends in the lateral direction Y, respectively. The pressing part 42 presses the semiconductor multilayer unit 10 between the pair of supported parts 41. As shown in FIG. 3, the support body 5 has a column shape standing in the height direction Z perpendicular to both the stacking direction X and the lateral direction Y. Moreover, as shown in FIGS. 5-7, the support body 5 is a shape which can obtain three or more stable attitude | positions stably clamped between the to-be-supported part 41 and the back wall part 32. As shown in FIG. . The support body 5 can change its posture among three or more stable postures by rotating around the rotation axis parallel to the height direction Z. As shown in FIG. 8, the three or more stable postures are postures in which the dimensions of the support body 5 in the stacking direction X are different from each other.

本実施形態の電力変換装置1は、例えば、電気自動車やハイブリッド自動車等に搭載され、電源電力を駆動用モータの駆動に必要な駆動用電力に変換するインバータとして用いることができる。
なお、積層方向Xにおける、ばね部材4に対して半導体積層ユニット10が配された側を前方、その反対側を後方という。
The power conversion device 1 according to the present embodiment is mounted on, for example, an electric vehicle or a hybrid vehicle, and can be used as an inverter that converts power supply power to drive power necessary for driving a drive motor.
In the stacking direction X, the side on which the semiconductor stack unit 10 is arranged with respect to the spring member 4 is referred to as the front, and the opposite side is referred to as the back.

図1に示すごとく、ケース3は、矩形枠体形状を有する。ケース3は、前方壁部31、後方壁部32、及び一対の側方壁部33を有する。前方壁部31及び後方壁部32は、積層方向Xに互いに対向している。一対の側方壁部33は、横方向Yにおける前方壁部31及び後方壁部32の端部同士を積層方向Xに連結している。一対の側方壁部33は、互いに横方向Yに対向している。   As shown in FIG. 1, the case 3 has a rectangular frame shape. The case 3 has a front wall portion 31, a rear wall portion 32, and a pair of side wall portions 33. The front wall portion 31 and the rear wall portion 32 face each other in the stacking direction X. The pair of side wall portions 33 connect the end portions of the front wall portion 31 and the rear wall portion 32 in the lateral direction Y in the stacking direction X. The pair of side wall portions 33 oppose each other in the lateral direction Y.

図1、図2に示すごとく、ケース3内に、半導体積層ユニット10が配されている。半導体モジュール11は、例えば絶縁ゲートバイポーラトランジスタ、MOS型電界効果トランジスタ等のスイッチング素子を内蔵してなる。   As shown in FIGS. 1 and 2, a semiconductor laminated unit 10 is arranged in the case 3. The semiconductor module 11 includes a switching element such as an insulated gate bipolar transistor or a MOS field effect transistor.

半導体モジュール11は、積層方向Xの両側から、一対の冷却管2によって挟持されている。積層方向Xに隣り合う冷却管2は、横方向Yの両端部付近において、連結管21によって互いに連結されている。連結管21は、例えばその形状を蛇腹状にしたり、冷却管2との接続部にダイヤフラムを設けたりすることにより、隣り合う冷却管2の間の間隔を変化させることができるよう構成されている。   The semiconductor module 11 is sandwiched between the pair of cooling pipes 2 from both sides in the stacking direction X. The cooling pipes 2 adjacent to each other in the stacking direction X are connected to each other by connecting pipes 21 in the vicinity of both ends in the horizontal direction Y. The connecting pipe 21 is configured such that the interval between the adjacent cooling pipes 2 can be changed, for example, by making the shape of the connecting pipe 21 bellows or by providing a diaphragm at the connection portion with the cooling pipe 2. .

複数の冷却管2のうち、前端に配された冷却管2の前面は、前方壁部31に当接している。また、前端の冷却管2からは、冷却管2に冷媒を導入するための冷媒導入管22と冷却管2から冷媒を排出するための冷媒排出管23とが、前方に向って突出形成されている。冷媒導入管22及び冷媒排出管23は、側方壁部33を積層方向Xに貫通しており、ケース3の外側に突出している。   Of the plurality of cooling pipes 2, the front surface of the cooling pipe 2 disposed at the front end is in contact with the front wall portion 31. Further, from the cooling pipe 2 at the front end, a refrigerant introduction pipe 22 for introducing the refrigerant into the cooling pipe 2 and a refrigerant discharge pipe 23 for discharging the refrigerant from the cooling pipe 2 are formed protruding forward. Yes. The refrigerant introduction pipe 22 and the refrigerant discharge pipe 23 pass through the side wall portion 33 in the stacking direction X and project outside the case 3.

ケース3内における半導体積層ユニット10の後面には、当接板12が面接触して配置されている。当接板12は、剛性の高い平板状の部材である。   A contact plate 12 is disposed in surface contact with the rear surface of the semiconductor laminated unit 10 in the case 3. The contact plate 12 is a plate member having high rigidity.

