JP2017083222A - Method for quantifying residual chlorine in solution - Google Patents

Method for quantifying residual chlorine in solution Download PDF

Info

Publication number
JP2017083222A
JP2017083222A JP2015209569A JP2015209569A JP2017083222A JP 2017083222 A JP2017083222 A JP 2017083222A JP 2015209569 A JP2015209569 A JP 2015209569A JP 2015209569 A JP2015209569 A JP 2015209569A JP 2017083222 A JP2017083222 A JP 2017083222A
Authority
JP
Japan
Prior art keywords
residual chlorine
solution
absorbance
sample
calibration curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015209569A
Other languages
Japanese (ja)
Inventor
雅子 金子
Masako Kaneko
雅子 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015209569A priority Critical patent/JP2017083222A/en
Publication of JP2017083222A publication Critical patent/JP2017083222A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for quantifying residual chlorine in a sample solution by a simple device and operation even when a sample to be analyzed has a color.SOLUTION: A method for quantifying residual chlorine comprises: a first step of dividing a liquid sample including residual chlorine into a fixed amount, controlling a pH of the divided liquid, adding potassium iodide, adding water to be set to a predetermined volume and measuring the absorbance of the liquid having the predetermined volume; a second step of performing the same operation as the first step except the addition of the potassium iodide; and quantifying the amount of residual chlorine of the liquid sample including the residual chlorine using a value obtained by subtracting the value of absorbance obtained in the second step from the value of absorbance obtained in the first step.SELECTED DRAWING: Figure 1

Description

本発明は、溶液中における残留塩素の定量方法に関する。   The present invention relates to a method for quantifying residual chlorine in a solution.

産業界の多くの生産現場において、溶液中における残留塩素の定量が為されている。例えば、塩素が関与する電解工程においては、電解液中の残留塩素濃度や、電解廃液中の残留塩素濃度の定量が定常的に為されている。   At many production sites in the industry, quantification of residual chlorine in solution is performed. For example, in an electrolysis process involving chlorine, the residual chlorine concentration in the electrolytic solution and the residual chlorine concentration in the electrolytic waste solution are constantly quantified.

例えば特許文献1、2に記載されているように、ニッケルの湿式冶金においては、硫酸浴と塩化浴を用いた製錬法があり、そのプロセスの1つとして、塩化浴における電解採取法がある。このプロセスでは、まず、浸出工程において、原料であるニッケル硫化物を塩素浸出する。
また、例えば特許文献3に記載されているように、ニッケル電解液を電解して電気ニッケルを得る工程で得られるニッケル電解廃液は、脱塩素処理を施し再利用される。
For example, as described in Patent Documents 1 and 2, in the wet metallurgy of nickel, there is a smelting method using a sulfuric acid bath and a chloride bath, and one of the processes is an electrowinning method in a chloride bath. . In this process, first, in the leaching step, the raw material nickel sulfide is leached with chlorine.
Further, as described in, for example, Patent Document 3, a nickel electrolytic waste liquid obtained in a step of electrolyzing a nickel electrolytic solution to obtain electric nickel is subjected to dechlorination treatment and reused.

特公平7−91599号公報Japanese Patent Publication No.7-91599 特開平11−236630号公報Japanese Patent Laid-Open No. 11-236630 特開平7−300691号公報Japanese Patent Laid-Open No. 7-300691

上述した特許文献1から3に記載されているように、ニッケル等の製造においては、処理薬剤として塩素が使用されている。本発明者らは、製品性状や廃液管理の観点から製造工程内の液中の塩素濃度を把握する必要があることに想到した。そして、製造工程内の溶液中の残留塩素濃度を把握することが肝要であることに想到した。
ここで、製造工程内の溶液中の残留塩素濃度を把握するためには、生産現場において簡便な装置と操作とにより製造工程内の溶液中の残留塩素濃度を定量することが要請される。
尚、本発明において残留塩素とは、酸化力を有する塩素のことであって、遊離残留塩素(次亜塩素酸や次亜塩素酸イオン)と、結合残留塩素(アンモニアや有機性窒素化合物等と結合した塩素)とを指す。
As described in Patent Documents 1 to 3 described above, chlorine is used as a processing agent in the production of nickel and the like. The present inventors have conceived that it is necessary to grasp the chlorine concentration in the liquid in the production process from the viewpoint of product properties and waste liquid management. And it came to mind that it is important to grasp the residual chlorine concentration in the solution in the manufacturing process.
Here, in order to grasp the residual chlorine concentration in the solution in the manufacturing process, it is required to quantify the residual chlorine concentration in the solution in the manufacturing process with a simple apparatus and operation at the production site.
In the present invention, residual chlorine refers to chlorine having oxidizing power, including free residual chlorine (hypochlorous acid and hypochlorite ions) and bonded residual chlorine (ammonia, organic nitrogen compounds, etc.). Combined chlorine).

本発明者らの検討によれば、簡便な装置と操作とにより、溶液中における残留塩素濃度を定量する方法には、複数の定量方法がある。残留塩素濃度が低い場合には、o−トリジン比色法、ジエチル−p−フェニレンジアンモニウム(DPD)比色法、またはDPD吸光光度法が適用される。一方、残留塩素濃度が比較的高い場合には、よう素滴定法が適用される。
しかしながら本発明者らの更なる検討によると、上述の残留塩素濃度の定量方法には、それぞれ課題があることが見出された。
According to the study by the present inventors, there are a plurality of quantification methods for quantifying the residual chlorine concentration in a solution with a simple apparatus and operation. When the residual chlorine concentration is low, the o-tolidine colorimetric method, the diethyl-p-phenylenediammonium (DPD) colorimetric method, or the DPD absorptiometric method is applied. On the other hand, when the residual chlorine concentration is relatively high, the iodine titration method is applied.
However, according to further studies by the present inventors, it has been found that each of the above-described methods for determining the residual chlorine concentration has problems.

例えば、o−トリジン比色法やDPD比色法は、定量分析の対象である分析試料(本発明において「分析試料」と記載する場合がある。)へ発色試薬を加え、塩素標準比色液と比較して残留塩素を定量する方法である。ところが、分析試料に着色があると目視判定が困難となるという課題がある。
そして、o−トリジン比色法に用いられるo−トリジンは、発がん性が疑われている物質であり、また労働安全衛生法などで特定化学物質として規制されているという課題がある。
For example, in the o-tolidine colorimetric method and the DPD colorimetric method, a color developing reagent is added to an analytical sample (which may be referred to as “analytical sample” in the present invention) that is the object of quantitative analysis, and a chlorine standard colorimetric solution. This is a method for quantifying residual chlorine in comparison with However, there is a problem that visual determination is difficult when the analysis sample is colored.
And o-tolidine used in the o-tolidine colorimetric method is a substance suspected of having carcinogenicity and has a problem that it is regulated as a specific chemical substance by the Industrial Safety and Health Act.

また、DPD吸光光度法は、DPDと分析試料中の遊離残留塩素とが反応して生じるキノン体の量を吸光度により測定する方法である。ここで分析試料中の結合残留塩素はDPDとの反応速度が遅いため、DPDを加えた直後の吸光度は遊離残留塩素のみを示す。尤も、分析試料中へよう化カリウムを加えることにより、DPD吸光光度法によっても、遊離残留塩素と結合残留塩素とを加えた全残留塩素濃度が求められる。具体的には、残留塩素とDPDとの反応で生じるキノン体に由来する桃色から桃赤色の発色を、波長510nm付近の吸光度を測定して定量する方法である。
当該吸光度は分光光度計を用いて測定するため、比色法よりも定量性が高いと考えられる。しかしながら、吸光度測定に用いる標準液は、よう素滴定法などで残留塩素濃度を標定した塩素水を用いて調製し、準備しなければならない。この為、当該よう素滴定法による標準液中における残留塩素濃度の標定精度によっては、定量分析の正確さを担保することが困難である。さらに、標準液に使用する塩素水は不安定であるため、当該標準液を長期保存しておくことが出来ないという課題がある。
The DPD absorptiometry is a method for measuring the amount of quinone produced by the reaction between DPD and free residual chlorine in an analysis sample by absorbance. Here, since the bond residual chlorine in the analysis sample has a slow reaction rate with DPD, the absorbance immediately after adding DPD shows only free residual chlorine. However, by adding potassium iodide into the analytical sample, the total residual chlorine concentration obtained by adding free residual chlorine and bound residual chlorine can be determined also by the DPD absorption spectrophotometry. Specifically, it is a method of quantifying the pink to pink red color derived from the quinone produced by the reaction between residual chlorine and DPD by measuring the absorbance around 510 nm.
Since the said light absorbency is measured using a spectrophotometer, it is thought that quantitative property is higher than the colorimetric method. However, a standard solution used for absorbance measurement must be prepared and prepared using chlorine water whose residual chlorine concentration is standardized by iodine titration method or the like. For this reason, it is difficult to ensure the accuracy of quantitative analysis depending on the standardization accuracy of the residual chlorine concentration in the standard solution by the iodine titration method. Furthermore, since the chlorine water used for the standard solution is unstable, there is a problem that the standard solution cannot be stored for a long time.

