JP2017084673A - Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery, and method for manufacturing positive electrode active material for lithium ion battery - Google Patents

Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery, and method for manufacturing positive electrode active material for lithium ion battery Download PDF

Info

Publication number
JP2017084673A
JP2017084673A JP2015213387A JP2015213387A JP2017084673A JP 2017084673 A JP2017084673 A JP 2017084673A JP 2015213387 A JP2015213387 A JP 2015213387A JP 2015213387 A JP2015213387 A JP 2015213387A JP 2017084673 A JP2017084673 A JP 2017084673A
Authority
JP
Japan
Prior art keywords
lithium
active material
positive electrode
oxide
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015213387A
Other languages
Japanese (ja)
Other versions
JP6533733B2 (en
Inventor
樫村 利英
Toshihide Kashimura
利英 樫村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2015213387A priority Critical patent/JP6533733B2/en
Publication of JP2017084673A publication Critical patent/JP2017084673A/en
Application granted granted Critical
Publication of JP6533733B2 publication Critical patent/JP6533733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for a lithium ion battery, which is good in battery characteristics and subjected to surface modification.SOLUTION: A positive electrode active material for a lithium ion battery comprises: particles of a lithium nickel cobalt manganese oxide; a first coating layer on the surface of each particle, which consists of at least one lithium metal oxide of a lithium titanium oxide, a lithium tantalum oxide, a lithium zirconium oxide, and a lithium tungsten oxide; and a second coating layer on the first coating layer, which is formed by an aluminum oxide.SELECTED DRAWING: None

Description

本発明は、リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池及びリチウムイオン電池用正極活物質の製造方法に関する。   The present invention relates to a positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, a lithium ion battery, and a method for producing a positive electrode active material for a lithium ion battery.

リチウムイオン電池の正極活物質には、一般にリチウム含有遷移金属酸化物が用いられている。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等であり、特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、レート特性)や安全性を高めるためにこれらを複合化することが進められている。車載用やロードレベリング用といった大型用途におけるリチウムイオン電池には、これまでの携帯電話用やパソコン用とは異なった特性が求められている。 Lithium-containing transition metal oxides are generally used as positive electrode active materials for lithium ion batteries. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), etc., improved characteristics (higher capacity, cycle characteristics, storage characteristics, reduced internal resistance) In order to improve the rate characteristics and safety, it is underway to combine them. Lithium ion batteries for large-scale applications such as in-vehicle use and load leveling are required to have different characteristics from those of conventional mobile phones and personal computers.

リチウムイオン電池用正極活物質に用いられる技術の一つに、表面修飾がある(特許文献1、2)。これらは、活物質の粒子表面に被覆層を設ける技術であり、このような表面修飾の技術として、(a)活物質の粒子表面で電解液が分解する副反応を抑える、又は、(b)充放電時に電解液から発生したフッ化水素酸での遷移金属溶解を抑える等がある。   One of the techniques used for the positive electrode active material for lithium ion batteries is surface modification (Patent Documents 1 and 2). These are techniques for providing a coating layer on the particle surface of the active material. As a technique for such surface modification, (a) suppressing a side reaction in which the electrolytic solution decomposes on the particle surface of the active material, or (b) For example, the transition metal dissolution in hydrofluoric acid generated from the electrolyte during charging and discharging is suppressed.

特開2009−16302号公報JP 2009-16302 A 特開2014−197540号公報JP 2014-197540 A

従来、表面修飾の技術について、活物質表面での電解液分解や、遷移金属溶解を抑えるためにAl23、ZrO2、TiO2等の金属酸化物、またはLiNbO3・Li2SO4で表される固溶体で被覆する場合があり、当該活物質を用いて作製したリチウム二次電池を使用する際のガス発生の抑制や、充放電サイクル特性改善には一定の効果がある。しかしながら、SOC100%(満充電状態)で一定時間放置後、放電する充放電サイクル特性では、従来の表面修飾の技術では未だ改善の余地がある。 Conventionally, with respect to surface modification techniques, in order to suppress electrolytic solution decomposition on the active material surface and transition metal dissolution, metal oxides such as Al 2 O 3 , ZrO 2 , TiO 2 , or LiNbO 3 .Li 2 SO 4 There is a case where it is coated with the expressed solid solution, and there is a certain effect in suppressing gas generation and improving charge / discharge cycle characteristics when using a lithium secondary battery manufactured using the active material. However, there is still room for improvement in the conventional surface modification technology in terms of charge / discharge cycle characteristics in which discharge is performed after being left for a certain period of time at 100% SOC (fully charged state).

そこで、本発明は、電池特性が良好な表面修飾されたリチウムイオン電池用正極活物質を提供することを課題とする。   Therefore, an object of the present invention is to provide a surface-modified positive electrode active material for a lithium ion battery having good battery characteristics.

本発明者は、このような問題を解決するため種々の検討を行った結果、リチウムニッケルコバルトマンガン酸化物の粒子表面にリチウム金属酸化物で構成された第1の被覆層とアルミ酸化物で構成された第2の被覆層とをこの順で設け、粒子断面の表層部分をSTEM-EDX線分析したときに、粒子表面側にAlのピーク、粒子内側にTi、Ta、Zr及びWのうちいずれか1種以上の遷移金属のピークが来るように制御することで、正極活物質の充放電サイクル特性が向上することを見出した。   As a result of various studies to solve such problems, the present inventor has a first coating layer made of lithium metal oxide and an aluminum oxide on the surface of lithium nickel cobalt manganese oxide particles. When the surface layer portion of the particle cross section is subjected to STEM-EDX ray analysis, any of Al, Ti, Ta, Zr, and W is present on the particle surface. It has been found that the charge / discharge cycle characteristics of the positive electrode active material are improved by controlling the peak of one or more transition metals to come.

上記知見を基礎にして完成した本発明は一側面において、リチウムニッケルコバルトマンガン酸化物の粒子表面に、リチウムチタン酸化物、リチウムタンタル酸化物、リチウムジルコニウム酸化物、及び、リチウムタングステン酸化物のうちいずれか1種以上のリチウム金属酸化物で構成された第1の被覆層を有し、前記第1の被覆層上に、アルミ酸化物で構成された第2の被覆層を有するリチウムイオン電池用正極活物質である。   One aspect of the present invention completed based on the above knowledge is that any one of lithium titanium oxide, lithium tantalum oxide, lithium zirconium oxide, and lithium tungsten oxide is formed on the surface of lithium nickel cobalt manganese oxide particles. A positive electrode for a lithium ion battery having a first coating layer composed of one or more lithium metal oxides and having a second coating layer composed of aluminum oxide on the first coating layer It is an active material.

本発明のリチウムイオン電池用正極活物質は一実施形態において、前記リチウムニッケルコバルトマンガン酸化物が、
組成式:LiaNibCocMnd2
(前記式において、1.00≦a≦1.08、0.4≦b≦0.9、0.1≦c≦0.3、0.05≦d≦0.4)
で表される。
In one embodiment of the positive electrode active material for a lithium ion battery of the present invention, the lithium nickel cobalt manganese oxide is
Composition formula: Li a Ni b Co c Mn d O 2
(In the above formula, 1.00 ≦ a ≦ 1.08, 0.4 ≦ b ≦ 0.9, 0.1 ≦ c ≦ 0.3, 0.05 ≦ d ≦ 0.4)
It is represented by

本発明のリチウムイオン電池用正極活物質は別の一実施形態において、前記第1の被覆層がLi2TiO3で構成され、且つ、前記第2の被覆層がAl23で構成されている。 In another embodiment of the positive electrode active material for a lithium ion battery of the present invention, the first coating layer is composed of Li 2 TiO 3 , and the second coating layer is composed of Al 2 O 3. Yes.