図1、図5〜図7に示すごとく、当接板12の後面に、ばね部材4が当接している。上述のごとく、ばね部材4は、一対の被支承部41と押圧部42とを有する。押圧部42は、横方向Yにおけるばね部材4の中央部に形成されている。押圧部42は、前方へ突出するように湾曲し、当接板12の後面に当接している。一対の被支承部41は、横方向Yにおける押圧部42の両端から横方向Yに延設されている。一対の被支承部41は、前方へ突出するように湾曲している。被支承部41の後面411は、積層方向Xの前方に凹んだ曲面である。そして、一対の被支承部41の後面411と後方壁部32の前面との間に、一対の支承体5が挟持されている。なお、後方壁部32の前面における、少なくとも支承体5が当接している部位は、積層方向Xに直交する平面である。   As shown in FIGS. 1 and 5 to 7, the spring member 4 is in contact with the rear surface of the contact plate 12. As described above, the spring member 4 has a pair of supported portions 41 and a pressing portion 42. The pressing portion 42 is formed at the central portion of the spring member 4 in the lateral direction Y. The pressing portion 42 is curved so as to protrude forward, and is in contact with the rear surface of the contact plate 12. The pair of supported portions 41 are extended in the lateral direction Y from both ends of the pressing portion 42 in the lateral direction Y. The pair of supported portions 41 are curved so as to protrude forward. The rear surface 411 of the supported portion 41 is a curved surface that is recessed forward in the stacking direction X. The pair of support bodies 5 are sandwiched between the rear surface 411 of the pair of supported portions 41 and the front surface of the rear wall portion 32. Note that at least a portion of the front surface of the rear wall portion 32 in contact with the support body 5 is a plane orthogonal to the stacking direction X.

図3、図4に示すごとく、支承体5は、高さ方向Zに直交する方向における円柱の端部を高さ方向Zに沿った2つの平面にて切り欠いたような形状を有している。支承体5の外周面50は、曲面部51と2つの平面部52とを有する。図4に示すごとく、曲面部51は、高さ方向Zに直交する断面の形状が180°を超える中心角θを有する円弧状を呈する。2つの平面部52は、高さ方向Zに直交する方向を向いている。また、高さ方向Zに直交する断面において、2つの平面部52は、曲面部51の円弧の中心Cと同心の、曲面部51を通る仮想円Dの内側に位置している。2つの平面部52は、法線方向が互いに異なっている。そして、図4、図8に示すごとく、2つの平面部52の法線方向における、支承体5の寸法は、互いに異なる。   As shown in FIGS. 3 and 4, the support body 5 has a shape in which the end of the cylinder in a direction orthogonal to the height direction Z is cut out in two planes along the height direction Z. Yes. The outer peripheral surface 50 of the support body 5 has a curved surface portion 51 and two flat surface portions 52. As shown in FIG. 4, the curved surface portion 51 has an arc shape in which a cross-sectional shape perpendicular to the height direction Z has a central angle θ exceeding 180 °. The two flat portions 52 face the direction orthogonal to the height direction Z. Further, in the cross section orthogonal to the height direction Z, the two flat portions 52 are located inside the virtual circle D passing through the curved surface portion 51 and concentric with the center C of the arc of the curved surface portion 51. The two plane portions 52 have different normal directions. As shown in FIGS. 4 and 8, the dimensions of the support body 5 in the normal direction of the two plane portions 52 are different from each other.

支承体5は、例えば円柱状の金属部材を切削加工して2つの平面部52を形成することにより、形成することができる。すなわち、仮想円Dは、切削加工により平面部52が形成される前の状態の支承体5の外形をも表している。なお、支承体5の製造方法はこれに限られず、例えば成形にて、2つの平面部52を形成することもできる。   The support body 5 can be formed by, for example, cutting a cylindrical metal member to form the two flat portions 52. That is, the virtual circle D also represents the outer shape of the support body 5 in a state before the flat portion 52 is formed by cutting. In addition, the manufacturing method of the support body 5 is not restricted to this, For example, the two plane parts 52 can also be formed by shaping | molding.

図1、図5〜図7に示すごとく、曲面部51の曲率半径は、被支承部41の後面411の曲率半径よりも小さい。   As shown in FIGS. 1 and 5 to 7, the radius of curvature of the curved surface portion 51 is smaller than the radius of curvature of the rear surface 411 of the supported portion 41.

図3に示すごとく、各平面部52は、高さ方向Zに延びる辺と高さ方向Zに直交する方向に延びる辺を有する長方形形状を呈している。各平面部52は、曲面部51と反対側の端部が、他の平面部52と接している。2つの平坦面52が曲面部51側になす角度は、鈍角である。2つの平面部52は、高さ方向Zに直交する方向の寸法が互いに異なる。以下においては、適宜、2つの平面部52のうち、高さ方向Zに直交する方向の寸法が長い方の平面部52を長平面部521といい、高さ方向Zに直交する方向の寸法が短い方の平面部52を短平面部522という。   As shown in FIG. 3, each planar portion 52 has a rectangular shape having sides extending in the height direction Z and sides extending in a direction orthogonal to the height direction Z. Each flat surface portion 52 is in contact with the other flat surface portion 52 at the end opposite to the curved surface portion 51. The angle formed by the two flat surfaces 52 toward the curved surface portion 51 is an obtuse angle. The two plane portions 52 have different dimensions in the direction orthogonal to the height direction Z. In the following, of the two plane parts 52, the plane part 52 having the longer dimension in the direction orthogonal to the height direction Z is referred to as a long plane part 521, and the dimension in the direction orthogonal to the height direction Z is The shorter plane part 52 is referred to as a short plane part 522.

図4、図8(B)、図8(C)に示すごとく、長平面部521の法線方向における支承体5の寸法L3は、短平面部522の法線方向における支承体5の寸法L2よりも小さい。また、図4、図8に示すごとく、曲面部51の円弧の中心Cを通る、高さ方向Zに直交する直線であって、曲面部51の2箇所を通る直線が延びる方向の寸法L1は、寸法L2及び寸法L3よりも大きい。すなわち、支承体5の寸法関係は、L1>L2>L3となっている。   As shown in FIGS. 4, 8 </ b> B, and 8 </ b> C, the dimension L <b> 3 of the support body 5 in the normal direction of the long plane part 521 is the dimension L <b> 2 of the support body 5 in the normal direction of the short plane part 522. Smaller than. Also, as shown in FIGS. 4 and 8, the dimension L1 in the direction in which the straight line passing through the center C of the arc of the curved surface portion 51 and perpendicular to the height direction Z and extending through the two portions of the curved surface portion 51 extends is as follows. , Larger than dimension L2 and dimension L3. That is, the dimensional relationship of the support body 5 is L1> L2> L3.

