JP2017084506A - Fluoride ion secondary battery - Google Patents

Fluoride ion secondary battery Download PDF

Info

Publication number
JP2017084506A
JP2017084506A JP2015209282A JP2015209282A JP2017084506A JP 2017084506 A JP2017084506 A JP 2017084506A JP 2015209282 A JP2015209282 A JP 2015209282A JP 2015209282 A JP2015209282 A JP 2015209282A JP 2017084506 A JP2017084506 A JP 2017084506A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
secondary battery
ion secondary
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015209282A
Other languages
Japanese (ja)
Inventor
広幸 中野
Hiroyuki Nakano
広幸 中野
一人 井手
Kazuto Ide
一人 井手
康次 中西
Koji Nakanishi
康次 中西
喜晴 内本
Yoshiharu Uchimoto
喜晴 内本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Kyoto University NUC
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc, Kyoto University NUC filed Critical Toyota Motor Corp
Priority to JP2015209282A priority Critical patent/JP2017084506A/en
Publication of JP2017084506A publication Critical patent/JP2017084506A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To further enhance the discharge capacity of a fluoride ion secondary battery arranged by use of La.SOLUTION: A fluoride ion secondary battery 10 comprises: a solid electrolyte 15 as an ion conducting medium for conducting a fluoride ion; a positive electrode active material 12 formed on a first face of the solid electrolyte 15; a positive electrode current collector 11 formed on the positive electrode active material 12; a negative electrode current collector 14 on a second face of the solid electrolyte 15 on the side opposite to the first face; and a containing part 16 as a closed container which contains them. A negative electrode 18 is formed by the solid electrolyte 15 and the negative electrode current collector 14, and includes at least one of a metal including at least La, and a fluoride including at least La. In the containing part 16, a positive electrode 17, the negative electrode 18 and the solid electrolyte 15 are contained; the oxygen density therein is regulated to be 2 ppm or less.SELECTED DRAWING: Figure 1

Description

本発明は、フッ化物イオン二次電池に関する。   The present invention relates to a fluoride ion secondary battery.

従来、フッ化物を用いた電池としては、CeF3、SrF2及びLiFを含む固体電解質を有するものが提案されている(例えば、特許文献1参照)。この電池では、負極にMg−Al合金を用い、正極にMnF3を用いると、2.12Vの開路電圧が得られるとしている。また、Laを用いフッ素イオンの関与を伴う2次固体電池が提案されている(例えば、特許文献2参照)。また、LaF3負極とCFx正極とを備え、フッ化物イオンを伝導する電池が提案されている(例えば、特許文献3参照)。また、電荷を印加すると負極及び正極が形成される金属フッ化物コンポジットを含む組成物が提案されている(例えば、特許文献4参照)。 Conventionally, as a battery using a fluoride, a battery having a solid electrolyte containing CeF 3 , SrF 2 and LiF has been proposed (for example, see Patent Document 1). In this battery, when an Mg—Al alloy is used for the negative electrode and MnF 3 is used for the positive electrode, an open circuit voltage of 2.12 V is obtained. Further, a secondary solid state battery using La and involving fluorine ions has been proposed (see, for example, Patent Document 2). A battery that includes a LaF 3 negative electrode and a CF x positive electrode and conducts fluoride ions has been proposed (see, for example, Patent Document 3). Moreover, the composition containing the metal fluoride composite in which a negative electrode and a positive electrode are formed when an electric charge is applied is proposed (for example, refer patent document 4).

特開昭57−132677号公報JP-A-57-132777 特開2008−537312号公報JP 2008-537312 A 特開2009−529222号公報JP 2009-529222 A 特開2013−510409号公報JP 2013-510409 A

しかしながら、上述の特許文献1〜4の電池では、フッ化物イオンを用いた電池やLaを用いた電池が提案されてはいるものの、それらを用いて実証した実施例は開示されていなかった。La金属は、化学的に不安定であり、Laを用いた電池を実用化することは困難であった。   However, in the batteries of Patent Documents 1 to 4 described above, although batteries using fluoride ions and batteries using La have been proposed, examples demonstrated using these have not been disclosed. La metal is chemically unstable, and it has been difficult to put a battery using La into practical use.

本発明は、このような課題に鑑みなされたものであり、Laを用いたものにおいて放電容量をより向上することができるフッ化物イオン二次電池を提供することを主目的とする。あるいは、可逆的な充放電を行うことができるフッ化物イオン二次電池を提供することを主目的とする。   This invention is made | formed in view of such a subject, and it aims at providing the fluoride ion secondary battery which can improve discharge capacity more in the thing using La. Alternatively, a main object is to provide a fluoride ion secondary battery capable of reversible charging / discharging.

上述した目的を達成するために鋭意研究したところ、本発明者らは、フッ化物イオンを充放電に用い、LaF3を有するフッ化物イオン二次電池において、密閉容器である収容部内の酸素濃度を制御すると、放電容量をより向上することができ、可逆的な充放電を行うことができることを見いだし、本発明を完成するに至った。 As a result of diligent research to achieve the above-described object, the present inventors used fluoride ions for charging and discharging, and in the fluoride ion secondary battery having LaF 3 , the oxygen concentration in the housing portion, which is a sealed container, was determined. By controlling, it was found that the discharge capacity can be further improved and reversible charge / discharge can be performed, and the present invention has been completed.