本発明は別の一側面において、本発明のリチウムイオン電池用正極活物質を有するリチウムイオン電池用正極である。   In another aspect, the present invention is a lithium ion battery positive electrode having the lithium ion battery positive electrode active material of the present invention.

本発明は更に別の一側面において、本発明のリチウムイオン電池用正極を有するリチウムイオン電池である。   In still another aspect, the present invention is a lithium ion battery having the positive electrode for a lithium ion battery of the present invention.

本発明は更に別の一側面において、リチウムニッケルコバルトマンガン酸化物と、リチウムチタン酸化物、リチウムタンタル酸化物、リチウムジルコニウム酸化物、及び、リチウムタングステン酸化物のうちいずれか1種以上のリチウム金属酸化物とを混合し、焼成することで、前記リチウムニッケルコバルトマンガン酸化物の粒子表面に、前記リチウム金属酸化物で構成された第1の被覆層を設ける工程と、前記第1の被覆層を設けたリチウムニッケルコバルトマンガン酸化物と、アルミ酸化物とを混合し、前記第1の被覆層上に前記アルミ酸化物で構成された第2の被覆層を設ける工程とを備えたリチウムイオン電池用正極活物質の製造方法である。   According to yet another aspect of the present invention, lithium nickel cobalt manganese oxide, lithium titanium oxide, lithium tantalum oxide, lithium zirconium oxide, and lithium metal oxide of any one or more of lithium tungsten oxide A step of providing a first coating layer composed of the lithium metal oxide on the surface of the particles of the lithium nickel cobalt manganese oxide, and providing the first coating layer And a step of mixing a lithium nickel cobalt manganese oxide and an aluminum oxide, and providing a second coating layer composed of the aluminum oxide on the first coating layer. It is a manufacturing method of an active material.

本発明のリチウムイオン電池用正極活物質の製造方法は一実施形態において、前記リチウムニッケルコバルトマンガン酸化物が、
組成式:LiaNibCocMnd2
(前記式において、1.00≦a≦1.08、0.4≦b≦0.9、0.1≦c≦0.3、0.05≦d≦0.4)
で表される。
In one embodiment of the method for producing a positive electrode active material for a lithium ion battery of the present invention, the lithium nickel cobalt manganese oxide is:
Composition formula: Li a Ni b Co c Mn d O 2
(In the above formula, 1.00 ≦ a ≦ 1.08, 0.4 ≦ b ≦ 0.9, 0.1 ≦ c ≦ 0.3, 0.05 ≦ d ≦ 0.4)
It is represented by

本発明のリチウムイオン電池用正極活物質の製造方法は別の一実施形態において、前記第1の被覆層がLi2TiO3で構成され、且つ、前記第2の被覆層がAl23で構成されている。 In another embodiment of the method for producing a positive electrode active material for a lithium ion battery of the present invention, the first coating layer is composed of Li 2 TiO 3 , and the second coating layer is Al 2 O 3 . It is configured.

本発明によれば、電池特性が良好な表面修飾されたリチウムイオン電池用正極活物質を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material for lithium ion batteries by which the battery characteristic was favorable can be provided.

(リチウムイオン電池用正極活物質の構成)
本発明のリチウムイオン電池用正極活物質は、リチウムニッケルコバルトマンガン酸化物の粒子表面に、リチウムチタン酸化物、リチウムタンタル酸化物、リチウムジルコニウム酸化物、及び、リチウムタングステン酸化物のうちいずれか1種以上のリチウム金属酸化物で構成された第1の被覆層を有し、前記第1の被覆層上に、アルミ酸化物で構成された第2の被覆層を有するリチウムイオン電池用正極活物質である。
(Configuration of positive electrode active material for lithium ion battery)
The positive electrode active material for a lithium ion battery of the present invention has any one of lithium titanium oxide, lithium tantalum oxide, lithium zirconium oxide, and lithium tungsten oxide on the surface of lithium nickel cobalt manganese oxide particles. A positive electrode active material for a lithium ion battery having the first coating layer made of the above lithium metal oxide and having the second coating layer made of aluminum oxide on the first coating layer. is there.

電池特性を向上させるための技術として、正極活物質表面での電解液分解や、遷移金属溶解を抑えるために、従来、アルミ酸化物等の金属酸化物を活物質粒子(コア活物質粒子)の表面に被覆している。これに対し、本発明のリチウムイオン電池用正極活物質は、上述のようにリチウムニッケルコバルトマンガン酸化物の粒子(コア)に、リチウム金属酸化物で構成された第1の被覆層が設けられているので、被覆層として用いるアルミ酸化物は正極活物質において0.1〜0.5wt%という少量でよく、そのためリチウムイオン導電性の低下もほとんどなく、SOC100%で一定時間放置後、放電することを繰り返す充放電サイクル特性が改善する。   As a technique for improving battery characteristics, in order to suppress electrolytic solution decomposition and transition metal dissolution on the surface of the positive electrode active material, conventionally, metal oxides such as aluminum oxide have been used as active material particles (core active material particles). The surface is coated. On the other hand, in the positive electrode active material for a lithium ion battery according to the present invention, the first coating layer composed of the lithium metal oxide is provided on the lithium nickel cobalt manganese oxide particles (core) as described above. Therefore, the aluminum oxide used as the coating layer may be a small amount of 0.1 to 0.5 wt% in the positive electrode active material, so that there is almost no decrease in lithium ion conductivity, and discharge after leaving for a certain time at 100% SOC. The charge / discharge cycle characteristics of repeating the above are improved.

なお、特許文献1では、活物質被覆層は金属酸化物とリチウム金属複合酸化物の混合物であり、製造方法として、活物質と金属酸化物を混合し、焼成するため、被覆層はリチウム金属複合酸化物よりも金属酸化物の割合が多くなる。そのため、活物質の抵抗が大きくなり、重負荷放電時の容量が小さくなる。一方、本発明では、第1の被覆層として、あらかじめリチウム金属酸化物を作製しておき、このリチウム金属酸化物と活物質を混合し、焼成するため、活物質を直接被覆する第1の被覆層には金属酸化物は存在しない。そして、金属酸化物は第2の被覆層として少量存在させるため、活物質の抵抗は大きくならず、重負荷放電時の容量低下が小さくなる。   In Patent Document 1, the active material coating layer is a mixture of a metal oxide and a lithium metal composite oxide, and as the manufacturing method, the active material and the metal oxide are mixed and fired. The proportion of metal oxide is higher than that of oxide. For this reason, the resistance of the active material increases, and the capacity during heavy load discharge decreases. On the other hand, in the present invention, as the first coating layer, a lithium metal oxide is prepared in advance, and the lithium metal oxide and the active material are mixed and fired. There is no metal oxide in the layer. Since a small amount of the metal oxide is present as the second coating layer, the resistance of the active material is not increased, and the capacity reduction during heavy load discharge is reduced.