図5〜図7に示すごとく、電力変換装置1に組み込まれた一対の支承体5は、積層方向Xの寸法が互いに同じになるよう配される。本実施形態において、電力変換装置1に組み込まれた一対の支承体5は、高さ方向Zから見て、互いの中間を通る積層方向Xの対称軸を基準にして、互いに線対称となる状態で配されている。すなわち、一方の被支承部41と後方壁部32との間に挟持された支承体5は、他方の被支承部41と後方壁部32との間に挟持された支承体5を、積層方向Xに平行な軸を中心として180°回転させた姿勢で配されている。なお、これに限られず、一方の被支承部41と後方壁部32との間に挟持された支承体5は、他方の被支承部41と後方壁部32との間に挟持された支承体5と同じ姿勢で配されていても良い。これによっても、一対の支承体5の積層方向Xの寸法は、同じとなる。   As shown in FIGS. 5 to 7, the pair of support bodies 5 incorporated in the power converter 1 are arranged so that the dimensions in the stacking direction X are the same. In the present embodiment, the pair of support bodies 5 incorporated in the power converter 1 are in a state of being line-symmetric with respect to each other with respect to the axis of symmetry in the stacking direction X passing through each other as viewed from the height direction Z. It is arranged with. That is, the support body 5 sandwiched between one supported portion 41 and the rear wall portion 32 is different from the support body 5 sandwiched between the other supported portion 41 and the rear wall portion 32 in the stacking direction. It is arranged in a posture rotated by 180 ° about an axis parallel to X. The support body 5 sandwiched between the one supported portion 41 and the rear wall portion 32 is not limited to this, and the support body sandwiched between the other supported portion 41 and the rear wall portion 32 is used. 5 may be arranged in the same posture. Also by this, the dimension of the pair of support bodies 5 in the stacking direction X is the same.

上述のごとく、支承体5は、安定姿勢で、被支承部41と後方壁部32との間に挟持されている。ここで、安定姿勢は、被支承部41と後方壁部32との間で挟圧された状態における支承体5の姿勢が、時間の経過に伴って変化しない姿勢である。また、安定姿勢は、例えば、車両の通常運転時に生じる振動等の外力が電力変換装置1に作用しても、支承体5の姿勢の変化が生じないような姿勢である。支承体5が安定姿勢で被支承部41と後方壁部32との間に挟持されることにより、ばね部材4、ケース3及び支承体5相互間の位置が時間の経過によって変化せず、一対の支承体5によって安定してばね部材4を支承することができる。図5〜図7に示すごとく、本実施形態において、支承体5は、3つの安定姿勢の間で姿勢を変化させることができる。本実施形態において、適宜、3つの安定姿勢を、それぞれ第一安定姿勢A1、第二安定姿勢A2、第三安定姿勢A3という。   As described above, the support body 5 is sandwiched between the supported portion 41 and the rear wall portion 32 in a stable posture. Here, the stable posture is a posture in which the posture of the support body 5 in a state of being pressed between the supported portion 41 and the rear wall portion 32 does not change with the passage of time. The stable posture is a posture in which, for example, the posture of the support body 5 does not change even when an external force such as vibration generated during normal operation of the vehicle acts on the power conversion device 1. Since the support body 5 is sandwiched between the supported part 41 and the rear wall part 32 in a stable posture, the positions of the spring member 4, the case 3, and the support body 5 do not change with the passage of time. The spring member 4 can be stably supported by the support body 5. As shown in FIGS. 5 to 7, in the present embodiment, the support body 5 can change its posture among three stable postures. In the present embodiment, the three stable postures are appropriately referred to as a first stable posture A1, a second stable posture A2, and a third stable posture A3, respectively.

図5、図8(A)に示すごとく、第一安定姿勢A1は、支承体5の曲面部51が、被支承部41の後面411と後方壁部32の前面との双方に当接した支承体5の姿勢である。これにより、図8(A)に示すごとく、第一安定姿勢A1における支承体5の積層方向Xの寸法は、L1となる。この第一安定姿勢A1は、曲面部51の2箇所にてばね部材4と後方壁部32とに当接する姿勢である。しかし、支承体5に作用する力が、全方向において釣り合うため、安定姿勢となる。   As shown in FIGS. 5 and 8A, in the first stable posture A1, the curved surface portion 51 of the support body 5 is in contact with both the rear surface 411 of the supported portion 41 and the front surface of the rear wall portion 32. This is the posture of the body 5. Thereby, as shown to FIG. 8 (A), the dimension of the lamination direction X of the support body 5 in 1st stable attitude | position A1 becomes L1. The first stable posture A <b> 1 is a posture in contact with the spring member 4 and the rear wall portion 32 at two locations on the curved surface portion 51. However, since the force acting on the support body 5 is balanced in all directions, the posture is stable.

図6、図8(B)に示すごとく、第二安定姿勢A2は、支承体5の曲面部51が被支承部41の後面411と当接し、支承体5の短平面部522が後方壁部32の前面と面接触した支承体5の姿勢である。これにより、図8(B)に示すごとく、第二安定姿勢A2における支承体5の積層方向Xの寸法は、L2となる。   As shown in FIGS. 6 and 8B, in the second stable posture A2, the curved surface portion 51 of the support body 5 abuts the rear surface 411 of the supported portion 41, and the short flat surface portion 522 of the support body 5 is the rear wall portion. This is the posture of the support body 5 in surface contact with the front surface of 32. Accordingly, as shown in FIG. 8B, the dimension in the stacking direction X of the support body 5 in the second stable posture A2 is L2.