一方、よう素滴定法は、塩素とよう化カリウムとが反応して遊離するよう素をチオ硫酸ナトリウムで滴定し、分析試料中における残留塩素を定量する方法である。手分析においては、でんぷんを指示薬とし、青色が消えるまで滴定する。ところが分析試料に着色があると、目視判定が困難となるという課題がある。
尤も、当該分析試料の着色が著しい場合は、通気法を用いて分析試料の残留塩素を分離して定量する方法も考えられる。しかしながら、当該通気法は、設備面・簡便さの観点から生産現場での採用には課題がある。
On the other hand, the iodine titration method is a method of titrating iodine released by the reaction of chlorine and potassium iodide with sodium thiosulfate, and quantifying residual chlorine in the analysis sample. For manual analysis, use starch as an indicator and titrate until the blue color disappears. However, when the analysis sample is colored, there is a problem that visual determination becomes difficult.
However, when the analysis sample is markedly colored, a method of separating and quantifying residual chlorine in the analysis sample using the aeration method is also conceivable. However, the aeration method has a problem in adoption at the production site from the viewpoint of facilities and simplicity.

本発明は、上述の状況の下で為されたものであり、その解決しようとする課題は、分析試料に着色があっても、簡便な装置と操作とにより当該試料溶液中の残留塩素を定量する方法を提供することである。   The present invention has been made under the above-mentioned circumstances, and the problem to be solved is to determine the residual chlorine in the sample solution with a simple apparatus and operation even if the analysis sample is colored. Is to provide a way to do.

上述の課題を解決するため、本発明者らは研究を行った。そして、上述したよう素滴定法に係る、塩素とよう化カリウムとが反応してよう素が遊離する反応に注目した。
即ち、残留塩素を含む液によう化カリウムを添加すると、定量の目的成分である残留塩素により、よう素が定量的に遊離させられる。当該遊離させられたよう素は黄色に発色することから、分光光度計で分析試料の吸光度を測定することにより、当該遊離させられたよう素量を定量することが出来ることに想到した。
ところが、上述したように分析試料自体が着色している場合がある。
ここで、本発明者らは、よう化カリウムの添加をしないことにより、よう素に由来する発色をさせない分析試料の吸光度を測定し、その吸光度の値を、よう化カリウムを添加して発色させた分析試料の吸光度から減じることで、測定波長における分析試料自身の着色による吸収を消去する補正ができることに想到し、本発明を完成した。
In order to solve the above-mentioned problems, the present inventors conducted research. And it paid attention to reaction which chlorine and potassium iodide react based on the iodine titration method mentioned above and iodine is liberated.
That is, when potassium iodide is added to a liquid containing residual chlorine, iodine is quantitatively liberated by residual chlorine, which is a target component for quantitative determination. Since the liberated iodine is colored yellow, it was conceived that the amount of iodine liberated can be quantified by measuring the absorbance of the analytical sample with a spectrophotometer.
However, as described above, the analysis sample itself may be colored.
Here, by not adding potassium iodide, the present inventors measured the absorbance of an analytical sample that does not develop color derived from iodine, and the absorbance value was developed by adding potassium iodide. The present inventors completed the present invention by conceiving that by subtracting from the absorbance of the analyzed sample, it is possible to cancel the absorption due to the coloration of the analyzed sample itself at the measurement wavelength.

即ち、上述の課題を解決するための第1の発明は、
残留塩素を含む液試料を一定量分液し、当該分液のpHを調整してよう化カリウムを加えた後に、水を加えて一定量に定容し、当該定容した液の吸光度を測定する第1の工程と、
前記よう化カリウムを加えない以外は、前記第1の工程と同様の操作を行う第2の工程と、
前記第1の工程で得られた吸光度の値から、前記第2の工程で得られた吸光度の値を引いた値を用いて、前記残留塩素を含む液試料の残留塩素量を定量することを特徴とする残留塩素の定量方法である。
第2の発明は、
前記pHを調整する工程において、pHを4.0以下に調整することを特徴とする残留塩素の定量方法である。
第3の発明は、
前記吸光度を測定する際、分光光度計を用いることを特徴とする残留塩素の定量方法である。
第4の発明は、
前記吸光度を測定する際、測定波長を340〜360nmとすることを特徴とする残留塩素の定量方法である。
第5の発明は、
前記第1の工程で得られた吸光度の値から、前記第2の工程で得られた吸光度の値を引いた値を用いて、前記残留塩素を含む液試料の残留塩素量を定量する際、検量線を用いて前記残留塩素を含む液試料の残留塩素量を定量することを特徴とする残留塩素の定量方法である。
第6の発明は、
前記検量線を作成するための標準液調製において、当該標準液として市販の容量分析用のよう素標準液を使用することを特徴とする残留塩素の定量方法である。
第7の発明は、
前記検量線を作成するための標準液調製において、よう化カリウムを添加することを特徴とする残留塩素の定量方法である。
第8の発明は、
前記検量線を作成するための標準液調製において、当該標準液のpHを中性付近にすることを特徴とする残留塩素の定量方法である。
第9の発明は、
前記残留塩素を含む液が、塩化ニッケル溶液または塩化コバルト溶液であることを特徴とする残留塩素の定量方法である。
That is, the first invention for solving the above-described problem is
After liquid sample containing residual chlorine is separated, adjust the pH of the liquid separation and add potassium iodide, then add water to make a constant volume, and measure the absorbance of the fixed volume A first step of:
A second step of performing the same operation as the first step, except that the potassium iodide is not added;
Using the value obtained by subtracting the absorbance value obtained in the second step from the absorbance value obtained in the first step, the amount of residual chlorine in the liquid sample containing the residual chlorine is quantified. This is a characteristic method for determining residual chlorine.
The second invention is
In the step of adjusting the pH, the residual chlorine is quantified by adjusting the pH to 4.0 or less.
The third invention is
When measuring the absorbance, a spectrophotometer is used to determine the residual chlorine.
The fourth invention is:
When measuring the said light absorbency, it is a quantification method of a residual chlorine characterized by setting a measurement wavelength as 340-360 nm.
The fifth invention is:
Using the value obtained by subtracting the absorbance value obtained in the second step from the absorbance value obtained in the first step, when quantifying the residual chlorine amount of the liquid sample containing the residual chlorine, A residual chlorine quantification method characterized by quantifying a residual chlorine amount of a liquid sample containing the residual chlorine using a calibration curve.
The sixth invention is:
In the preparation of the standard solution for preparing the calibration curve, a commercially available iodine standard solution for volumetric analysis is used as the standard solution.
The seventh invention
In the preparation of a standard solution for preparing the calibration curve, a method for quantifying residual chlorine, wherein potassium iodide is added.
The eighth invention
In the preparation of a standard solution for preparing the calibration curve, the residual chlorine is quantified by making the pH of the standard solution near neutral.
The ninth invention
The method for determining residual chlorine, wherein the liquid containing residual chlorine is a nickel chloride solution or a cobalt chloride solution.

本発明によれば、分析試料中における残留塩素の定量を、簡便な装置と操作とにより1mg/L以上の定量下限をもって行うことができる。   According to the present invention, residual chlorine in an analytical sample can be quantified with a simple apparatus and operation with a quantification lower limit of 1 mg / L or more.

本発明に係る残留塩素の定量方法を示すフロー図である。It is a flowchart which shows the determination method of the residual chlorine which concerns on this invention. 実施例1におけるよう素標準液による検量線である。2 is a calibration curve using an iodine standard solution in Example 1. FIG. 実施例1における吸収スペクトルである。2 is an absorption spectrum in Example 1. 実施例1における吸収スペクトルである。2 is an absorption spectrum in Example 1. 実施例1における検量線である。2 is a calibration curve in Example 1. 実施例2における吸収スペクトルである。6 is an absorption spectrum in Example 2. 実施例3におけるよう化カリウム添加量と吸光度との関係である。It is the relationship between the potassium iodide addition amount and the light absorbency in Example 3. 実施例3におけるよう化カリウム添加しない場合の検量線である。FIG. 6 is a calibration curve when potassium iodide is not added in Example 3. FIG. 参考例1における酢酸添加ありの場合の検量線である(1日目)。It is a calibration curve in the case of acetic acid addition in Reference Example 1 (Day 1). 参考例1における酢酸添加ありの場合の検量線である(7日目)。It is a calibration curve in the case of acetic acid addition in Reference Example 1 (7th day).