また、従来技術としては、活物質と電解液との反応を防ぐために、活物質表面を金属酸化物で覆う方法がある。この場合、金属酸化物は1wt%以上必要であり、活物質の容量低下、および抵抗増加を伴う。これに対し、本発明では、金属酸化物をより少なくするために、第1の被覆層として、リチウムイオン伝導性のあるリチウム金属酸化物で活物質を被覆し、そして、その上に第2被覆層として、金属酸化物(アルミ酸化物)を被覆することで、金属酸化物(アルミ酸化物)を正極活物質において0.1〜0.5wt%という少量で活物質と電解液の反応を抑制することができる。   Moreover, as a prior art, there is a method of covering the surface of the active material with a metal oxide in order to prevent the reaction between the active material and the electrolytic solution. In this case, the metal oxide needs to be 1 wt% or more, which is accompanied by a decrease in the capacity of the active material and an increase in resistance. On the other hand, in the present invention, in order to reduce the metal oxide, the active material is coated with lithium metal oxide having lithium ion conductivity as the first coating layer, and the second coating is formed thereon. By covering the layer with metal oxide (aluminum oxide) as a layer, the metal oxide (aluminum oxide) suppresses the reaction between the active material and the electrolyte in a small amount of 0.1 to 0.5 wt% in the positive electrode active material. can do.

本発明の正極活物質は、第一の被覆層のリチウム金属酸化物がリチウムを含有するため、活物質と電解液間のリチウムイオンの授受を妨げることがない。しかしながら、電圧が高くなる充電状態で保持される時間が長くなると、リチウム金属酸化物と電解液が反応し、被膜が生成し、抵抗が大きくなる。その対応として、リチウム金属酸化物の上にアルミ酸化物を存在させることで、充電状態で長時間保持されても金属酸化物と電解液は反応せず、この結果、被膜(SEI膜:Solid Electrolyte Interphase膜)の生成が抑制される。ここで、当該SEI膜は、初回充放電時に電解液成分の分解によって活物質表面に形成され、それ以上の電解液の分解を抑制する膜である。
このとき、金属酸化物は第一の被覆層のリチウム金属酸化物が存在するため、単独で被覆する場合に比べ、ごく少量(正極活物質において0.1〜0.5wt%)をリチウム金属酸化物の上に存在させることで電解液との反応を防ぐことができる。そのため、金属酸化物によるリチウムイオン導電性低下の影響が小さく、電気性能の低下がない活物質となる。
In the positive electrode active material of the present invention, since the lithium metal oxide of the first coating layer contains lithium, the transfer of lithium ions between the active material and the electrolytic solution is not hindered. However, if the time for which the voltage is maintained in the charged state is increased, the lithium metal oxide and the electrolytic solution react with each other to form a film and increase the resistance. As a countermeasure, the presence of aluminum oxide on the lithium metal oxide prevents the metal oxide and the electrolyte from reacting even when kept in a charged state for a long time. As a result, the coating (SEI film: Solid Electrolyte) The generation of the interface film) is suppressed. Here, the SEI film is a film that is formed on the surface of the active material by the decomposition of the electrolytic solution component during the first charge / discharge and suppresses further decomposition of the electrolytic solution.
At this time, since the lithium metal oxide of the first coating layer is present in the metal oxide, a very small amount (0.1 to 0.5 wt% in the positive electrode active material) of lithium metal oxide is compared with the case of coating alone. By making it exist on a thing, reaction with electrolyte solution can be prevented. Therefore, the influence of the lithium ion conductivity decrease by the metal oxide is small, and the active material does not have a decrease in electrical performance.

また、本発明のリチウムイオン電池用正極活物質は、リチウムイオン電池用正極活物質の粒子の断面をSTEM-EDX線分析したときに、表層にTi、Ta、Zr及びWのうちいずれか1種以上の遷移金属およびAlのピークが確認でき、前記ピークは粒子表面側がAl、粒子内側がTi、Ta、Zr及びWのうちいずれか1種以上の遷移金属のピークであるように制御されている。   Moreover, the positive electrode active material for lithium ion batteries of the present invention has any one of Ti, Ta, Zr and W on the surface layer when the cross section of the particles of the positive electrode active material for lithium ion batteries is analyzed by STEM-EDX ray analysis. The above transition metal and Al peaks can be confirmed, and the peak is controlled so that the particle surface side is Al and the particle inside is one or more transition metal peaks of Ti, Ta, Zr and W. .

本発明のリチウムイオン電池用正極活物質は、リチウムニッケルコバルトマンガン酸化物が、
組成式:LiaNibCocMnd2
(前記式において、1.00≦a≦1.08、0.4≦b≦0.9、0.1≦c≦0.3、0.05≦d≦0.4)
で表されるのが好ましい。
リチウムの比率が1.0〜1.08であるが、これは、1.0未満では、安定した結晶構造を保持し難く、1.08超では電池の高容量が確保できなくなるおそれがあるためである。また、ニッケルの組成が0.4〜0.9であるため、当該リチウムイオン電池用正極活物質を用いたリチウムイオン電池の容量、出力、安全性の三つがバランスよく向上する。リチウムイオン電池用正極活物質におけるニッケルの組成は好ましくは0.7〜0.9、より好ましくは0.8〜0.9である。
The positive electrode active material for lithium ion batteries of the present invention is lithium nickel cobalt manganese oxide,
Composition formula: Li a Ni b Co c Mn d O 2
(In the above formula, 1.00 ≦ a ≦ 1.08, 0.4 ≦ b ≦ 0.9, 0.1 ≦ c ≦ 0.3, 0.05 ≦ d ≦ 0.4)
It is preferable to be represented by
The lithium ratio is 1.0 to 1.08. If the ratio is less than 1.0, it is difficult to maintain a stable crystal structure, and if it exceeds 1.08, there is a possibility that a high capacity of the battery cannot be secured. It is. Moreover, since the composition of nickel is 0.4 to 0.9, three of the capacity, output, and safety of the lithium ion battery using the positive electrode active material for lithium ion battery are improved in a well-balanced manner. The composition of nickel in the positive electrode active material for lithium ion batteries is preferably 0.7 to 0.9, more preferably 0.8 to 0.9.

第1の被覆層を構成するリチウム金属酸化物としては、電解液との反応性が低く、電池でのサイクル特性が最も良好になるためリチウムチタン酸化物:Li2TiO3が特に好ましい。また、第2の被覆層を構成するアルミ酸化物は、Al23であるのが特に好ましい。また、このとき、前記リチウムイオン電池用正極活物質の粒子の断面をSTEM-EDX線分析したときに、表層にTiおよびAlのピークが確認でき、前記ピークは粒子表面側がAl、粒子内側がTiのピークであるのが好ましい。 As the lithium metal oxide constituting the first coating layer, lithium titanium oxide: Li 2 TiO 3 is particularly preferable because of its low reactivity with the electrolytic solution and the best cycle characteristics in the battery. The aluminum oxide constituting the second coating layer is particularly preferably Al 2 O 3 . Further, at this time, when the cross section of the particles of the positive electrode active material for lithium ion batteries was analyzed by STEM-EDX ray analysis, Ti and Al peaks could be confirmed on the surface layer, and the peaks were Al on the particle surface side and Ti on the particle inner side. It is preferable that it is a peak.