図7、図8(C)に示すごとく、第三安定姿勢A3は、支承体5の曲面部51が被支承部41の後面411と当接し、支承体5の長平面部521が後方壁部32の前面と面接触した支承体5の姿勢である。これにより、図8(C)に示すごとく、第三安定姿勢A3における支承体5の積層方向Xの寸法は、L3となる。   As shown in FIGS. 7 and 8C, in the third stable posture A3, the curved surface portion 51 of the support body 5 abuts the rear surface 411 of the supported portion 41, and the long flat surface portion 521 of the support body 5 is the rear wall portion. This is the posture of the support body 5 in surface contact with the front surface of 32. Thereby, as shown in FIG.8 (C), the dimension of the lamination direction X of the support body 5 in the 3rd stable attitude | position A3 will be L3.

上述のごとく、L1、L2、及びL3は、L1>L2>L3の関係を有することから、図8に示すごとく、安定姿勢は、第一安定姿勢A1、第二安定姿勢A2、第三安定姿勢A3の順に、支承体5の積層方向Xの寸法が長くなる。   As described above, since L1, L2, and L3 have a relationship of L1> L2> L3, as shown in FIG. 8, the stable postures are the first stable posture A1, the second stable posture A2, and the third stable posture. The dimension of the support body 5 in the stacking direction X becomes longer in the order of A3.

本実施形態において、支承体5は、第一安定姿勢A1、第二安定姿勢A2、及び第三安定姿勢A3のいずれかの姿勢で、配置されている。支承体5の配置姿勢は、ばね部材4から半導体積層ユニット10への加圧力が、適切なものとなるよう適宜選択される。ここで、ばね部材4から半導体積層ユニット10への加圧力は、ばね部材4の弾性変形量に依存する。すなわち、支承体5の配置姿勢は、ケース3の積層方向Xの寸法、半導体積層ユニット10の積層方向Xの寸法に応じて、ばね部材4の弾性変形量が適切なものとなるよう適宜選択される。なお、ばね部材4から半導体積層ユニット10への加圧力が適切であるかどうかは、半導体モジュール11の冷却性の観点、半導体積層ユニット10の剛性の観点から求められる。   In the present embodiment, the support body 5 is arranged in any one of the first stable posture A1, the second stable posture A2, and the third stable posture A3. The arrangement posture of the support body 5 is appropriately selected so that the pressure applied from the spring member 4 to the semiconductor laminated unit 10 is appropriate. Here, the pressure applied from the spring member 4 to the semiconductor laminated unit 10 depends on the amount of elastic deformation of the spring member 4. That is, the arrangement posture of the support body 5 is appropriately selected so that the elastic deformation amount of the spring member 4 is appropriate according to the dimension of the case 3 in the stacking direction X and the dimension of the semiconductor stacking unit 10 in the stacking direction X. The Whether or not the pressure applied from the spring member 4 to the semiconductor laminated unit 10 is appropriate is determined from the viewpoint of the cooling performance of the semiconductor module 11 and the rigidity of the semiconductor laminated unit 10.

次に、ケース3に対する支承体5の配置姿勢の選択の仕方について、その一例を説明する。
例えば、個々の製品ごとに、半導体積層ユニット10の積層方向Xの寸法に公差がある。ここで、半導体積層ユニット10の積層方向Xの寸法が設計値よりも大きく形成されると、半導体積層ユニット10と後方壁部32との間の隙間が設計よりも狭く形成される。一方、半導体積層ユニット10の積層方向Xの寸法が設計値よりも小さく形成されると、半導体積層ユニット10と後方壁部32との間の隙間が設計よりも広く形成される。これら2つの状況において、積層方向Xの支承体5の寸法が同じであると、前者の状態においては、ばね部材4による半導体積層ユニット10への加圧力が小さすぎ、後者の状態においては、ばね部材4による半導体積層ユニット10への加圧力が大きすぎるという事態が生じ得る。
Next, an example of how to select the arrangement posture of the support body 5 with respect to the case 3 will be described.
For example, there is a tolerance in the dimension in the stacking direction X of the semiconductor stacked unit 10 for each product. Here, when the dimension in the stacking direction X of the semiconductor stacked unit 10 is formed larger than the design value, the gap between the semiconductor stacked unit 10 and the rear wall portion 32 is formed narrower than designed. On the other hand, when the dimension in the stacking direction X of the semiconductor multilayer unit 10 is formed smaller than the design value, the gap between the semiconductor multilayer unit 10 and the rear wall portion 32 is formed wider than the design. In these two situations, if the dimensions of the support body 5 in the stacking direction X are the same, the pressure applied to the semiconductor stacked unit 10 by the spring member 4 is too small in the former state, and the spring in the latter state. A situation may occur in which the pressure applied to the semiconductor multilayer unit 10 by the member 4 is too large.

そこで、前者の状態においては、図8(A)に示すごとく、支承体5の姿勢として第一安定姿勢A1を選択する。一方、後者の状態においては、図8(C)に示すごとく、支承体5の姿勢として第三安定姿勢A3を選択する。また、半導体積層ユニット10の積層方向Xの寸法が、設計値に近くなるように形成されたときには、図8(B)に示すごとく、支承体5の姿勢として第二安定姿勢A2を選択する。以上のように、ケース3に対する支承体5の姿勢を選択することにより、ばね部材4から半導体積層ユニット10への加圧力を適切なものにすることができる。   Therefore, in the former state, the first stable posture A1 is selected as the posture of the support body 5 as shown in FIG. On the other hand, in the latter state, the third stable posture A3 is selected as the posture of the support body 5 as shown in FIG. Further, when the dimension in the stacking direction X of the semiconductor stacked unit 10 is formed so as to be close to the design value, the second stable posture A2 is selected as the posture of the support body 5 as shown in FIG. As described above, by selecting the posture of the support body 5 with respect to the case 3, the pressure applied from the spring member 4 to the semiconductor laminated unit 10 can be made appropriate.