以下、本発明を実施するための形態について、溶液中における残留塩素の定量方法を示すフロー図である図1を参照しながら詳細に説明する。   Hereinafter, the form for implementing this invention is demonstrated in detail, referring FIG. 1 which is a flowchart which shows the determination method of the residual chlorine in a solution.

図1に示すように、本発明に係る溶液中における残留塩素の定量方法は以下の工程を有する。
分析試料準備工程(1)
試料液採取工程(2)
pH調整工程(3)
よう化カリウム添加・よう素遊離工程(4)
水添加による定容工程(5)
第1の吸光度測定工程(6)
試料液採取工程(7)
水添加による定容工程(8)
第2の吸光度測定工程(9)
吸光度の差分値算定工程(10)
残留塩素の定量工程(11)
検量線溶液の調製工程(12)
検量線の作成工程(13)
以下、工程毎に説明する。
As shown in FIG. 1, the method for quantifying residual chlorine in a solution according to the present invention includes the following steps.
Analysis sample preparation process (1)
Sample liquid collection process (2)
pH adjustment step (3)
Potassium iodide addition / iodine liberation process (4)
Constant volume process by adding water (5)
First absorbance measurement step (6)
Sample liquid collection process (7)
Constant volume process with water addition (8)
Second absorbance measurement step (9)
Absorbance difference value calculation step (10)
Residual chlorine determination process (11)
Calibration curve solution preparation process (12)
Calibration curve creation process (13)
Hereinafter, it demonstrates for every process.

[分析試料準備工程(1)]
分析試料を準備する工程であって、分析試料は残留塩素を含む溶液である。
例えば、ニッケル、コバルトまたは銅などの電解採取工程において電解液が塩化浴の場合、陽極から塩素ガスが発生するため、電解液中に塩素ガスが溶存している。本発明は、このような電解液を分析試料とすることができる。また、分析試料は、当該電解液のみならず、残留塩素を含有するあらゆる溶液に適用可能である。
[Analysis sample preparation step (1)]
In the step of preparing an analysis sample, the analysis sample is a solution containing residual chlorine.
For example, when the electrolytic solution is a chlorination bath in an electrolytic collection process of nickel, cobalt, copper, or the like, chlorine gas is generated from the anode, so that chlorine gas is dissolved in the electrolytic solution. In the present invention, such an electrolytic solution can be used as an analysis sample. Further, the analysis sample can be applied not only to the electrolyte solution but also to any solution containing residual chlorine.

但し、分析試料中に酸化性物質が存在すると、後工程(4)において、当該酸化性物質が、よう化カリウムからよう素を遊離させて、残留塩素の定量を妨害する場合がある。その為、予め、分析試料中から酸化性物質を除去する等の対策が求められる。   However, if an oxidizing substance is present in the analysis sample, in the subsequent step (4), the oxidizing substance may liberate iodine from potassium iodide and interfere with the determination of residual chlorine. Therefore, countermeasures such as removing the oxidizing substance from the analysis sample are required in advance.

[試料液採取工程(2)]
工程(1)で説明した分析試料から、第1の所定量の試料液を採取する工程(2)では、例えば、前記試料液をメスフラスコへ一定量採取する。この際、当該採取量を増減することで、低濃度から高濃度に亘る残留塩素量を定量することができる。尚、当該試料液採取は手早く行うことで、試料液中の残留塩素の揮散を回避し、正確な定量が可能となる。
[Sample liquid collection step (2)]
In the step (2) of collecting the first predetermined amount of sample liquid from the analysis sample described in the step (1), for example, a predetermined amount of the sample liquid is collected in a measuring flask. At this time, the amount of residual chlorine ranging from a low concentration to a high concentration can be quantified by increasing or decreasing the collected amount. By collecting the sample solution quickly, volatilization of residual chlorine in the sample solution can be avoided and accurate quantification becomes possible.

[pH調整工程(3)]
所定量の試料液のpHを調整する工程(3)では、工程(2)で説明した試料液へ酢酸などを添加して、pH値4.0以下の弱酸性にするのが好ましい。試料液のpHを酸性にすることで、後工程(4)にて、よう化カリウムから、よう素を遊離させることが可能となるからである。尤も、試料液のpHが既に酸性である場合は、酢酸添加を省略することもできる。
[PH adjustment step (3)]
In the step (3) of adjusting the pH of a predetermined amount of the sample solution, it is preferable to add acetic acid or the like to the sample solution described in the step (2) so as to make it weakly acidic with a pH value of 4.0 or less. This is because by making the pH of the sample solution acidic, iodine can be liberated from potassium iodide in the subsequent step (4). However, if the pH of the sample solution is already acidic, the addition of acetic acid can be omitted.

[よう化カリウム添加・よう素遊離工程(4)]
弱酸性となった所定量の試料液へ、よう化カリウムを添加する。すると、試料液に含有される残留塩素(Cl)とよう化カリウムとが反応し、式1に示すように、よう素(I)が遊離する。当該遊離したよう素(I)は水への溶解度が小さい。しかし式2に示すように、よう素(I)は、よう化カリウム水溶液へはI を形成して溶解する。
Cl+2KI→I+2KCl・・・・・(式1)
+KI→K+I ・・・・・(式2)
[Potassium iodide addition / iodine release step (4)]
Potassium iodide is added to a predetermined amount of the sample solution that has become weakly acidic. Then, residual chlorine (Cl 2 ) contained in the sample solution reacts with potassium iodide, and iodine (I 2 ) is liberated as shown in Formula 1. The liberated iodine (I 2 ) has a low solubility in water. However, as shown in Formula 2, iodine (I 2 ) dissolves by forming I 3 − in the aqueous potassium iodide solution.
Cl 2 + 2KI → I 2 + 2KCl (Formula 1)
I 2 + KI → K + + I 3 (Formula 2)

[水添加による定容工程(5)]
よう化カリウムを加えた所定量の試料液は工程(4)で説明したように、定量的によう素が遊離し黄色に発色する。ここで当該黄色に発色した所定量の試料液へ水を加えて、一定量に定容する。この際、塩素が除去された水で定容する。
[Constant volume step by adding water (5)]
As described in the step (4), a predetermined amount of the sample solution to which potassium iodide has been added releases iodine quantitatively and develops a yellow color. Here, water is added to a predetermined amount of the sample solution colored in yellow to make a constant volume. At this time, the volume is fixed with water from which chlorine has been removed.

[第1の吸光度測定工程(6)]
工程(5)にて定容化した試料液に対し、分光光度計で吸収スペクトルを測定すると、波長340〜360nm付近で極大吸収が確認できた。そこで、第1の吸光度測定工程(6)においてI を検出・定量するための光の波長として、例えば、波長350nmを使用することができる。
即ち、定容化した試料液において、I 由来である第1の吸光度を測定する工程(6)において、含有される残留塩素を間接的に定量することができる。ここで上述した式1より、I(I )1molは、Cl1mol(71.0g)に相当することが理解できる。
[First absorbance measurement step (6)]
When the absorption spectrum was measured with the spectrophotometer for the sample solution made constant in the step (5), the maximum absorption was confirmed in the vicinity of a wavelength of 340 to 360 nm. Therefore, for example, a wavelength of 350 nm can be used as the wavelength of light for detecting and quantifying I 3 in the first absorbance measurement step (6).
That is, the residual chlorine contained can be indirectly quantified in the step (6) of measuring the first absorbance derived from I 3 in the fixed volume sample solution. From the above-described formula 1, it can be understood that 1 mol of I 2 (I 3 ) corresponds to 1 mol of Cl 2 (71.0 g).

[試料液採取工程(7)、水添加による定容工程(8)]
本発明においては、よう化カリウムを加えてよう素を遊離し発色させる工程を削除した試料液採取工程(7)によって得た所定量の試料液においても、第2の吸光度を測定する。
具体的には、上述した工程(2)と同様に、前記被定量測定試料から第1の所定量の試料液を採取する工程(7)、および、所定量の試料液へよう化カリウムを加えることなく、上述した工程(5)と同様に水を加えて定容化する定容工程(8)を行う。
[Sample solution collecting step (7), constant volume step by adding water (8)]
In the present invention, the second absorbance is also measured in a predetermined amount of the sample solution obtained by the sample solution collecting step (7) in which the step of adding iodine to liberate iodine and adding color is omitted.
Specifically, in the same manner as in the step (2) described above, the step (7) of collecting a first predetermined amount of the sample solution from the sample to be measured and adding potassium iodide to the predetermined amount of the sample solution Without performing the same, the constant volume step (8) of adding water to make the volume constant is performed in the same manner as the above step (5).

[第2の吸光度測定工程(9)]
工程(8)を行った試料液の吸光度を、分光光度計を用いて測定する。測定する波長は、上述した工程(6)で使用した波長である。
[Second absorbance measurement step (9)]
The absorbance of the sample solution subjected to step (8) is measured using a spectrophotometer. The wavelength to be measured is the wavelength used in step (6) described above.