(リチウムイオン電池用正極及びそれを有するリチウムイオン電池の構成)
本発明の実施形態に係るリチウムイオン電池用正極は、例えば、上述の構成のリチウムイオン電池用正極活物質と、導電助剤と、バインダーとを混合して調製した正極合剤をアルミニウム箔等からなる集電体の片面または両面に設けた構造を有している。また、本発明の実施形態に係るリチウムイオン電池は、このような構成のリチウムイオン電池用正極を備えている。
(Configuration of positive electrode for lithium ion battery and lithium ion battery having the same)
The positive electrode for a lithium ion battery according to an embodiment of the present invention includes, for example, a positive electrode mixture prepared by mixing a positive electrode active material for a lithium ion battery having the above-described configuration, a conductive additive, and a binder from an aluminum foil or the like. The current collector has a structure provided on one side or both sides. Moreover, the lithium ion battery which concerns on embodiment of this invention is equipped with the positive electrode for lithium ion batteries of such a structure.

(リチウムイオン電池用正極活物質の製造方法)
次に、本発明の実施形態に係るリチウムイオン電池用正極活物質の製造方法について詳細に説明する。
(Method for producing positive electrode active material for lithium ion battery)
Next, the manufacturing method of the positive electrode active material for lithium ion batteries which concerns on embodiment of this invention is demonstrated in detail.

まず、所定の組成のリチウムニッケルコバルトマンガン酸化物と、リチウム金属酸化物とを別々に調整する。リチウム金属酸化物は、リチウムチタン酸化物、リチウムタンタル酸化物、リチウムジルコニウム酸化物、及び、リチウムタングステン酸化物のうちいずれか1種以上である。
次に、リチウムニッケルコバルトマンガン酸化物と、リチウム金属酸化物とを混合し、焼成炉として、管状炉、マッフル炉などの静置炉やプッシャー炉、ローラーハースキルン、ロータリーキルン、流動床炉などの連続炉を使用し、例えば、700〜900℃で0.1〜3時間焼成することで、リチウムニッケルコバルトマンガン酸化物の粒子表面に、リチウム金属酸化物で構成された第1の被覆層を設ける。
First, lithium nickel cobalt manganese oxide having a predetermined composition and lithium metal oxide are separately adjusted. The lithium metal oxide is at least one of lithium titanium oxide, lithium tantalum oxide, lithium zirconium oxide, and lithium tungsten oxide.
Next, lithium nickel cobalt manganese oxide and lithium metal oxide are mixed, and as a firing furnace, a stationary furnace such as a tubular furnace and a muffle furnace, a pusher furnace, a roller furnace, a rotary kiln, and a continuous furnace such as a fluidized bed furnace The first coating layer made of lithium metal oxide is provided on the surface of the lithium nickel cobalt manganese oxide particles by, for example, firing at 700 to 900 ° C. for 0.1 to 3 hours.

次に、第1の被覆層を設けたリチウムニッケルコバルトマンガン酸化物と、アルミ酸化物とを混合し、例えば、株式会社奈良機械製作所製のハイブリダイセーションシステムや
ホソカワミクロン株式会社製のノビルタを用いて、無溶媒で圧縮、せん断、衝撃をそれぞれバランス良く粒子に作用させることにより、粒子の複合化、表面改質、球形化などの乾式粒子複合化処理を行う。具体的には、第1の被覆層を設けたリチウムニッケルコバルトマンガン酸化物と、アルミ酸化物を所定の量となるように計量し乾式粒子複合化装置に投入、そして、回転数2200rpm、試験時間3分の条件にて処理し、第1の被覆層上にアルミ酸化物で構成された第2の被覆層を設ける。第2被覆層を形成するとき、焼成炉で処理してもよいが、この場合、アルミニウム酸化物の一部がリチウムアルミ酸化物になる可能性がある。このため、本発明では、耐電解液性の観点から、第2被覆層は全てアルミニウム酸化物とする目的で、第2被覆層処理を乾式粒子複合化で処理している。
その後、必要であれば、焼成体を例えばパルベライザー、ロールミル、振動ミル等を用いて解砕することにより正極活物質の粉体を得る。
Next, lithium nickel cobalt manganese oxide provided with the first coating layer and aluminum oxide are mixed, for example, using a hybridization system manufactured by Nara Machinery Co., Ltd. or Nobilta manufactured by Hosokawa Micron Corporation. Then, by applying compression, shear, and impact to the particles in a well-balanced manner without solvent, dry particle compounding treatment such as particle compounding, surface modification, and spheronization is performed. Specifically, lithium nickel cobalt manganese oxide provided with the first coating layer and aluminum oxide are weighed to a predetermined amount and put into a dry particle composite apparatus, and the rotation speed is 2200 rpm and the test time. The treatment is performed for 3 minutes, and a second coating layer made of aluminum oxide is provided on the first coating layer. When the second coating layer is formed, it may be processed in a firing furnace, but in this case, a part of the aluminum oxide may become lithium aluminum oxide. For this reason, in the present invention, from the viewpoint of the resistance to electrolytic solution, the second coating layer is processed by dry particle composite for the purpose of making the second coating layer all aluminum oxide.
Thereafter, if necessary, the fired body is pulverized using, for example, a pulverizer, a roll mill, a vibration mill or the like to obtain a powder of the positive electrode active material.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。   Examples for better understanding of the present invention and its advantages are provided below, but the present invention is not limited to these examples.