即ち、本発明のフッ化物イオン二次電池は、
正極と、
少なくともLaを含む金属及び少なくともLaを含むフッ化物のうち少なくとも一方を含む負極と、
フッ化物イオンを伝導するイオン伝導媒体と、
前記正極、前記負極及び前記イオン伝導媒体を密閉して収容し内部の酸素濃度が2ppm以下である収容部と、を備えたものである。
That is, the fluoride ion secondary battery of the present invention is
A positive electrode;
A negative electrode containing at least one of a metal containing at least La and a fluoride containing at least La;
An ion conducting medium for conducting fluoride ions;
And a housing part in which the positive electrode, the negative electrode, and the ion conductive medium are hermetically sealed and an internal oxygen concentration is 2 ppm or less.

本発明のフッ化物イオン二次電池は、放電容量をより向上することができる。あるいは、本発明のフッ化物イオン二次電池は、可逆的な充放電を行うことができる。このような効果が得られる理由は、以下のように推測される。例えば、La金属は、化学的に不安定であり、酸素が存在すると、La金属の酸素による酸化、すなわち自己放電が起き、放電容量が減少してしまう。本願発明では、正極、イオン伝導媒体及び負極を含む電池構成を密閉して収容した収容部の内部の酸素濃度を2ppm以内とすることにより、この自己放電をより抑制し、放電容量をより向上することができるものと推察される。また、この自己放電の抑制によって、可逆的な充放電を行うことができるものと推察される。   The fluoride ion secondary battery of the present invention can further improve the discharge capacity. Or the fluoride ion secondary battery of this invention can perform reversible charging / discharging. The reason why such an effect is obtained is presumed as follows. For example, La metal is chemically unstable. When oxygen is present, oxidation of La metal by oxygen, that is, self-discharge occurs, and the discharge capacity decreases. In the present invention, the self-discharge is further suppressed and the discharge capacity is further improved by setting the oxygen concentration inside the housing part containing the battery configuration including the positive electrode, the ion conductive medium and the negative electrode to be hermetically sealed. It is assumed that it can be done. Moreover, it is guessed that reversible charging / discharging can be performed by suppression of this self-discharge.

フッ化物イオン二次電池10の一例を示す模式図。1 is a schematic diagram showing an example of a fluoride ion secondary battery 10. FIG. La負極を評価する評価セル20の説明図。Explanatory drawing of the evaluation cell 20 which evaluates a La negative electrode. 実施例1の評価セルの充放電曲線。The charging / discharging curve of the evaluation cell of Example 1. FIG. 実施例2の評価セルの充放電曲線。The charging / discharging curve of the evaluation cell of Example 2. FIG. 比較例1の評価セルの充放電曲線。The charging / discharging curve of the evaluation cell of the comparative example 1. 実施例3のフッ化物イオン二次電池の充放電曲線。The charging / discharging curve of the fluoride ion secondary battery of Example 3.

本発明のフッ化物イオン二次電池は、正極と、少なくともLaを含む金属及び少なくともLaを含むフッ化物のうち少なくとも一方を含む負極と、フッ化物イオンを伝導するイオン伝導媒体と、正極と負極とイオン伝導媒体とを密閉して収容し内部の酸素濃度が2ppm以下である収容部と、を備えている。   The fluoride ion secondary battery of the present invention includes a positive electrode, a negative electrode including at least one of a metal including at least La and a fluoride including at least La, an ion conductive medium that conducts fluoride ions, a positive electrode, and a negative electrode. And an ion conduction medium that is hermetically sealed and contains an oxygen concentration of 2 ppm or less.

フッ化物イオン二次電池の正極は、例えば、正極集電体と、正極集電体に形成された正極活物質とを備えるものとしてもよい。正極活物質としては、例えば、Laを含む負極と組み合わせて2V以上の起電力が得られる材料であることが好ましい。この正極活物質は、例えば、Au、Pt、S、Ag、Co、Mo、Cu、W、V、Sb、Bi、Sn、Ni、Pb、Fe及びCrのうち1以上の元素を含むものとしてもよい。この正極活物質は、例えば、Au、Pt、Ag、Co、Mo、Cu、W、V、Sb、Bi、Sn、Ni、Pb、Fe及びCrのうち1以上の元素を含む金属(単体金属及び合金を含む)としてもよい。また、この正極活物質は、例えば、Au、Pt、S、Ag、Co、Mo、Cu、W、V、Sb、Bi、Sn、Ni、Pb、Fe及びCrのうち1以上の元素を含むフッ化物を含むものとしてもよい。このうち、正極活物質は、CuやCuF2を含むことがより好ましい。正極集電体は、導電体であり、正極活物質に対して酸化還元電位が貴であれば特に限定されず、例えば、C、Au、Pt、Ag、Co、Mo、Cu、W、V、Sb、Bi、Sn、Ni、Pb、Fe、Cr、Zn、In、Ti、Ga、Mn、Al及びZrのうち1以上を含むものとしてもよい。イオン伝導媒体が固体電解質であるとき、正極活物質は、固体電解質上に層状に形成されているものとしてもよい。この正極活物質は、例えば、金属箔や合金箔により形成されていてもよいし、金属粉末や合金粉末を含んだ圧粉体でもよいし、蒸着法により形成されているものとしてもよい。また、正極集電体は、正極活物質上に層状に形成されているものとしてもよい。この正極集電体は、例えば、金属箔又は合金箔を正極活物質に加圧貼付したものとしてもよいし、蒸着法により形成されているものとしてもよい。 The positive electrode of the fluoride ion secondary battery may include, for example, a positive electrode current collector and a positive electrode active material formed on the positive electrode current collector. As the positive electrode active material, for example, a material that can generate an electromotive force of 2 V or more in combination with a negative electrode containing La is preferable. The positive electrode active material may include, for example, one or more elements of Au, Pt, S, Ag, Co, Mo, Cu, W, V, Sb, Bi, Sn, Ni, Pb, Fe, and Cr. Good. This positive electrode active material is, for example, a metal containing one or more elements of Au, Pt, Ag, Co, Mo, Cu, W, V, Sb, Bi, Sn, Ni, Pb, Fe, and Cr (single metal and Including an alloy). The positive electrode active material is, for example, a fluorine containing one or more elements of Au, Pt, S, Ag, Co, Mo, Cu, W, V, Sb, Bi, Sn, Ni, Pb, Fe, and Cr. It is good also as a thing containing a compound. Among these, it is more preferable that the positive electrode active material contains Cu or CuF 2 . The positive electrode current collector is a conductor and is not particularly limited as long as the redox potential is noble with respect to the positive electrode active material. For example, C, Au, Pt, Ag, Co, Mo, Cu, W, V, One or more of Sb, Bi, Sn, Ni, Pb, Fe, Cr, Zn, In, Ti, Ga, Mn, Al, and Zr may be included. When the ion conductive medium is a solid electrolyte, the positive electrode active material may be formed in layers on the solid electrolyte. This positive electrode active material may be formed of, for example, a metal foil or an alloy foil, a green compact containing a metal powder or an alloy powder, or may be formed by a vapor deposition method. Further, the positive electrode current collector may be formed in a layer on the positive electrode active material. The positive electrode current collector may be, for example, a metal foil or an alloy foil that is pressure-bonded to the positive electrode active material, or may be formed by a vapor deposition method.