[吸光度の差分値算定工程(10)]
吸光度の差分値算定工程(10)について説明する。
分析試料が既に着色している場合など、上述した第1の吸光度測定工程(6)においてI を検出するための波長において、分析試料自身の着色による吸収が吸光度として測定されてしまう場合がある。その場合、試料液自身の着色による吸光度と、よう素による発色による吸光度との合算値が、分析試料の吸光度として測定されてしまう。
そこで、上述したように、分析試料によう化カリウムを加えないことで、よう素による発色をさせないこと以外は、同様に操作した試料液を調製した。
そして、当該よう素による発色ありと、発色なしとの2種類の試料液において、発色ありの吸光度をI(Abs)、発色なしの吸光度をI(Abs)としたとき、よう素量に由来する正味の吸光度Iは、両者の差分値であるI−I(Abs)として算出することができる。
[Absorbance difference value calculation step (10)]
The absorbance difference value calculation step (10) will be described.
When the analysis sample is already colored, the absorption due to the color of the analysis sample itself may be measured as the absorbance at the wavelength for detecting I 3 in the first absorbance measurement step (6) described above. is there. In that case, the total value of the absorbance due to the coloring of the sample liquid itself and the absorbance due to the coloration due to iodine is measured as the absorbance of the analytical sample.
Therefore, as described above, a sample solution was prepared in the same manner except that potassium iodide was not added to the analysis sample so that no color was developed by iodine.
Then, in two types of sample liquids with and without color development, when the absorbance with color development is I 1 (Abs) and the absorbance without color development is I 0 (Abs), the amount of iodine is The derived net absorbance I can be calculated as I 1 -I 0 (Abs), which is the difference between the two.

[残留塩素の定量工程(11)]
よう素量に由来する正味の吸光度Iから残留塩素量を定量する工程(11)として、いくつかの定量方法がある。尤も、精度および操作性の観点からは、検量線法が好ましい。
[Residual chlorine determination step (11)]
There are several quantification methods as the step (11) for quantifying the residual chlorine amount from the net absorbance I derived from the iodine amount. However, the calibration curve method is preferable from the viewpoint of accuracy and operability.

[検量線溶液の調製工程(12)、検量線の作成工程(13)]
まず、検量線溶液の調製工程(12)について説明する。
市販のよう素標準液から検量線溶液を調製する為に、希釈をおこなう際、よう化カリウムを添加する。よう化カリウムを添加することで、よう素による発色が十分となり吸光度を担保できる、また、検量線の直線性も担保できる。具体的には、よう素0.005mmolに対してよう化カリウム0.5g以上を添加すれば、吸光度はほぼ一定となる。尤も、定量精度向上を目的として、検量線溶液や測定液中のよう化カリウム濃度は、一定にすることが好ましい。
尚、よう化カリウムを含む検量線溶液は、空気や光によってよう化カリウムが徐々に酸化し、よう素が遊離することにより吸光度が上がる原因となる為、遮光・密栓して保存するのが望ましい。
[Calibration curve solution preparation step (12), calibration curve preparation step (13)]
First, the calibration curve solution preparation step (12) will be described.
To prepare a calibration curve solution from a commercially available iodine standard solution, potassium iodide is added at the time of dilution. By adding potassium iodide, color development by iodine is sufficient, and the absorbance can be secured, and the linearity of the calibration curve can be secured. Specifically, when 0.5 g or more of potassium iodide is added to 0.005 mmol of iodine, the absorbance becomes almost constant. However, for the purpose of improving quantitative accuracy, it is preferable to keep the potassium iodide concentration in the calibration curve solution and the measurement solution constant.
In addition, it is desirable to store the calibration curve solution containing potassium iodide in a light-shielded and tightly-sealed state, because potassium iodide is gradually oxidized by air or light and the iodine is liberated to increase the absorbance. .

即ち、本発明によれば、市販の容量分析用のよう素標準液から、検量線溶液を調製することできる。そして、当該検量線溶液へよう化カリウムを添加することで、直線性の良い検量線を作成する工程(13)を行うことができる。
尚、検量線溶液を調製する際、酢酸などを添加して酸性にせず、中性付近に保つことが好ましい。これは、酢酸等の添加により、よう化カリウムがよう素に酸化されることが考えられるからである。
一方、検量線溶液を中性付近に保つことで、時間の経過とともに、当該検量線溶液の吸光度が上昇することを回避出来る。この結果、検量線溶液の吸光度は10日以上変化せず、長期保存が可能となり、分析の都度に検量線溶液を調製する必要がなくなり好ましい。
That is, according to the present invention, a calibration curve solution can be prepared from a commercially available iodine standard solution for volumetric analysis. Then, by adding potassium iodide to the calibration curve solution, a step (13) for creating a calibration curve with good linearity can be performed.
In preparing the calibration curve solution, it is preferable to add acetic acid or the like to make it acidic and keep it in the vicinity of neutrality. This is because it is considered that potassium iodide is oxidized to iodine by the addition of acetic acid or the like.
On the other hand, by keeping the calibration curve solution near neutrality, it is possible to avoid an increase in the absorbance of the calibration curve solution over time. As a result, the absorbance of the calibration curve solution does not change for more than 10 days and can be stored for a long period of time, and it is not necessary to prepare a calibration curve solution for each analysis.

以下、実施例を参照しながら、本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

[実施例1]
実施例1においては、下記の操作および検討を実施した。以下、項目毎に説明する。
(1)検量線溶液の調製
(2)残留塩素の回収率測定
(3)残留塩素の回収率とpHとの関係の確認
(4)塩化ニッケル溶液中における残留塩素の定量分析
(5)塩化ニッケル溶液中に含有される残留塩素の定量下限の確認
[Example 1]
In Example 1, the following operation and examination were performed. Hereinafter, each item will be described.
(1) Preparation of calibration curve solution (2) Measurement of residual chlorine recovery rate (3) Confirmation of relationship between residual chlorine recovery rate and pH (4) Quantitative analysis of residual chlorine in nickel chloride solution (5) Nickel chloride Confirmation of lower limit of quantification of residual chlorine contained in solution

(1)検量線溶液の調製
100mLの褐色メスフラスコを準備し、それぞれの褐色メスフラスコへ、容量分析用として市販されている5mmol/Lのよう素標準液(和光純薬工業株式会社製、容量分析用)を、0.0mL、0.4mL、1mL、2mL、4mL、8mL分液した。これらのメスフラスコへ、それぞれよう化カリウム(和光純薬工業株式会社製、試薬特級)2gを添加し、さらに脱塩素された純水を加えた後、撹拌してよう化カリウムを溶解した。そして、純水を加えて100mLにメスアップして撹拌し、検量線溶液を得た。
(1) Preparation of calibration curve solution 100 mL brown volumetric flasks were prepared, and 5 mmol / L iodine standard solution (made by Wako Pure Chemical Industries, Ltd. (For analysis) was separated into 0.0 mL, 0.4 mL, 1 mL, 2 mL, 4 mL, and 8 mL. To each of these volumetric flasks, 2 g of potassium iodide (made by Wako Pure Chemical Industries, Ltd., special grade reagent) was added, dechlorinated pure water was added, and the mixture was stirred to dissolve potassium iodide. Then, pure water was added to make up to 100 mL and stirred to obtain a calibration curve solution.

この結果、得られた検量線溶液のよう素濃度は、0.0mmol/L、0.02mmol/L、0.05mmol/L、0.1mmol/L、0.2mmol/L、0.4mmol/Lとなった。
得られた検量線溶液の吸光度を、光路長2mmの吸収セルを用いて分光光度計(株式会社日立ハイテクノロジーズ製、U−2810)で測定し、測定結果から検量線を作成した。測定波長は350nmを使用した。検量線作成結果を、横軸によう素(I)濃度、縦軸に吸光度をとった図2に示す。
As a result, the iodine concentration of the obtained calibration curve solution was 0.0 mmol / L, 0.02 mmol / L, 0.05 mmol / L, 0.1 mmol / L, 0.2 mmol / L, 0.4 mmol / L. It became.
The absorbance of the obtained calibration curve solution was measured with a spectrophotometer (manufactured by Hitachi High-Technologies Corporation, U-2810) using an absorption cell having an optical path length of 2 mm, and a calibration curve was created from the measurement results. The measurement wavelength was 350 nm. The calibration curve creation results are shown in FIG. 2 with iodine (I 2 ) concentration on the horizontal axis and absorbance on the vertical axis.