以下、実施例1〜10、比較例1、2の作製方法を示す。組成及び重量比は表1に示す通りである。
(実施例1)
・コア活物質
市販の硫酸ニッケル、硫酸コバルト、硫酸マンガンを水溶液として、Ni、Co、Mnのモル比率が0.5、0.2、0.3となるように混合し、十分撹拌しながらアルカリ(水酸化ナトリウム)溶液と共沈反応させ、ろ過、洗浄を実施した。反応方法は常法に従って実施した。その後、NiとCoとMnの合計に対するLiのモル比(Li/(Ni+Co+Mn))が1.02となるように、上記共沈反応物を水酸化リチウム1水和物と混合し、ローラーハースキルンで800℃で18時間焼成し、ロールミルとパルべライザーを用いて粒子径(D50)10μmになるように解砕し、活物質粉末(リチウムニッケルコバルトマンガン酸化物)を得た。
・第1の被覆層
水酸化リチウム1水和物と酸化チタンをモル比でLi:Ti=2:1となるように混合し、ローラーハースキルンで840℃で12時間焼成し、振動ミルで粉砕後、ジェットミルで粉砕し、粒子径(D50)0.5μmになるように調整し、第1の被覆層となるリチウムチタン複合酸化物:Li2TiO3を得た。
そして、上記のコア活物質とリチウムチタン複合酸化物をモル比で98.9:1.0となるように混合し、ローラーハースキルンで800℃で1時間焼成し、コア活物質にリチウムチタン複合酸化物で構成された第1の被覆層を設けた。
・第2の被覆層
上記のリチウムチタン複合酸化物で被覆した活物質とAl23をモル比で99.9:0.1となるように混合し、乾式粒子複合化装置を使用し、Al23の被覆を行った。
このようにして、コア活物質(リチウムニッケルコバルトマンガン酸化物)に第1の被覆層(リチウムチタン複合酸化物)を設け、さらにその上に第2の被覆層(アルミナ)を設けたリチウムイオン電池用正極活物質を得た。
Hereinafter, the production methods of Examples 1 to 10 and Comparative Examples 1 and 2 are shown. The composition and weight ratio are as shown in Table 1.
(Example 1)
Core active material Commercially available nickel sulfate, cobalt sulfate, and manganese sulfate are mixed in an aqueous solution so that the molar ratios of Ni, Co, and Mn are 0.5, 0.2, and 0.3. The solution was coprecipitated with (sodium hydroxide) solution, filtered and washed. The reaction method was carried out according to a conventional method. Thereafter, the coprecipitation reaction product was mixed with lithium hydroxide monohydrate so that the molar ratio of Li to the total of Ni, Co and Mn (Li / (Ni + Co + Mn)) was 1.02, Was baked at 800 ° C. for 18 hours, and pulverized to a particle size (D50) of 10 μm using a roll mill and a pulverizer to obtain an active material powder (lithium nickel cobalt manganese oxide).
First coating layer Lithium hydroxide monohydrate and titanium oxide are mixed in a molar ratio of Li: Ti = 2: 1, fired at 840 ° C. for 12 hours with a roller hearth kiln, and pulverized with a vibration mill after, pulverized by a jet mill, and adjusted to the particle diameter (D50) 0.5 [mu] m, the lithium-titanium composite oxide comprising a first coating layer: to obtain a Li 2 TiO 3.
Then, the core active material and the lithium titanium composite oxide are mixed so that the molar ratio is 98.9: 1.0, and baked at 800 ° C. for 1 hour with a roller hearth kiln. A first coating layer made of oxide was provided.
Second coating layer The active material coated with the lithium titanium composite oxide and Al 2 O 3 are mixed at a molar ratio of 99.9: 0.1, and a dry particle composite device is used. Al 2 O 3 coating was performed.
Thus, the lithium ion battery which provided the 1st coating layer (lithium titanium complex oxide) in the core active material (lithium nickel cobalt manganese oxide), and also provided the 2nd coating layer (alumina) on it. A positive electrode active material was obtained.

(実施例2)
コア活物質とリチウムチタン複合酸化物の比率がモル比で98.5:1.0、リチウムチタン複合酸化物で被覆した活物質とAl23の比率がモル比で99.5:0.5となるように調整すること以外は、実施例1と同様な条件で活物質を作製した。
(Example 2)
The molar ratio of the core active material and the lithium titanium composite oxide is 98.5: 1.0, and the ratio of the active material coated with the lithium titanium composite oxide to Al 2 O 3 is 99.5: 0. The active material was produced under the same conditions as in Example 1 except that the adjustment was made to be 5.

(実施例3)
コア活物質とリチウムチタン複合酸化物の比率がモル比で97.9:2.0、リチウムチタン複合酸化物で被覆した活物質とAl23の比率がモル比で99.9:0.1となるように調整すること以外は、実施例1と同様な条件で活物質作製を実施した。
(Example 3)
The molar ratio of the core active material and lithium titanium composite oxide is 97.9: 2.0, and the ratio of the active material coated with the lithium titanium composite oxide to Al 2 O 3 is 99.9: 0. The active material was prepared under the same conditions as in Example 1 except that the adjustment was made to be 1.

(実施例4)
コア活物質とリチウムチタン複合酸化物の比率がモル比で97.5:2.0、リチウムチタン複合酸化物で被覆した活物質とAl23の比率がモル比で99.5:0.5となるように調整すること以外は、実施例1と同様な条件で活物質作製を実施した。
Example 4
The molar ratio of the core active material and lithium titanium composite oxide is 97.5: 2.0, and the ratio of the active material coated with the lithium titanium composite oxide and Al 2 O 3 is 99.5: 0. The active material was produced under the same conditions as in Example 1 except that the adjustment was made to be 5.

(実施例5)
Ni、Co、Mnの比率がモル比で0.6、0.2、0.2および、コア活物質とリチウムチタン複合酸化物の比率がモル比で98.9:1.0、リチウムチタン複合酸化物で被覆した活物質とAl23の比率がモル比で99.9:0.1となるように調整すること以外は、実施例1と同様な条件で活物質作製を実施した。
(Example 5)
The ratio of Ni, Co, Mn is 0.6, 0.2, 0.2 in molar ratio, and the ratio of core active material and lithium titanium composite oxide is 98.9: 1.0 in molar ratio, lithium titanium composite The active material was produced under the same conditions as in Example 1 except that the ratio of the active material coated with the oxide to Al 2 O 3 was adjusted to 99.9: 0.1 in terms of molar ratio.

(実施例6)
Ni、Co、Mnの比率がモル比で0.8、0.1、0.1および、コア活物質とリチウムチタン複合酸化物の比率がモル比で98.9:1.0、リチウムチタン複合酸化物で被覆した活物質とAl23の比率がモル比で99.9:0.1となるように調整すること以外は、実施例1と同様な条件で活物質作製を実施した。
(Example 6)
The ratio of Ni, Co, and Mn is 0.8, 0.1, 0.1 in molar ratio, and the ratio of core active material and lithium titanium composite oxide is 98.9: 1.0 in molar ratio, lithium titanium composite The active material was produced under the same conditions as in Example 1 except that the ratio of the active material coated with the oxide to Al 2 O 3 was adjusted to 99.9: 0.1 in terms of molar ratio.

(実施例7)
コア活物質とLiTa38の比率がモル比で98.9:1.0、LiTa38で被覆した活物質とAl23の比率がモル比で99.9:0.1となるように調整すること以外は、実施例1と同様な条件で活物質作製を実施した。
(Example 7)
The ratio of the core active material to LiTa 3 O 8 is 98.9: 1.0 in molar ratio, and the ratio of the active material coated with LiTa 3 O 8 to Al 2 O 3 is 99.9: 0.1 in molar ratio. An active material was produced under the same conditions as in Example 1 except that the adjustment was performed.

(実施例8)
コア活物質とLi2ZrO3の比率がモル比で98.9:1.0、Li2ZrO3で被覆した活物質とAl23の比率がモル比で99.9:0.1となるように調整すること以外は、実施例1と同様な条件で活物質作製を実施した。
(Example 8)
The ratio of the core active material to Li 2 ZrO 3 is 98.9: 1.0 in molar ratio, and the ratio of the active material coated with Li 2 ZrO 3 to Al 2 O 3 is 99.9: 0.1 in molar ratio. An active material was produced under the same conditions as in Example 1 except that the adjustment was performed.

(実施例9)
コア活物質とLi4WO5の比率がモル比で98.9:1.0、Li4WO5で被覆した活物質とAl23の比率がモル比で99.9:0.1となるように調整すること以外は、実施例1と同様な条件で活物質作製を実施した。
Example 9
The ratio of the core active material to Li 4 WO 5 is 98.9: 1.0 in molar ratio, and the ratio of the active material coated with Li 4 WO 5 to Al 2 O 3 is 99.9: 0.1 in molar ratio. An active material was produced under the same conditions as in Example 1 except that the adjustment was performed.