フッ化物イオン二次電池の負極は、負極集電体と、負極集電体に形成された負極活物質とを備えるものとしてもよい。この負極活物質は、例えば、イオン伝導媒体を兼ねているものとしてもよい。本発明のフッ化物イオン二次電池の負極は、少なくともLaを含む金属及び少なくともLaを含むフッ化物のうち少なくとも一方を含む。このLaを含む金属やLaを含むフッ化物は、負極集電体上に形成されているものとしてもよい。Laを含む金属としては、La金属や、La合金などが挙げられる。Laを含むフッ化物としては、例えば、LaF3などが挙げられる。このうち、LaF3が好ましい。負極集電体は、導電体であり、Laに対して貴な電位で酸化(フッ化)される電子伝導体であれば特に限定されず、例えば、C、Au、Pt、Ag、Co、Mo、Cu、W、V、Sb、Bi、Sn、Ni、Pb、Fe、Cr、Zn、In、Ti、Ga、Mn、Al及びZrのうち1以上を含むものとしてもよい。イオン伝導媒体が固体電解質であるとき、負極集電体は、固体電解質上に層状に形成されているものとしてもよい。この負極集電体は、例えば、金属箔又は合金箔を負極活物質に加圧貼付したものとしてもよいし、蒸着法により形成されているものとしてもよい。負極活物質は、イオン伝導媒体と負極集電体との間に形成されているものとしてもよく、負極集電体上に層状に形成されているものとしてもよい。 The negative electrode of the fluoride ion secondary battery may include a negative electrode current collector and a negative electrode active material formed on the negative electrode current collector. For example, the negative electrode active material may also serve as an ion conductive medium. The negative electrode of the fluoride ion secondary battery of the present invention includes at least one of a metal containing at least La and a fluoride containing at least La. The metal containing La or the fluoride containing La may be formed on the negative electrode current collector. Examples of the metal containing La include La metal and La alloy. Examples of the fluoride containing La include LaF 3 . Of these, LaF 3 is preferred. The negative electrode current collector is a conductor and is not particularly limited as long as it is an electronic conductor that is oxidized (fluorinated) at a noble potential with respect to La. For example, C, Au, Pt, Ag, Co, Mo Cu, W, V, Sb, Bi, Sn, Ni, Pb, Fe, Cr, Zn, In, Ti, Ga, Mn, Al, and Zr may be included. When the ion conductive medium is a solid electrolyte, the negative electrode current collector may be formed in layers on the solid electrolyte. The negative electrode current collector may be, for example, a metal foil or an alloy foil that is pressure-bonded to the negative electrode active material, or may be formed by a vapor deposition method. The negative electrode active material may be formed between the ion conductive medium and the negative electrode current collector, or may be formed in layers on the negative electrode current collector.

フッ化物イオン二次電池のイオン伝導媒体は、フッ化物イオンを伝導するものとすれば特に限定されず、例えば、固体電解質であるものとしてもよく、少なくともLaを含むフッ化物とすることがより好ましく、LaF3が好ましい。Laを含むフッ化物には、例えば、第2成分としてLaよりも卑な電位で金属析出する元素が含まれていてもよい。このような元素としては、例えば、Mg、Ba、Ca及びLiなどが挙げられる。例えば、LaF3にBaF2が固溶した固溶体では、LaF3に対して導電率をより高めることができ好ましい。 The ion conduction medium of the fluoride ion secondary battery is not particularly limited as long as it conducts fluoride ions. For example, it may be a solid electrolyte, and more preferably a fluoride containing at least La. LaF 3 is preferred. The fluoride containing La may contain, for example, an element that deposits metal at a lower potential than La as the second component. Examples of such elements include Mg, Ba, Ca, and Li. For example, in a solid solution BaF 2 was dissolved in LaF 3, preferably it is possible to increase the conductivity with respect LaF 3.