図2に示すように、よう素濃度(mmol/L)と吸光度(Abs)との間には、良好な直線関係が得られ、最小二乗法により近似式である式3が得られた。
I=5.3087C+0.0322・・・・(式3)
但し、R=0.9998
As shown in FIG. 2, a good linear relationship was obtained between the iodine concentration (mmol / L) and the absorbance (Abs), and the approximate expression 3 was obtained by the least square method.
I = 5.3087C + 0.0322 (Equation 3)
However, R 2 = 0.9998

ここで、同一の検量線溶液の吸光度を、1日毎に測定したときの測定結果を表1に示す。   Here, Table 1 shows the measurement results when the absorbance of the same calibration curve solution was measured every day.

Figure 2017083222
Figure 2017083222

表1の結果より、同一の検量線溶液の吸光度を1日毎に測定したときの測定結果は、いずれのよう素濃度においても殆ど変化しないことが判明した。
従って、検量線溶液は、分析の都度に調製する必要がないことが判明した。さらに、同一溶液の吸光度を測定した場合の長期的な変動は小さい。そこで、一旦、検量線の近似式を決定すれば、分析試料の前処理を実施して吸光度を測定し、当該検量線の近似式を適用することで、分析試料の残留塩素濃度を簡単に算出できることが確認できた。
From the results in Table 1, it was found that the measurement results when the absorbance of the same calibration curve solution was measured every day hardly changed at any iodine concentration.
Therefore, it was found that the calibration curve solution does not need to be prepared for each analysis. Furthermore, long-term fluctuations when measuring the absorbance of the same solution are small. Therefore, once the approximate equation of the calibration curve is determined, pretreatment of the analytical sample is performed to measure the absorbance, and the residual chlorine concentration of the analytical sample is simply calculated by applying the approximate equation of the calibration curve. I was able to confirm that it was possible.

(2)残留塩素の回収率測定
1.試料液(塩素水)の調製
残留塩素量が既知である、塩素標準液に含有される残留塩素の回収率を確認するため、当該試料液となる塩素水を調製した。
当該試料液の調製方法は、市販の次亜塩素酸ナトリウム溶液(和光純薬工業株式会社製、化学用)を純水で100倍に希釈して塩素標準液を得、これを試料液とした。当該塩素標準液に含まれる塩素濃度をよう素滴定法で定量したところ、0.0144(mol/L)であった。
(2) Measurement of residual chlorine recovery rate Preparation of sample solution (chlorine water) In order to confirm the recovery rate of residual chlorine contained in a chlorine standard solution with a known residual chlorine amount, chlorine water was prepared as the sample solution.
The sample solution was prepared by diluting a commercially available sodium hypochlorite solution (manufactured by Wako Pure Chemical Industries, Ltd., for chemical use) 100 times with pure water to obtain a chlorine standard solution, which was used as the sample solution. . When the chlorine concentration contained in the chlorine standard solution was quantified by iodine titration, it was 0.0144 (mol / L).

2.試料液(塩素水)に含有される残留塩素の定量
50mLメスフラスコ(A、B)を準備し、両方のメスフラスコ(A、B)へ、試料液を0.5mL添加した。これは、試料液中の残留塩素量として0.0072mmolに相当する。
次に、メスフラスコ(A)へ、酢酸1mLと固体のよう化カリウム1gとを添加した。さらに、脱塩素された純水を追加し、前記固体のよう化カリウムを水に溶解させた。この操作の結果、メスフラスコ(A)中の試料液Aは、透明から黄色に変化した。
一方、メスフラスコ(B)には手を加えなかった。この結果、メスフラスコ(B)中の試料液Bは、透明のままであった。
両方のメスフラスコ(A、B)へ純水を加え50mLに定容した後、撹拌した。尚、残留塩素は、酸性下において揮散し易いため、一連の作業は手早く行った。このとき試料液AのpH値は3.0であった。
得られた試料液(A、B)を、光路長2mmの吸収セルを用いて分光光度計で測定し、各々の吸収スペクトルを測定した。結果を図3に示す。尚、図3において横軸に波長をとり、縦軸に光路長2mmの吸光度をとった。そして、試料液Aを実線で示し、試料液Bを1点鎖線で示した。
よう化カリウムを添加した試料液Aでは、波長340〜360nmの領域で極大吸収が確認できた。そこで、よう素由来のピークを検出する波長として350nmを使用することとした(図3において破線で測定波長を示す。)。
当該測定波長における、試料液Aの吸光度測定結果Iと、試料液Bの吸光度測定結果Iとを、表2に示す。そして、I−Iの値を、よう素量の吸光度Iとした。
2. Determination of residual chlorine contained in sample liquid (chlorine water) 50 mL volumetric flasks (A, B) were prepared, and 0.5 mL of the sample liquid was added to both volumetric flasks (A, B). This corresponds to 0.0072 mmol as the amount of residual chlorine in the sample solution.
Next, 1 mL of acetic acid and 1 g of solid potassium iodide were added to the volumetric flask (A). Further, dechlorinated pure water was added, and the solid potassium iodide was dissolved in water. As a result of this operation, the sample liquid A in the volumetric flask (A) changed from transparent to yellow.
On the other hand, the volumetric flask (B) was not touched. As a result, the sample solution B in the measuring flask (B) remained transparent.
Pure water was added to both volumetric flasks (A, B), and the volume was adjusted to 50 mL, followed by stirring. In addition, since residual chlorine was easily volatilized under acidic conditions, a series of operations were performed quickly. At this time, the pH value of the sample solution A was 3.0.
The obtained sample solutions (A, B) were measured with a spectrophotometer using an absorption cell having an optical path length of 2 mm, and each absorption spectrum was measured. The results are shown in FIG. In FIG. 3, the horizontal axis represents wavelength, and the vertical axis represents absorbance at an optical path length of 2 mm. The sample solution A is indicated by a solid line, and the sample solution B is indicated by a one-dot chain line.
In sample solution A to which potassium iodide was added, maximum absorption could be confirmed in the wavelength region of 340 to 360 nm. Therefore, 350 nm was used as the wavelength for detecting the peak derived from iodine (the measurement wavelength is indicated by a broken line in FIG. 3).
At the measurement wavelength, the absorbance measurement result I A of the sample solution A, and the absorbance measurement result I B of the sample liquid B, submitted in Table 2. Then, the value of I A -I B, so that the absorbance I of the elementary charge.

Figure 2017083222
Figure 2017083222

検量線は(1)の説明に従って作成した。
よう素濃度C(mmol/L)と吸光度I(Abs)との関係を示す検量線の近似式を式4に示す。
I=5.2461C−0.0051・・・・(式4)
=0.9996
A calibration curve was prepared according to the explanation in (1).
Equation 4 shows an approximate expression of a calibration curve showing the relationship between iodine concentration C (mmol / L) and absorbance I (Abs).
I = 5.2461C−0.0051 (Equation 4)
R 2 = 0.9996

ここで、検量線の傾きをk(Abs/(mmol/L))と表記したとき、試料液中のよう素濃度は式5で算出できる。試料液中のよう素濃度を算出した結果、よう素濃度Cは、0.139(mmol/L)であった。
一方、試料液の定容量をV(mL)、塩素添加量をX(mmol)と表記した時、残留塩素回収率(%)は式6で算出できる。
測定液中のよう素濃度C(mmol/L)=(I−I)/k・・・・(式5)
残留塩素回収率(%)=(C×V/1000)/X×100・・・・(式6)
残留塩素回収率を算出した結果は96.5%となり、本発明の効果を確認できた。
Here, when the slope of the calibration curve is expressed as k (Abs / (mmol / L)), the iodine concentration in the sample solution can be calculated by Equation 5. As a result of calculating the iodine concentration in the sample solution, the iodine concentration C was 0.139 (mmol / L).
On the other hand, when the constant volume of the sample solution is expressed as V (mL) and the addition amount of chlorine as X (mmol), the residual chlorine recovery rate (%) can be calculated by Equation 6.
Iodine concentration in measurement liquid C (mmol / L) = (I A −I B ) / k (formula 5)
Residual chlorine recovery rate (%) = (C × V / 1000) / X × 100 (formula 6)
The result of calculating the residual chlorine recovery rate was 96.5%, confirming the effect of the present invention.

(3)残留塩素の回収率とpHとの関係
上述したように、試料液へ酢酸を添加する目的は、当該試料液のpHを弱酸性に調整し、添加されるよう化カリウムからよう素を遊離させることにある。
当該試料液のpHを弱酸性に調整する効果を確認するため、(2)で説明した試料液への酢酸(和光純薬工業株式会社製、試薬特級)の添加量を増減し、試料液のpHを7.2から2.0の範囲で変化させ、当該試料液に含有される残留塩素の回収率を測定した。その結果を表3に示す。
(3) Relationship between recovery rate of residual chlorine and pH As described above, the purpose of adding acetic acid to a sample solution is to adjust the pH of the sample solution to weak acidity, and to remove iodine from potassium iodide added. It is in liberating.
In order to confirm the effect of adjusting the pH of the sample solution to be weakly acidic, the amount of acetic acid (made by Wako Pure Chemical Industries, Ltd., reagent grade) added to the sample solution described in (2) was increased or decreased. The pH was changed within the range of 7.2 to 2.0, and the recovery rate of residual chlorine contained in the sample solution was measured. The results are shown in Table 3.