次に、本実施形態の作用効果につき説明する。
電力変換装置1において、支承体5は、安定姿勢を3つ以上得ることができるような形状である。そして、支承体5は、高さ方向Zに平行な回転軸の回りに自転させることにより、3つ以上の安定姿勢の間で姿勢を変化させることができる。さらに、3つ以上の安定姿勢は、積層方向Xにおける支承体5の寸法が互いに異なるような姿勢である。それゆえ、支承体5を、自転させて、配置姿勢を変えることにより、半導体積層ユニット10に作用する加圧力を容易に調整することができる。そのため、互いに直径の異なる複数の支承体5を用意する必要がない。それゆえ、電力変換装置1の生産コストの低減を図ることができる。
Next, the effect of this embodiment is demonstrated.
In the power converter 1, the support body 5 has a shape that can obtain three or more stable postures. And the support body 5 can change an attitude | position between three or more stable attitudes by rotating around the rotating shaft parallel to the height direction Z. As shown in FIG. Further, the three or more stable postures are postures in which the dimensions of the support body 5 in the stacking direction X are different from each other. Therefore, the applied pressure acting on the semiconductor multilayer unit 10 can be easily adjusted by rotating the support body 5 and changing the arrangement posture. Therefore, it is not necessary to prepare a plurality of support bodies 5 having different diameters. Therefore, the production cost of the power conversion device 1 can be reduced.

また、支承体5の外周面50は、曲面部51と2つの平面部52を有する。それゆえ、3つの安定姿勢における積層方向Xの寸法が互いに異なる支承体5を、容易に製造することができる。   The outer peripheral surface 50 of the support body 5 has a curved surface portion 51 and two flat surface portions 52. Therefore, it is possible to easily manufacture the support bodies 5 having different dimensions in the stacking direction X in the three stable postures.

また、支承体5の曲面部51の曲率半径は、被支承部41の後面411の曲率半径よりも小さい。それゆえ、支承体5によって、ばね部材4を安定して支承しやすい。   The curvature radius of the curved surface portion 51 of the support body 5 is smaller than the curvature radius of the rear surface 411 of the supported portion 41. Therefore, it is easy to stably support the spring member 4 by the support body 5.

以上のごとく、本実施形態においては、生産コストの低減を図りつつ、半導体積層ユニットに作用する加圧力を容易に調整することができる電力変換装置を提供することができる。   As described above, in this embodiment, it is possible to provide a power conversion device that can easily adjust the pressure applied to the semiconductor multilayer unit while reducing the production cost.

(実施形態2)
本実施形態は、図9〜図15に示すごとく、実施形態1に対して、支承体5の形状を変更した実施形態である。図10に示すごとく、支承体5は、外周面50が3つの平坦面53を有する三角柱形状を有する。さらに、図10、図11に示すごとく、支承体5は、3つの平坦面53の法線方向における寸法が互いに異なる。
(Embodiment 2)
As shown in FIGS. 9 to 15, the present embodiment is an embodiment in which the shape of the support body 5 is changed with respect to the first embodiment. As shown in FIG. 10, the support body 5 has a triangular prism shape in which the outer peripheral surface 50 has three flat surfaces 53. Furthermore, as shown in FIGS. 10 and 11, the support body 5 is different in the dimension of the three flat surfaces 53 in the normal direction.

図9、図12〜図14に示すごとく、本実施形態においても、被支承部41の後面411は、積層方向Xの前方に凹んだ曲面である。図10、図11に示すごとく、支承体5は、平坦面53同士の間の角部54が曲面状に形成されている。そして、図9、図12〜図14に示すごとく、角部54の曲率半径は、被支承部41の後面411の曲率半径よりも小さい。   As shown in FIGS. 9 and 12 to 14, also in the present embodiment, the rear surface 411 of the supported portion 41 is a curved surface that is recessed forward in the stacking direction X. As shown in FIGS. 10 and 11, the support 5 has corners 54 between the flat surfaces 53 formed in a curved shape. As shown in FIGS. 9 and 12 to 14, the radius of curvature of the corner portion 54 is smaller than the radius of curvature of the rear surface 411 of the supported portion 41.

図10、図11に示すごとく、支承体5は、平坦面53同士の間の角部54が、平坦面53同士を滑らかに連結するように曲面状に形成されている。本実施形態において、支承体5は、正三角柱状の金属部材の側面間の角を切削加工して3つの角部54を形成することにより、形成されている。図11においては、角部54が形成される前の状態の支承体5の外形を、二点鎖線にて表している。なお、支承体5の製造方法はこれに限られず、例えば成形にて、3つの角部53を曲面状に形成することもできる。   As shown in FIGS. 10 and 11, the support body 5 is formed in a curved surface so that the corners 54 between the flat surfaces 53 smoothly connect the flat surfaces 53 to each other. In this embodiment, the support body 5 is formed by cutting the corners between the side surfaces of the regular triangular prism-shaped metal member to form the three corner portions 54. In FIG. 11, the outer shape of the support body 5 in a state before the corner portion 54 is formed is represented by a two-dot chain line. In addition, the manufacturing method of the support body 5 is not restricted to this, For example, the three corner | angular part 53 can also be formed in a curved surface shape by shaping | molding.