フッ化物イオン二次電池の収容部は、密閉容器であり、その内部の酸素濃度が2ppm以下である。収容部の内部の酸素濃度は、より低いことが好ましく、2×10-5ppm以下であることが好ましく、1×10-5ppm以下であることがより好ましい。この収容部の内圧は、特に限定されず、大気圧であるものとしてもよいし、減圧状態であるものとしてもよいし、加圧状態であるものとしてもよい。収容部の内圧は、減圧状態である場合は、10Pa以下であるものとしてもよいし、1Pa以下であるものとしてもよい。こうすれば、酸素濃度をより低減しやすい。 The housing part of the fluoride ion secondary battery is a sealed container, and the oxygen concentration inside thereof is 2 ppm or less. The oxygen concentration inside the housing portion is preferably lower, preferably 2 × 10 −5 ppm or less, and more preferably 1 × 10 −5 ppm or less. The internal pressure of the housing portion is not particularly limited, and may be an atmospheric pressure, a reduced pressure state, or a pressurized state. The internal pressure of the housing portion may be 10 Pa or less or 1 Pa or less in the reduced pressure state. This makes it easier to reduce the oxygen concentration.

フッ化物イオン二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。図1は、本発明のフッ化物イオン二次電池10の一例を示す模式図である。このフッ化物イオン二次電池10は、フッ化物イオンを伝導するイオン伝導媒体としての固体電解質15と、固体電解質15の第1面に形成された正極活物質12と、正極活物質12上に形成された正極集電体11と、固体電解質15の第1面とは反対側の第2面に形成された負極集電体14と、これらを収容した密閉容器としての収容部16とを備えている。このフッ化物イオン二次電池10では、正極集電体11と正極活物質12とが正極17を構成し、負極集電体14と固体電解質15とが負極18を構成する。固体電解質15は、固体電解質と、負極活物質を兼ねている。収容部16は、絶縁体の部材であり、正極集電体11に電気的に接続する正極端子13と、負極集電体14に電気的に接続する負極端子19とが配設されている。負極18は、少なくともLaを含む金属及び少なくともLaを含むフッ化物のうち少なくとも一方を含んでいる。また、収容部16は、正極17及び負極18(固体電解質15を含む)を収容し内部の酸素濃度が2ppm以下に調整されている。   The shape of the fluoride ion secondary battery is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. FIG. 1 is a schematic diagram showing an example of a fluoride ion secondary battery 10 of the present invention. This fluoride ion secondary battery 10 is formed on a solid electrolyte 15 as an ion conducting medium that conducts fluoride ions, a positive electrode active material 12 formed on the first surface of the solid electrolyte 15, and the positive electrode active material 12. A positive electrode current collector 11, a negative electrode current collector 14 formed on a second surface opposite to the first surface of the solid electrolyte 15, and an accommodating portion 16 as a sealed container accommodating these. Yes. In the fluoride ion secondary battery 10, the positive electrode current collector 11 and the positive electrode active material 12 constitute a positive electrode 17, and the negative electrode current collector 14 and the solid electrolyte 15 constitute a negative electrode 18. The solid electrolyte 15 serves as a solid electrolyte and a negative electrode active material. The accommodating portion 16 is an insulating member, and a positive electrode terminal 13 that is electrically connected to the positive electrode current collector 11 and a negative electrode terminal 19 that is electrically connected to the negative electrode current collector 14 are disposed. The negative electrode 18 contains at least one of a metal containing at least La and a fluoride containing at least La. Moreover, the accommodating part 16 accommodates the positive electrode 17 and the negative electrode 18 (including the solid electrolyte 15), and the internal oxygen concentration is adjusted to 2 ppm or less.

以上詳述した本実施形態のフッ化物イオン二次電池では、収容部の内部の酸素濃度を2ppm以内とすることによって、La金属の酸素による酸化(自己放電)をより抑制することができ、放電容量をより向上することができる。また、本実施形態のフッ化物イオン二次電池では、La金属の酸素による酸化(自己放電)をより抑制することによって、従来困難であった可逆的な充放電を行うことができる。   In the fluoride ion secondary battery of the present embodiment described in detail above, the oxidation (self-discharge) of La metal by oxygen can be further suppressed by setting the oxygen concentration inside the housing portion to be within 2 ppm, and the discharge The capacity can be further improved. In the fluoride ion secondary battery of this embodiment, reversible charge / discharge, which has been difficult in the past, can be performed by further suppressing oxidation (self-discharge) of La metal by oxygen.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

以下には、本発明のフッ化物イオン二次電池を具体的に作製した例を実施例として説明する。なお、本発明は実施例に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   Below, the example which produced the fluoride ion secondary battery of this invention concretely is demonstrated as an Example. In addition, this invention is not limited to an Example at all, and as long as it belongs to the technical scope of this invention, it cannot be overemphasized that it can implement with a various aspect.