(実施例10)
コア活物質とLi6WO6の比率がモル比で98.9:1.0、Li6WO6で被覆した活物質とAl23の比率がモル比で99.9:0.1となるように調整すること以外は、実施例1と同様な条件で活物質作製を実施した。
(Example 10)
In a ratio molar ratio of the core active material and Li6WO6 98.9: 1.0, 99.9 in a ratio molar ratio of the coated active material and Al 2 O 3 with Li 6 WO 6: so that 0.1 An active material was produced under the same conditions as in Example 1 except that the adjustment was performed.

(比較例1)
コア活物質とリチウムチタン複合酸化物の比率をモル比で99.0:1.0とし、リチウムチタン複合酸化物で被覆した活物質に第2被覆層を設けないこと以外は、実施例1と同様な条件で活物質作製を実施した。
(Comparative Example 1)
Example 1 except that the ratio of the core active material to the lithium-titanium composite oxide is 99.0: 1.0 in molar ratio, and the active material coated with the lithium-titanium composite oxide is not provided with the second coating layer. An active material was produced under the same conditions.

(比較例2)
コア活物質(リチウムニッケルコバルトマンガン酸化物)に第1被覆層(リチウムチタン複合酸化物)を設けず、コア活物質とAl23の比率がモル比で99.5:0.5となるように調整すること以外は、実施例1と同様な条件で活物質作製を実施した。
(Comparative Example 2)
The core active material (lithium nickel cobalt manganese oxide) is not provided with the first coating layer (lithium titanium composite oxide), and the molar ratio of the core active material to Al 2 O 3 is 99.5: 0.5. The active material was produced under the same conditions as in Example 1 except that the adjustment was performed as described above.

(評価)
こうしてできた実施例1〜10、比較例1、2のサンプルを用いて下記の条件にて各評価を実施した。
−正極材組成の評価−
被覆層について、EPMAで分析して各金属のモル比を算出した。コアについて、各正極材中の金属含有量を、誘導結合プラズマ発光分光分析装置(ICP−OES)で測定し、各金属の組成比(モル比)を算出した。また、酸素含有量はLECO法で測定し、いずれも組成式において「O2」であることを確認した。
(Evaluation)
Each evaluation was implemented on the following conditions using the sample of Examples 1-10 and Comparative Examples 1 and 2 which were made in this way.
-Evaluation of composition of positive electrode material-
About the coating layer, it analyzed by EPMA and the molar ratio of each metal was computed. For the core, the metal content in each positive electrode material was measured with an inductively coupled plasma emission spectrometer (ICP-OES), and the composition ratio (molar ratio) of each metal was calculated. Further, the oxygen content was measured by the LECO method, and it was confirmed that all were “O 2 ” in the composition formula.

−STEM−EDX線分析による評価−
活物質の粒子の断面をSTEM−EDX線分析して、表層部分の各種金属のピークを確認した。このとき、実施例1〜10は、ピークは粒子表面側がAl、粒子内側がTi、Ta、Zr及びWのうちいずれか1種以上の遷移金属のピークであった。また、比較例1はTiのピークのみであり、比較例2はAlのピークのみであった。
-Evaluation by STEM-EDX-ray analysis-
The cross section of the active material particles was subjected to STEM-EDX ray analysis, and various metal peaks in the surface layer portion were confirmed. At this time, in Examples 1 to 10, the peak was a peak of any one or more transition metals among Al on the particle surface side and Ti, Ta, Zr and W on the particle inner side. Further, Comparative Example 1 had only a Ti peak, and Comparative Example 2 had only an Al peak.

−電池特性の評価−
各正極材と、導電材(HS−100)と、バインダー(PVDF)とを90:5:5の割合で秤量し、バインダーを有機溶媒(N−メチルピロリドン)に溶解したものに、正極材料と導電材とを混合してスラリー化し、Al箔上に塗布して乾燥後にプレスして正極とした。続いて、負極活物質(人造黒鉛MCMB)と、導電材(HS−100)と、バインダー(PVDF)とを90:1:4の割合で秤量し、バインダーを有機溶媒(N−メチルピロリドン)に溶解したものに、負極活物質と導電材とを混合してスラリー化し、Cu箔上に塗布して乾燥後にプレスして負極とした。これらの正極および負極、そして電解液に1M−LiPF6をEC−DMC(1:1)に溶解したものを用いて、2032型コインセルを作製し、下記条件で、0.2C及び1Cの際の放電容量をそれぞれ測定した。
・放電容量(0.2C)
温度25℃、充電:4.20V、0.2C、10h、放電:3.0V、0.2C
・放電容量(1C)
温度25℃、充電:4.20V、1C、2.5h、放電:3.0V、1C
-Evaluation of battery characteristics-
Each positive electrode material, conductive material (HS-100), and binder (PVDF) are weighed in a ratio of 90: 5: 5, and the binder is dissolved in an organic solvent (N-methylpyrrolidone). A conductive material was mixed to make a slurry, applied onto an Al foil, dried and pressed to obtain a positive electrode. Subsequently, the negative electrode active material (artificial graphite MCMB), the conductive material (HS-100), and the binder (PVDF) were weighed at a ratio of 90: 1: 4, and the binder was added to the organic solvent (N-methylpyrrolidone). The dissolved material was mixed with a negative electrode active material and a conductive material to form a slurry, which was applied onto a Cu foil, dried and pressed to obtain a negative electrode. Using these positive electrode and negative electrode, and electrolyte solution prepared by dissolving 1M-LiPF 6 in EC-DMC (1: 1), a 2032 type coin cell was prepared. Each discharge capacity was measured.
・ Discharge capacity (0.2C)
Temperature 25 ° C, charge: 4.20V, 0.2C, 10h, discharge: 3.0V, 0.2C
・ Discharge capacity (1C)
Temperature 25 ° C, charge: 4.20V, 1C, 2.5h, discharge: 3.0V, 1C

また、下記条件で、25℃の温度範囲で充放電を繰り返したときの、1サイクル目の放電容量に対する200サイクル目の放電容量の割合を、サイクル特性(容量維持率)として評価した。
・充放電サイクル
充電:4.20V、1C、0.01Ccut、放置8h
放電:3.0V、1C
これらの結果を表1に示す。
Moreover, the ratio of the discharge capacity of the 200th cycle with respect to the discharge capacity of the 1st cycle when charging / discharging was repeated in the temperature range of 25 degreeC on the following conditions was evaluated as cycling characteristics (capacity maintenance factor).
Charge / discharge cycle Charging: 4.20V, 1C, 0.01Ccut, 8h
Discharge: 3.0V, 1C
These results are shown in Table 1.