Figure 2017083222
Figure 2017083222

表3の結果より、試料液のpHが中性域よりも酸性域にある方が、当該試料液に含有される残留塩素の回収率が高いことが判明した。従って、試料液中のpHが既に低い場合を除き、試料液へ酢酸添加して、酸性域とすることが好ましいことが判明した。   From the results in Table 3, it was found that the recovery rate of residual chlorine contained in the sample solution is higher when the pH of the sample solution is in the acidic region than in the neutral region. Therefore, it was found that it is preferable to add acetic acid to the sample solution to make it acidic, except when the pH in the sample solution is already low.

(4)塩化ニッケル溶液中における残留塩素の定量分析
分析試料として、(2)(3)で説明した残留塩素を含有する試料液より、現実のニッケル製錬の電解廃液に近い、残留塩素を含有する塩化ニッケル液を試料液として用い、残留塩素の定量分析を行った。
まず、ニッケル濃度が約70g/Lになるように、塩化ニッケル(和光純薬工業株式会社製、試薬特級)を水で溶解した塩化ニッケル水溶液を準備した。
一方、50mLメスフラスコを2個(C、D)準備し、両方のメスフラスコ(C、D)へ、塩化ニッケル水溶液を40mL添加した。次に、両方のメスフラスコ(C、D)へ、(2)で説明した残留塩素を含有する試料液0.5mLを添加し、試料液C液、D液を得た。これは、残留塩素0.0072mmolに相当する。
以降は、(2)の説明と同様に操作し、メスフラスコ(C)へ酢酸と固体のよう化カリウムとを添加した。
(4) Quantitative Analysis of Residual Chlorine in Nickel Chloride Solution As an analytical sample, it contains residual chlorine, which is closer to the actual nickel smelting electrolytic waste solution than the sample liquid containing residual chlorine described in (2) and (3). Quantitative analysis of residual chlorine was performed using nickel chloride solution as a sample solution.
First, a nickel chloride aqueous solution in which nickel chloride (manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent) was dissolved in water was prepared so that the nickel concentration was about 70 g / L.
Meanwhile, two 50 mL volumetric flasks (C, D) were prepared, and 40 mL of nickel chloride aqueous solution was added to both volumetric flasks (C, D). Next, 0.5 mL of the sample solution containing the residual chlorine described in (2) was added to both volumetric flasks (C, D) to obtain sample solution C and solution D. This corresponds to 0.0072 mmol of residual chlorine.
Thereafter, the same operation as described in (2) was performed, and acetic acid and solid potassium iodide were added to the volumetric flask (C).

得られた試料液C液、D液を分光光度計に装填し、光路長2mmの吸収セルを用いて吸収スペクトルを測定した。結果を図4に示す。尚、図4において横軸に波長をとり、縦軸に光路長2mmの吸光度をとった。そして、試料液Cを実線で示し、試料液Dを1点鎖線で示し、試料液Cの吸光度(I)から試料液Dの吸光度(I)を算術減算した値を2点鎖線で示した。
試料液が塩化ニッケルを含有しない(2)の場合と異なり、試料液C液、D液は緑色に着色している。この結果、よう化カリウムを添加していない試料液D液においても、測定波長350nmにおいて光の吸収が測定された(図4において破線で測定波長を示す。)。当該測定波長における、試料液C液、D液の吸光度測定結果を表4に示す。
The obtained sample solutions C and D were loaded into a spectrophotometer, and an absorption spectrum was measured using an absorption cell having an optical path length of 2 mm. The results are shown in FIG. In FIG. 4, the horizontal axis represents wavelength, and the vertical axis represents absorbance at an optical path length of 2 mm. The sample liquid C is indicated by a solid line, the sample liquid D is indicated by a one-dot chain line, and the value obtained by arithmetic subtraction of the absorbance (I D ) of the sample liquid D from the absorbance (I C ) of the sample liquid C is indicated by a two-dot chain line. It was.
Unlike the case (2) in which the sample solution does not contain nickel chloride, the sample solution C and the solution D are colored green. As a result, the absorption of light was also measured at a measurement wavelength of 350 nm in the sample solution D to which potassium iodide was not added (the measurement wavelength is indicated by a broken line in FIG. 4). Table 4 shows the absorbance measurement results of sample liquid C and liquid D at the measurement wavelength.

Figure 2017083222
Figure 2017083222

試料液におけるよう素量の吸光度Iは、I−Iで算出した。つまり、よう素量の吸光度Iは、試料液C液の吸光度から試料液D液の吸光度を減算して、塩化ニッケル液に起因する吸光度を消去したものである。
当該吸光度Iより、(2)の説明と同様の操作により残留塩素回収率を算出したところ94.4%となり、本発明は、塩化ニッケルを含有し着色した分析試料に対しても、有効であることが確認できた。
Absorbance I of the elementary charge as in the sample solution is calculated by I C -I D. That is, the iodine amount absorbance I is obtained by subtracting the absorbance of the sample solution D from the absorbance of the sample solution C to eliminate the absorbance caused by the nickel chloride solution.
From the absorbance I, the residual chlorine recovery rate calculated by the same operation as described in (2) was 94.4%, and the present invention is also effective for a colored analysis sample containing nickel chloride. I was able to confirm.

(5)塩化ニッケル溶液中に含有される残留塩素の定量下限
塩化ニッケル含有溶液に含有される低濃度の残留塩素を定量分析する場合、試料液の分液量をできるだけ多くする方が、高感度な測定が可能となる。例えば、試料液を40mL分液し、50mLに定容すること等が好ましい。
そこで当該条件にて、分析試料に含有される低濃度の残留塩素を定量分析しようとする場合の定量下限を検討した。
(5) Lower limit of quantification of residual chlorine contained in nickel chloride solution When quantitatively analyzing low-concentration residual chlorine contained in nickel chloride-containing solutions, it is more sensitive to increase the amount of sample solution as much as possible. Measurement is possible. For example, it is preferable to separate a sample solution into 40 mL and make a constant volume of 50 mL.
Therefore, the lower limit of quantification was examined when attempting to quantitatively analyze low-concentration residual chlorine contained in the analysis sample under these conditions.

試料液として、ニッケル濃度70g/Lの塩化ニッケル溶液を準備した。
50mLメスフラスコへ、試料液(塩化ニッケル溶液)40mL、酢酸1mL、よう化カリウム1gを添加した。
次に、当該メスフラスコへ、濃度0.5mmol/Lのよう素液を、各々0.0mL、0.5mL、1mL、2mL、4mL添加し、純水を添加して50mLに定容し、よう素標準液を得た。この結果、得られたよう素標準液中のよう素濃度は、0.0mmol/L、0.005mmol/L、0.01mmol/L、0.02mmol/L、0.04mmol/Lとなる。
得られた各濃度のよう素標準液の吸光度を3回測定した。
当該3回の吸光度の測定結果と、平均値および相対標準偏差を表5に示す。また、表5に示した、よう素濃度と吸光度との関係から検量線を作成し、横軸によう素(I)濃度、縦軸に吸光度をとった図5に示す。
A nickel chloride solution having a nickel concentration of 70 g / L was prepared as a sample solution.
To a 50 mL volumetric flask, 40 mL of a sample solution (nickel chloride solution), 1 mL of acetic acid, and 1 g of potassium iodide were added.
Next, 0.0 mL, 0.5 mL, 1 mL, 2 mL, and 4 mL of iodine solution at a concentration of 0.5 mmol / L are added to the volumetric flask, respectively, and pure water is added to adjust the volume to 50 mL. An elementary standard solution was obtained. As a result, the iodine concentration in the obtained iodine standard solution is 0.0 mmol / L, 0.005 mmol / L, 0.01 mmol / L, 0.02 mmol / L, and 0.04 mmol / L.
The absorbance of the obtained iodine standard solution at each concentration was measured three times.
Table 5 shows the measurement results of the absorbance three times, the average value, and the relative standard deviation. In addition, a calibration curve is prepared from the relationship between iodine concentration and absorbance shown in Table 5, and the horizontal axis represents iodine (I 2 ) concentration, and the vertical axis represents absorbance.