[実施例1]
La負極の充放電を行うセルを作成した。図2は、La負極を評価する評価セル20(半電池)の説明図である。この評価セル20は、固体電解質25の第1表面に形成された作用極21と、作用極21に非接触で併設された参照極22と、固体電解質25の第2表面に形成された対極24と、これらを収容した密閉容器である収容部26とを備えている。固体電解質25として、厚さ0.5mm、直径15mmのLaF3基板を用いた。この基板の第1面に作用極21としてPt薄膜(厚さ50nm)、参照極22としてPb薄膜(厚さ2μm)をRFスパッタにより成膜した。また、固体電解質25の反対側の第2面に対極24としてのPb薄膜(厚さ2μm)をRFスパッタにより成膜した。その後、成膜済み固体電解質25を大気に暴露させることなく2ppmの酸素を含むAr雰囲気のグローブボックス(大気圧105Pa)へ移動した。このグローブボックス内で成膜済み固体電解質25を電流導入端子付きの収容部26に封入し、収容部26内の酸素濃度が2ppmである評価セル20とした。
[Example 1]
A cell for charging and discharging the La negative electrode was prepared. FIG. 2 is an explanatory diagram of an evaluation cell 20 (half battery) for evaluating the La negative electrode. The evaluation cell 20 includes a working electrode 21 formed on the first surface of the solid electrolyte 25, a reference electrode 22 provided in non-contact with the working electrode 21, and a counter electrode 24 formed on the second surface of the solid electrolyte 25. And the accommodating part 26 which is the airtight container which accommodated these. As the solid electrolyte 25, a LaF 3 substrate having a thickness of 0.5 mm and a diameter of 15 mm was used. A Pt thin film (thickness: 50 nm) was formed as the working electrode 21 and a Pb thin film (thickness: 2 μm) as the reference electrode 22 on the first surface of the substrate by RF sputtering. Further, a Pb thin film (thickness 2 μm) as a counter electrode 24 was formed on the second surface opposite to the solid electrolyte 25 by RF sputtering. Thereafter, the deposited solid electrolyte 25 was moved to a glove box (atmospheric pressure 10 5 Pa) in an Ar atmosphere containing 2 ppm of oxygen without being exposed to the atmosphere. In this glove box, the solid electrolyte 25 having been formed into a film was enclosed in a housing portion 26 with a current introduction terminal, and an evaluation cell 20 having an oxygen concentration of 2 ppm in the housing portion 26 was obtained.

[実施例2]
収容部26内の圧力を1Paとした以外は、実施例1と同様の工程を経て得られた評価セル20を実施例2とした。この実施例2の収容部26内の酸素濃度は、その圧力から2×10-5ppmであると推定された。
[Example 2]
An evaluation cell 20 obtained through the same steps as in Example 1 was used in Example 2 except that the pressure in the housing portion 26 was set to 1 Pa. It was estimated that the oxygen concentration in the accommodating part 26 of this Example 2 was 2 * 10 < -5 > ppm from the pressure.

[比較例1]
収容部26内を大気圧、酸素濃度2×105ppmとした以外は、実施例1と同様の工程を経て得られた評価セル20を比較例1とした。
[Comparative Example 1]
The evaluation cell 20 obtained through the same steps as in Example 1 was used as Comparative Example 1 except that the inside of the housing part 26 was set to atmospheric pressure and the oxygen concentration was 2 × 10 5 ppm.

[充放電試験]
充放電特性は、評価セルを150℃に加熱して行った。加熱状態の評価セルの収容部の内部は、実施例1では大気圧(105Pa)、酸素濃度が2ppmであった。実施例2では、酸素濃度が2×10-5ppmであると推定された。比較例1では、大気圧(105Pa)、酸素濃度が2×105ppmであった。充放電条件は、75.2μA/cm2の電流密度で15分間充電(還元)したあと、同じ電流密度で、Pb参照極に対して0.5Vまで放電(酸化)するものとした。この評価セルでは、充電時には、Pt作用極に接しているLaF3固体電解質が還元され、Pt作用極上にLa金属が析出する一方、Pb対極上にPbF2が生成する。また、この評価セルでは、放電時には、充電時に析出したLa金属が酸化されLaF3が生成する一方、Pb対極上のPbF2がPbに還元される。
[Charge / discharge test]
The charge / discharge characteristics were performed by heating the evaluation cell to 150 ° C. The inside of the housing portion of the evaluation cell in the heated state was atmospheric pressure (10 5 Pa) and oxygen concentration was 2 ppm in Example 1. In Example 2, the oxygen concentration was estimated to be 2 × 10 −5 ppm. In Comparative Example 1, the atmospheric pressure (10 5 Pa) and the oxygen concentration were 2 × 10 5 ppm. The charging / discharging conditions were such that after charging (reducing) for 15 minutes at a current density of 75.2 μA / cm 2 , discharging (oxidation) was performed to 0.5 V with respect to the Pb reference electrode at the same current density. In this evaluation cell, during charging, the LaF 3 solid electrolyte in contact with the Pt working electrode is reduced, and La metal is deposited on the Pt working electrode, while PbF 2 is produced on the Pb counter electrode. Further, in this evaluation cell, during discharge, La metal deposited during charging is oxidized to produce LaF 3, while PbF 2 on the Pb counter electrode is reduced to Pb.