Figure 2017084673
Figure 2017084673

Claims (8)

リチウムニッケルコバルトマンガン酸化物の粒子表面に、
リチウムチタン酸化物、リチウムタンタル酸化物、リチウムジルコニウム酸化物、及び、リチウムタングステン酸化物のうちいずれか1種以上のリチウム金属酸化物で構成された第1の被覆層を有し、
前記第1の被覆層上に、アルミ酸化物で構成された第2の被覆層を有するリチウムイオン電池用正極活物質。
On the particle surface of lithium nickel cobalt manganese oxide,
A first coating layer composed of one or more lithium metal oxides of lithium titanium oxide, lithium tantalum oxide, lithium zirconium oxide, and lithium tungsten oxide;
The positive electrode active material for lithium ion batteries which has a 2nd coating layer comprised with the aluminum oxide on the said 1st coating layer.
前記リチウムニッケルコバルトマンガン酸化物が、
組成式:LiaNibCocMnd2
(前記式において、1.00≦a≦1.08、0.4≦b≦0.9、0.1≦c≦0.3、0.05≦d≦0.4)
で表される請求項1に記載のリチウムイオン電池用正極活物質。
The lithium nickel cobalt manganese oxide is
Composition formula: Li a Ni b Co c Mn d O 2
(In the above formula, 1.00 ≦ a ≦ 1.08, 0.4 ≦ b ≦ 0.9, 0.1 ≦ c ≦ 0.3, 0.05 ≦ d ≦ 0.4)
The positive electrode active material for lithium ion batteries of Claim 1 represented by these.
前記第1の被覆層がLi2TiO3で構成され、且つ、前記第2の被覆層がAl23で構成されている請求項1又は2に記載のリチウムイオン電池用正極活物質。 The positive electrode active material for a lithium ion battery according to claim 1 or 2, wherein the first coating layer is made of Li 2 TiO 3 and the second coating layer is made of Al 2 O 3 . 請求項1〜3のいずれか一項に記載のリチウムイオン電池用正極活物質を有するリチウムイオン電池用正極。   The positive electrode for lithium ion batteries which has the positive electrode active material for lithium ion batteries as described in any one of Claims 1-3. 請求項4に記載のリチウムイオン電池用正極を有するリチウムイオン電池。   The lithium ion battery which has a positive electrode for lithium ion batteries of Claim 4. リチウムニッケルコバルトマンガン酸化物と、リチウムチタン酸化物、リチウムタンタル酸化物、リチウムジルコニウム酸化物、及び、リチウムタングステン酸化物のうちいずれか1種以上のリチウム金属酸化物とを混合し、焼成することで、前記リチウムニッケルコバルトマンガン酸化物の粒子表面に、前記リチウム金属酸化物で構成された第1の被覆層を設ける工程と、
前記第1の被覆層を設けたリチウムニッケルコバルトマンガン酸化物と、アルミ酸化物とを混合し、前記第1の被覆層上に前記アルミ酸化物で構成された第2の被覆層を設ける工程と、
を備えたリチウムイオン電池用正極活物質の製造方法。
By mixing and firing lithium nickel cobalt manganese oxide and one or more lithium metal oxides among lithium titanium oxide, lithium tantalum oxide, lithium zirconium oxide, and lithium tungsten oxide. Providing a first coating layer made of the lithium metal oxide on the surface of the lithium nickel cobalt manganese oxide particles;
Mixing lithium nickel cobalt manganese oxide provided with the first coating layer and aluminum oxide, and providing a second coating layer made of the aluminum oxide on the first coating layer; ,
The manufacturing method of the positive electrode active material for lithium ion batteries provided with.
前記リチウムニッケルコバルトマンガン酸化物が、
組成式:LiaNibCocMnd2
(前記式において、1.00≦a≦1.08、0.4≦b≦0.9、0.1≦c≦0.3、0.05≦d≦0.4)
で表される請求項6に記載のリチウムイオン電池用正極活物質の製造方法。
The lithium nickel cobalt manganese oxide is
Composition formula: Li a Ni b Co c Mn d O 2
(In the above formula, 1.00 ≦ a ≦ 1.08, 0.4 ≦ b ≦ 0.9, 0.1 ≦ c ≦ 0.3, 0.05 ≦ d ≦ 0.4)
The manufacturing method of the positive electrode active material for lithium ion batteries of Claim 6 represented by these.
前記第1の被覆層がLi2TiO3で構成され、且つ、前記第2の被覆層がAl23で構成されている請求項6又は7に記載のリチウムイオン電池用正極活物質の製造方法。 The positive electrode active material for a lithium ion battery according to claim 6 or 7, wherein the first coating layer is made of Li 2 TiO 3 and the second coating layer is made of Al 2 O 3. Method.
JP2015213387A 2015-10-29 2015-10-29 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery, and method for manufacturing positive electrode active material for lithium ion battery Active JP6533733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015213387A JP6533733B2 (en) 2015-10-29 2015-10-29 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery, and method for manufacturing positive electrode active material for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015213387A JP6533733B2 (en) 2015-10-29 2015-10-29 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery, and method for manufacturing positive electrode active material for lithium ion battery

Publications (2)

Publication Number Publication Date
JP2017084673A true JP2017084673A (en) 2017-05-18
JP6533733B2 JP6533733B2 (en) 2019-06-19

Family

ID=58714266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015213387A Active JP6533733B2 (en) 2015-10-29 2015-10-29 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery, and method for manufacturing positive electrode active material for lithium ion battery

Country Status (1)

Country Link
JP (1) JP6533733B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461928A (en) * 2018-09-19 2019-03-12 北京当升材料科技股份有限公司 A kind of high-energy density polynary positive pole material and preparation method thereof
DE102018216045A1 (en) 2017-09-22 2019-03-28 Toyota Jidosha Kabushiki Kaisha Positive electrode material and lithium secondary battery using this
CN109638232A (en) * 2018-10-25 2019-04-16 宁夏汉尧石墨烯储能材料科技有限公司 A kind of preparation method of cladded type ternary cobalt nickel oxide manganses lithium anode material
JP2019139862A (en) * 2018-02-06 2019-08-22 Jx金属株式会社 Positive electrode active material for lithium ion battery, method for manufacturing the same, positive electrode for lithium ion battery and lithium ion battery
JP2019220353A (en) * 2018-06-20 2019-12-26 Jx金属株式会社 Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium ion battery, all-solid-state lithium ion battery, and method of producing positive electrode active material for all-solid-state lithium ion battery
JP2020004587A (en) * 2018-06-27 2020-01-09 住友金属鉱山株式会社 Positive electrode active substance for lithium ion secondary battery and manufacturing method thereof, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2020202745A1 (en) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
JP2020537319A (en) * 2017-11-13 2020-12-17 エルジー・ケム・リミテッド Lithium cobalt-based positive electrode active material, its manufacturing method, positive electrode and secondary battery including this
CN107968202B (en) * 2017-11-21 2020-12-25 宁波纳微新能源科技有限公司 Aluminum-containing nickel-cobalt-manganese positive electrode material with core-shell structure and preparation method thereof
JP2021501982A (en) * 2017-11-21 2021-01-21 エルジー・ケム・リミテッド Positive electrode material for lithium secondary batteries, positive electrodes including this, and lithium secondary batteries
JP2021018897A (en) * 2019-07-18 2021-02-15 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
CN113036117A (en) * 2021-02-26 2021-06-25 蜂巢能源科技有限公司 Quaternary positive electrode material and preparation method thereof
JP2021524123A (en) * 2018-02-28 2021-09-09 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Manufacturing method of coated electrode active material
CN113644261A (en) * 2021-07-16 2021-11-12 万华化学(四川)有限公司 Method for modifying ternary cathode material through nano networking, cathode material and lithium ion battery
WO2022139562A1 (en) 2020-12-25 2022-06-30 주식회사 엘지에너지솔루션 Cathode active material, cathode active material slurry, cathode, lithium ion secondary battery, and method for preparing cathode active material
WO2022200765A1 (en) * 2021-03-24 2022-09-29 Ev Metals Uk Limited Process to modify the surface of a lithium nickel metal oxide material
US11563213B2 (en) 2017-10-20 2023-01-24 Lg Chem, Ltd. Method of preparing positive electrode active material for lithium secondary battery, positive electrode active material prepared thereby, and positive electrode for lithium secondary battery and lithium secondary battery which include the positive electrode active material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319105A (en) * 2003-04-11 2004-11-11 Sony Corp Positive active material and nonaqueous electrolyte secondary battery using it
JP2007018743A (en) * 2005-07-05 2007-01-25 Sony Corp Positive electrode active material and manufacturing method of same, and battery
JP2009016302A (en) * 2007-07-09 2009-01-22 Nichia Corp Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
WO2015132647A1 (en) * 2014-03-06 2015-09-11 Umicore Doped and coated lithium transition metal oxide cathode materials for batteries in automotive applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319105A (en) * 2003-04-11 2004-11-11 Sony Corp Positive active material and nonaqueous electrolyte secondary battery using it
JP2007018743A (en) * 2005-07-05 2007-01-25 Sony Corp Positive electrode active material and manufacturing method of same, and battery
JP2009016302A (en) * 2007-07-09 2009-01-22 Nichia Corp Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
WO2015132647A1 (en) * 2014-03-06 2015-09-11 Umicore Doped and coated lithium transition metal oxide cathode materials for batteries in automotive applications