図11に示すごとく、各角部54は、その角部54に隣接しない平坦面53の法線方向における削られ長さが互いに異なる。これにより、支承体5は、各平坦面53の法線方向における寸法が互いに異なるよう形成されている。以下において、削られ長さが一番短い角部54を第一角部541、削られ長さが二番目に短い角部54を第二角部542、削られ長さが一番長い角部54を第三角部543という。なお、「削られ長さ」は、各平坦面53の法線方向において、切削加工される前の支承体の寸法から、切削加工された後の支承体5の寸法を引いた長さをいう。   As shown in FIG. 11, the corner portions 54 are different from each other in the shaved length in the normal direction of the flat surface 53 that is not adjacent to the corner portion 54. Thereby, the support body 5 is formed so that the dimension in the normal line direction of each flat surface 53 may mutually differ. In the following, the corner 54 with the shortest cut length is the first corner 541, the corner 54 with the second shortest cut length is the second corner 542, and the corner with the longest cut length. 54 is referred to as a third triangular portion 543. The “cut length” refers to a length obtained by subtracting the dimension of the support body 5 after being cut from the dimension of the support body before being cut in the normal direction of each flat surface 53. .

図11、図15に示すごとく、第一角部541に隣接しない平坦面53の法線方向における支承体5の寸法L4と、第二角部542に隣接しない平坦面53の法線方向における支承体5の寸法L5と、第三角部543に隣接しない平坦面53の法線方向における支承体5の寸法L6とは、L4>L5>L6の関係を満たす。   As shown in FIGS. 11 and 15, the dimension L4 of the support body 5 in the normal direction of the flat surface 53 not adjacent to the first corner portion 541 and the support in the normal direction of the flat surface 53 not adjacent to the second corner portion 542. The dimension L5 of the body 5 and the dimension L6 of the support body 5 in the normal direction of the flat surface 53 not adjacent to the third triangular portion 543 satisfy the relationship L4> L5> L6.

図12〜図15に示すごとく、本実施形態において、支承体5は、3つの安定姿勢の間で姿勢を変化させることができる。本実施形態において、適宜、3つの安定姿勢をそれぞれ第一安定姿勢A4、第二安定姿勢A5、第三安定姿勢A6という。   As shown in FIGS. 12-15, in this embodiment, the support body 5 can change an attitude | position between three stable attitude | positions. In the present embodiment, the three stable postures are appropriately referred to as a first stable posture A4, a second stable posture A5, and a third stable posture A6, respectively.

図12、図15(A)に示すごとく、第一安定姿勢A4は、第一角部541が被支承部41の後面411と当接し、第一角部541に隣接しない平坦面53が後方壁部32の前面と面接触した支承体5の姿勢である。これにより、図15(A)に示すごとく、第一安定姿勢A4における支承体5の積層方向Xの寸法は、L4となる。   As shown in FIGS. 12 and 15A, in the first stable posture A4, the first corner portion 541 is in contact with the rear surface 411 of the supported portion 41, and the flat surface 53 not adjacent to the first corner portion 541 is the rear wall. The posture of the support body 5 is in surface contact with the front surface of the portion 32. Thereby, as shown to FIG. 15 (A), the dimension of the lamination direction X of the support body 5 in 1st stable attitude | position A4 will be L4.

図13、図15(B)に示すごとく、第二安定姿勢A5は、第二角部542が被支承部41の後面411と当接し、第二角部542に隣接しない平坦面53が後方壁部32の前面と面接触した支承体5の姿勢である。これにより、図15(B)に示すごとく、第二安定姿勢A5における支承体5の積層方向Xの寸法は、L5となる。   As shown in FIGS. 13 and 15B, in the second stable posture A5, the second corner portion 542 abuts the rear surface 411 of the supported portion 41, and the flat surface 53 not adjacent to the second corner portion 542 is the rear wall. The posture of the support body 5 is in surface contact with the front surface of the portion 32. Accordingly, as shown in FIG. 15B, the dimension in the stacking direction X of the support body 5 in the second stable posture A5 is L5.

図14、図15(C)に示すごとく、第三安定姿勢A6は、第三角部543が被支承部41の後面411と当接し、第三角部543に隣接しない平坦面53が後方壁部32の前面と面接触した支承体5の姿勢である。これにより、図15(C)に示すごとく、第三安定姿勢A6における支承体5の積層方向Xの寸法は、L6となる。   As shown in FIGS. 14 and 15C, in the third stable posture A6, the third triangular portion 543 contacts the rear surface 411 of the supported portion 41, and the flat surface 53 not adjacent to the third triangular portion 543 is the rear wall portion 32. It is the attitude | position of the support body 5 which surface-contacted. Thereby, as shown in FIG.15 (C), the dimension of the lamination direction X of the support body 5 in 3rd stable attitude | position A6 will be L6.

上述のごとく、L4、L5、及びL6は、L4>L5>L6の関係を有することから、図15に示すごとく、安定姿勢は、第一安定姿勢A4、第二安定姿勢A5、第三安定姿勢A6の順に、支承体5の積層方向Xの寸法が長くなる。   As described above, L4, L5, and L6 have a relationship of L4> L5> L6. Therefore, as shown in FIG. 15, the stable postures are the first stable posture A4, the second stable posture A5, and the third stable posture. In the order of A6, the dimension of the support body 5 in the stacking direction X becomes longer.

本実施形態においても、支承体5は、第一安定姿勢A4、第二安定姿勢A5、及び第三安定姿勢A6のいずれかの姿勢で配置されている。   Also in this embodiment, the support body 5 is arrange | positioned with the attitude | position in any one of 1st stable attitude | position A4, 2nd stable attitude | position A5, and 3rd stable attitude | position A6.