[実施例3]
図1に示したフッ化物イオン二次電池を作製した。固体電解質として、厚さ0.5mm、直径15mmのLaF3基板を用いた。この基板の第1面に正極活物質として、Cu薄膜(厚さ7nm)、正極集電体としてPt薄膜(厚さ50nm)をRFスパッタにより成膜した。また、固体電解質の反対側の第2面に負極集電体としてのPt薄膜(厚さ50nm)をRFスパッタにより成膜した。その後、成膜済みの固体電解質を大気に暴露させることなく2ppmの酸素を含むAr雰囲気のグローブボックス(大気圧105Pa)へ移動した。このグローブボックス内で成膜済みの固体電解質を正極及び負極端子付きの収容部に封入し、減圧することによって、収容部の内部の酸素濃度が2×10-5ppmである評価セル20とした。
[Example 3]
The fluoride ion secondary battery shown in FIG. 1 was produced. A LaF 3 substrate having a thickness of 0.5 mm and a diameter of 15 mm was used as the solid electrolyte. A Cu thin film (thickness 7 nm) as a positive electrode active material and a Pt thin film (thickness 50 nm) as a positive electrode current collector were formed on the first surface of this substrate by RF sputtering. Further, a Pt thin film (thickness: 50 nm) as a negative electrode current collector was formed on the second surface opposite to the solid electrolyte by RF sputtering. Thereafter, the deposited solid electrolyte was moved to an Ar atmosphere glove box (atmospheric pressure of 10 5 Pa) containing 2 ppm of oxygen without exposing it to the atmosphere. An evaluation cell 20 having an oxygen concentration of 2 × 10 −5 ppm inside the housing portion was obtained by enclosing the solid electrolyte formed in the glove box in a housing portion with a positive electrode and a negative electrode terminal and reducing the pressure. .

[充放電試験]
充放電特性を評価する充放電試験は、評価セルを150℃に加熱して行った。加熱状態の評価セルの収容部の内部は、実施例3では圧力が1Pa、酸素濃度が2×10-5ppmであると推定された。充放電条件は、75.2μA/cm2の電流密度で、カットオフ電圧を2.05V〜3.30Vとして定電流充放電試験を行った。このフッ化物イオン二次電池では、充電時には、Pt負極集電体に接しているLaF3固体電解質が還元され、負極集電体上にLa金属が析出する一方、Cu正極活物質でCuF2が生成する。また、このフッ化物イオン二次電池では、放電時には、充電時に析出したLa金属が酸化されLaF3が生成する一方、Cu正極活物質のCuF2がCuに還元される。
[Charge / discharge test]
The charge / discharge test for evaluating the charge / discharge characteristics was performed by heating the evaluation cell to 150 ° C. The inside of the housing portion of the evaluation cell in the heated state was estimated to be 1 Pa in pressure and 2 × 10 −5 ppm in Example 3. The charge / discharge conditions were a constant current charge / discharge test with a current density of 75.2 μA / cm 2 and a cut-off voltage of 2.05 V to 3.30 V. In this fluoride ion secondary battery, during charging, the LaF 3 solid electrolyte in contact with the Pt negative electrode current collector is reduced and La metal is deposited on the negative electrode current collector, while the Cu positive electrode active material is CuF 2. Generate. Further, in this fluoride ion secondary battery, during discharge, La metal deposited during charging is oxidized to produce LaF 3, while CuF 2 of the Cu positive electrode active material is reduced to Cu.

(結果と考察)
図3は、実施例1の評価セルの充放電曲線であり、図4は、実施例2の評価セルの充放電曲線であり、図5は、比較例1の評価セルの充放電曲線であり、図6は、実施例3のフッ化物イオン二次電池の充放電曲線である。図5に示すように、収容部の内部が大気で満たされた比較例1では、充放電できなかった。一方、収容部の内部の酸素濃度を十分低減した実施例1,2では、放電容量をより向上することができ、充放電することができることがわかった。特に、収容部の内部の酸素濃度がより低い実施例2で良好な充放電特性が得られた。また、図6に示すように、収容部の内部の酸素濃度がより低いフッ化物イオン二次電池である実施例3では、充放電の繰り返しに伴い電池容量は低下するものの、充放電を繰り返し行うことができることがわかった。Laを用いたセルでは、例えば、充放電に伴い生成するLa金属が、共存する酸素により酸化されやすく、すぐに自己放電すると考えられる。これに対して、実施例1〜3では、酸素濃度を十分低減させることにより、この自己放電をより抑制し、充放電を実現することができるものと推察された。
(Results and discussion)
3 is a charge / discharge curve of the evaluation cell of Example 1, FIG. 4 is a charge / discharge curve of the evaluation cell of Example 2, and FIG. 5 is a charge / discharge curve of the evaluation cell of Comparative Example 1. FIG. 6 is a charge / discharge curve of the fluoride ion secondary battery of Example 3. As shown in FIG. 5, charging and discharging could not be performed in Comparative Example 1 in which the inside of the housing portion was filled with air. On the other hand, in Examples 1 and 2 in which the oxygen concentration inside the accommodating portion was sufficiently reduced, it was found that the discharge capacity could be further improved and charge / discharge could be performed. In particular, good charge / discharge characteristics were obtained in Example 2 in which the oxygen concentration inside the accommodating portion was lower. Moreover, as shown in FIG. 6, in Example 3, which is a fluoride ion secondary battery having a lower oxygen concentration inside the accommodating portion, the battery capacity decreases with repeated charge / discharge, but the charge / discharge is repeated. I found out that I could do it. In a cell using La, for example, it is considered that La metal generated by charging / discharging is easily oxidized by coexisting oxygen and immediately self-discharges. On the other hand, in Examples 1-3, it was guessed that this self-discharge can be suppressed more and charge / discharge can be realized by sufficiently reducing the oxygen concentration.

本発明は、蓄電デバイスの技術分野に利用可能である。   The present invention can be used in the technical field of power storage devices.