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018216045A1 (en) 2017-09-22 2019-03-28 Toyota Jidosha Kabushiki Kaisha Positive electrode material and lithium secondary battery using this
DE102018216045B4 (en) 2017-09-22 2024-01-18 Toyota Jidosha Kabushiki Kaisha Positive electrode material and lithium secondary battery using the same
US10892480B2 (en) 2017-09-22 2021-01-12 Toyota Jidosha Kabushiki Kaisha Positive electrode material and lithium secondary battery using same
US11563213B2 (en) 2017-10-20 2023-01-24 Lg Chem, Ltd. Method of preparing positive electrode active material for lithium secondary battery, positive electrode active material prepared thereby, and positive electrode for lithium secondary battery and lithium secondary battery which include the positive electrode active material
JP2020537319A (en) * 2017-11-13 2020-12-17 エルジー・ケム・リミテッド Lithium cobalt-based positive electrode active material, its manufacturing method, positive electrode and secondary battery including this
JP7076878B2 (en) 2017-11-13 2022-05-30 エルジー エナジー ソリューション リミテッド Lithium cobalt-based positive electrode active material, its manufacturing method, positive electrode including this, and secondary battery
US11837719B2 (en) 2017-11-13 2023-12-05 Lg Energy Solution, Ltd. Lithium cobalt-based positive electrode active material, preparation method thereof, positive electrode including same, and secondary battery including positive electrode
JP7066223B2 (en) 2017-11-21 2022-05-13 エルジー エナジー ソリューション リミテッド Positive electrode material for lithium secondary batteries, positive electrodes including this, and lithium secondary batteries
CN107968202B (en) * 2017-11-21 2020-12-25 宁波纳微新能源科技有限公司 Aluminum-containing nickel-cobalt-manganese positive electrode material with core-shell structure and preparation method thereof
JP2021501982A (en) * 2017-11-21 2021-01-21 エルジー・ケム・リミテッド Positive electrode material for lithium secondary batteries, positive electrodes including this, and lithium secondary batteries
US11799081B2 (en) 2017-11-21 2023-10-24 Lg Energy Solution, Ltd. Positive electrode material for lithium secondary battery, positive electrode including same, and lithium secondary battery
JP2019139862A (en) * 2018-02-06 2019-08-22 Jx金属株式会社 Positive electrode active material for lithium ion battery, method for manufacturing the same, positive electrode for lithium ion battery and lithium ion battery
JP2021524123A (en) * 2018-02-28 2021-09-09 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Manufacturing method of coated electrode active material
JP2019220353A (en) * 2018-06-20 2019-12-26 Jx金属株式会社 Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium ion battery, all-solid-state lithium ion battery, and method of producing positive electrode active material for all-solid-state lithium ion battery
JP7222188B2 (en) 2018-06-27 2023-02-15 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2020004587A (en) * 2018-06-27 2020-01-09 住友金属鉱山株式会社 Positive electrode active substance for lithium ion secondary battery and manufacturing method thereof, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
CN109461928A (en) * 2018-09-19 2019-03-12 北京当升材料科技股份有限公司 A kind of high-energy density polynary positive pole material and preparation method thereof
CN109638232A (en) * 2018-10-25 2019-04-16 宁夏汉尧石墨烯储能材料科技有限公司 A kind of preparation method of cladded type ternary cobalt nickel oxide manganses lithium anode material
WO2020202745A1 (en) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
JP7068238B2 (en) 2019-07-18 2022-05-16 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP2021018897A (en) * 2019-07-18 2021-02-15 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
WO2022139562A1 (en) 2020-12-25 2022-06-30 주식회사 엘지에너지솔루션 Cathode active material, cathode active material slurry, cathode, lithium ion secondary battery, and method for preparing cathode active material
KR20230148814A (en) 2020-12-25 2023-10-25 주식회사 엘지에너지솔루션 Cathode active material, cathode active material slurry, positive electrode, lithium ion secondary battery, and method for producing cathode active material
CN113036117A (en) * 2021-02-26 2021-06-25 蜂巢能源科技有限公司 Quaternary positive electrode material and preparation method thereof
WO2022200765A1 (en) * 2021-03-24 2022-09-29 Ev Metals Uk Limited Process to modify the surface of a lithium nickel metal oxide material
CN113644261B (en) * 2021-07-16 2022-08-05 万华化学(四川)有限公司 Method for modifying ternary cathode material through nano networking, cathode material and lithium ion battery
CN113644261A (en) * 2021-07-16 2021-11-12 万华化学(四川)有限公司 Method for modifying ternary cathode material through nano networking, cathode material and lithium ion battery

Also Published As

Publication number Publication date
JP6533733B2 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
JP6533733B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery, and method for manufacturing positive electrode active material for lithium ion battery
JP6665060B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
KR102210892B1 (en) Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same
WO2011108389A1 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP5910576B2 (en) Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the positive electrode
WO2013137380A1 (en) Lithium composite oxide particle powder for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
JP2018523277A (en) Cathode active material for lithium ion secondary battery, its preparation method and use
WO2013014830A1 (en) Lithium-ion secondary cell
JPWO2014051148A1 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2008123972A (en) Non-aqueous electrolyte secondary cell
JP2017084674A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2013206679A (en) Nonaqueous electrolyte secondary battery cathode active material and manufacturing method thereof and secondary battery
JP6399737B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
TWI574451B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP2014063669A (en) Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
CN106663780B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2015199168A1 (en) Positive electrode active substance particle powder for non-aqueous electrolyte secondary battery, production method therefor, and non-aqueous electrolyte secondary battery
JP2016122626A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2015041600A (en) Method of producing lithium-containing composite oxide for lithium ion secondary battery
JP6294219B2 (en) Method for producing lithium cobalt composite oxide
JP6901310B2 (en) Composite particles
JPWO2013125668A1 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5678826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2012230810A (en) Lithium titanate, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP6448432B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190527

R150 Certificate of patent or registration of utility model

Ref document number: 6533733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250