次に、ケース3に対する支承体5の配置姿勢の選択の仕方について、その一例を説明する。
半導体積層ユニット10の積層方向Xの寸法が設計値よりも大きく形成されると、半導体積層ユニット10と後方壁部32との間の隙間が設計よりも狭く形成される。一方、半導体積層ユニット10の積層方向Xの寸法が設計値よりも小さく形成されると、半導体積層ユニット10と後方壁部32との間の隙間が設計よりも広く形成される。
Next, an example of how to select the arrangement posture of the support body 5 with respect to the case 3 will be described.
When the dimension in the stacking direction X of the semiconductor stacked unit 10 is formed to be larger than the design value, the gap between the semiconductor stacked unit 10 and the rear wall portion 32 is formed to be narrower than designed. On the other hand, when the dimension in the stacking direction X of the semiconductor multilayer unit 10 is formed smaller than the design value, the gap between the semiconductor multilayer unit 10 and the rear wall portion 32 is formed wider than the design.

そこで、前者の状態においては、図15(A)に示すごとく、支承体5の姿勢として第一安定姿勢A4を選択する。一方、後者の状態においては、図15(C)に示すごとく、支承体5の姿勢として第三安定姿勢A6を選択する。また、半導体積層ユニット10の積層方向Xの寸法が、設計値に近くなるように形成されたときには、図15(B)に示すごとく、支承体5の姿勢として第二安定姿勢A5を選択する。以上のように、ケース3に対する支承体5の姿勢を選択することにより、ばね部材4から半導体積層ユニット10への加圧力を適切なものにすることができる。   Therefore, in the former state, the first stable posture A4 is selected as the posture of the support body 5 as shown in FIG. On the other hand, in the latter state, the third stable posture A6 is selected as the posture of the support body 5 as shown in FIG. Further, when the dimension in the stacking direction X of the semiconductor stacked unit 10 is formed so as to be close to the design value, the second stable posture A5 is selected as the posture of the support body 5 as shown in FIG. As described above, by selecting the posture of the support body 5 with respect to the case 3, the pressure applied from the spring member 4 to the semiconductor laminated unit 10 can be made appropriate.

その他は、実施形態1と同様である。
なお、実施形態2において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
本実施形態においても、実施形態1と同様の作用効果を有する。
Others are the same as in the first embodiment.
Of the reference numerals used in the second embodiment, the same reference numerals as those used in the above-described embodiments represent the same components as those in the above-described embodiments unless otherwise indicated.
This embodiment also has the same effects as those of the first embodiment.

なお、本発明は、上記各実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において種々の実施形態に適用することが可能である。   The present invention is not limited to the above embodiments, and can be applied to various embodiments without departing from the spirit of the invention.

1 電力変換装置
10 半導体積層ユニット
11 半導体モジュール
2 冷却管
3 ケース
31 前方壁部
32 後方壁部
4 ばね部材
41 被支承部
42 押圧部
5 支承体
A1、A2、A3 安定姿勢
X 積層方向
Y 横方向
Z 高さ方向
DESCRIPTION OF SYMBOLS 1 Power converter 10 Semiconductor lamination | stacking unit 11 Semiconductor module 2 Cooling pipe 3 Case 31 Front wall part 32 Back wall part 4 Spring member 41 Supported part 42 Pressing part 5 Support body A1, A2, A3 Stable attitude X Lamination direction Y Lateral direction Z height direction

Claims (5)