10 フッ化物イオン二次電池、11 正極集電体、12 正極活物質、13 正極端子、14 負極集電体、15 固体電解質、16 収容部、17 正極、18 負極、19 負極端子、20 評価セル、21 作用極、22 参照極、24 対極、25 固体電解質、26 収容部。 DESCRIPTION OF SYMBOLS 10 Fluoride ion secondary battery, 11 Positive electrode current collector, 12 Positive electrode active material, 13 Positive electrode terminal, 14 Negative electrode current collector, 15 Solid electrolyte, 16 Housing, 17 Positive electrode, 18 Negative electrode, 19 Negative electrode terminal, 20 Evaluation cell , 21 working electrode, 22 reference electrode, 24 counter electrode, 25 solid electrolyte, 26 container.

Claims (3)

正極と、
少なくともLaを含む金属及び少なくともLaを含むフッ化物のうち少なくとも一方を含む負極と、
フッ化物イオンを伝導するイオン伝導媒体と、
前記正極、前記負極及び前記イオン伝導媒体を密閉して収容し内部の酸素濃度が2ppm以下である収容部と、
を備えたフッ化物イオン二次電池。
A positive electrode;
A negative electrode containing at least one of a metal containing at least La and a fluoride containing at least La;
An ion conducting medium for conducting fluoride ions;
An accommodating portion in which the positive electrode, the negative electrode, and the ion conductive medium are hermetically sealed and an internal oxygen concentration is 2 ppm or less;
Fluoride ion secondary battery comprising:
前記収容部は、内部の酸素濃度が2×10-5ppm以下である、請求項1に記載のフッ化物イオン二次電池。 2. The fluoride ion secondary battery according to claim 1, wherein the accommodating portion has an internal oxygen concentration of 2 × 10 −5 ppm or less. 前記正極は、Au、Pt、S、Ag、Co、Mo、Cu、W、V、Sb、Bi、Sn、Ni、Pb、Fe及びCrのうち1以上の元素を含む正極活物質を有する、請求項1又は2に記載のフッ化物イオン二次電池。   The positive electrode has a positive electrode active material containing one or more elements of Au, Pt, S, Ag, Co, Mo, Cu, W, V, Sb, Bi, Sn, Ni, Pb, Fe, and Cr. Item 3. The fluoride ion secondary battery according to Item 1 or 2.
JP2015209282A 2015-10-23 2015-10-23 Fluoride ion secondary battery Pending JP2017084506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015209282A JP2017084506A (en) 2015-10-23 2015-10-23 Fluoride ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015209282A JP2017084506A (en) 2015-10-23 2015-10-23 Fluoride ion secondary battery

Publications (1)

Publication Number Publication Date
JP2017084506A true JP2017084506A (en) 2017-05-18

Family

ID=58713102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015209282A Pending JP2017084506A (en) 2015-10-23 2015-10-23 Fluoride ion secondary battery

Country Status (1)