Figure 2017083222
Figure 2017083222

表5より、よう素標準液中のよう素濃度が0.01mmol/L以上あれば、相対標準偏差5%以内である変動の小さな測定が可能であることが判明した。
この結果を、試料液を40mL分液し、50mLの定容量にした場合の試料液中の残留塩素量に換算すると、0.0125mmol/Lとなる。これを質量換算すると、残留塩素量0.888mg/Lに相当する。
以上より、本発明にて、高濃度の塩化ニッケル液中であっても、残留塩素量を1mg/Lの低濃度まで定量可能であることが判明した。
From Table 5, it was found that if the iodine concentration in the iodine standard solution is 0.01 mmol / L or more, measurement with a small variation within 5% of the relative standard deviation is possible.
This result is 0.0125 mmol / L when converted into the amount of residual chlorine in the sample solution when the sample solution is divided into 40 mL to make a constant volume of 50 mL. When this is converted into mass, this corresponds to a residual chlorine content of 0.888 mg / L.
From the above, it was found that the amount of residual chlorine can be quantified to a low concentration of 1 mg / L even in a high concentration nickel chloride solution.

[実施例2]
上述した実施例1(4)にて使用した塩化ニッケル溶液を、塩化コバルト溶液に代替し、残留塩素の回収率を検討した。
[Example 2]
The nickel chloride solution used in Example 1 (4) described above was replaced with a cobalt chloride solution, and the recovery rate of residual chlorine was examined.

まず、コバルト濃度が約70g/Lになるように、塩化コバルト(和光純薬工業株式会社製、試薬特級)を水で溶解した塩化コバルト水溶液を準備した。
一方、50mLメスフラスコ(E、F)を準備し、両方のメスフラスコ(E、F)へ、塩化コバルト水溶液を40mL添加した。次に、両方のメスフラスコ(E、F)へ、塩素濃度0.0107(mol/L)の塩素標準液0.5mL添加し試料液E液、F液を得た。これは、残留塩素0.00535mmolに相当する。
以降は、実施例1(4)の説明と同様に操作した。
First, an aqueous cobalt chloride solution in which cobalt chloride (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade) was dissolved in water was prepared so that the cobalt concentration was about 70 g / L.
On the other hand, 50 mL volumetric flasks (E, F) were prepared, and 40 mL of cobalt chloride aqueous solution was added to both volumetric flasks (E, F). Next, 0.5 mL of a chlorine standard solution having a chlorine concentration of 0.0107 (mol / L) was added to both volumetric flasks (E, F) to obtain sample solutions E and F. This corresponds to 0.00535 mmol of residual chlorine.
Thereafter, the same operation as described in Example 1 (4) was performed.

得られた試料液E液、F液を分光光度計に装填し、光路長2mmの吸収セルを用いて吸収スペクトルを測定した。結果を図6に示す。尚、図6において横軸に波長をとり、縦軸に光路長2mmの吸光度をとった。そして、試料液Eを実線で示し、試料液Fを1点鎖線で示し、試料液Eの吸光度(I)から試料液Dの吸光度(I)を算術減算した値を2点鎖線で示した。
実施例1と同様に、測定波長350nmにおいて吸収が測定された(図6において破線で測定波長を示す。)。当該測定波長における、試料液E液、F液の吸光度測定結果を表6に示す。
The obtained sample solutions E and F were loaded into a spectrophotometer, and an absorption spectrum was measured using an absorption cell having an optical path length of 2 mm. The results are shown in FIG. In FIG. 6, the horizontal axis represents wavelength, and the vertical axis represents absorbance at an optical path length of 2 mm. The sample liquid E is indicated by a solid line, the sample liquid F is indicated by a one-dot chain line, and the value obtained by arithmetic subtraction of the absorbance (I F ) of the sample liquid D from the absorbance (I E ) of the sample liquid E is indicated by a two-dot chain line. It was.
Similarly to Example 1, the absorption was measured at a measurement wavelength of 350 nm (the measurement wavelength is indicated by a broken line in FIG. 6). Table 6 shows the absorbance measurement results of the sample liquid E solution and the F solution at the measurement wavelength.

Figure 2017083222
Figure 2017083222

尚、よう素分の吸光度Iは、I−Iで算出した。試料液E液の吸光度からF液の吸光度を減算しして、塩化コバルト液に起因する正の妨害を消去したものである。
この結果、残留塩素回収率を算出したところ98.2%となり、本発明の効果を確認できた。
Incidentally, the absorbance I of main oxygen partial was calculated by I E -I F. By subtracting the absorbance of the F solution from the absorbance of the sample solution E, the positive interference caused by the cobalt chloride solution is eliminated.
As a result, the residual chlorine recovery rate was calculated to be 98.2%, confirming the effect of the present invention.

[実施例3]
実施例1(1)にて説明した検量線溶液の調製における、よう化カリウムの添加効果について検討した。
実施例1(1)にて説明した検量線溶液の調製において、よう化カリウムの添加量を0.0g、0.2g、0.5g、1.0g、2.0gとした試料液を調製した。そして、よう素濃度0.005mmol/Lの標準液100mLであって、よう化カリウムの添加量を増減した試料液を用いて測定した吸光度を、横軸によう化カリウム添加量、縦軸に吸光度をとった図7に示す。
図7の結果から、よう素0.005mmolに対してよう化カリウム0.5g以上添加すれば、得られた溶液の吸光度は安定することが判明した。
一方、よう化カリウムを添加しない場合は、横軸によう素(I)濃度、縦軸に吸光度をとった図8に示すように良好な直線関係が得られず、検量線としては好ましくないことが判明した。
[Example 3]
The effect of adding potassium iodide in the preparation of the calibration curve solution described in Example 1 (1) was examined.
In the preparation of the calibration curve solution described in Example 1 (1), sample solutions were prepared in which the amount of potassium iodide added was 0.0 g, 0.2 g, 0.5 g, 1.0 g, and 2.0 g. . Then, the absorbance measured using a sample solution of 100 mL of iodine concentration 0.005 mmol / L with the added amount of potassium iodide increased or decreased, the horizontal axis represents the potassium iodide added amount, and the vertical axis represents the absorbance. It shows in FIG.
From the results of FIG. 7, it was found that the absorbance of the obtained solution was stabilized when 0.5 g or more of potassium iodide was added to 0.005 mmol of iodine.
On the other hand, when potassium iodide is not added, a good linear relationship cannot be obtained as shown in FIG. 8 with the iodine (I 2 ) concentration on the horizontal axis and the absorbance on the vertical axis, which is not preferable as a calibration curve. It has been found.

[参考例1]
検量線溶液の保存特性について検討した。
まず、実施例1(1)で説明した検量線溶液へ酢酸を2mL添加した以外は、実施例1(1)にて説明したのと同様の操作を行い、検量線を作成した。当該作成した検量線を、横軸によう素(I)濃度、縦軸に吸光度をとった図9に示す。
図9に示すように、よう素濃度C(mmol/L)と吸光度I(Abs)の間には良好な直線関係があり、最小二乗法により近似式である式7が得られた。
I=5.2102C−0.0041・・・・(式7)
=0.9999
[Reference Example 1]
The storage characteristics of the calibration curve solution were investigated.
First, except that 2 mL of acetic acid was added to the calibration curve solution described in Example 1 (1), the same operation as described in Example 1 (1) was performed to create a calibration curve. The prepared calibration curve is shown in FIG. 9 with the iodine (I 2 ) concentration on the horizontal axis and the absorbance on the vertical axis.
As shown in FIG. 9, there is a good linear relationship between the iodine concentration C (mmol / L) and the absorbance I (Abs), and Expression 7 which is an approximate expression is obtained by the least square method.
I = 5.2102C−0.0041 (Equation 7)
R 2 = 0.9999

一方、当該酢酸を添加したよう素標準液を用い、日を変えて測定したときの吸光度結果を表7(表2)に示す。
表7より、検量線溶液へ酢酸を添加すると、時間の経過とともに吸光度が上昇することが判明した。ここで、7日目の検量線を、横軸によう素(I)濃度、縦軸に吸光度をとった図10に示す。当該7日目の検量線を、1日目の検量線図9と比較すると、7日目の検量線は、ベースが上がり、直線性も悪化している。従って、検量線溶液の保存性の観点からは、酢酸添加を回避することが好ましいことが判明した。
On the other hand, Table 7 (Table 2) shows the absorbance results when measurement was carried out using different iodine standard solutions to which the acetic acid was added.
From Table 7, it was found that when acetic acid was added to the calibration curve solution, the absorbance increased with time. Here, the calibration curve for the seventh day is shown in FIG. 10 with iodine (I 2 ) concentration on the horizontal axis and absorbance on the vertical axis. When the calibration curve for the seventh day is compared with the calibration curve diagram 9 for the first day, the calibration curve for the seventh day has an increased base and deteriorated linearity. Therefore, it was found that it is preferable to avoid the addition of acetic acid from the viewpoint of the storage stability of the calibration curve solution.