半導体素子を内蔵してなる複数の半導体モジュール(11)と、
該複数の半導体モジュールと共に積層配置されて半導体積層ユニット(10)を構成する複数の冷却管(2)と、
上記半導体積層ユニットに対して積層方向(X)の両側から対向する前方壁部(31)及び後方壁部(32)を有するケース(3)と、
上記積層方向における上記半導体積層ユニットと上記後方壁部との間に配され、上記半導体積層ユニットを上記積層方向に加圧するばね部材(4)と、
上記積層方向における上記ばね部材と上記後方壁部との間に配された一対の支承体(5)と、を有し、
上記ばね部材は、上記積層方向に直交する横方向(Y)に長尺な形状を有すると共に、上記横方向の両端において上記一対の支承体によって、それぞれ支承される一対の被支承部(41)と、該一対の被支承部の間において上記半導体積層ユニットを押圧する押圧部(42)とを有し、
上記支承体は、上記積層方向と上記横方向との双方に直交する高さ方向(Z)に立設する柱形状を有しており、かつ、上記被支承部と上記後方壁部との間に安定して挟持される安定姿勢(A1、A2、A3、A4、A5、A6)を3つ以上得ることができるような形状であり、
上記支承体は、上記高さ方向に平行な回転軸の回りに自転させることにより、上記3つ以上の安定姿勢の間で姿勢を変化させることができ、
上記3つ以上の安定姿勢は、上記積層方向における上記支承体の寸法が互いに異なるような姿勢である、電力変換装置(1)。
A plurality of semiconductor modules (11) each including a semiconductor element;
A plurality of cooling pipes (2) arranged together with the plurality of semiconductor modules to constitute a semiconductor lamination unit (10);
A case (3) having a front wall portion (31) and a rear wall portion (32) facing the semiconductor lamination unit from both sides in the lamination direction (X);
A spring member (4) disposed between the semiconductor lamination unit and the rear wall in the lamination direction and pressurizing the semiconductor lamination unit in the lamination direction;
A pair of supports (5) disposed between the spring member and the rear wall in the stacking direction;
The spring member has a long shape in a lateral direction (Y) orthogonal to the stacking direction, and a pair of supported portions (41) supported by the pair of support bodies at both ends in the lateral direction. And a pressing portion (42) for pressing the semiconductor laminated unit between the pair of supported portions,
The support body has a column shape standing in a height direction (Z) perpendicular to both the stacking direction and the lateral direction, and between the supported part and the rear wall part. It is a shape that can obtain three or more stable postures (A1, A2, A3, A4, A5, A6) that are stably held by
The bearing can change its posture between the three or more stable postures by rotating around a rotation axis parallel to the height direction,
The power converter (1), wherein the three or more stable postures are postures in which the dimensions of the support bodies in the stacking direction are different from each other.
上記支承体の外周面(50)は、上記高さ方向に直交する断面の形状が180°以上の中心角(θ)を有する円弧状を呈する曲面部(51)と、上記高さ方向に直交する方向を向いた2つの平面部(52、521、522)と、を有し、上記高さ方向に直交する断面において、上記2つの平面部は、上記曲面部の円弧の中心(C)と同心の、上記曲面部を通る仮想円(D)の内側に位置しており、上記2つの平面部は、法線方向が互いに異なっており、上記2つの平面部の法線方向における、上記支承体の寸法が互いに異なる、請求項1に記載の電力変換装置。   The outer peripheral surface (50) of the support body has a curved surface portion (51) having an arc shape with a central angle (θ) of 180 ° or more and a cross-sectional shape orthogonal to the height direction, and orthogonal to the height direction. Two plane parts (52, 521, 522) facing in the direction to be cut, and in a cross section orthogonal to the height direction, the two plane parts are arranged at the center (C) of the arc of the curved surface part. Concentric, positioned inside a virtual circle (D) passing through the curved surface portion, the two plane portions have different normal directions, and the support in the normal direction of the two plane portions The power converter according to claim 1, wherein the body dimensions are different from each other. 上記被支承部の後面(411)は、上記積層方向の前方に凹んだ曲面であり、上記支承体の上記曲面部の曲率半径は、上記被支承部の上記後面の曲率半径よりも小さい、請求項2に記載の電力変換装置。   The rear surface (411) of the supported portion is a curved surface that is recessed forward in the stacking direction, and the curvature radius of the curved surface portion of the supported body is smaller than the curvature radius of the rear surface of the supported portion. Item 3. The power conversion device according to Item 2. 上記支承体は、外周面(50)が3つの平坦面(53)を有する三角柱形状を有し、かつ、該3つの平坦面の法線方向における寸法が互いに異なる、請求項1に記載の電力変換装置。   2. The electric power according to claim 1, wherein the bearing body has a triangular prism shape with an outer peripheral surface (50) having three flat surfaces (53), and the dimensions of the three flat surfaces in the normal direction are different from each other. Conversion device. 上記被支承部の後面(411)は、上記積層方向の前方に凹んだ曲面であり、上記支承体は、上記平坦面同士の間の角部(54、541、542、543)が曲面状に形成されており、該角部の曲率半径は、上記被支承部の上記後面の曲率半径よりも小さい、請求項4に記載の電力変換装置。   The back surface (411) of the supported portion is a curved surface that is recessed forward in the stacking direction, and the support body has curved portions (54, 541, 542, 543) between the flat surfaces. The power conversion device according to claim 4, wherein the power conversion device is formed, and a radius of curvature of the corner portion is smaller than a radius of curvature of the rear surface of the supported portion.
JP2015208400A 2015-10-22 2015-10-22 Power converter Active JP6504018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015208400A JP6504018B2 (en) 2015-10-22 2015-10-22 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015208400A JP6504018B2 (en) 2015-10-22 2015-10-22 Power converter

Publications (2)

Publication Number Publication Date
JP2017085680A true JP2017085680A (en) 2017-05-18
JP6504018B2 JP6504018B2 (en) 2019-04-24

Family

ID=58713436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015208400A Active JP6504018B2 (en) 2015-10-22 2015-10-22 Power converter

Country Status (1)

Country Link
JP (1) JP6504018B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019077462A (en) * 2017-10-23 2019-05-23 凸版印刷株式会社 Packaging bag and manufacturing method of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011182628A (en) * 2010-02-05 2011-09-15 Denso Corp Power conversion apparatus
JP2013162541A (en) * 2012-02-01 2013-08-19 Toyota Motor Corp Electric power conversion system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011182628A (en) * 2010-02-05 2011-09-15 Denso Corp Power conversion apparatus
JP2013162541A (en) * 2012-02-01 2013-08-19 Toyota Motor Corp Electric power conversion system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019077462A (en) * 2017-10-23 2019-05-23 凸版印刷株式会社 Packaging bag and manufacturing method of the same

Also Published As

Publication number Publication date
JP6504018B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP5655846B2 (en) Power converter
JP5272629B2 (en) Method for producing assembled battery structure
JP6197769B2 (en) Power converter and manufacturing method thereof
JP6070999B2 (en) Power storage module
JP2014233193A (en) Power converter
US10784759B2 (en) Linear vibrating motor
JP2016063641A (en) Power conversion system
JP5387425B2 (en) Power converter
JP2017085680A (en) Electric power conversion device
JP6969333B2 (en) Manufacturing method of power converter
JP5333274B2 (en) Power converter
JP2011113706A (en) Battery module
JP6341084B2 (en) Multilayer equipment
JP2015090798A (en) Battery pack
JP2018137918A (en) Electric power conversion device
JP5929768B2 (en) Power converter
JP2013005570A (en) Power source module connection structure
JP6236236B2 (en) Power converter
JP6139342B2 (en) Laminated unit
JP2018182075A (en) Capacitor module
JP2013021893A (en) Electric power conversion apparatus
JP2014057464A (en) Electric power conversion apparatus
JP2013146169A (en) Power conversion device and method for manufacturing the same
JP7014051B2 (en) Power converter
JP2018101690A (en) Electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R151 Written notification of patent or utility model registration

Ref document number: 6504018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250