Country Link
JP (1) JP2017084506A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180131038A1 (en) 2016-11-08 2018-05-10 Toyota Jidosha Kabushiki Kaisha Fluoride ion battery and method for producing fluoride ion battery
JP2018077986A (en) * 2016-11-08 2018-05-17 トヨタ自動車株式会社 Fluoride ion battery and method for manufacturing the same
CN108933288A (en) * 2017-05-23 2018-12-04 丰田自动车株式会社 fluoride ion battery
CN109216780A (en) * 2017-07-03 2019-01-15 松下电器产业株式会社 Fluoride shuttle secondary cell
CN109309242A (en) * 2018-10-26 2019-02-05 湘潭大学 A kind of preparation method of all solid state fluoride ion battery to be shuttled based on fluorine ion
US10868328B2 (en) 2017-12-28 2020-12-15 Panasonic Corporation Fluoride ion conductor containing rubidium, magnesium, and fluorine, and fluoride ion secondary battery including the same
CN112166512A (en) * 2018-06-20 2021-01-01 本田技研工业株式会社 Nanostructure design of electrode materials for fluoride ion batteries
US10944099B2 (en) 2017-12-28 2021-03-09 Panasonic Corporation Fluoride ion conductor containing potassium, alkaline earth metal, and fluorine, and fluoride ion secondary battery including the same
CN113169291A (en) * 2018-09-17 2021-07-23 博比特电池有限公司 Rechargeable electrochemical cell assembled in the discharged state comprising a metal electrode
EP3876316A1 (en) 2020-03-06 2021-09-08 Toyota Jidosha Kabushiki Kaisha Cathode active material and fluoride ion battery
CN114792796A (en) * 2021-01-26 2022-07-26 本田技研工业株式会社 Fluoride ion secondary battery
CN114843591A (en) * 2021-02-02 2022-08-02 本田技研工业株式会社 Fluoride ion secondary battery
JP7563238B2 (en) 2021-03-02 2024-10-08 トヨタ自動車株式会社 Positive electrode active material and fluoride ion battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110262816A1 (en) * 2009-01-12 2011-10-27 Glenn Amatucci Polyhydrogen fluoride based battery
WO2015001803A1 (en) * 2013-07-05 2015-01-08 パナソニック株式会社 Electrochemical energy storage device
JP2015176704A (en) * 2014-03-14 2015-10-05 積水化学工業株式会社 halogen secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110262816A1 (en) * 2009-01-12 2011-10-27 Glenn Amatucci Polyhydrogen fluoride based battery
WO2015001803A1 (en) * 2013-07-05 2015-01-08 パナソニック株式会社 Electrochemical energy storage device
JP2015176704A (en) * 2014-03-14 2015-10-05 積水化学工業株式会社 halogen secondary battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180131038A1 (en) 2016-11-08 2018-05-10 Toyota Jidosha Kabushiki Kaisha Fluoride ion battery and method for producing fluoride ion battery
JP2018077986A (en) * 2016-11-08 2018-05-17 トヨタ自動車株式会社 Fluoride ion battery and method for manufacturing the same
JP2018077987A (en) * 2016-11-08 2018-05-17 トヨタ自動車株式会社 Fluoride ion battery and method for manufacturing the same
US10727533B2 (en) 2016-11-08 2020-07-28 Toyota Jidosha Kabushiki Kaisha Fluoride ion battery and method for producing fluoride ion battery
US10790539B2 (en) 2016-11-08 2020-09-29 Toyota Jidosha Kabushiki Kaisha Fluoride ion battery and method for producing fluoride ion battery
CN108933288A (en) * 2017-05-23 2018-12-04 丰田自动车株式会社 fluoride ion battery
JP2018198130A (en) * 2017-05-23 2018-12-13 トヨタ自動車株式会社 Fluoride ion battery
CN109216780A (en) * 2017-07-03 2019-01-15 松下电器产业株式会社 Fluoride shuttle secondary cell
US10944099B2 (en) 2017-12-28 2021-03-09 Panasonic Corporation Fluoride ion conductor containing potassium, alkaline earth metal, and fluorine, and fluoride ion secondary battery including the same
US10868328B2 (en) 2017-12-28 2020-12-15 Panasonic Corporation Fluoride ion conductor containing rubidium, magnesium, and fluorine, and fluoride ion secondary battery including the same
CN112166512A (en) * 2018-06-20 2021-01-01 本田技研工业株式会社 Nanostructure design of electrode materials for fluoride ion batteries
CN113169291A (en) * 2018-09-17 2021-07-23 博比特电池有限公司 Rechargeable electrochemical cell assembled in the discharged state comprising a metal electrode
JP2022500828A (en) * 2018-09-17 2022-01-04 ブロードビット バッテリーズ オーイー Rechargeable electrochemical cell assembled in a discharged state containing metal electrodes
CN109309242A (en) * 2018-10-26 2019-02-05 湘潭大学 A kind of preparation method of all solid state fluoride ion battery to be shuttled based on fluorine ion
EP3876316A1 (en) 2020-03-06 2021-09-08 Toyota Jidosha Kabushiki Kaisha Cathode active material and fluoride ion battery
KR20210113056A (en) 2020-03-06 2021-09-15 도요타지도샤가부시키가이샤 Cathode active material and fluoride ion battery
JP2021140983A (en) * 2020-03-06 2021-09-16 トヨタ自動車株式会社 Positive electrode active material and fluoride ion battery
US11664496B2 (en) 2020-03-06 2023-05-30 Toyota Jidosha Kabushiki Kaisha Cathode active material and fluoride ion battery
CN114792796A (en) * 2021-01-26 2022-07-26 本田技研工业株式会社 Fluoride ion secondary battery
US11916235B2 (en) 2021-01-26 2024-02-27 Honda Motor Co., Ltd Fluoride ion secondary battery
CN114843591A (en) * 2021-02-02 2022-08-02 本田技研工业株式会社 Fluoride ion secondary battery
US20220246933A1 (en) * 2021-02-02 2022-08-04 Honda Motor Co., Ltd. Fluoride ion secondary battery
JP7563238B2 (en) 2021-03-02 2024-10-08 トヨタ自動車株式会社 Positive electrode active material and fluoride ion battery

Similar Documents

Publication Publication Date Title
JP2017084506A (en) Fluoride ion secondary battery
US20180123181A1 (en) All-solid battery with stable negative electrode interface
WO2001086748A1 (en) Nonaqueous electrolyte lithium secondary cell
JP5348607B2 (en) All-solid lithium secondary battery
JP2017135114A (en) Rechargeable high-density electrochemical device
CN104025329A (en) Repeatedly Chargeable And Dischargeable Quantum Battery
TWI470863B (en) Power storage device and method for manufacturing the same
JP2000311710A (en) Solid electrolyte battery and its manufacture
JP5400451B2 (en) Negative electrode for lithium primary battery and lithium primary battery
WO2020121799A1 (en) Thermal battery
JP3216311B2 (en) Lithium battery
JP6430760B2 (en) All solid state battery and manufacturing method thereof
US20180183040A1 (en) Electrochemical device including three-dimensional electrode substrate
JP2011086555A (en) Nonaqueous electrolyte battery, and manufacturing method thereof
JP2011113735A (en) Nonaqueous electrolyte battery
JP2013246992A (en) Lithium ion secondary battery
JP5504765B2 (en) All solid-state lithium secondary battery
JP2020126734A (en) Secondary battery and manufacturing method thereof
US11721801B2 (en) Low resistance composite silicon-based electrode
JP7025956B2 (en) All solid state battery
CN207909973U (en) A kind of lithium battery anode structure, lithium battery structure
CN110431707A (en) Secondary cell
US11616238B2 (en) Electrode for use in an electrical energy storage apparatus and a method for manufacturing an electrode for use in an electrical energy storage apparatus
JP6565207B2 (en) All solid battery
JP2024139211A (en) Nonaqueous electrolyte secondary battery and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190402