Figure 2017083222
Figure 2017083222

[まとめ]
本発明において、残留塩素を含む液によう化カリウムを添加すると、目的成分の塩素によりよう素を定量的に遊離させることができる。また、遊離したよう素は黄色に発色することから、分光光度計で吸光度を測定することができる。よう化カリウムで発色させていない液の吸光度も測定し、その値を減算した値を用いて定量するため、測定波長における分析試料自身の吸収を補正することができる。そして、本発明によれば、残留塩素として1mg/L以上の定量下限を達成することができる。
[Summary]
In the present invention, when potassium iodide is added to a liquid containing residual chlorine, iodine can be quantitatively liberated by the target component chlorine. In addition, since the liberated iodine is colored yellow, the absorbance can be measured with a spectrophotometer. Since the absorbance of the liquid not colored with potassium iodide is also measured and quantified using the value obtained by subtracting the value, the absorption of the analytical sample itself at the measurement wavelength can be corrected. And according to this invention, a fixed lower limit of 1 mg / L or more can be achieved as residual chlorine.

本発明は、各種分析試料中に含まれる残留塩素量の定量方法として有用である。   The present invention is useful as a method for quantifying the amount of residual chlorine contained in various analytical samples.

Claims (9)

残留塩素を含む液試料を一定量分液し、当該分液のpHを調整してよう化カリウムを加えた後に、水を加えて一定量に定容し、当該定容した液の吸光度を測定する第1の工程と、
前記よう化カリウムを加えない以外は、前記第1の工程と同様の操作を行う第2の工程と、
前記第1の工程で得られた吸光度の値から、前記第2の工程で得られた吸光度の値を引いた値を用いて、前記残留塩素を含む液試料の残留塩素量を定量することを特徴とする残留塩素の定量方法。
After liquid sample containing residual chlorine is separated, adjust the pH of the liquid separation and add potassium iodide, then add water to make a constant volume, and measure the absorbance of the fixed volume A first step of:
A second step of performing the same operation as the first step, except that the potassium iodide is not added;
Using the value obtained by subtracting the absorbance value obtained in the second step from the absorbance value obtained in the first step, the amount of residual chlorine in the liquid sample containing the residual chlorine is quantified. A method for quantitative determination of residual chlorine.
前記pHを調整する工程において、pHを4.0以下に調整することを特徴とする請求項1に記載の残留塩素の定量方法。   The method for quantifying residual chlorine according to claim 1, wherein in the step of adjusting the pH, the pH is adjusted to 4.0 or less. 前記吸光度を測定する際、分光光度計を用いることを特徴とする請求項1または2に記載の残留塩素の定量方法。   The method for quantifying residual chlorine according to claim 1 or 2, wherein a spectrophotometer is used when measuring the absorbance. 前記吸光度を測定する際、測定波長を340〜360nmとすることを特徴とする請求項1から3のいずれかに記載の残留塩素の定量方法。   The method for quantifying residual chlorine according to any one of claims 1 to 3, wherein when measuring the absorbance, the measurement wavelength is 340 to 360 nm. 前記第1の工程で得られた吸光度の値から、前記第2の工程で得られた吸光度の値を引いた値を用いて、前記残留塩素を含む液試料の残留塩素量を定量する際、検量線を用いて前記残留塩素を含む液試料の残留塩素量を定量することを特徴とする請求項1から4のいずれかに記載の残留塩素の定量方法。   Using the value obtained by subtracting the absorbance value obtained in the second step from the absorbance value obtained in the first step, when quantifying the residual chlorine amount of the liquid sample containing the residual chlorine, 5. The residual chlorine quantification method according to claim 1, wherein the residual chlorine content of the liquid sample containing the residual chlorine is quantified using a calibration curve. 前記検量線を作成するための標準液調製において、当該標準液として市販の容量分析用のよう素標準液を使用することを特徴とする請求項5に記載の残留塩素の定量方法。   The method for quantifying residual chlorine according to claim 5, wherein a commercially available iodine standard solution for volumetric analysis is used as the standard solution in preparing a standard solution for preparing the calibration curve. 前記検量線を作成するための標準液調製において、よう化カリウムを添加することを特徴とする請求項5に記載の残留塩素の定量方法。   6. The method for quantifying residual chlorine according to claim 5, wherein potassium iodide is added in preparing a standard solution for preparing the calibration curve. 前記検量線を作成するための標準液調製において、当該標準液のpHを中性付近にすることを特徴とする請求項5に記載の残留塩素の定量方法。   6. The method for quantifying residual chlorine according to claim 5, wherein, in preparing a standard solution for preparing the calibration curve, the pH of the standard solution is set near neutral. 前記残留塩素を含む液が、塩化ニッケル溶液または塩化コバルト溶液であることを特徴とする請求項1から8のいずれかに記載の残留塩素の定量方法。   The method for quantifying residual chlorine according to claim 1, wherein the liquid containing residual chlorine is a nickel chloride solution or a cobalt chloride solution.
JP2015209569A 2015-10-26 2015-10-26 Method for quantifying residual chlorine in solution Pending JP2017083222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015209569A JP2017083222A (en) 2015-10-26 2015-10-26 Method for quantifying residual chlorine in solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015209569A JP2017083222A (en) 2015-10-26 2015-10-26 Method for quantifying residual chlorine in solution

Publications (1)

Publication Number Publication Date
JP2017083222A true JP2017083222A (en) 2017-05-18

Family

ID=58711768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015209569A Pending JP2017083222A (en) 2015-10-26 2015-10-26 Method for quantifying residual chlorine in solution

Country Status (1)

Country Link
JP (1) JP2017083222A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115436130A (en) * 2022-09-02 2022-12-06 中国计量科学研究院 Standard substance for simulating free residual chlorine and preparation method thereof
CN115452751A (en) * 2022-10-26 2022-12-09 杭州泽天春来科技有限公司 Residual chlorine detection method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115436130A (en) * 2022-09-02 2022-12-06 中国计量科学研究院 Standard substance for simulating free residual chlorine and preparation method thereof
CN115452751A (en) * 2022-10-26 2022-12-09 杭州泽天春来科技有限公司 Residual chlorine detection method and device
CN115452751B (en) * 2022-10-26 2023-03-10 杭州泽天春来科技有限公司 Residual chlorine detection method and device

Similar Documents

Publication Publication Date Title
El-Mai et al. Determination of ultra-trace amounts of silver in water by differential pulse anodic stripping voltammetry using a new modified carbon paste electrode
EP2791659B1 (en) Cuvette and method for determining the chemical oxygen demand
Biswas et al. Development of an extractive spectrophotometric method for estimation of uranium in ore leach solutions using 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) mixture as extractant and 2-(5-bromo-2-pyridylozo)-5-diethyl aminophenol (Br-PADAP) as chromophore
JP2008309767A (en) Method for decomposing solid sample and method for determining quantity of chrome using the same
Govender et al. Modification of the ferric chloride assay for the spectrophotometric determination of ferric and total iron in acidic solutions containing high concentrations of copper
JP2017083222A (en) Method for quantifying residual chlorine in solution
CN103487390A (en) Testing method for cadmium content in water body
JP2018021905A (en) Quantitative analysis method of total chlorine concentration, chloride ion concentration and hypochlorite concentration in liquid containing metal ion
Kawakubo et al. Catalytic spectrofluorimetric determination of vanadium using oxidation of o-phenylenediamine with bromate in the presence of gallic acid
Moneeb Polarographic chemometric determination of zinc and nickel in aqueous samples
JP2009122077A (en) Method for measuring chlorite ion
CN104215634A (en) Method for determining content of tin in tungsten concentrate
CN104535559A (en) Method for measuring molten salt chloride residues and recycling chemical components in regenerated substances
CN104111305A (en) Novel method for determination of total iron of iron ore by potassium dichromate volumetric method
CN110161176A (en) A kind of COD rapid detection method of production waste water with high salt
Al-Othman et al. Phosphate rock treatment with citric acid for the rapid potentiometric determination of fluoride with ion-selective electrode
JP2011158326A (en) Method for quantifying very small amount of chlorine in silver powder
JP6150074B2 (en) Method for quantitative analysis of copper concentration in copper-containing nickel chloride solution
CN115436130A (en) Standard substance for simulating free residual chlorine and preparation method thereof
JP2020160065A (en) Copper valence fractionation quantification method and copper quantification device
CN104655610B (en) The analysis method and assay method of vanadyl oxalate oxalate ion concentration
Sharma et al. Use of variamine blue dye in spectrophotometric determination of water soluble Cr (VI) in Portland cement
CN107084935A (en) A kind of quick determination method of chromium ion
Ünal et al. A new and very simple procedure for the differential pulse polarographic determination of ultra trace quantities of tungsten using catalytic hydrogen wave and application to tobacco sample
Lv et al. A fluorescence method of detecting sulfur dioxide derivatives